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Abstract—As one of the modified versions of the well-known
Zagreb indices, the multiplicative sum Zagreb index of a graph
is defined as the product of the sums of degrees over all pairs
of adjacent vertices. In this article, we establish a sufficient
condition for the multiplicative sum Zagreb index of graphs
to attain its minimum value. Furthermore, we classify the
tetracyclic (molecular) graphs without pendant vertices based
on the values of the multiplicative sum Zagreb index, and we
present a sharp lower bound for this index among all tetracyclic
(molecular) graphs.

Index Terms—Multiplicative sum Zagreb index, Connected
graph, Tetracyclic (molecular) graphs.

I. INTRODUCTION

THE topological indices are mathematical descriptors
reflecting some structural properties and characteristics

of organic compounds through their chemical graphs, and
they play a significant role in chemistry and pharmacology
(see [1]–[3]). The first and second Zagreb indices are two
of the most renowned and extensively studied topological
indices, which were originally used to examine the structure
dependence of total π-electron energy on molecular orbital
[4]. The first and second Zagreb indices of a graph G
(denoted by M1 and M2) are defined as follows:

M1(G) =
∑

x∈V (G)

d(x)2, M2(G) =
∑

xy∈E(G)

d(x)d(y),

where d(x) stands for the degree of vertex x in G.
The first and second Zagreb indices (M1 and M2) and

their modified variants have been applied to explore diverse
chemical properties, including ZE-isomerism, heterosystems,
complexity and chirality of compounds, etc. [5]–[7]. Among
these variants, the first and second multiplicative Zagreb
indices (denoted by Π1 and Π2) [8], and the multiplicative
sum Zagreb index (denoted by Π∗1) [9] have garnered
significant attention from researchers (such as recent works
[10]–[19]). The indices Π1 and Π2 are defined as below:

Π1(G) =
∏

x∈V (G)

d(x)2, Π2(G) =
∏

xy∈E(G)

d(x)d(y),
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while the index Π∗1 is defined as follows:

Π∗1(G) =
∏

xy∈E(G)

(d(x) + d(y)).

Xu and Das [20] determined the minimal and maximal values
of Π∗1 for trees, unicylcic graphs and bicyclic graphs. Eliasi et
al. [9] showed that the connected graph with the minimum
Π∗1 is a path, and determined the second minimum Π∗1 of
trees. Božović et al. [21] derived the maximum value of Π∗1
for molecular trees and identified the corresponding extremal
trees. Two authors of this article [12], [14] obtained the
minimal and maximal values of Π∗1 on trees with a given
domination number, and determined the maximum value of
Π∗1 among all connected graphs with given number of cut
edges, cut vertices, edge connectivity, or vertex connectivity.
For further details on the multiplicative sum Zagreb index,
we refer the readers to recent papers [15]–[19] and the
references therein.

In this article, just simple connected graphs are taken
into account. For such a graph G, the sets of vertices and
edges are represented by V (G) and E(G), respectively. The
neighborhood of a vertex x ∈ V (G) is denoted by NG(x).
For a graph G, let ni(G) (ni for short) represent the number
of vertices of degree i, and mi,j(G) (or simply mi,j) denote
the number of edges connecting the vertices of degree i and
j. The minimum and maximum degrees of G are denoted
by δ(G) and ∆(G) (δ and ∆ for short), respectively. Let
G− uv and G+ uv be the graph arisen from G by deleting
the edge uv ∈ E(G) and by connecting the vertex u and v
in G (uv /∈ E(G)), respectively. A graph G of order n is
called a tetracyclic graph if |E(G)| = n+ 3. One can refer
to [22] for other terminologies and notations.

The molecular (or chemical) graphs are graphs with
maximum degree at most 4. In recent years, it is an important
research focus to study the extremal values of topological
indices for molecular (or chemical) graphs [23]–[33]. In
this work, we establish sufficient a condition for Π∗1 of
graphs to attain its minimum value. Furthermore, we classify
the tetracyclic (molecular) graphs without pendant vertices
according to the values of Π∗1, and we obtain a sharp lower
bound for Π∗1 among all tetracyclic (molecular) graphs.

II. SOME LEMMAS

Lemma 2.1: [13] The function h(x) = x+c
x (c ≥ 1 is an

integer) is strictly decreasing with respect to x ≥ 1.
Lemma 2.2: Let

l1(∆, δ) =
( 2∆

2∆− 1

)∆( 2δ

2δ + 1

)δ
,
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where ∆ and δ are positive integers with δ+2 ≤ ∆ ≤ n−1
(n ≥ 4 is a finite positive integer). Then l1(∆, δ) > 1.

Proof: We first prove that ln(1 + t) > t
1+t for t > 0.

Let ψ(t) = ln(1 + t)− t
1+t , where t > 0. Then

dψ(t)

dt
=

1

t+ 1
− 1

(t+ 1)2
> 0.

Thus ψ(t) > ψ(0) = 0 for t > 0, that is, ln(1 + t) > t
1+t .

Let h1(x) =
(

2x
2x+1

)x
, where x ≥ 1. Then lnh1(x) =

x[ln(2x)−ln(2x+1)]. Thus, by the above inequality proved,
for x ≥ 1, we get

d lnh1(x)

dx
=

1

2x+ 1
+ ln

2x

2x+ 1

=
1

2x+ 1
− ln(1 +

1

2x
)

<
1

2x+ 1
−

1
2x

1 + 1
2x

= 0.

So h1(x) is decreasing with respect to x ≥ 1.
Let h2(x) =

(
2x

2x−1

)x( 2x−4
2x−3

)x−2
, where x ≥ 3. Then

lnh2(x) = x[ln(2x) − ln(2x − 1)] + (x − 2)[ln(2x − 4) −
ln(2x− 3)]. Therefore, for x ≥ 3, we have

d lnh2(x)

dx
=

1

2x− 3
− 1

2x− 1
+ ln

2x− 4

2x− 3
+ ln

2x

2x− 1

=
2

(2x− 1)(2x− 3)
− ln(1 +

3

4x2 − 8x
)

<
2

(2x− 1)(2x− 3)
−

3
4x2−8x

1 + 3
4x2−8x

=− 1

(2x− 1)(2x− 3)
< 0.

So h2(x) is decreasing for x ≥ 3.
Since δ ≤ ∆− 2 and ∆ ≤ n− 1, by the monotonicity of

h1(x) and h2(x), we obtain

l1(∆, δ) =
( 2∆

2∆− 1

)∆( 2δ

2δ + 1

)δ
≥
( 2∆

2∆− 1

)∆( 2(∆− 2)

2(∆− 2) + 1

)∆−2

≥
(2n− 2

2n− 3

)n−1(2n− 6

2n− 5

)n−3

.

Let g(n) =
(

2n−2
2n−3

)n−1( 2n−6
2n−5

)n−3
, where n ≥ 4. Similar

as h2(x), we can check that g(n) is decreasing for n ≥ 4.
Since

lim
n→+∞

(2n− 2

2n− 3

)n−1(2n− 6

2n− 5

)n−3

= lim
n→+∞

(
1+

1

2n−3

) 1
2 ·
[(

1+
1

2n− 3

)2n−3] 1
2

× lim
n→+∞

(
1− 1

2n−5

)−1
2 ·
[(

1− 1

2n−5

)−(2n−5)]−1
2

=e
1
2 · e− 1

2 = 1,

then g = 1 is the horizontal asymptote of g(n). Furthermore,
since n is a finite positive integer, g(4) = 1.152 > 1 and g(n)
is decreasing with respect to n, we deduce that g(n) > 1.
Therefore, l1(∆, δ) ≥ g(n) > 1.

We complete the proof.
Lemma 2.3: Let

l2(∆, δ) =
( 2∆

2∆− 1

)∆−1( 2δ

2δ + 1

)δ−1

,

where ∆ and δ are positive integers with δ+2 ≤ ∆ ≤ n−1
(n ≥ 4 is a finite positive integer). Then l2(∆, δ) > 1.

Proof: According to Lemma 2.2, one has

l2(∆, δ)

=
( 2∆

2∆− 1

)∆( 2δ

2δ + 1

)δ( 2∆

2∆− 1

)−1( 2δ

2δ + 1

)−1

=l1(∆, δ) ·
(

1 +
2∆− 2δ − 1

4∆δ

)
≥l1(∆, δ) ·

(
1 +

2(δ + 2)− 2δ − 1

4∆δ

)
>l1(∆, δ) > 1.

This completes the proof.

III. GRAPHS WITH MINIMUM MULTIPLICATIVE SUM
ZAGREB INDEX

Theorem 3.1: Let G be a graph with n vertices and m
edges. If G has the minimum multiplicative sum Zagreb
index, then ∆− δ ≤ 1.

Proof: Assume to the contrary that ∆ − δ ≥ 2. Let x,
y be two vertices with d(x) = ∆ and d(y) = δ in G. Since
d(x) > d(y), there exists a neighbor of x, say z, such that
z /∈ NG(y). Set G′ = G − xz + yz. Next, we discuss the
following two cases.

Case 1. xy /∈ E(G).
Let a1, a2, · · · , a∆ and b1, b2, · · · , bδ be the degree of

vertices in NG(x) and NG(y), respectively. Without loss
of generality, we suppose that d(z) = a∆. Note that for
i ∈ {1, 2, · · · ,∆} and j ∈ {1, 2, · · · , δ}, δ ≤ ai, bj ≤ ∆
and ∆ − 1 ≥ δ + 1, by the definition of multiplicative sum
Zagreb index and Lemmas 2.1, 2.2, we have

Π∗1(G)

Π∗1(G′)

=

∆∏
i=1

(∆ + ai)
δ∏
j=1

(δ + bj)

(δ + 1 + a∆)
∆−1∏
i=1

(∆− 1 + ai)
δ∏
j=1

(δ + 1 + bj)

=

∆∏
i=1

(∆ + ai)
δ∏
j=1

(δ + bj)

∆∏
i=1

(∆− 1 + ai)
δ∏
j=1

(δ + 1 + bj)

· ∆− 1 + a∆

δ + 1 + a∆

≥
∆∏
i=1

∆ + ai
∆− 1 + ai

·
δ∏
j=1

δ + bj
δ + 1 + bj

≥
( 2∆

2∆− 1

)∆

·
( 2δ

2δ + 1

)δ
> 1.

Hence, Π∗1(G) > Π∗1(G′), a contradiction.
Case 2. xy ∈ E(G).
Let a1, a2, · · · , a∆−1 and b1, b2, · · · , bδ−1 be the degree

of vertices in NG(x) \ {y} and NG(y) \ {x}, respectively.
Without loss of generality, we assume that d(z) = a∆−1.
By the definition of multiplicative sum Zagreb index and
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Lemmas 2.1, 2.3, we derive

Π∗1(G)

Π∗1(G′)

=

(∆ + δ)
∆−1∏
i=1

(∆ + ai)
δ−1∏
j=1

(δ + bj)

(δ+1+a∆−1)(∆−1+δ+1)
∆−2∏
i=1

(∆−1+ai)
δ−1∏
j=1

(δ+1+bj)

=

∆−1∏
i=1

(∆ + ai)
δ−1∏
j=1

(δ + bj)

∆−1∏
i=1

(∆− 1 + ai)
δ−1∏
j=1

(δ + 1 + bj)

· ∆− 1 + a∆−1

δ + 1 + a∆−1

≥
∆−1∏
i=1

∆ + ai
∆− 1 + ai

·
δ−1∏
j=1

δ + bj
δ + 1 + bj

≥
( 2∆

2∆− 1

)∆−1

·
( 2δ

2δ + 1

)δ−1

> 1.

Thus Π∗1(G) > Π∗1(G′), which is a contradiction again. We
complete the proof.

By Theorem 3.1, one can derive Corollary 3.2 and
Corollary 3.3 below immediately.

Corollary 3.2: [20] Suppose T is a tree with n (n ≥ 3)
vertices having the minimum Π∗1, then T is a path.

Corollary 3.3: [20] Suppose G is a unicyclic with n (n ≥
3) vertices having the minimum Π∗1, then G is a cycle.

Corollary 3.4: Let G be a graph having n vertices and m
edges. If G has the minimum Π∗1, then G contains n−2m+
nb 2m

n c vertices with degree b 2m
n c and 2m−nb 2m

n c vertices
with degree b 2m

n c+ 1.
Proof: If δ = ∆, then n∆ = 2m and it is not difficult to

check that the result is true. So one can assume that δ 6= ∆.
By Theorem 3.1, we have ∆ = δ + 1. Now we can suppose
that G contains r vertices degree δ and s vertices degree
∆ = δ + 1. Thus one can derive that rδ + s(δ + 1) = 2m,
that is, (r+s)δ+s = 2m. Furthermore, r+s = n, it follows
that nδ + s = 2m. We have δ + s

n = 2m
n by dividing both

sides by n. Since s < n, one has

δ = b2m
n
c, ∆ = b2m

n
c+ 1.

Moreover, from s = 2m− nδ, we derive that

r = n+ nb2m
n
c − 2m, s = 2m− nb2m

n
c.

The proof is complete.
According to Corollary 3.4, we have an immediate

Corollary 3.5.
Corollary 3.5: Let G be a graph having n vertices and m

edges. If G has the minimum Π∗1 and n | 2m, then Π∗1(G) =
( 4m
n )m and G is a 2m

n -regular graph.

IV. TETRACYCLIC (MOLECULAR) GRAPHS WITH
MINIMUM MULTIPLICATIVE SUM ZAGREB INDEX

Let TMGn and TGn be the collections of n-vertex
tetracyclic molecular graphs and tetracyclic graphs,
respectively.

Lemma 4.1: [26] G belongs to one of equivalence classes
given in Table I if and only if G ∈ TGn with n1(G) = 0.

Fig. 1. Five extremal tetracyclic graphs
G1,G2, · · · ,G5 with minimum Π∗1

The edge degree and vertex degree divisions for tetracyclic
graphs satisfying n1(G) = 0 in Ai, along with their values
of Π∗1, all displayed in Tables I-V, where 1 ≤ i ≤ 11. It is
worth noting that except the values of Π∗1, the related data
in Tables II-V comes from [33] (also used in [32] recently).

Let Φ = Φ1 ∪ Φ2, where Φ1 = {G|G ∈ TGn with
n1(G) = 0} and Φ2 = {G|G ∈ TGn with n1(G) ≥ 1}.
Thus Φ1 = ∪11

i=1Ai = ∪95
i=1εi, which can be seen in

Tables I-V. Notice that ε7 = {G|G ∈ Φ1 with m3,3 =
8,m3,2 = 2,m2,2 = n − 7}. It can be easily seen that
ε7 = {G1,G2, · · · ,G5}, see Fig. 1. In what follows, we
shall prove that the graphs belonging to ε7 are the extremal
graphs having the minimum Π∗1 among TGn or TMGn.

By a simple calculation, one can get the following Lemma
4.2.

Lemma 4.2: Let G ∈ ε7. Then Π∗1(G) = 52684n−7 ≈
4n · 2562.89.

Theorem 4.3: Suppose G ∈ TGn, where n ≥ 9, then

Π∗1(G) ≥ 52684n−7.

The equality occurs if and only if G ∈ ε7, that is, G ∼= Gi,
where 1 ≤ i ≤ 5 (see Fig. 1).

Proof: Choose G ∈ TGn such that G has the minimal
value of Π∗1, where n ≥ 9. If n1 ≥ 1, we have ∆ − δ ≥ 2,
which contradicts the result of Theorem 3.1. Hence n1(G) =
0. For all G ∈ TGn with n1(G) = 0 in Ai and their Π∗1
are displayed in Tables II-V, where 1 ≤ i ≤ 11. We compare
the values of Π∗1 in Tables II-V, one can get the expected
conclusions.

It is easy to see that the tetracyclic graphs G1,G2, · · · ,G5

in Fig. 1 are all molecular graphs, so we have
Theorem 4.4: Suppose G ∈ TMGn, where n ≥ 9, then

Π∗1(G) ≥ 52684n−7.

The equality holds if and only if G ∈ ε7, that is, G ∼= Gi,
where 1 ≤ i ≤ 5 (see Fig. 1).

TABLE I
VERTEX DEGREE DIVISIONS (V DD) OF TGn WITH n1 = 0

V DD n1 n2 n3 n4 n5 n6 n7 n8 ni(i ≥ 9)

A1 0 n− 1 0 0 0 0 0 1 0
A2 0 n− 2 1 0 0 0 1 0 0
A3 0 n− 2 0 1 0 1 0 0 0
A4 0 n− 3 2 0 0 1 0 0 0
A5 0 n− 2 0 0 2 0 0 0 0
A6 0 n− 3 1 1 1 0 0 0 0
A7 0 n− 4 3 0 1 0 0 0 0
A8 0 n− 3 0 3 0 0 0 0 0
A9 0 n− 4 2 2 0 0 0 0 0
A10 0 n− 5 4 1 0 0 0 0 0
A11 0 n− 6 6 0 0 0 0 0 0
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TABLE II
EDGE DEGREE DIVISIONS (EDD) OF TGn WITH n1 = 0, ∆ = 3 AND THEIR Π∗

1

EDD VDD m3,3 m3,2 m2,2 Π∗
1

ε1 A11 3 12 n− 12 4n · 3143.21
ε2 A11 2 14 n− 13 4n · 3274.18
ε3 A11 5 8 n− 10 4n · 2896.79
ε4 A11 4 10 n− 11 4n · 3017.49
ε5 A11 7 4 n− 8 4n · 2669.68
ε6 A11 6 6 n− 9 4n · 2780.91
ε7 A11 8 2 n− 7 4n · 2562.89

TABLE III
EDD OF TGn WITH n1 = 0, ∆ = 4 AND THEIR Π∗

1

EDD VDD m4,4 m4,3 m4,2 m3,3 m3,2 m2,2 Π∗
1

ε8 A8 1 0 10 0 0 n− 8 4n · 7381.13
ε9 A8 0 0 12 0 0 n− 9 4n · 8303.77
ε10 A8 3 0 6 0 0 n− 6 4n · 5832.00
ε11 A8 2 0 8 0 0 n− 7 4n · 6561.00
ε12 A9 0 0 8 1 4 n− 10 4n · 6006.77
ε13 A9 0 0 8 0 6 n− 11 4n · 6257.06
ε14 A9 0 1 7 1 3 n− 9 4n · 5606.32
ε15 A9 0 1 7 0 5 n− 10 4n · 5839.92
ε16 A9 0 2 6 0 4 n− 9 4n · 5450.59
ε17 A9 1 0 6 0 6 n− 10 4n · 5561.83
ε18 A9 0 2 6 1 2 n− 8 4n · 5232.57
ε19 A9 1 0 6 1 4 n− 9 4n · 5339.36
ε20 A9 0 3 5 0 3 n− 8 4n · 5087.22
ε21 A9 1 1 5 0 5 n− 9 4n · 5191.04
ε22 A9 0 3 5 1 1 n− 7 4n · 4883.73
ε23 A9 1 1 5 1 3 n− 8 4n · 4983.40
ε24 A9 0 4 4 0 2 n− 7 4n · 4748.07
ε25 A9 1 2 4 0 4 n− 8 4n · 4884.97
ε26 A9 0 4 4 1 0 n− 6 4n · 4558.15
ε27 A9 1 2 4 1 2 n− 7 4n · 4651.17
ε28 A9 1 3 3 1 1 n− 6 4n · 4341.10
ε29 A9 1 3 3 0 3 n− 7 4n · 4521.97
ε30 A9 1 4 2 0 2 n− 6 4n · 4220.51
ε31 A9 1 4 2 1 0 n− 5 4n · 4051.69
ε32 A10 0 0 4 0 12 n− 13 4n · 4714.82
ε33 A10 0 1 3 0 11 n− 12 4n · 4400.50
ε34 A10 0 0 4 1 10 n− 12 4n · 4526.23
ε35 A10 0 1 3 1 9 n− 11 4n · 4224.48
ε36 A10 0 0 4 2 8 n− 11 4n · 4345.18
ε37 A10 0 2 2 0 10 n− 11 4n · 4107.13
ε38 A10 0 0 4 3 6 n− 10 4n · 4171.37
ε39 A10 0 0 4 4 4 n− 9 4n · 4004.52
ε40 A10 0 1 3 2 7 n− 10 4n · 4055.50
ε41 A10 0 1 3 3 5 n− 9 4n · 3893.28
ε42 A10 0 2 2 1 8 n− 10 4n · 3942.85
ε43 A10 0 0 4 5 2 n− 8 4n · 3844.34
ε44 A10 0 3 1 0 9 n− 10 4n · 3833.32
ε45 A10 0 1 3 4 3 n− 8 4n · 3737.55
ε46 A10 0 2 2 2 6 n− 9 4n · 3785.13
ε47 A10 0 2 2 3 4 n− 8 4n · 3633.73
ε48 A10 0 3 1 1 7 n− 9 4n · 3679.99
ε49 A10 0 1 3 5 1 n− 7 4n · 3588.05
ε50 A10 0 4 0 0 8 n− 9 4n · 3577.77
ε51 A10 0 2 2 4 2 n− 7 4n · 3488.38
ε52 A10 0 3 1 2 5 n− 8 4n · 3532.79
ε53 A10 0 3 1 3 3 n− 7 4n · 3391.48
ε54 A10 0 4 0 1 6 n− 8 4n · 3434.66
ε55 A10 0 4 0 2 4 n− 7 4n · 3297.27
ε56 A10 0 2 2 5 0 n− 6 4n · 3348.84
ε57 A10 0 4 0 3 2 n− 6 4n · 3165.38
ε58 A10 0 3 1 4 1 n− 6 4n · 3255.82
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TABLE IV
EDD OF TGn WITH n1 = 0, ∆ = 5 AND THEIR Π∗

1

EDD VDD m5,5 m5,4 m5,3 m5,2 m4,3 m4,2 m3,3 m3,2 m2,2 Π∗
1

ε59 A5 1 0 0 8 0 0 0 0 n− 6 4n · 14074.22
ε60 A5 0 0 0 10 0 0 0 0 n− 7 4n · 17240.92
ε61 A6 0 0 0 5 1 3 0 2 n− 8 4n · 9693.98
ε62 A6 0 0 0 5 0 4 0 3 n− 9 4n · 10386.41
ε63 A6 0 1 0 4 0 3 0 3 n− 8 4n · 8902.63
ε64 A6 0 0 1 4 0 4 0 2 n− 8 4n · 9496.14
ε65 A6 0 1 0 4 1 2 0 2 n− 7 4n · 8309.12
ε66 A6 0 0 1 4 1 3 0 1 n− 7 4n · 8863.07
ε67 A6 0 1 1 3 1 2 0 1 n− 6 4n · 7596.91
ε68 A6 0 1 1 3 0 3 0 2 n− 7 4n · 8139.55
ε69 A7 0 0 0 5 0 0 1 7 n− 10 4n · 7513.31
ε70 A7 0 0 0 5 0 0 0 9 n− 11 4n · 7826.37
ε71 A7 0 0 1 4 0 0 0 8 n− 10 4n · 7155.54
ε72 A7 0 0 0 5 0 0 2 5 n− 9 4n · 7212.78
ε73 A7 0 0 1 4 0 0 1 6 n− 9 4n · 6869.32
ε74 A7 0 0 0 5 0 0 3 3 n− 8 4n · 6924.27
ε75 A7 0 0 2 3 0 0 0 7 n− 9 4n · 6542.21
ε76 A7 0 0 1 4 0 0 2 4 n− 8 4n · 6594.54
ε77 A7 0 0 2 3 0 0 1 5 n− 8 4n · 6280.52
ε78 A7 0 0 1 4 0 0 3 2 n− 7 4n · 6330.76
ε79 A7 0 0 3 2 0 0 0 6 n− 8 4n · 5981.45
ε80 A7 0 0 2 3 0 0 2 3 n− 7 4n · 6029.30
ε81 A7 0 0 3 2 0 0 1 4 n− 7 4n · 5742.19
ε82 A7 0 0 2 3 0 0 3 1 n− 6 4n · 5788.13
ε83 A7 0 0 3 2 0 0 3 0 n− 5 4n · 5292.00
ε84 A7 0 0 3 2 0 0 2 2 n− 6 4n · 5512.50

TABLE V
EDD OF TGn WITH n1 = 0, ∆ = 6, 7, 8 AND THEIR Π∗

1

EDD VDD m8,2 m7,3 m7,2 m6,4 m6,3 m6,2 m4,2 m3,3 m3,2 m2,2 Π∗
1

ε85 A4 0 0 0 0 0 6 0 1 4 n− 8 4n ·15000.0
ε86 A4 0 0 0 0 0 6 0 0 6 n− 9 4n ·15625.0
ε87 A4 0 0 0 0 1 5 0 1 3 n− 7 4n ·13500.0
ε88 A4 0 0 0 0 1 5 0 0 5 n− 8 4n ·14062.5
ε89 A4 0 0 0 0 2 4 0 1 2 n− 6 4n ·12150.0
ε90 A4 0 0 0 0 2 4 0 0 4 n− 7 4n ·12656.3
ε91 A3 0 0 0 1 0 5 3 0 0 n− 6 4n ·17280.0
ε92 A3 0 0 0 0 0 6 4 0 0 n− 7 4n ·20736.0
ε93 A2 0 1 6 0 0 0 0 0 2 n− 6 4n ·32436.6
ε94 A2 0 0 7 0 0 0 0 0 3 n− 7 4n ·36491.2
ε95 A1 8 0 0 0 0 0 0 0 0 n− 5 4n ·97656.3
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