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Abstract—It has become more challenging to manage 

congestion in power transmission lines due to the increasing 

usage of renewable energy sources and increased electricity 

consumption. To address issues with congestion management, 

this study examines the usage of an Advanced Interline Power 

Flow Controller (IPFC) in conjunction with AI and ML 

methods. The objective is to keep the electricity system running 

reliably and efficiently while keeping the cost of congestion 

management to a minimum. Models for congestion prediction 

and control are created using AI/ML techniques. Optimization 

methods are employed to determine the optimal strategies for 

IPFC operation and congestion control. To evaluate the 

proposed approach, the IEEE 30 bus system is utilized as a test 

case. The proposed AI/ML-based approach is compared to 

more traditional approaches to congestion management, and 

the results are analyzed side by side. Incorporating an IPFC 

and AI/ML methods results in less congestion on the power 

transmission lines of the IEEE 30 bus system. Significantly 

lower congestion levels, improved power flow optimization, and 

cost savings are shown in compared to earlier techniques. 

 
Index Terms—Congestion management, Interline Power 

Flow Controller, Artificial Intelligence, Machine Learning 

 

I. INTRODUCTION 

HE development of reliable electrical energy sources 

has been a crucial factor in the expansion of industrial 

and technological societies, and the modern power system is 

largely responsible for this. Modern infrastructure would not 

be complete without the power system, which has grown in 

significance due to the ever-increasing need for electrical 
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energy and is always being improved in both design and 

operation to suit societal demands. Power transmission lines 

are an essential part of any contemporary power system's 

electrical infrastructure, since they are responsible for the 

safe and efficient distribution of electricity to homes and 

businesses. In order to keep up with the increasing demand 

for electricity and make sure their power systems are stable, 

several countries are focusing on developing and maintain-

ing transmission lines [1]. Maintaining a steady flow of elec-

tricity from generators to homes and businesses is the job of 

the power transmission system. Congestion problems in 

power transmission lines have resulted from rising electricity 

consumption, shifting patterns of power generation, and a 

lack of funding for transmission infrastructure growth. When 

power consumption outstrips transmission line capacity, 

congestion happens because of bottlenecks, voltage instabil-

ity, and possible equipment overload [2]. If the electrical 

system is to function reliably and efficiently, congestion 

control is an essential component. To lessen the impact of 

power transmission line congestion, numerous methods and 

approaches have been created and put into use. To address 

specific congestion conditions and obtain best results, it is 

common to apply a combination of congestion management 

approaches. System features, market structure, regulatory 

frameworks, and the specific issues of congestion in a given 

electricity system are some of the elements that determine 

the approaches to be used [3]. New transmission lines can be 

built as an expansion of the existing transmission system to 

alleviate congestion. Congestion in heavily populated corri-

dors is reduced and transmission capacity is increased. An 

additional tactic is to enhance the capacity of already-

existing transmission lines. This can involve using high-tech 

materials like High Temperature Low Sag (HTLS) conduc-

tors, upgrading transformers, or reconductoring [4]. Power 

generator output levels can be adjusted by system operators 

to relieve congestion and redistribute power flows. Loads on 

overloaded lines can be decreased by relocating generation 

to less populated regions [5]. In order to decrease overall 

demand and alleviate congestion, it is recommended that 

users modify their electricity usage patterns during peak 

periods. Customer electricity usage during off-peak hours 

can be incentivized through demand response schemes and 

time-of-use pricing. The optimum generation dispatch and 

device control to reduce system costs while satisfying opera-

tional limits is determined by OPF by considering network 

constraints and system economics [6]. With the use of con-
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gestion limitations, OPF is able to optimize power flow pat-

terns while simultaneously reducing congestion. Limitations 

on Safety Congestion management goals and system security 

limitations like voltage limits and contingency analyses are 

both considered by OPF. It safeguards the power flow solu-

tions against many possible system failures [7]. Static syn-

chronous compensators (STATCOMs), interline power flow 

controllers (IPFCs), and static voltage compensators (SVCs) 

are all examples of FACTS devices that allow for the dy-

namic regulation of reactive power flow and voltage. By 

actively controlling power flows, regulating voltages, and 

improving grid stability, these devices can optimize power 

flow patterns, reduce congestion, and increase reliability [8]. 

Research into the use of AI and ML in electrical grids is a 

dynamic and ever-changing area. More complex algorithms, 

real-time data integration, computing efficiency enhance-

ment, and cyber security problem solving are all areas of 

active research. Smarter, more efficient, and more sustaina-

bly managed power systems are possible with the incorpora-

tion of AI/ML technology [9]. To anticipate how a system 

will behave in the future, Model Predictive Control (MPC) 

uses optimization algorithms and mathematical models to 

determine the best course of control action. In order to re-

duce congestion and keep the system stable, MPC can opti-

mize control strategies, such as generation dispatch and de-

vice settings [10]. 

One of the most useful technologies for power transmis-

sion networks is the Interline Power Flow Controller (IPFC). 

Optimizing power system operation and guaranteeing a sta-

ble and efficient supply of electricity are made easier with its 

capabilities in power flow control, voltage stability en-

hancement, grid stability improvement, congestion manage-

ment, adaptability, and scalability [11]. By incorporating AI 

and ML approaches, the IPFC is able to manage congestion 

and maintain grid stability even more efficiently, while also 

increasing its performance and agility. An optimized and 

resilient power grid can be achieved by developing and ap-

plying effective methods and technologies, such as the Inter-

line Power Flow Controller (IPFC) combined with AI/ML, 

which can minimize congestion issues [12]. 

 

II. INTERLINE POWER FLOW CONTROLLER (IPFC) 

A brand new IPFC advanced model for analyzing power 

flows is suggested in this study. Both the line charging sus-

ceptance and the impedance of the series converter trans-

former are taken into consideration in this model. The origi-

nal structure and symmetry of the admittance matrix can be 

shown to be preserved in this situation; hence, the block-

diagonal properties of the Jacobian matrix may be kept and 

the sparsity method can be applied. Power transmission net-

works use the adaptable and dynamic Interline Power Flow 

Controller (IPFC) to regulate power flow and improve grid 

stability. Two or more transmission lines are connected at 

either end of the IPFC by voltage source converters (VSCs). 

The injected voltage can be independently controlled by 

these VSCs, which are usually built on insulated-gate bipolar 

transistor (IGBT) technology. Accurate regulation of reac-

tive and active power flow is made possible by connecting 

the IPFC's VSCs in series with the transmission lines. By 

connecting in series, you can manage the flow of power ef-

fectively because the injected voltage is directly proportional 

to the line current [13]. 

 

A. Operation of IPFC 

The IPFC is able to function by introducing a voltage into 

the transmission lines that can be controlled. Both the active 

and reactive power flows can be controlled by adjusting the 

amplitude and phase angle of the injected voltage. The phase 

angle of the injected voltage is controlled by the IPFC to 

adjust the power flow distribution between the transmission 

lines. By rerouting power from overloaded lines to less 

crowded ones, it can improve power flow and reduce con-

gestion. Injecting or absorbing reactive power into the 

transmission lines is another way the IPFC can control reac-

tive power flow. Because of this, the voltage may be regulat-

ed and the system's voltage stability can be improved. Line 

currents, voltages, and system conditions are monitored as 

part of the IPFC control method. This data is used by control 

algorithms to determine the needed injection voltage and 

change the converter parameters appropriately. Through the 

optimization of transmission capacity utilization, the dynam-

ic redistribution of power flows, and the elimination of bot-

tlenecks, the IPFC enables efficient congestion control [14]. 

An useful instrument for congestion management in power 

transmission networks, the IPFC offers multi-line control, 

high precision, fast response, and dynamic power flow con-

trol. System dependability, power flow optimization, and 

renewable energy integration can all benefit greatly from its 

capacity to reduce congestion, balance loads, manage volt-

age, and increase grid stability. The IPFC's capacity to han-

dle congestion is further improved by its adaptability, modu-

larity, and compatibility with AI/ML approaches. 

 

B. Modeling and Control Strategies for IPFC 

To keep the IPFC running smoothly, modeling and con-

trol strategies are essential. For optimal control of power 

flow and management of congestion, accurate modeling of 

the IPFC system and the application of suitable control algo-

rithms are crucial [15]. Including control variables such in-

jected voltage magnitude and phase angle, the IPFC model 

should reflect the current and voltage relationships between 

the IPFC and the transmission lines. System dynamics, such 

as converter response time and related control loops, should 

be accounted for in the models [16]. Any IPFC with an arbi-

trary number of series converters can benefit from the math-

ematical derivation. The IPFC circuit with two series con-

verters is depicted in Figure 1. 

From Figure 1:  

         (1) 

     (2) 

nnn iii VV   and 
nnn jjj VV 

 
:The complex bus 

voltages at buses in and jn 
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Fig. 1.  Equivalent Circuit diagram of IPFC 

 

 

ni
I  and 

nj
I    :The complex currents injection at buses in 

and jn  

nnn sesese VV   : The complex controllable series inject-

ed voltage 

nnn sesese jXRZ   : The series transformer impedance 

nnn lll jXXZ    : The line series impedance  

10B    : The line charging susceptance 
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Where       (5) 
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              (12) 
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           (14) 

      (15) 
 

Equation (14) and (15) can also be written in matrix form as 

    (16) 

Where   

  

         (17) 

     

       (18) 

 

For simplicity's sake, we will ignore the transmission line 

and series coupling transformer resistances while calculating 

the active and reactive power injections at buses in and jn 

connected to two current sources Figure 2: 

   (19) 
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Fig. 2. Representation of IPFC using current source 

 

 
 

Fig. 3. Power injections π-model of IPFC 

 

 

  (20) 

        (21) 

        (22) 

Where    

 

The equivalent power injection model of an IPFC is 

shown in Figure 3. It can be concluded that the admittance 

matrix still keeps the same structure and symmetry as that of 

the case without IPFC. 

 

        (23) 

        (24) 

    (25) 

(26) 

    (27) 

  

 (28) 

             (29) 

Where  

(30) 

Where  

 
 

In order to achieve the required system performance, con-

troller design for IPFC entails creating the control algo-

rithms and fine-tuning the control parameters. Improving the 

IPFC's control parameters is possible with the use of optimi-

zation methods including genetic algorithms, particle swarm 

optimization, and model predictive control. While meeting 

operational restrictions, these strategies strive to minimize 

objective functions like transmission losses, voltage varia-

tions, or congestion levels. It is common practice to do simu-

lation studies to validate IPFC modelling and control tech-

niques. The IPFC system can be modelled under various 
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operating conditions and situations using a power system 

modeling tool like MATLAB. The IPFC's efficiency and 

efficacy in managing congestion and controlling power flow 

were confirmed by the simulation studies [17]. 

 

III. ARTIFICIAL INTELLIGENCE/MACHINE LEARNING IN 

CONGESTION MANAGEMENT 

A great deal of cutting-edge technology and software re-

lies on AI/ML algorithms. Algorithms like this allow com-

puters to do things that have always required human intel-

lect, like learn from data and make smart decisions. Recent 

years have witnessed remarkable progress in artificial intel-

ligence and machine learning algorithms, thanks to devel-

opments in computer power, the availability of massive da-

tasets, and improvements in algorithmic methodologies. 

 

A. Artificial Intelligence (AI) 

A.I. is the process of teaching computers to think and be-

have like humans. It includes a wide variety of methods and 

algorithms that give computers the ability to see, think, 

learn, and decide for themselves. Machines with artificial 

intelligence (AI) will be able to learn and adapt to new situa-

tions much like humans.  When it comes to solving prob-

lems, symbolic AI uses rule-based systems and knowledge 

representation. In contrast, statistical AI learns patterns in 

data and makes predictions using probabilistic and statistical 

approaches [18]. 

 

B. Machine Learning (ML) 

Learning from data without explicit programming is the 

goal of ML, a branch of artificial intelligence. This goal is 

achieved through the creation of algorithms and models. In 

order to generate predictions or choices, as well as to en-

hance their performance over time, ML algorithms learn 

patterns and relationships from data. Algorithms engage in 

supervised learning when they are given inputs and labelled 

data that correspond to their outputs. It can learn to generate 

predictions using data it has never seen before by mapping 

input data to accurate output labels. Without any predeter-

mined labels for the output, unsupervised learning algo-

rithms discover patterns and structures in unlabeled data. 

Clustering, dimensionality reduction, and anomaly detection 

are among of the jobs that make use of them. By interacting 

with their surroundings, reinforcement learning algorithms 

are able to learn. As a result of the positive or negative rein-

forcement they receive for their activities, they gradually 

learn to maximize their total reward. Decisions that are both 

sequential and subject to change frequently employ rein-

forcement learning [19]. 

 

C. AI/ML Techniques for Congestion Management 

When it comes to managing power system congestion, 

AI/ML approaches have been the talk of the town and shown 

encouraging results. In order to improve strategies for man-

aging congestion, these methods make use of data analytics, 

pattern identification, and optimization. Common artificial 

intelligence and machine learning methods for traffic control 

are as follows [20]: 

These methods demonstrate how artificial intelligence and 

machine learning have been effectively integrated into power 

networks to manage congestion, control voltage, integrate 

renewable energy sources, and predict future loads. Utilities 

and system operators have increased grid stability, optimized 

electricity flow, and expanded congestion management ca-

pabilities by employing advanced analytics and intelligent 

decision-making [21]. 

 

D. Optimal Power Flow (OPF) Optimization 

To optimize power flow and alleviate congestion, OPF al-

gorithms can be linked with ML approaches like reinforce-

ment learning, genetic algorithms, or particle swarm optimi-

zation. Finding the most secure and efficient operating con-

ditions that reduce congestion is the goal of these optimiza-

tion techniques, which take into account a number of limita-

tions and objectives, such as transmission line capacities, 

generation limits, voltage limits, and economic variables 

[22]. 

 

IV. PROPOSED METHODOLOGY 

A. Integration of IPFC with AI/ML Algorithms 

Congestion management problem specifications, power 

system model complexity, and desired outcomes inform the 

choice of optimization algorithm. Computing efficiency, 

accuracy, convergence characteristics, and the capacity to 

manage nonlinearities and limits related to IPFC operation 

are some of the criteria that should be considered while 

choosing an algorithm [23]. By incorporating AI and ML 

techniques, IPFC may be made even more effective in man-

aging power transmission system congestion. By combining 

IPFC with AI/ML algorithms, power flow and congestion 

management can be optimized. In order to determine the 

best possible operating conditions, these algorithms can take 

into account a wide range of parameters, including transmis-

sion line capabilities, generation restrictions, voltage re-

straints, and economic objectives. The injection voltages can 

be dynamically adjusted by IPFC to reduce congestion, 

transmission losses, and improve system efficiency by con-

stantly analyzing real-time data and applying optimization 

algorithms [24]. Skill in data analysis, algorithm selection, 

model training, and system integration is necessary for the 

creation of AI/ML models for congestion prediction and 

control. For accurate congestion prediction and effective 

control techniques with IPFC, it is crucial to test and fine-

tune the models using real-world data and regularly monitor 

their performance.   

Finding the best possible operating conditions for IPFC is 

essential for efficient congestion management in power 

transmission systems, and optimization methods are core to 

this process. Congestion management problem specifica-

tions, power system model complexity, and desired out-

comes inform the choice of optimization algorithm. Compu-

ting efficiency, accuracy, convergence characteristics, and 

the capacity to manage nonlinearities and limits related to 
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IPFC operation are some of the criteria that should be con-

sidered while choosing an algorithm [25]. 

 

B. Constriction factor Particle Swarm Optimization 

One population-based optimization method is Particle 

Swarm Optimization (PSO), which models the solution pro-

cess as a flock of particles navigating a given environment. 

Particles' movements are affected by both their own and the 

swarm's best-known positions; each particle stands for a 

possible solution [26]. By repeatedly adjusting the particle 

placements according to goals for congestion reduction or 

power flow enhancement, PSO algorithms can optimize 

IPFC control settings. As a result of particle interactions, the 

swarm converges on optimal control values. The constriction 

factor is a parameter in Particle Swarm Optimization (PSO) 

that affects how the particles move and converge in the 

search space. The social behaviour of flocks of birds or 

schools of fish served as inspiration for PSO, an optimiza-

tion method based on populations [27]. 

There are two primary parts to the velocity update equa-

tion in PSO: the cognitive part and the social part. While the 

social component steers particles toward the optimal solu-

tion discovered by the entire swarm, the cognitive compo-

nent guides particles towards their particular best solutions. 

These two factors are balanced out by the constriction fac-

tor. 

A particle's maximum velocity is limited by the con-

striction factor. Most commonly, it takes on the values 0 and 

1. Here is the equation for updating velocity with the con-

striction factor: 
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The constriction factor Φ acts as a scaling factor that lim-

its the velocity updates. It ensures that the particles do not 

move too quickly, which can result in overshooting the op-

timal solution. The constriction factor is often chosen to be a 

fixed value, such as 0.729, which has been found to provide 

good convergence properties in many cases. 

 

C. Model Predictive Control (MPC) 

Modern PID controllers take an optimization-based ap-

proach to control action determination, making them a cut-

ting-edge control technique. Solving an optimization issue in 

a receding horizon fashion requires defining a goal and con-

straints. To use MPC to IPFC control, one must first formu-

late an optimization problem that, given certain restrictions, 

either maximizes power flow or reduces congestion. Taking 

into account the most recent system measurements and pre-

dictions, the optimization issue is tackled iteratively at each 

time step. More recently, it has found applications in power 

electronics and models for balancing power systems [28]. 

[29] Dynamic process models, often linear empirical models 

derived from system identification, are the backbone of 

model predictive controllers. Optimisation of the current 

timeslot while future timeslots are considered is the key ben-

efit of MPC. Using MPC in conjunction with an IPFC allows 

for active congestion management through real-time adjust-

ments to the IPFC's control settings based on projected sys-

tem behavior. To effectively manage congestion, the MPC 

framework enables proactive control decisions by taking into 

account system dynamics, limits, and future projections. 

 

V. PROBLEM FORMULATION FOR CONGESTION 

MANAGEMENT 

Finding the best generation plan that minimizes the total 

cost of producing power while satisfying the power system's 

demand and operational restrictions is the goal of the objec-

tive function employed in OPF for minimizing the cost of 

generation. Consequently, the output of this optimization 

issue will include the generating cost with the minimum pos-

sible value. Here is one way to define the objective function 

using generator operating costs: 

 

           (36) 

Where 

NG = Number of Generators 

Ci(Pi) = Fuel cost function  

Mathematically, the objective function can be represented 

as: 

  (37) 

The objective function sums up the cost of each genera-

tor's power output, weighted by their respective cost coeffi-

cients. The cost coefficient represents the cost per unit of 

power generated by each generator. Results and Discussion 

The proposed methodology has been tested on an IEEE 

30 bus system shown in Figure. The network comprises 30 

buses, 41 interconnected lines, and six generators. The IEEE 

30 bus test system load flow is obtained using MATLAB 

software, and the results have been presented. Only loaded 

buses are considered for IPFC placement. The results have 

been analysed for normal loading, 10% loading, 15% load-

ing and 20% loading conditions. 

 

A. Normal case condition 

To find the optimal scheduling for the power system un-

der base case conditions, the proposed CFBPSO and MPC 

with IPFC are employed. Keeping the cost of generator fuel 

to a minimum is the objective function that is considered. 

When using CFBPSO and MPC with IPFC, the appropriate 

parameters for the control variables in the usual case scenar-

io are listed in Table 1.  
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Fig. 4. Comparison of Fuel Costs 

TABLE 1 

OPTIMAL VALUES FOR IEEE-30 BUS SYSTEM UNDER NORMAL CASE CONDITION 

 

Control variables 

Normal Case condition 

NR 
 CFPSO 

with IPFC 

 MPC with 

IPFC 

Real Power 

Generation 

(MW) 

PG1 1.5929 1.7766 1.7695 

PG2 0.5812 0.4882 0.4877 

PG3 0.1287 0.2134 0.2111 

PG4 0.1871 0.12 0.1182 

PG5 0.2242 0.2133 0.2129 

PG6 0.211 0.1115 0.12 

Generator Volt-

ages (p.u) 

VG1 1.05 1.05 1.1 

VG2 1.045 0.9505 1.0878 

VG3 1.01 0.95 1.0698 

VG4 1.05 1.1 1.1 

VG5 1.01 0.95 1.0619 

VG6 1.05 1.1 1.1 

Loss (MW) 0.0911 0.089 0.0855 

Cost  ($/hr) 810.911 799.904 798.809 

 

 

 
Figure 5: Power analysis under normal case condition 
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TABLE 2 

OPTIMAL VALUES FOR IEEE-30 BUS SYSTEM UNDER 10% LOADING CONDITION 

Control variables 

10% Loading condition 

NR 

 CFPSO 

with 

IPFC 

 MPC 

with 

IPFC 

Real Pow-

er Genera-

tion (MW) 

PG1 1.9054 1.9057 1.6948 

PG2 0.5812 0.5193 0.6048 

PG3 0.1287 0.2871 0.35 

PG4 0.1871 0.145 0.1734 

PG5 0.2242 0.224 0.2474 

PG6 0.211 0.136 0.12 

Generator 

Voltages 

(p.u) 

VG1 1.05 1.1 1.05 

VG2 1.045 1.0871 0.9501 

VG3 1.01 1.0685 0.95 

VG4 1.05 1.1 1.1 

VG5 1.01 1.0585 0.95 

VG6 1.05 1.1 1.1 

Loss (MW) 0.1202 0.0996 0.073 

Cost  ($/hr) 914.406 903.4810 902.6309 

 

 
 

Fig. 6. Power analysis under 10% loading condition 

 

 
 

Fig. 7. Power analysis under 15% loading condition 
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TABLE 3 

OPTIMAL VALUES FOR IEEE-30 BUS SYSTEM UNDER 15% LOADING CONDITION 

Control variables 

15% Loading condition 

NR 
 CFPSO 

with IPFC 

 MPC with 

IPFC 

Real Power 

Generation (p.u) 

PG1 1.9902 1.9716 1.787 

PG2 0.66315 0.5369 0.6255 

PG3 0.189 0.35 0.35 

PG4 0.1137 0.1569 0.1909 

PG5 0.2597 0.2303 0.2509 

PG6 0.1753 0.12 0.1201 

Generator Volt-

ages (p.u) 

VG1 1.05 1.1 1.05 

VG2 1.045 1.0873 0.95 

VG3 1.01 1.0688 0.95 

VG4 1.05 1.1 1.1 

VG5 1.01 1.0581 0.95 

VG6 1.05 1.1 1.1 

Loss (p.u) 0.132 0.1067 0.0652 

Cost  ($/hr) 969.725 957.49 949.4770 

 

 

 
 

Fig. 8. Power analysis under 20% loading condition 

 

 
 

Fig. 9. The line flow comparison on the overloaded transmission line (bus 1–2) under various loading conditions 

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3972-3984

 
______________________________________________________________________________________ 



 

 

 

TABLE 4 

OPTIMAL VALUES FOR IEEE-30 BUS SYSTEM UNDER 20% LOADING CONDITION 

 

Control variables 

20% Loading condition 

NR 
 CFPSO 

with IPFC 

 MPC with 

IPFC 

Real Pow-

er Genera-

tion (p.u) 

PG1 1.9721 1.9999 1.8949 

PG2 0.7 0.5707 0.6376 

PG3 0.2553 0.35 0.35 

PG4 0.1559 0.1796 0.202 

PG5 0.2985 0.2423 0.2561 

PG6 0.1514 0.1708 0.12 

Generator 

Voltages 

(p.u) 

VG1 1.05 1.1 1.05 

VG2 1.045 1.0878 0.9501 

VG3 1.01 1.0681 0.95 

VG4 1.05 1.1 1.1 

VG5 1.01 1.0581 0.95 

VG6 1.05 1.1 1.1 

Loss (p.u) 0.1324 0.1125 0.0599 

Cost  ($/hr) 1026.46 1012.20 997.3751 

 

TABLE 5 

THE EFFECTIVENESS OF CFPSO IPFC IN ALLEVIATING CONGESTION 

  

Over 

loaded 

lines 

Line flow 

limit  

(MVA) 

Increment in 

load (%) 

Line flow (MVA) 

Without 

CFPSO IPFC 

 CFPSO 

With IPFC 

Case a 1-2 130 Base 104.9 98.2825 

Case b 1- 130 110 131.062 114.021 

Case c 1-2 130 115 131.305 121.742 

Case d 1-2 130 120 133.423 129.318 

 

TABLE 6 

 RESULTS SUMMARY UNDER DIFFERENT LOAD CONDITIONS 

Load Condi-

tion 

Fuel Cost 

(NR) 

Fuel Cost 

(CFPSO + 

IPFC) 

Fuel Cost 

(MPC + 

IPFC) 

Loss (NR) 

Loss 

(CFPSO + 

IPFC) 

Loss (MPC + 

IPFC) 

Normal $810.91 $799.90 $798.81 0.0911 MW 0.089 MW 0.0855 MW 

10% Load $914.41 $903.48 $902.63 0.1202 MW 0.0996 MW 0.073 MW 

15% Load $969.73 $957.49 $949.48 0.1320 MW 0.1067 MW 0.0652 MW 

20% Load $1026.46 $1012.20 $997.38 0.1324 MW 0.1125 MW 0.0599 MW 

 

When compared to the Newton Raphson (NR) approach, 

the minimum generator fuel cost achieved using the 

CFBPSO with IPFC method is 799.904 $/h, while the MPC 

with IPFC method yields a cost of 798.809 $/hr. The range 

of the control variable and the flow limit of the transmission 

line are both found to be satisfied by all solutions that were 

found. In order to validate the results, we compare the OPF 

results from the proposed methodology with some of the 

existing literature methods. You can see the comparison in 

Figure 4. You can see that the suggested CFBPSO and MPC 

approaches outperform the status quo in this graphic.  

The total load demand of the practical system is taken as 

283.4 MW and it is base load condition. The load flow stud-

ies are carried out and the power flows through the different 

transmission lines are obtained by satisfying the power bal-

ance equation.  

All control parameters are within limit it is shown in Ta-

ble 1. It is found from the results of normal case load flow 
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analysis that the thermal parameters of all transmission lines 

are within the limit. Hence, it is noticed that there is no con-

gestion in any of the transmission lines is shown in Figure 5. 

 

B. Congestion due to Overloading Condition 

This section deals with transmission congestion is due to 

overload, where the congestion has been created in the sys-

tem by increasing the demand. The proposed methodology 

has been tested for 10% load, 15% load and 20% loading 

condition. 

It is observed from that without IPFC, the line connecting 

buses 1 and 2 is the most congested line. It is observed that 

two lines, namely, lines 4–12 and 4-6, are connected to bus 

4. Hence, lines 3–4 and 4–12 are the proposed locations for 

the placement of the IPFC. It is observed that reduces the 

congestion in line after placement of the IPFC at the pro-

posed location.The phenomenon of power flow over 10% 

loading and how it contributes to congestion within the grid. 

However, when the demand surpasses the capacity of the 

grid, it can strain the system, leading to congestion. Power 

flow congestion occurs when the available transmission 

paths become saturated, causing inefficiencies and potential 

voltage instability. When the loading on the power grid ex-

ceeds 10%, the transmission lines and other grid components 

may become overloaded, compromising their ability to carry 

the excessive power. As a result, the power flow becomes 

constrained and concentrated on limited transmission corri-

dors, leading to congestion it is shown in Table 2 and Figure 

6. When a transmission line is loaded beyond its rated ca-

pacity, the power flow increases. The increased current gen-

erates more resistive losses, which can cause the line to heat 

up. The line's thermal limits define the maximum current that 

it can carry without overheating. If the loading exceeds these 

limits, it can result in various issues, including congestion. 

Congestion occurs when the transmission line's capacity is 

insufficient to accommodate the power flow demands. When 

a line is congested, it means that the power flow on the line 

is near or exceeds its maximum capability. The application 

of CFPSO and MPC with IPFC techniques requires accurate 

network models and sophisticated optimization algorithms to 

effectively relieve congestion and ensure the reliable opera-

tion of the transmission system are shown in Table 3 and 

Figure 8. 

The combination of CFPSO and MPC algorithms opti-

mizes the power flow and control actions, while the IPFC 

provides active control and compensation in real-time. 

CFPSO optimizes the system operation to find congestion-

free solutions, which are then used as inputs for the MPC 

control strategy. 

The combination of CFPSO and MPC algorithms opti-

mizes the power flow and control actions, while the IPFC 

provides active control and compensation in real-time. 

CFPSO optimizes the system operation to find congestion-

free solutions, which are then used as inputs for the MPC 

control strategy. MPC adjusts control variables based on 

these solutions, taking into account predicted system behav-

iour. Simultaneously, the IPFC actively controls power flows 

and voltages in multiple transmission lines, dynamically 

redistributing power to alleviate congestion. By coordinating 

the control actions of the IPFC with the MPC algorithm, 

congestion can be effectively managed it is shown in Table 4 

and Figure 8. 

The line flow comparison clearly demonstrates the effec-

tiveness of the CFPSO-based IPFC approach in alleviating 

congestion on the overloaded transmission line connecting 

buses 1 and 2 in Figure 9. Under base loading conditions, 

the line operates safely below the thermal limit of 130 MVA. 

However, as the system load increases to 110%, 115%, and 

120%, the line flow without any control measures rapidly 

exceeds the permissible limit, reaching as high as 133.42 

MVA at 120% loading. This excessive flow indicates a high 

risk of overheating and potential system instability. 

In contrast, when the CFPSO algorithm is applied in con-

junction with IPFC, the line flow is significantly reduced 

under the same loading conditions. At 110% load, the line 

flow drops from 131.06 MVA to 114.02 MVA, and even at 

120% load, the flow is brought down to 129.32 MVA—just 

within the safe operational boundary. These results confirm 

that the proposed method not only redistributes power flows 

efficiently but also maintains system security by keeping the 

line loading within acceptable limits, even under stress. This 

validates the suitability of CFPSO + IPFC for dynamic con-

gestion management in modern power systems. 

The generator output powers have been optimally re-

scheduled using the CFPSO and MPC algorithm to reduce 

congestion. The detailed results of CFPSO and MPC algo-

rithm optimally rescheduling the output power of the partici-

pating generators to alleviate congestion. The power flows 

before and after placement of IPFC has been compared it is 

observed that the congestion in the lines reduces to a great 

extent after the placement of the IPFC by the proposed 

method.  Also, to conquer the hassle of voltage deviation at 

the load buses, generator voltages were rescheduled to hold 

load bus voltages within acceptable boundaries. Hence, the 

overall system performance has been improved at a mini-

mum cost. The proposed methodology has been tested for 

normal load, 10% load, 15% load, and 20% load conditions. 

The congestion in all the lines has been effectively miti-

gated, as evident from the data presented in the table below. 

The comparison between line flow without CFPSO IPFC 

and with CFPSO IPFC demonstrates a significant reduction 

in line flow, ensuring the system operates within the speci-

fied limits is presented in Table 5. At 110% load (Case B), 

the line flow decreases from 131.062 MVA to 114.021 

MVA. At 115% load (Case C), the line flow reduces from 

131.305 MVA to 121.742 MVA. At 120% load (Case D), 

the line flow drops from 133.423 MVA to 129.318 MVA. 

The results demonstrate the effectiveness of CFPSO IPFC in 

alleviating congestion and maintaining the line flow within 

permissible limits, even under increasing load conditions. 

The results summarized in the Table 6 clearly demonstrate 

the effectiveness of the proposed CFPSO and MPC methods 

integrated with the Interline Power Flow Controller (IPFC) 

for congestion management under varying load conditions. 

As system loading increases from normal (100%) to 120%, 

both fuel cost and transmission line losses also rise. Howev-

er, the proposed AI-based techniques consistently outper-

form the traditional Newton-Raphson (NR) approach in min-

imizing operational cost and power losses. For example, 

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3972-3984

 
______________________________________________________________________________________ 



 

under the normal load condition, the fuel cost using NR is 

$810.91/hr, while it is reduced to $799.90/hr and $798.81/hr 

using CFPSO + IPFC and MPC + IPFC, respectively. This 

trend continues under 10%, 15%, and 20% increased load 

conditions, where the MPC approach yields the lowest cost 

of $997.38/hr at 120% load, compared to $1012.20/hr for 

CFPSO and $1026.46/hr for NR. 

In terms of system efficiency, the power losses observed 

with NR are significantly higher than those achieved with 

the proposed methods. At 20% overload, NR results in 

0.1324 MW of loss, while CFPSO + IPFC and MPC + IPFC 

bring it down to 0.1125 MW and 0.0599 MW, respectively. 

The performance gap becomes more pronounced as the 

loading increases, indicating that the proposed AI-enhanced 

IPFC models are highly scalable and robust under stressed 

grid conditions. These findings confirm that integrating 

AI/ML optimization strategies with FACTS devices not only 

improves economic performance but also enhances grid reli-

ability and stability. 

 

VI. CONCLUSION 

The research findings presented in this paper demonstrate 

the effectiveness of utilizing an Advanced Interline Power 

Flow Controller (IPFC) with AI/ML techniques for conges-

tion management in power transmission lines. Extensive 

modeling and simulation have yielded useful insights into 

how AI/ML might be applied to tackle power system con-

gestion. The study's results show how powerful IPFC may be 

when combined with AI and ML to handle electricity trans-

mission line congestion. In order to alleviate congestion and 

enhance system reliability, the suggested methodology pro-

vides answers that are efficient, flexible, and inexpensive. 

The power sector and grid reliability could be greatly en-

hanced with the integration of IPFC with AI/ML approaches. 

It aids in the development of a more robust and intelligent 

power grid by improving its stability, resource usage, resili-

ence, and the ability to make decisions in real time. Integrat-

ing new technology, optimizing for several objectives at 

once, and creating secure and resilient congestion manage-

ment systems are all areas that could benefit from further 

investigation as a result of this study. 
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