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Abstract—In this paper, an innovative combination of the
Kadomtsev-Petviashvili (KP) equation and the Boussinesq
equation gives rise to the KPB equation. Through the
transformation v = 2(In f)., its Hirota bilinear form is
derived to facilitate further research. A variety of solution
types are explored, including 2D solitons, breathers, lumps,
and interaction solutions. Notably, the chaotic behavior of
the double pendulum system is newly applied to the study
of solutions to the KPB equation. By incorporating its
chaotic dynamics into relevant variables, the solutions exhibit
chaos-induced uncertainty and complexity, transcending simple
periodicity and predictability to reflect the complexity of real-
world phenomena. This enriches the understanding of the
equation, builds a bridge between theoretical mathematics and
physical chaos, and contributes to the accurate description and
prediction in scientific and engineering applications.

Index Terms—Kadomtsev-Petviashvili equation, Boussinesq
equation, soliton, breather solution, lump solution, double
pendulum system.

I. INTRODUCTION

ONLINEAR partial differential equations (PDEs) are
widely used to model numerous natural phenomena.
In water wave propagation, their solutions can predict the
shape and position of waves across time and space, thereby
facilitating maritime safety and coastal engineering. In
chemical reaction kinetics, the solutions characterize changes
in the concentrations of reactants and products, providing
guidance for reaction optimization. In fluid thermodynamics,
these equations describe fluid flow states and forces, which
prove valuable for industrial and aerospace design. For
plasma diffusion, their solutions help illuminate plasma
distribution and transport properties—knowledge critical to
fusion research and space physics. Naturally, applications
extend to other fields as well. Thus, studying natural
phenomena through partial differential equations holds great
significance.
The KP equation is an important partial differential
equation in mathematics and physics used to describe the
movement of nonlinear waves. Its general form is:

Uyy = 0, (1

where u = u(x,y,t) is a scalar function,
with z and y representing the longitudinal and transverse
spatial coordinates, respectively. Let us briefly explain the

Ugt + 6(u2)ww + Ugzzr —
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meaning of each term. The term wu,; can be interpreted
as the temporal variation of the gradient of the physical
quantity w (e.g., temperature, concentration, velocity, etc.)
in the z-direction. This is crucial for studying how the
propagation and spatial distribution of w evolve over time.
In the term (u?).., u? is often related to the energy or
power of that physical quantity, (u?),, describes the spatial
variation of energy or related physical quantities. In the
context of water wave problems, it reflects the nonlinear
dispersion effect, specifically the variation in propagation
speed among waves of different frequencies arising from
nonlinear interactions during propagation. This nonlinear
dispersion effect induces changes in wave shape and gives
rise to phenomena such as wave splitting or fusion during
propagation.

The term ., is the fourth-order partial derivative of the
function v with respect to the spatial variable x. Physically,
it represents the high-order term in the dispersion effect of
waves. The high-order spatial derivative term reflects the
high-order dispersion characteristics of waves during spatial
propagation. Specifically, the difference in propagation speed
between waves of different frequencies in space depends
not only on the first-order spatial derivative term but also
on the high-order spatial derivative term. In certain cases,
the presence of this term allows the equation to describe
more complex wave propagation phenomena, such as wave
attenuation and scattering.

The term u,, can describe the diffusive or wave-like
properties of the physical quantity in the y-direction. For
instance, in fluid mechanics, if u represents the y-component
of fluid velocity, this term can reflect how the non-uniformity
of velocity in the y-direction self-adjusts (e.g., in a viscous
fluid, the second derivative of velocity is associated with
viscous force). Alternatively, in wave problems, it may relate
to the propagation and deformation of waves along the y-
direction.

In general, the KP equation comprehensively incorporates
factors such as the temporal evolution, nonlinear interactions,
dispersive effects, and transverse variations of waves,
enabling it to accurately describe a wide range of
propagation phenomena involving nonlinear waves. It finds
important applications in fields including fluid mechanics,
plasma physics, and nonlinear optics. The KP equation
has long remained a frontier of research interest in the
scientific community. Recently, Lan [16] derived its bilinear
form by leveraging Bell polynomials, and subsequently
constructed N-soliton solutions successfully using the Hirota
method—making a notable contribution to the study of this
equation.
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Furthermore, in the research paper [14], a significant
milestone was reached with the first construction of positive
multi-complexiton solutions to the generalized KP equation,
thereby opening new avenues for further exploration and
analysis of related phenomena. Ahmad et al. [2] adopted an
innovative approach by employing the improved ¢°-model
expansion method, leading to the discovery of novel solutions
for the new (3+1)-dimensional integrable KP equation. Their
work has introduced fresh perspectives and insights into the
existing body of knowledge on the KP equation. Naturally,
the literature on the KP equation is extensive, and numerous
other relevant references exist. For the sake of brevity, these
will not be elaborated upon here; readers are encouraged to
consult references [4], [9], [12], [15], [33], [36], [40], [43]
for a more comprehensive exploration of the subject.

The Boussinesq equation stands as a pivotal tool
in fluid dynamics and wave theory. It is employed
to describe the propagation of long waves in shallow
water, incorporating both nonlinear and dispersive effects.
This equation facilitates the understanding of wave-water
interactions and coastal processes, such as tsunamis and surf-
zone waves. One of its commonly used forms is presented
as follows:

Ut + (u2)xz + Uggze = 0. (2)

The term w4, represents the second-order partial derivative of
the function v with respect to time ¢. It reflects the temporal
evolution characteristics of the wave. Physically, it stands
for the acceleration of the system in the time dimension
or the rate of change of the wave. The meanings of the
two terms (u?),, and Ug,q. are similar to those in the KP
equation. In summary, the Boussinesq equation incorporates
temporal and spatial variations, along with nonlinear and
dispersive effects, among other factors, and finds extensive
applications in fields such as fluid mechanics and elasticity.
In recent years, a wealth of cutting-edge research findings on
the Boussinesq equation has emerged. For a more in-depth
exploration, readers may refer to references [18], [21], [29],
[34], [36], [41]. It is worth noting that beyond the works
mentioned, a large body of related literature remains unlisted
here.

In this paper, we integrate the characteristics of these two
types of equations to investigate the following equation:

Upr + Uz + 6ui + 6Ulzy + Upgae — Uyy = 0. 3)

Here, we refer to it as the Kadomtsev-Petviashvili-
Boussinesq equation, abbreviated as the KPB equation. The
Hirota bilinear method ([11], [13], [24]) stands as a pivotal
approach for tackling nonlinear partial differential equations.
Through ingenious transformations, it bilinearizes equations
and constructs specific polynomials, thereby yielding exact
solutions such as solitons and assisting researchers in
unraveling the nonlinear world. By means of the dependent
variable transformation v = 2(ln f).,, we derive the Hirota
bilinear form of Equation (3), which is detailed as follows.

Ut + Uzt + GUi + 6uumx + Ugzrr —
| (D} + DDy + Dy - D2)f - f
= f2

Uyy

xrx

207

where D,,D, and D; are Hirota’s bilinear derivatives
defined by

D;ll D:ILQD?SJC g
(2-2) (2222w
dr Ox' oy Oy ot ot
f(xv Y, t)g(gj'7 ylv t/)|m:m/,y:y’,t:t/-

Therefore, the Hirota bilinear KPB equation is

[D} + DDy + Di — D2|f - f
:2(fttf — ft2 + fztf - f:r:ft

=0.

®)

The bilinear equation (5) forms the foundation for
subsequent investigations into various solutions of the KPB
equation. The structure of this paper is as follows:

In Section II, we examine the two-soliton solutions of the
KPB equation, and select a set of parameters to present three
dimensional and contour plots of these soliton solutions.

In Section III, we derive the breather solutions of the KPB
equation and plot their corresponding graphs. These figures
reveal that the breather solutions exhibit distinct periodicity.

In Sections IV and V, we analyze the lump solutions and
interaction solutions of the KPB equation, respectively, and
provide their three dimensional and contour plots.

In Section VI, we incorporate the dynamical behaviors
of the double pendulum system into the variables of
the aforementioned soliton, breather, lump, and interaction
solutions, aiming to investigate the chaotic behaviors
exhibited by these solutions.

Finally, in Section VII, we present our conclusions.

II. SOLITON SOLUTIONS

The soliton solutions of PDEs have long been a focus
of significant research interest (see [6], [7], [8], [16],
[20], [21], [23], [25], [28], [33], [35], [36], [37], [38],
[42], [44]). Solitons are stable, localized wave packets
that retain their shape during propagation. Within the two
dimensional framework of the KPB equation, these soliton
solutions exhibit distinctive characteristics: they describe
wave phenomena involving interactions in a planar space,
as opposed to one-dimensional linear propagation. Such
solutions facilitate the understanding of various physical
processes, including the behavior of waves in specific
nonlinear media. Their investigation yields insights into
complex wave dynamics and is thus crucial for applications
in fields such as fluid dynamics and plasma physics.

In this part, only the two-dimensional soliton solutions will
be discussed. It is assumed that the soliton solutions of the
KPB equation can be expressed as

f =14 are? + age” + aged™™, (6)

where ¢ = a1x + asy + ast,h = aqx + asy + agt.
Substituting (6) into (5), the following system of equations
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can be obtained.

asag(ai + ajaz — a3 + a3) = 0;

arag(aj + agag — a2 +a3) = 0;

(a] — 4a3ay + 6a3a3 + (—4a3 + az — ag)ay + af
+(—as + ag)as — (a2 + a3 — as — ag)(az — as

—as + ag))agay + ag(aj + 4alay + 6a3a? )
+(4a3 + az + ag)ay + af + (a3 + ag)aq

—(az + a3 + a5 + ag)(az — a3 + a5 — ag)) = 0;

az(a} + araz — a3 + a3) = 0;

as(aj + asag — a2 +a2) = 0.

This system of equations can be solved using Maple
software, yielding multiple sets of solutions that will not
be elaborated on in detail here. Instead, a single set of
solutions is selected for numerical simulation to generate its
corresponding images. Set a3 = 0,a2 = l,a3 = 1,a4 =
—1/2,a5 = —9/4,a6 = —2,a7 = ag = ag = 1, we obtain
one of the soliton solution as

U(l‘, Y, t)Soliton

We present this two-dimensional soliton solution images
when z = 0 and =z = 10, as shown in Figure 1, 2, 3 and 4.

III. BREATHER SOLUTIONS

The breather solution ([3], [5]) in nonlinear partial
differential equations describes localized, periodically
varying phenomena in physical systems. In the context
of water waves, it manifests as the periodic aggregation
and dispersion of energy within a localized region,
analogous to oceanic wave packets. Studying such solutions
facilitates understanding of their formation, propagation,
and interactions—knowledge that is critical for marine
engineering structures. In shallow water models, it
captures variations in surface undulations. Additionally, it
characterizes the behavior of light pulses in nonlinear
optical materials, which proves valuable in fiber-optic
communications for analyzing signal distortion and recovery.
Unlike soliton solutions, which maintain a constant shape
during propagation, breather solutions undergo periodic
changes. While traveling wave solutions propagate at a
constant speed in a specific direction, breather solutions are
distinguished by their focus on localized periodic variations.

In the follows, let’s study the breather solution of the KPB
equation (3). Suppose its breather solution has the following
expression form:

f=e"9 +arsin(h) + age?, 9)

Fig. 1. 3D plot of u(z,y, t)soliton for z = 0.

Fig. 2. Contour plot of u(x, y, t)soliton for = 0.

where

g = a1T + a2y + ast,

h = a4x + asy + aet,
a;(i=1,2---,8) are constants to be determined.

Using Maple software, substitute (9) into the equation (5).
Combine like terms of the product of trigonometric functions
and exponential functions, and then set their coefficients to
be zero. We can obtain the following system of equations.
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Fig. 3. 3D plot of u(z, y, t)soliton for z = 10.

Fig. 4. Contour plot of u(z, y, t)soliton for z = 10.

aj —6a2a? + a} + aza; — a3 + a3

—ayag + ag — ag = 0;
3 3
4ajas — 4aray + arag — 2a2a5+ (10)
asayq + 2aza¢ = 0;
daj — asae + a2 — a2 = 0;

4ai + azay — a3 + a3 = 0.

By solving this algebraic system of equations (10) through
Maple software, many cases of solutions can be obtained as
follows.

Case 1: ay = 71/4,@2 = —a3z + 1/8,&3 = as,a4 =
+i/4,a5 = —ag F1i/8,a6 = a6, a7 = a7, ag = ag;
Case 2: a; = —1/4,a2 = a3 — 1/8,a3 = as,aq =

+i/4,a5 = ag + £i/8, a6 = ag, a7 = a7, as = as;

Case 3: a; = 1/4,@2 = —a3 — 1/8,0,3 = as,a4 =
+i/4,a5 = —ag Fi/8, a6 = a6, a7 = a7, a8 = ag;

Case 4: a; = 1/4,&2 = a3z + 1/87CL3 = as,a4 =
+i/4,a5 = ag + +i/8, a6 = ag, a7 = ar,as = as;

Case 5: a; = Zl,a2 = Qa2,a3 = 3,04 = Zg,a5 =

1 3 2 _ _
E(8Z1Z2 + 20575 + a3 Z1Z3 + asZs), a6 = a3, a7 =
ar,ag = ag, where 77 satisfies equation

47+ Ziaz — a3 + a3 = 0;
Z satisfies equation
Z3+ 71 =0,
Z3 satisfies equation
(a3 — a3)Z3 — (823 Za + 2a325) Z3 — a3 + a3 = 0.

Substituting (9) into v = 2(In f),, it can obtain the
breather solution of the KPB equation (3) as follows.

2(aga2ed + ate™9 — azalsinh)
e 9+ aysinh + aged
2(agaie? — aje™9 + ayay cos h)?
(e79 + aysinh + aged)?

u(z,y,t) =
(11)

In order to better intuitively observe the graphics and
dynamic properties of the breather solution, we select a group
of parameters to draw its three-dimensional plot, contour plot
and density plot. Seta; = —1/4, ap = —7/8, az =1, a4 =
i/4, a5 = —-1—-1/8, ag =1, ay =1, ag = 1. Substituting
this group of values into equation (11), we get the solution
u(x, Y, t)Breather and use Maple software to draw a 3D image
with z,y and Re(u) as coordinate axes. Three cases of
t = —2,0,2 are selected respectively. At the same time,
their corresponding contour plots and density plots are also
drawn. See Figures 5, 6,7, 8,9, 10, 11, 12 and 13 for details.

IV. LUMP SOLUTIONS

The lump solution of partial differential equations ([6], [9],
[10], [19], [26], [31], [33], [35], [39], [40]) is a distinctive
localized solution. It manifests as an isolated, lump-like
structure in space, typically taking the form of a rational
function with energy concentrated within a limited region
and values decaying rapidly away from the center. In fluid
mechanics, it can simulate localized vortices; in nonlinear
optics, it facilitates the understanding of the formation
and interaction of optical solitons, which hold potential
for information transmission. The study of lump solutions
enables a deeper comprehension of localized behaviors and
energy aggregation in complex systems described by partial
differential equations, thereby offering a new perspective
for exploring the internal mechanisms of complex physical
systems.

We assume that the lump solution of the KPB equation

(3) has the following form.
f=¢"+h*+as, (12)

where
g = a1z + a2y + ast,

h = a4x + asy + agt,
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Fig. 5. 3D plot of u(x,y, t)Breather for t = —2. Fig. 8. 3D plot of u(x, y, t)Breather for t = 0.
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Fig. 6. Contour plot of u(z, Y, t)Breather for t = —2. Fig. 9. Contour plot of u(z, Y, t)Breather for t = 0.
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Fig. 7. Density plot of u(z, Y, t)Breather fOr t = —2. Fig. 10. Density plots of u(z, Y, t)Breather for t = 0.
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a;(i=1,2---,7) are constants to be determined.
We substitute (12) into equation (5), and combine the

__Ah_ terms related to x,y and ¢, then obtain seven equations.
] e Solving this system of equations by Maple software gives
" = the following solutions.
- 10
" Case 1
cu .
i ag(+i+1 .
a; = —75:,»_1 L ay = +ias, a3 =0, ag = aq, a5 =
=20 as, g — Ag, A7 = Q7.
Case 2
-3+ . )
ay = a1, az = =%ias, az = Fiag, G4 = G4, A5 =
6(a2+a2)? .
-50 = = 2 %Td)
40’ 1> 1 Z1, ag = ag, a7y = 2o (Erartan)’ where Z; satisfies
-20 e AR 27% +iajag — asag — 2a2 = 0.
-10 40
y 50 x
Case 3
Fig. 11. 3D plot of w(z, Y, t)Breather for t = 2. ay = *iay, ax = *ias, az = *iag, a4 = a4, A5 =
as, e = Gg, a7 = Aay.
X
Case 4
10 20 30 40
: : ' : 2 3_ 2 2 2. 2
0 a1 =(a3a3 + 2asa¢as — a3 — asasz — agag) /(a3 + ag),
=] az =az,a3 = as,
2 2 _ 2 3 2, 2
as = — (aga; — 2asaza3 + agas; — azag + ag) /(a3 + ag),
@ﬁ a5 =as, ag = 06,
-10] 8 6 2 6 2 6 2 5
a7 =3(a5 — 4asa; + 4asa; + 4dazag — 16asazasae6
4 4 4 2 2 4.2 2 4 4 4 2 2
+ 6agas — 4ayazas — 4azazag + 6ayas + 4asazag
y - 157 @ + 6a§a‘é + 32aga§a5a6 — 32aga3aga6 — 32aga3a5ag
2 6 2 4 2 2 4 2 2 2 4
— 4aja3 — 4ajaza; — 4asasag + 4dasazay
=201 + 88a3azaZa? + da3aiag + 4a3al — dalazal
Q“‘) — 4a%a§aé + 4a§ag — 16a2aga5a6 — 32a2a§aga6
_95s] — 32aqa3asay — 16azazalag + 32asa3a3al
- 5, 8 6 2 6 2 4.4
Ry — 16agasasag + as + 4asaz + 4asag + 6asas

+ 4a3atal + 6a3ag + 4a3al — da3azal
2 2 4 2 6 8 6 2 4 4
Fig. 12.  Contour plot of u(x,y, t)Breather for t = 2. - 4a3a5a6 + 4a3a6 +as — 40’50'6 + 6a5a6
2 6 8 2/ 2 2
—dazag + ag)/((azas — azas)”(a3 + ag)).

In order to describe the lump solution intuitively, we set
the values of the parameters according to the above solutions.
Set ay = —=8/5,a2 = 1,a3 = 2,a4 = —9/5,a5 = 3,a6 =

=10 4,a7 = 2523/5, then we have that

U($, Y, t)Lump -

-20 58(— 82 fy+2t)” | 58(— 92 43y+4t)’
2( 5 + 5
4 ~8 20)* 4+ (—2 3y +40)° 4 238)° (3
(2 +y+2t) + (—% + 3y +4t) + 2% (13)
=30 9 (146334 _ (587:1: 14y — M)Q)
25 5 Y= 75
+ 2 2 2
((f%+y+2t) + (% + 3y + 4) +%)
-40
Set ¢ = —2,0,2 respectively to obtain the images of

u(z, y,t)Lump. The corresponding images can be found in

Fig. 13. Density plots of u(z, Y, t)Breather for t = 2.
N ISy pIOts Of (. reather for Figures 20, 21, 22, 14, 15, 16, 17, 18 and 19.
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Fig. 14. 3D plot of u(x,y,t)Lump for t = 0. Fig. 17. 3D plot of u(x,y,t)Lump for t = 2.

0.04 1

| v=10 v=0

v=3]| |— =12 — y=1 — y=15|

Fig. 15. 2D plot of w(z,y,t)Lump for t = 0. Fig. 18. 2D plot of w(z,y,t)Lump for t = 2.

Fig. 16. Density plot of u(z,y,)Lump for t = 0. Fig. 19. Density plot of u(, ¥, t)Lump for t = 2.
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Fig. 20.

3D plot of u(x,y,t)Lump for t = —2.

Fig. 21.

Fig. 22.

20

I_ y=20 ——y=] —— V——6|

2D plot of u(x,y,t)Lump for t = —2.

Density plot of u(x,y,t)Lump for t = —2.

V. INTERACTION BETWEEN LUMP SOLUTIONS AND
HYPERBOLIC COSINE FUNCTIONS

The interaction between lump solutions and hyperbolic
cosine functions holds significant importance [22]. A lump
solution is a distinct localized solution in partial differential
equations, characterized by spatial isolation, with energy or
amplitude concentrated within a limited region and decaying
rapidly outside this domain. The hyperbolic cosine function
possesses unique morphological features and properties.
Their interaction implies inherent connections in both
the mathematical structure and physical implications of
partial differential equations. In physical systems, such
interactions are of critical relevance. In fluid mechanics,
they can model interactions between different wave types,
thereby facilitating the understanding of complex fluid
flow behaviors. In nonlinear optics, they help explain the
interaction mechanisms between light pulses and background
fields, which is beneficial for optical device design and
communication system optimization. Mathematically, this
interaction enriches the theory of solutions to partial
differential equations. In engineering applications, it provides
potential avenues for optimizing designs—such as shock
absorbers and electromagnetic shields—by enabling more
precise control and utilization of energy distribution. Thus,
it carries extensive implications and value across multiple
fields.

For the KPB equation in this paper, it is assumed that its
interaction solution has the following form:

f=g"+n"+1, (14)
where
g = a1T + a2y + ast,
h = a4x + asy + agt,
I = cosh(arx + asy + aot),
and a;(i =1,2---,9) are constants to be determined.

Substitute (14) into the bilinear equation (5). By
combining like terms and setting the corresponding
coefficients to zero, a system of 17 equations can be
obtained. Solve it using the Maple software, and the
following four groups of solutions are obtained.

Case 1
a1 = Fiag,az = *+ias,a3 = 0,a4 = aq,a5 = as,a6 =
_ _ 3 3.
0,a7 = ar,as = —4ay, a9 = —4ax;
Case 2
_ aa(Fi+1) _ : _ _ _
a = —— 7,02 = *ias,az = 0,a4 = ag,a5 =

as,a6 = 0,a7 = 0,ag = 0,a9 = 0;

Case 3

a1 = %iayg, a2 = *ias,a3 = 0,a4 = aq,a5 = as,a6 =
0,a7 = ar,ag = 4a§,a9 = —4a§.

Case 4

a1 = *tay, az = Fias, az = Fiag, a4 = a4, A5 =

_ _ _ 1 2 _
as, ag = g, a7 = a7, ag = +/4a; + arag + ag, ag = ag.
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Therefore, we set a1 = 2i,a9 = i,a3 = 0,a4 = 2,a5 =
l,a6 = 0,a7 = l,as = —4,a9 = —4, and obtained a
specific interaction solution of the KPB equation.

u(2, Y, 1) Interaction =
2 cosh(—x + 4y + 4t)

((2ix +1y)? + (22 + y)? + cosh(—x + 4y + 4t))?
((2iz + iy)® + (2z 4 y)? + cosh(—z + 4y + 4t))
((2tx +1y)? + (2 + y)? + cosh(—x + 4y + 4t))?
2(4i(2ix + iy) + 8x + 4y — sinh(—z + 4y + 4t))?

 ((2iz +iy)2 + (2% + y)? + cosh(—z + 4y + 4t))%

15)

Then its graph is presented, with details shown in Figures
23, 24, 25 26, 27, 28, 29, 30 and 31.

VI. CHAOTIC BEHAVIOR

A double pendulum ([1], [17], [27], [30], [45]) is a
physical system composed of two pendulums attached end-
to-end. The first pendulum is attached to a fixed point, and
the second pendulum is attached to the end of the first
one. Mathematically, let the length and the mass of the first
pendulum be L; and m;, the length and the mass of the
second pendulum be Lo and ms. The angles that the first
and second pendulums make with the vertical direction are
usually denoted as 6 and ¢ respectively, see Figure 32.

The motion of a double pendulum system is described by
a set of nonlinear differential equations. Using Lagrangian
mechanics, the Lagrangian L of the system is given by the
difference between the kinetic energy 7' and the potential
energy V of the system. The kinetic energy of the double
pendulum is

1 .
T :=-m;Li6°+
Tt y (16)
52 [L%&Q + L2392 + 2L, Lo cos(0 — )]
where 6 and ¢ denote the derivative of # and ¢ with respect
to time s respectively. The potential energy is

V :=mygLy cos0 + maog (L1 cos + Lo cos @) .

The dynamics of the double pendulum can be studied via the
Euler-Lagrange equations

£ (%) - % =0
s \ 00

s\ _ ot _o (17)
ds \ 8¢ 0

where Lagrange function L := T — V. One of the most
interesting aspects of the double pendulum system is its
chaotic behavior. Even for a small number of degrees of
freedom (two in this case), the system can exhibit extremely
complex and unpredictable motion. The sensitivity of the
system to initial conditions is a characteristic of chaos.
A very small change in the initial angles ¢ and ¢ or
the initial angular velocities #(0) and ¢(0) can lead to a
completely different long-term behavior of the pendulums.
For convenience, let’s assume that the two pendulums are
the same, that is, L1 = Ly = 1 and m; = ma = m. We
pick initial conditions as one pendulum on top of the other

1_..
0.8+
u 067
0.4+
0.2+
=200
= 1()0
y X
Fig. 23. 3D plot of the interaction solution for ¢ = —10.
|
1157
" 1-
I
|
|
[ [0.5 1
|
(|
-100 -50 0 50 100
X
[ y=5 v=0 y=s|
Fig. 24. 2D plot of the interaction solution for ¢ = —10
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Fig. 25. Contour plot of the interaction solution for ¢ = —10.
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Fig. 26. 3D plot of the interaction solution for ¢ = 0.
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Fig. 27. 2D plot of the interaction solution for ¢ = 0.
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Fig. 31. Contour plot of the interaction solution for ¢t = 10.
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pivot point

Fig. 32. The double pendulum system.
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Fig. 33. The initial positions of the double pendulum system.
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Fig. 34. Chaotic behavior of (s).
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Fig. 35. Chaotic behavior of ¢(s).

(unstable equilibrium) and the initial conditions of the Euler-
Lagrange equations (17) are

0(0) = 7, 6(0) = —0.01, ¢(0) = m, 4(0) = 0.

For a more intuitive understanding, one can refer to Figure
33. The chaotic behaviors of 8(s) and ¢(s) with respect to
time s can be seen in Figure 34 and 35.

The primary feature of this paper lies in applying
the chaotic behaviors of 6(s) and ¢(s) from the double
pendulum system to various solutions of the KPB equation.
The chaotic behavior in the double pendulum system is
relatively intuitive, characterized by high sensitivity to initial
conditions and the unpredictability of long-term dynamics.
By incorporating such chaotic behavior into the solutions
of the KPB equation, we can investigate the properties of
these solutions from a novel perspective. It is plausible to
observe that, within specific parameter ranges, the solutions
of the KPB equation also exhibit chaos-like complex
structures—findings that contribute to a deeper understanding
of chaotic phenomena across different mathematical physics
models.

When the chaotic behavior of the double pendulum system
is introduced into a variable of the KPB equation’s solutions,
originally regular solutions (e.g., soliton solutions, breather
solutions, lump solutions) may undergo irregular changes in
both temporal and spatial domains. These changes no longer
follow simple periodic or predictable patterns but instead
embody the uncertainty and complexity inherent to chaotic
systems. This makes the description of solution behaviors
more aligned with real-world complex scenarios, such as
turbulent flows in water waves or wave motions in water
areas subjected to complex external disturbances.

Firstly, we substitute #(s) and ¢(s) for the variable y in
the soliton solution (8). We then use Maple software to
generate their corresponding graphs, as shown in Figures
36, 37, 38 and 39. By comparing the contour plots before
and after the introduction of chaotic behavior (specifically,

Volume 52, Issue 10, October 2025, Pages 3924-3939



TAENG International Journal of Computer Science

1op 100

Fig. 36. Chaotic soliton solution u(z, ¥, t)soliton for = 0 by replacing
y with 0(s)
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Fig. 37. Contour plot of chaotic soliton solution u(z, ¥, t)soliton for z = 0
by replacing y with 6(s).

comparing Figure 1 with Figures 36 and 38), we can observe
that the soliton solution exhibits distinct chaotic behavior.

Secondly, we substitute 6(s) and ¢(s) for the variable z in
the breather solution (11), and then illustrate the chaotic
behavior of the resulting solution, as shown in Figures 40,
41, 42 and 43. Broadly speaking, these solutions retain
a certain degree of periodicity while exhibiting distinct
chaotic behavior—a trend that becomes more intuitive when
compared with Figure 8.

Thirdly, we substitute 6(s) and ¢(s) for the variable z in
the lump solution (13), and use Maple software to plot the
corresponding graphs, with details provided in Figures 44,
45, 46, 47, 48 and 49. From these figures, it is evident that,
in contrast to the regularity of the original lump solution
(Figure 17), the modified solutions exhibit highly pronounced
chaotic behavior.

Fig. 38. Chaotic soliton solution u(z, ¥, t)soliton for = 0 by replacing
y with ¢(s).
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Fig. 39. Contour plot of chaotic soliton solution u(x, y, t)scliton for z =0
by replacing y with ¢(s).

Finally, we substitute 6(s) and ¢(s) for the variable x in
the interaction solution (15) to obtain chaotic interaction
solutions, whose graphs are presented in Figures 50, 51, 52
and 53. A comparison of the solution graphs before and after
substitution reveals that the interaction solution transitions
from its original regular periodicity (Figure 26) to a highly
irregular chaotic state.

VII. CONCLUSIONS

In this paper, we conducted a comparative analysis
of the Boussinesq and Kadomtsev-Petviashvili equations,
identifying shared terms such as (u?),, and Ugrpe.
We then integrated their distinctive characteristics to
formulate the KPB equation, which carries clear physical
significance—particularly the wu; term, which reflects the
evolutionary behavior of solutions. We derived and presented
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Fig. 40. Chaotic breather solution u(x, ¥, t)Breather for t = 0 by replacing
z with 0(s).

Fig. 41. Contour plot of chaotic breather solution u(z,y,t)Breather fOr
t = 0 by replacing « with 6(s).

its 2D soliton, breather, lump, and interaction solutions, all
of which exhibit practical application potential.

Theoretically, in the field of physics, the soliton solutions
of the KPB equation reveal the intrinsic nature of nonlinear
waves, with applications spanning fluid dynamics, quantum
fields, and beyond. Breather solutions describe energy
fluctuation phenomena in optics and plasma physics, thereby
expanding the research scope of nonlinear dynamics. Lump
solutions contribute to the understanding of material states,
while interaction solutions play a pivotal role in atomic
and quantum contexts, enabling the construction of complex
multi-scale models. Mathematically, as an integrable system,
the KPB equation enriches solution spaces, facilitates
investigations into conservation laws, and advances the
development of solution methodologies.

Fig. 42. Chaotic breather solution u(x, y, t)Breather for t = 0 by replacing
x with ¢(s).

Fig. 43.  Contour plot of chaotic breather solution u(z,y,t)Breather fOr
t = 0 by replacing = with ¢(s).

The incorporation of double pendulum chaos into
the equation’s solutions holds profound implications.
Theoretically, it transcends the limitations of regular
solutions, deepening our comprehension of the complexity
of nonlinear waves and cross-model chaotic behaviors.
Practically, it enhances applications across both micro
and macro domains, such as optimizing soliton-based
communication encryption, refining breather-simulated wave
energy analysis, improving lump-based material modeling,
and strengthening multi-scale interaction simulations using
interaction solutions.

Our research demonstrates innovation by providing
valuable references for chaos studies in PDEs, while also
bearing significant practical value.
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Fig. 44. 3D plot of the chaotic lump solution w(z,y,t)Lump for t = 2

by replacing « with 6(s).

0.04+

0qgL

| |
r L
-100 50" IU

Fig. 45. 2D plot of the chaotic lump solution u(z,y,t)Lump for

t = 2 by replacing = with 6(s).

Fig. 46. Contour plot of the chaotic lump solution w(z, ¥, ) Lump

for ¢ = 2 by replacing = with 6(s).
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Fig. 47. 3D plot of the chaotic lump solution u(z,y,t)Lump for t = 2

by replacing  with ¢(s).
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Fig. 48. 2D plot of the chaotic lump solution w(z,y,t)Lump for

t = 2 by replacing = with ¢(s).

Fig. 49. Contour plot of the chaotic lump solution u(z, ¥, ) Lump

for ¢ = 2 by replacing = with ¢(s).
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Fig. 50.

Chaotic interaction solution u(z, ¥, t)Interaction for ¢ = 0 by

replacing « with 6(s).

Fig. 51.

Contour plot of chaotic interaction solution u(z, ¥, t)Interaction

for ¢ = 0 by replacing x with 6(s).
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