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Abstract—Graph theory, with its wide-ranging theoretical
foundations and practical applications, continues to influence
diverse scientific and engineering domains. Two fundamental
concepts—graph domination and graph coloring—have given
rise to several advanced variants, including power domination,
dominator coloring, and, more recently, power dominator
coloring. These extensions are especially relevant in applications
such as network monitoring, fault detection, and communi-
cation systems. This study introduces and explores a further
refinement known as total power dominator coloring, which
integrates elements of both domination and coloring. For a given
undirected, connected, finite, and simple graph G = (V,E) , a
total power dominator coloring is defined as a proper vertex
coloring in which each vertex power dominates all vertices in
at least one other distinct color class. The minimum number
of colors required to achieve such a coloring is called the total
power dominator chromatic number, denoted by χtpd. The main
objective of this work is to analyze the behavior of χtpd under
vertex duplication, a graph operation that replicates a vertex
along with its adjacency relations. We investigate this parameter
across various classical graph families, including cycle graphs,
path graphs, complete graphs, bipartite graphs, double fan
graphs, octopus graphs, and the Venessa graph. The study
examines this parameter across various classical graph families,
with supporting diagrams provided to visually illustrate key
definitions and examples.

Index Terms—Total Power Dominator Coloring, Duplication,
Fan Graph, Cycle, Complete Graph

AMS Subject Classification: 05C15, 05C69

I. INTRODUCTION

GRAPH theory, with its rich historical background,
stands as a fundamental pillar of discrete mathematics.

One of its most influential subfields is graph coloring, which
emerged in the mid-19th century. The origins of this concept
are commonly attributed to Francis Guthrie, who, in 1852,
while attempting to color a map of the counties of England,
observed that no more than four distinct colors were
necessary to ensure that adjacent regions—those sharing
a common boundary—received different colors. Although
this observation arose from a cartographic problem, it led
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to the formulation of the renowned Four Color Problem,
which ultimately laid the foundation for the field of graph
coloring. Since then, graph coloring has grown into a
rich and well-established area of research, with significant
theoretical developments and practical applications in areas
such as scheduling, resource allocation, register assignment
in compilers, and frequency assignment in wireless networks.

Another significant area within graph theory is domination
theory, which began to emerge as a formal field of study
in the 1960s. By 1998, Teresa W. Haynes et al. [11]
compiled a comprehensive annotated bibliography that
documented more than 1,200 publications, underscoring the
rapid expansion and conceptual richness of the domain.
Their survey identified and systematically classified over 75
distinct types of domination parameters, reflecting the depth
and breadth of research activity in this area. Domination
theory has since become an integral part of graph theory,
with applications spanning network security, social network
analysis, and optimization problems in distributed systems.

A notable advancement in domination theory was the
introduction of total domination by Cockayne, Dawes,
and Hedetniemi [3], which refined classical domination by
requiring that every vertex in the graph be adjacent to at
least one vertex in the dominating set. Building on this
foundation, Gera [5], [6] proposed the concept of dominator
coloring, a novel framework that integrates the principles
of domination and proper vertex coloring. This innovation
catalyzed further developments, including total dominator
coloring [28], [29], global dominator coloring [8], and
power-dominated coloring [18], each contributing to a
deeper understanding of the structural interplay between
domination and coloring within graph theory.

The concept of power domination (PD), introduced by
Haynes et al. [9], marked a significant advancement in the
practical application of graph theory. Power domination was
initially motivated by the need to optimize the placement
of Phasor Measurement Units (PMUs) in electrical power
networks. The objective is to achieve complete system
observability while minimizing the number of PMUs
deployed. This model incorporates both classical domination
and propagation rules derived from electrical monitoring
constraints. The power domination framework has profound
implications for improving the efficiency, reliability, and
cost-effectiveness of electrical grid operations, making it
a vital tool in modern energy management and smart grid
technologies.
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Building on this foundation, Kumar et al. [15] introduced
the concept of power dominator coloring (PDC), which
elegantly integrates the principles of power domination with
proper vertex coloring. This novel framework has since
sparked significant interest and led to extensive investigations
across a variety of graph classes. Uma Maheswari and Bala
Samuvel J. [25] conducted a comprehensive study on PDC in
specific families such as Bull, Flower, Helm, and Star graphs,
substantiated with detailed illustrations and examples. Their
research was further expanded in subsequent works [22]
[24] to encompass more complex graph structures, including
the Triangular Book with Bookmark, Jellyfish, Extended
Jewel, Jewel, and Fan graphs. In a notable contribution,
Uma Maheswari et al. [23] curated a catalogue of graphs
characterized by a PDCN] equal to 3, offering valuable
insights into the coloring properties of such graph classes.

Beyond traditional domains of domination and coloring,
graph theory has increasingly permeated the field of
cryptography, offering novel approaches to securing data and
communication systems. Vani Shree and Dhanalakshmi [26]
proposed a method that integrates graph labeling techniques
with the RSA encryption algorithm to increase cryptographic
complexity and enhance security. In a related study, Narayan
et al. [17] examined graph-based encryption models,
highlighting the importance of structural properties such
as connectivity, vertex labeling, and graph topology in
designing robust cryptographic protocols. More recently,
research has shifted toward combining graph-theoretical
insights with emerging computational paradigms such as
deep learning. Samuvel et al. [20] introduced a hybrid
framework that leverages graph structures alongside deep
learning algorithms to strengthen data privacy within
blockchain networks. Their contribution underscores the
potential of graph theory as a foundational tool in the
development of secure and intelligent distributed systems.

Recent developments in graph coloring have increasingly
embraced structural insights and application-oriented
frameworks. Haddadene and Issaadi [12] conducted a
comprehensive study of perfect graphs, demonstrating that,
in all induced subgraphs, the chromatic number is equal to
the clique number. Vaidya and Isaac [27] investigated the
concept of the total chromatic number, which unifies both
edge and vertex coloring into a single framework. Li et
al. [30] introduced the notion of the total dominator edge
chromatic number, wherein every edge must be adjacent
to edges in all other color classes. Further advancing this
line of inquiry, Zhou et al. [32] proposed the adjacent
vertex strongly distinguishing total coloring, with a focus
on unicyclic graphs.

For planar graphs, Lou et al. [31] investigated 2-frugal
coloring, a coloring scheme in which each color may appear
at most twice in the neighborhood of any vertex. Their
study, particularly focused on planar graphs with maximum
degree six, highlights how structural constraints significantly
influence the colorability of graphs. Collectively, such
advances underscore the growing diversity of the field and
its increasing relevance to practical applications, including
fault-tolerant system design, identity labeling in networks,

and efficient resource allocation.

An important structural operation in graph theory is
vertex duplication, in which a new vertex is introduced
that inherits all adjacency relations of an existing vertex.
This concept has garnered significant attention due to its
applicability in modeling redundancy within networks and
control systems. Vertex duplication serves a critical function
in the development of fault-tolerant architectures, where
introducing redundancy enhances system reliability and
reduces the risk of failure.

The research conducted by Kulli and Janakiram [16]
explored the effects of vertex duplication on the domination
number and its various extensions. Their foundational
work established a basis for analyzing how structural
modifications, such as vertex duplication, influence key
domination parameters in graphs. In a related development,
Dorfling and Hattingh [4] investigated duplication in
the context of total domination, showing that the total
domination number may either increase or remain unchanged
depending on the underlying graph structure. Building upon
these contributions, subsequent studies have focused on the
impact of vertex duplication on coloring parameters linked
to domination. This includes measures such as the total
dominator chromatic number and related domination-based
colorings [2], [21].

Inspired by recent advancements in domination-based
graph coloring, J. Bala Samuvel introduced the novel
concept of Total Power Dominator Coloring (TPDC)—a
hybrid framework that synthesizes the principles of
Total Dominator Coloring and Power Domination. The
key parameter associated with this model, termed the
Total Power Dominator Chromatic Number, denoted
by χtpd, quantitatively captures the interplay between
domination constraints and coloring strategies under vertex
duplication [19]. This research primarily aims to explore the
influence of vertex duplication on the value of χtpd across
various classical graph families, thereby deepening the
theoretical understanding of domination-coloring behavior
under structural perturbations.

The findings of this research yield significant insights
into the structural ramifications of vertex duplication within
the framework of TPDC, thereby contributing to the broader
discourse in graph-theoretic optimization. The derived results
exhibit practical relevance in various applied domains such
as network design, data monitoring, and control systems,
where considerations of fault tolerance, redundancy, and
operational efficiency are critically important.

II. PRELIMINARIES

A complete and detailed list of the various terminologies,
and the standard notations that are utilized throughout this
study, can be seen in [5], [6], [1], [7], [14], [13], power
dominator coloring [15], [22], [25], the definitions of a
monitoring set [9], [10], and the vertex duplication in [4],
[21] all play key roles in shaping the content of the findings
expressed in this section. We have the chance to formally
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define in this section the notion of TPDC, and we also
establish the corresponding notation that is used for the
Total Power Dominator Chromatic Number (TPDCN) of
a graphχtpd. To further and enrich the understanding of
the topic under discussion, examples have been carefully
provided to clearly show the practical application of TPDC
in a variety of various graph structures one might encounter.

Definition 1. Total Power Dominator Coloring (TPDC)
The total power dominator coloring (TPDC) [19] is the
coloring of the vertices in the graph (which is proper), so
that each vertex νi of the G power dominates every vertex of
some other color class (not the color class of the vertex νi.
The total dominator chromatic number (TPDCN) χtpd(G),
is the minimal number of colors that are necessary for the
total power dominator coloring (TPDC) of the graph G.

Observe that, in PDC, a color class with a single vertex
have power-dominating ability, while the definition of TPDC
calls for a more stringent requirement: every vertex must
power dominate all the vertices in at least one color class
other than its own. This guarantees domination beyond color
groups, adding strength to the total nature of the coloring.
For simplicity and uniformity, the abbreviations TPDC and
TPDCN will from now on denote Total Power Dominator
Coloring and Total Power Dominator Chromatic Number,
respectively.

III. MAIN RESULTS

Theorem 1. For any 2 ≤ n ≤ 3 , the TPDCN for the graph
P

′

n created through the process of duplicating an arbitrary
vertex v in Path Pn is 2.

Proof: Based on the number of vertices n in the original
graph and the selection of the vertex ν to be duplicated by
a new vertex υ, three distinct cases may arise.

Case (i): when n = 2 and the duplicated vertex is one of
the end vertices.

Let P2 the path have 2 nodes. Let ν1, ν2 be the vertices
of Path P2, where ν1and ν2 are the pendent vertices. Let
E(P2) be the edges of the Path where E(P2) = {ν1ν2}.
Here the vertex set is defined as |V (P2)| = 2. Now, on
duplicate any one of pendent vertex ν1 or ν2.

To streamline the discussion while maintaining generality,
assume that one of the pendant vertices, say ν1, is selected
for duplication. This duplication results in the creation of a
new vertex υ, which inherits the exact neighborhood of ν1.
Since ν1 is adjacent only to ν2, the new vertex υ is also
connected to ν2. Consequently, the resulting graph P ′

2 has
vertex set V (P ′

2) = {ν1, ν2, υ}, and the edge set is defined
as

E(P ′
2) = {ν1ν2, υν2}.

This forms a star graph structure with center ν2 and pendant

vertices ν1 and υ, isomorphic to the star graph K1,2. The
procedure outlined below is based on a systematic approach
to coloring the vertices of the graph and guarantees a coloring
that satisfies both the proper coloring and the TPDC require-
ments. Specifically, this method ensures that each color class

is power dominated by at least one vertex from a distinct
color class, thereby producing a valid TPDC configuration.

The graph P ′
2 is colored using two colors, c1 and c2, as

follows:
• The central vertex ν2 is assigned color c1.
• The pendant vertices ν1 and υ are assigned color c2.

This coloring strategy ensures a proper vertex coloring of
the graph, as no two adjacent vertices share the same color.
It also satisfies the requirements for TPDC. The domination
relationships under this coloring scheme are as follows:

• The central vertex ν2, colored with c1, is adjacent to
both ν1 and υ, thus power dominating the entire color
class c2.

• The pendant vertices ν1 and υ, colored with c2, are
each adjacent to ν2, thereby being power dominated by
a vertex of the distinct color class c1.

Therefore, each vertex in the graph P ′
2 is power dominated

by at least one vertex belonging to a different color class.
This satisfies all the conditions required for a valid TPDC.

To show that two colors are necessary, suppose that only
one color is used for the TPDC of P ′

2. In such a case, adjacent
vertices must necessarily share the same color, which violates
the condition of proper vertex coloring. Therefore, it is not
possible to construct a valid TPDCof P ′

2 using fewer than
two colors.

Hence, the color assignment described above is both valid
and minimal. It ensures that each vertex in the graph power
dominates all vertices in at least one color class different
from its own, in accordance with the definition of TPDC .
Consequently, the TPDCN for the graph P ′

2, created through
the process of duplicating a pendant vertex in P2, is 2. i.e.,
χtpd(P

′
2) = 2.

Case (ii): When n = 3 and duplicating any pendant vertex

Let P3 be the path graph with three vertices, denoted as
ν1, ν2, ν3, where ν1 and ν3 are the pendant (end) vertices.
The edge set of the path is given by E(P3) = {ν1ν2, ν2ν3}.
Hence, the graph has |V (P3)| = 3 and |E(P3)| = 2.

To streamline the discussion while maintaining generality,
assume that the pendant vertex ν1 is selected for duplication.
This duplication results in a new vertex υ, which inherits the
exact neighborhood of ν1. Since ν1 is adjacent only to ν2,
the new vertex υ is also adjacent to ν2. Thus, the resulting
graph, denoted as P ′

3, has the vertex set {υ, ν1, ν2, ν3} and
the edge set

E(P ′
3) = {ν1ν2, ν2ν3, υν2}.

This forms a star-like configuration centered at ν2, with
three vertices—ν1, ν3, υ—connected to it.

The procedure outlined below follows a systematic col-
oring strategy to ensure that the resulting coloring satisfies
both proper coloring and TPDC requirements. Specifically,
this method ensures that each color class is power dominated
by at least one vertex from a different color class.
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The graph P ′
3 is colored using two colors, c1 and c2, as

follows:

• Assign color c1 to the pendant vertices ν1, ν3, and the
newly introduced vertex υ.

• Assign color c2 to the central vertex ν2.

This vertex coloring satisfies the condition for a proper
coloring, as adjacent vertices receive distinct colors. Addi-
tionally, the coloring meets the TPDC condition:

• The vertices ν1, ν3, υ, all colored with c1, are each
adjacent to ν2, which belongs to color class c2; thus,
color class c2 is power dominated by vertices of color
c1.

• The vertex ν2, colored with c2, is adjacent to all vertices
in color class c1, and hence power dominates color class
c1.

Therefore, each color class is power dominated by at
least one vertex from a different color class, satisfying the
conditions of TPDC .

To establish the minimality of the coloring, suppose that
only one color is used for the TPDC of P ′

3. In that case,
adjacent vertices must necessarily receive the same color,
violating the condition of proper vertex coloring. Thus, a
single color is insufficient for a valid TPDC of this graph.

Therefore, the color assignment described above is
both valid and minimal, ensuring that each vertex power
dominates at least one complete color class different from
its own. Consequently, the TPDCN for the graph P ′

3, created
through the process of a pendant vertex in the path graph
P3, is χtpd(P

′
3) = 2.

Case (iii): When n = 3 and duplicating vertex ν2

Let P3 be the path graph with three vertices denoted as
ν1, ν2, ν3, where ν1 and ν3 are the pendant (end) vertices.
The edge set of the path is given by E(P3) = {ν1ν2, ν2ν3},
and hence the graph has |V (P3)| = 3 and |E(P3)| = 2.

Now, the internal vertex ν2 undergoes duplication. This
process yields a new vertex υ, which inherits the exact
neighborhood of ν2. Since ν2 is adjacent to both ν1 and
ν3, the new vertex υ is also adjacent to both ν1 and ν3.
Consequently, the resulting graph, denoted by P ′

3, has the
vertex set {υ, ν1, ν2, ν3}, and the edge set is defined as

E(P ′
3) = {ν1ν2, ν2ν3, υν1, υν3}.

This results in a quadrilateral-like structure in which the
new vertex υ forms a mirror image of ν2, maintaining
adjacency to the same vertices.

The following procedure is employed to assign colors in
order to determine the TPDCN and ensure that the coloring
satisfies all conditions of TPDC.

The graph P ′
3 is colored using two colors, c1 and c2, as

follows:
• Assign color c1 to the two pendant vertices ν1 and ν3.
• Assign color c2 to the internal vertex ν2 and the newly

introduced duplicate vertex υ.

This vertex coloring is proper because no two adjacent
vertices share the same color. Furthermore, it satisfies the
TPDC conditions. The domination relationships under this
coloring scheme are as follows:

• The vertex ν2, colored c2, is adjacent to both ν1 and
ν3, thereby power dominating the entire color class c1.

• The duplicate vertex υ, also colored c2, is adjacent to
ν1 and ν3 as well, reinforcing the power domination of
color class {c1}.

• Conversely, the vertices ν1 and ν3, each assigned color
c1, are adjacent to both ν2 and υ, thereby power
dominating the color class {c2}.

Therefore, every vertex in the graph P ′
3 is power dom-

inated by a vertex from a different color class, and the
conditions for a valid TPDC are fully satisfied.

To verify minimality, assume for contradiction that only
one color is used. In that case, adjacent vertices such as ν1
and ν2 would receive the same color, violating the proper
coloring requirement. Therefore, one color is insufficient for
a valid TPDC.

Thus, the color assignment described is both valid and
minimal, as it ensures that each vertex power dominates
at least one complete color class distinct from its own.
Consequently, the TPDCN for the graph P ′

3, created through
the process of duplicating a vertex ν2 in the path graph P3,
is χtpd(P

′
3) = 2.

In all three cases—whether the path graph has two or
three vertices, and whether the duplication is performed on a
pendant vertex or the internal vertex—a TPDCusing exactly
two colors can be constructed. This coloring satisfies both the
conditions of proper vertex coloring and power domination,
thereby making it valid.

Furthermore, no valid TPDC exists using fewer than two
colors, confirming the minimality of the coloring. Therefore,
the TPDN of the resulting graph, created through the process
of duplicating a vertex in the path graph, is

χtpd(P
′
n) = 2; for 2 ≤ n ≤ 3 .

Example 1. In figure 1, the TPDC of graph P
′

3 created
through the process of duplicating a vertex ν1 by υ in path
P3 is shown.

bb

b

b

u

v1 v2 v3

c1

c2c1 c1

Fig. 1. Modified Path P ′
3, created through the process of duplicating a

vertex ν1, the color classes of the P ′
3 are c1 = {υ, ν1, ν3}, c2 = {ν2}

Then χtpd(P
′
3) = 2
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Theorem 2. For any n ≥ 4, the TPDCN for the graph P
′

n

created through the process of duplicating a pendent vertex
in Path Pn is 3.

Proof: Let Pn be a path graph with n ≥ 4 vertices.
Denote the vertex set as {ν1, ν2, ν3, ν4, . . . , νn}, where ν1
and νn are the pendant (end) vertices. The edge set of the
path is given by:

E(Pn) = {νiνi+1 | 1 ≤ i ≤ n− 1}.

Thus, |V (Pn)| = n.

Now, consider duplicating a pendant vertex, either ν1 or
νn. To streamline the discussion while maintaining general-
ity, assume that the pendant vertex ν1 is duplicated. Let υ be
the newly introduced vertex that inherits the neighborhood
of ν1. Since ν1 is adjacent only to ν2, the vertex υ is also
connected to ν2. The resulting graph P ′

n has the vertex set:

V (P ′
n) = {υ, ν1, ν2, ν3, . . . , νn},

and the edge set:

E(P ′
n) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {υν2}.

To determine the TPDCN of P ′
n, a vertex coloring strategy

is employed that satisfies the conditions for a valid TPDC.
The graph P ′

n is colored using three colors: c1, c2, and c3,
as follows:

• Assign color c1 to all vertices at odd-numbered posi-
tions, i.e., ν2i−1 for 1 ≤ i ≤

⌊
n+1
2

⌋
, and to the newly

introduced vertex υ.
• Assign color c2 to all even-numbered vertices ν2i for

2 ≤ i ≤
⌊
n
2

⌋
, excluding ν2.

• Assign color c3 to the vertex ν2, which now has degree
3.

This coloring is proper since adjacent vertices receive
distinct colors. Furthermore, it satisfies the requirements of
a TPDC . The domination relationships under this coloring
are as follows:

• All vertices in color classes c1 and c2 are adjacent to
ν2, which belongs to color class c3; thus, c3 is power
dominated.

• The vertex ν2, colored c3, is adjacent to all vertices in
color classes c1 and c2, thereby power dominating both
of them.

Hence, every vertex in the graph P ′
n is power dominated

by at least one vertex belonging to a distinct color class,
satisfying all the conditions required for a valid TPDC.

To verify the minimality of this coloring, assume, for
contradiction, that a valid TPDCof P ′

n can be achieved using
fewer than three colors. If only two colors are used, then
vertex ν2, which has degree 3 and is adjacent to three distinct
vertices (ν1, ν3, and υ), must share its color with at least
one of its neighbors. This violates the condition for proper
vertex coloring, which requires that adjacent vertices receive
distinct colors. Therefore, no proper TPDC exists with fewer
than three colors.

Thus, the color assignment described is both valid and
minimal, as it ensures that each vertex power dominates
at least one complete color class distinct from its own.

Consequently, the TPDCN for the graph P ′
n, created through

the process of duplicating a pendant vertex ν1 in the path
graph Pn, is

χtpd(P
′
n) = 3.

Example 2. In figure 2, the TPDC of graph P
′

5 obtained
by process of duplication of any pendent vertex ν1 by υ in
path P5 is shown.

b bb bb

b
u

v1 v2 v3 v4 v5

c1

c1

c2c3c1 c1

Fig. 2. Modified Path P ′
5 created through the process of duplicating a

vertex ν1, the color classes of the P ′
5 are c1 = {υ, ν1, ν3, ν5}, c2 =

{ν4}, c3 = {ν2}, Then χtpd(P
′
6) = 3.

Theorem 3. For n ≥ 4, the TPDCN for the graph P
′

n

created through the process of duplicating a vertex νi (i =
2 or i = n− 1) in Path Pn is 3.

Proof: Let Pn be a path graph with n ≥ 4 vertices.
Denote the vertex set as {ν1, ν2, ν3, ν4, . . . , νn}, where ν1
and νn are the pendant (end) vertices. The internal vertices
ν2 and νn−1 each have degree 2. The edge set of the path
graph is defined as:

E(Pn) = {νiνi+1 | 1 ≤ i ≤ n− 1}.

Hence, |V (Pn)| = n.

Now, consider duplicating one of the internal vertices ν2
or νn−1. Without loss of generality, assume that the vertex
ν2 is selected for duplication. Let υ be the newly introduced
vertex, which inherits the exact neighborhood of ν2. Since
ν2 is adjacent to ν1 and ν3, the new vertex υ is also adjacent
to both ν1 and ν3. As a result, the resulting graph P ′

n has
the vertex set:

V (P ′
n) = {υ, ν1, ν2, ν3, ν4, . . . , νn},

and the edge set:

E(P ′
n) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {ν1υ, υν3}.

Consequently, the degrees of vertices ν1 and ν3 become 3.

To determine the TPDCN of the graph P ′
n, a proper

coloring is applied using three colors: c1, c2, and c3, as
follows:

• Assign color c1 to vertex ν1 and to all vertices at odd-
numbered positions ν2i−1 for 3 ≤ i ≤

⌊
n+1
2

⌋
.

• Assign color c2 to all vertices at even-numbered po-
sitions ν2i for 2 ≤ i ≤

⌊
n
2

⌋
, and also to the newly

introduced vertex υ.
• Assign color c3 to vertex ν3, which now has degree 3.

This coloring strategy satisfies the conditions for a proper
vertex coloring, as no two adjacent vertices share the same
color. Furthermore, it meets the criteria of a TPDC. The
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domination relationships under this coloring scheme are as
follows:

• The vertices in color classes c1 and c2, which include
ν1, υ, ν2, and all others except ν3, are adjacent to ν3,
which belongs to color class c3. Thus, the color class
c3 is power dominated.

• The vertex ν3, colored c3, is adjacent to multiple ver-
tices in both color classes c1 and c2, thereby power
dominating both classes.

Therefore, every vertex in the graph P ′
n is power dominated

by at least one vertex from a distinct color class, satisfying
all the requirements of a valid TPDC.

To verify minimality, assume for contradiction that a valid
TPDC of P ′

n can be obtained using only two colors. Consider
vertex ν3, which is adjacent to three vertices: ν2, ν4, and
υ. Since these are pairwise adjacent, assigning only two
colors would inevitably cause a conflict where at least two
adjacent vertices share the same color, violating the condition
of proper coloring. Thus, a two-color TPDC is not possible.

Thus, the color assignment described above is both valid
and minimal, as it ensures that each vertex power dom-
inates at least one complete color class distinct from its
own. Consequently, the TPDCN for the graph P ′

n, created
through the process of duplicating an internal vertex ν2 (or
symmetrically νn−1) in the path graph Pn, is

χtpd(P
′
n) = 3.

Example 3. In figure 3, the TPDC of graph P
′

6 created
through the process of duplicating a vertex ν3 by υ in path
P6 is shown.

b bb b b b

bu

v1 v2 v3 v4 v5 v6

c2

c2 c2 c2c1 c1c3

Fig. 3. Modified Path P ′
6 created through the process of duplicating a

vertex ν2, the color classes of the Path P ′
6 are c1 = {ν1, ν5}, c2 =

{υ, ν2, ν4, ν6}, c3 = {ν3}, Then χtpd(P
′
6) = 3.

Theorem 4. For any n ≥ 4, the TPDCN for the graph
P

′

n created through the process of duplicating a vertex with
degree 2 (except ν2 and νn−1) in Path Pn is 4.

Proof: Let Pn be the path with n ≥ 4 nodes. Let
ν1, ν2, ν3, ν4, . . . , νn be the vertices of path Pn, where ν1
and νn are the pendent vertices. Let E(Pn) be the edges of
the path, where

E(Pn) = {νiνi+1 | 1 ≤ i ≤ n− 1}.

Here, |V (Pn)| = n and |E(Pn)| = n − 1. Now, duplicate
any arbitrary vertex with degree 2, other than ν2 and νn−1,
to υ.

To streamline the discussion while maintaining generality,
proceed under the assumption that the vertex ν3, with degree
2, undergoes duplication. This process yields a new vertex

υ, which inherits the exact neighborhood of ν3, thus main-
taining the structural properties of the original graph Pn. As
a result, the resulting graph P

′

n is generated, containing the
vertices υ, ν1, ν2, ν3, ν4, . . . , νn, and the edge set

E(P
′

n) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {ν2υ, υν4} .

The degrees of both ν2 and ν4 are now 3.

To determine the TPDCN of the graph P
′

n, the following
coloring strategy is applied, ensuring that all criteria of a
valid TPDC are satisfied.

The graph P
′

n is colored using four colors c1, c2, c3, and
c4, based on vertex positions:

• Vertices at odd-numbered positions, i.e., {ν2i−1 | 1 ≤
i ≤ ⌊n+1

2 ⌋}, are colored with c1.
• Vertices at even-numbered positions, i.e., {ν2i | 2 ≤ i ≤

⌊n
2 ⌋}, along with the newly added vertex υ, are colored

with c2.
• Vertex ν2, which now has degree 3, is colored with c3.
• Vertex ν4, which also has degree 3, is colored with c4.

The vertex coloring defined above satisfies the rules of a
proper coloring, as no two adjacent vertices share the same
color. The domination relationships under this coloring are
as follows:

• All the vertices {υ, ν1, ν2, ν4, . . . , νn} power dominate
either the color class c3 = {ν2} or the color class c4 =
{ν4}, since they are adjacent to at least one of these
vertices.

• Conversely, the vertices ν2 and ν4, having degree 3
and colored with c3 and c4 respectively, are adjacent
to multiple vertices from color classes c1 and c2, and
thus power dominate them.

Therefore, each vertex in the graph P ′
n is power dominated

by at least one vertex belonging to a distinct color class,
satisfying all the necessary conditions of a valid TPDC.

To verify minimality, assume for contradiction that the
TPDC of P ′

n can be achieved using fewer than four colors. If
only three colors are used, then at least one of the high-degree
vertices ν2 or ν4 must share a color with a neighboring
vertex, violating the proper coloring condition. Alternatively,
reducing the number of color classes would leave at least one
color class not power dominated by a different one, violating
the TPDC condition. Hence, a valid TPDC cannot exist with
fewer than four colors.

Thus, the color assignment described is both valid and
minimal, as it ensures that each vertex power dominates
at least one complete color class distinct from its own.
Consequently, the TPDCN for the graph P ′

n, created through
the process of duplicating an internal vertex of degree 2 other
than ν2 or νn−1 in the path graph Pn, is

χtpd(P
′
n) = 4.

Example 4. In figure 4,the TPDC of graph P
′

6 created
through the process of duplicating a vertex ν3 by υ in Path
P6 is shown.
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Fig. 4. Modified Path P ′
6 created through the process of duplicating a

vertex ν3, the color classes of the P ′
6, the color classes of the P ′

6 are
c1 = {ν1, ν3, ν5}, c2 = {υ, ν6}, c3 = {ν2}, and c4 = {ν4} Then
χtpd(P

′
6) = 4

Theorem 5. For any n ≥ 3, the TPDCN for a graph
C

′

n created through the process of duplicating any arbitrary
vertex with degree 2 in cycle χtpd(Cn) = 3, if n ≥ 3

Proof: Let Cn denote the cycle graph with n vertices,
where n ≥ 3. Let the vertex set of Cn be V (Cn) =
{ν1, ν2, ν3, . . . , νn}, and the edge set be defined as

E(Cn) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {νnν1}.

Thus, the graph forms a closed loop in which each vertex νi
is connected to two neighbors: νi−1 and νi+1, with indices
taken modulo n. The number of vertices is |V (Cn)| = n,
and the number of edges is |E(Cn)| = n.

The TPDCN for graphs obtained by duplicating a vertex
in Cn is analyzed under three separate cases, depending on
the selection of the vertex to be duplicated. The theorem is
established by examining each of these cases in detail.

Case (i): When n = 3

Let C3 be the cycle with n = 3 vertices. Let the vertex
set of the cycle be V (C3) = {ν1, ν2, ν3}, and the edge set
be

E(C3) = {ν1ν2, ν2ν3, ν3ν1}.

Thus, |V (C3)| = 3 and |E(C3)| = 3.

Now, consider the process of duplicating any arbitrary
vertex of degree 2. To streamline the discussion while
maintaining generality, assume that the vertex ν3 is selected
for duplication. This results in the introduction of a new
vertex υ, which inherits the exact neighborhood of ν3. Since
ν3 is adjacent to both ν1 and ν2, the new vertex υ will also be
adjacent to ν1 and ν2. Therefore, the resulting graph, denoted
by C ′

3, has the vertex set

V (C ′
3) = {ν1, ν2, ν3, υ}

and the edge set

E(C ′
3) = {ν1ν2, ν2ν3, ν3ν1, ν2υ, υν1}.

In the modified graph C ′
3, the degrees of both ν1 and ν2

become 3, as they are now connected to three vertices each.

To determine the TPDCN, a systematic coloring strategy
is applied that satisfies both proper coloring and power
domination conditions. The graph C ′

3 is colored using three
colors: c1, c2, and c3, as follows:

• Assign color c1 to vertex ν1,
• Assign color c2 to vertex ν2,
• Assign color c3 to vertices ν3 and υ.

This coloring ensures that adjacent vertices receive distinct
colors, thereby satisfying the proper coloring requirement.
Furthermore, the power domination relationships under this
coloring scheme are as follows:

• Vertex ν1, colored c1, is adjacent to both ν2 (c2) and ν3
(c3), and hence power dominates color classes c2 and
c3.

• Vertex ν2, colored c2, is adjacent to ν1 (c1), ν3 (c3),
and υ (c3), thus power dominating color classes c1 and
c3.

• Vertices ν3 and υ, both colored c3, are adjacent to ν1
and ν2, hence power dominating color classes c1 and
c2.

Therefore, every vertex in the graph C ′
3 power dominates

all vertices in at least one color class different from its own.
This satisfies the condition of TPDC.

To demonstrate the minimality of this coloring, suppose
that only two colors are used. Then, some adjacent vertices
must share the same color, which violates the proper coloring
condition. Alternatively, even if proper coloring is preserved,
one of the color classes will not be power dominated by
any vertex from a different color class, thereby violating the
TPDC condition. Hence, a valid TPDC of C ′

3 is not possible
with fewer than three colors.

Thus, the coloring assignment described above is both
valid and minimal. It satisfies all the requirements for a
TPDC . Therefore, the TPDCN of the graph C ′

3, created
through the process of duplicating a vertex of degree 2 in
the cycle C3, is

χtpd(C
′
3) = 3.

Case (ii): When n = 4

Let C4 be the cycle graph with n = 4 vertices. Let the
vertex set be V (C4) = {ν1, ν2, ν3, ν4}, and the edge set be

E(C4) = {ν1ν2, ν2ν3, ν3ν4, ν4ν1}.

Thus, |V (C4)| = 4 and |E(C4)| = 4.

Now, consider the process of duplicating any vertex of
degree 2. To streamline the discussion while maintaining
generality, assume that the vertex ν3 is selected for duplica-
tion. This duplication results in the creation of a new vertex
υ, which inherits the exact neighborhood of ν3. Since ν3 is
adjacent to ν2 and ν4, the new vertex υ is also connected to
both ν2 and ν4. Therefore, the resulting graph C ′

4 has vertex
set

V (C ′
4) = {ν1, ν2, ν3, ν4, υ}

and edge set

E(C ′
4) = {ν1ν2, ν2ν3, ν3ν4, ν4ν1, ν2υ, υν4}.

In the modified graph C ′
4, the degrees of both ν2 and ν4

become 3, while the other vertices remain of degree 2.

The following procedure is applied to assign colors in a
manner that ensures a valid TPDC. The graph C ′

4 is colored
using three colors: c1, c2, and c3, as follows:

• Assign color c1 to the vertices ν1, ν3, and the newly
added vertex υ,

• Assign color c2 to vertex ν2,
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• Assign color c3 to vertex ν4.

This coloring satisfies the proper coloring condition, as
no two adjacent vertices share the same color. The power
domination conditions are also satisfied, as detailed below:

• Vertices ν1, ν3, υ, colored with c1, are each adjacent
to vertices of colors c2 and c3, thereby contributing to
the power domination of both these color classes.

• Vertex ν2, colored with c2, is adjacent to ν1 (c1), ν3
(c1), and υ (c1), thus power dominating color class c1.

• Vertex ν4, colored with c3, is adjacent to ν3, ν1, and
υ (all of which are in c1), and hence power dominates
color class c1; additionally, it is adjacent to ν2 (c2), thus
also power dominating c2.

As each color class is power dominated by at least one
vertex from a distinct color class, the coloring constitutes a
valid TPDC of C ′

4.

To demonstrate minimality, assume that only two colors
are used. Then, it becomes impossible to maintain a proper
coloring across all adjacent vertices in C ′

4 while ensuring
the power domination condition, especially for vertices with
high degrees (such as ν2 and ν4). Hence, two colors are
insufficient for a valid TPDC of C ′

4.

Therefore, the coloring described is both valid and min-
imal. It satisfies all the requirements for TPDC . Conse-
quently, the TPDCN for the graph C ′

4, created through the
process of duplicating a vertex of degree 2 in the cycle C4,
is

χtpd(C
′
4) = 3.

Case (iii): When n ≥ 5

Let Cn be a cycle graph with n ≥ 5 vertices, denoted as
V (Cn) = {ν1, ν2, . . . , νn}, and edge set

E(Cn) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {νnν1}.

Now, duplicate an arbitrary vertex of degree 2. Without
loss of generality, assume the vertex ν3 is selected for
duplication. This process introduces a new vertex υ, which
inherits the exact neighborhood of ν3, i.e., it is connected to
both ν2 and ν4. The resulting graph C ′

n has the vertex set

V (C ′
n) = {υ, ν1, ν2, ν3, ν4, . . . , νn},

and the edge set

E(C ′
n) = {νiνi+1 | 1 ≤ i ≤ n− 1} ∪ {νnν1} ∪ {ν2υ, υν4}.

In this modified graph, the degrees of vertices ν2 and ν4
increase to 3, while all other vertices (excluding υ) remain
of degree 2.

The following procedure outlines a systematic coloring
strategy that ensures the coloring satisfies both proper col-
oring and TPDC conditions. The graph C ′

n is colored using
three distinct colors: c1, c2, and c3. The coloring scheme is
defined as follows:

• Assign color c1 to all vertices in odd positions, i.e.,
ν2i−1 for 1 ≤ i ≤ n+1

2 , and also to the newly added
vertex υ,

• Assign color c2 to all even-positioned vertices ν2i for
2 ≤ i ≤ n

2 , except ν2,
• Assign color c3 to the vertex ν2, which now has degree

3.

This coloring clearly satisfies the proper coloring condi-
tion since adjacent vertices receive different colors. It also
satisfies the conditions for TPDC , as explained below:

• All vertices colored c1 (including υ) are adjacent to
ν2, which belongs to c3; hence, color class c3 is power
dominated.

• Vertex ν4, which is adjacent to ν3 (c1), υ (c1), and ν5
(c2), thereby power dominates both color classes c1 and
c2.

• Vertex ν2, colored c3, is adjacent to ν1 (c1), ν3 (c1),
and υ (c1), thus also power dominating color class c1.

Since each color class is power dominated by at least one
vertex from a different color class, the coloring forms a valid
TPDC .

To confirm minimality, assume that only two colors are
used. In such a case, adjacent vertices would necessarily
share the same color, violating the condition of proper
coloring. Alternatively, it may become impossible to ensure
that all color classes are power dominated by a different color
class. Therefore, two colors are insufficient to form a valid
TPDC.

Hence, the coloring described is both valid and minimal.
It ensures that each vertex in the graph C ′

n power dominates
all vertices in at least one color class different from its own.
Accordingly, the TPDCN of the graph C ′

n, created through
the process of duplicating a vertex of degree 2 in the cycle
Cn, is

χtpd(C
′
n) = 3, for all n ≥ 5.

Example 5. In figure 5, the TPDC of graph C
′

4 created
through the process of duplicating a vertex ν3 by υ in cycle
C4 is shown.

uv1

v2

v3

v4

c1
c1c1

c2

c3b

b b

b

b

Fig. 5. Modified graph C′
4 created through the process of duplicating a

vertex ν3, the color classes of the C′
4 are c1 = {υ, ν1, ν3}, and c2 =

{ν2, ν2}. Then χtpd(C
′
4) = 2
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Remark 1. In the case of cycle graphs, it is noteworthy that
notice that the case where n = 1 and n = 2 do not result in
valid cycle graphs.

For n = 1, the graph has one isolated a vertex with no
edges, thus ruling out any cycle. Also, for n = 2, the graph
can have at most one edge connecting the two vertices, and
thus forming an elementary path rather than being in a cycle.
Since neither of these configurations meets the definition of
a cycle graph, the cases n = 1 & n = 2 are not considered in
the theorem. Therefore, the theorem holds for cycle graphs
with n ≥ 3, where one can form a closed circuit with all
vertices.

Theorem 6. For any n ≥ 3, the TPDCN for the graph
K

′

n, created through the process of duplicating any arbitrary
vertex in Complete graph Kn is n..

Proof: Let Kn be the complete graph with n vertices.
Denote the vertices as ν1, ν2, ν3, . . . , νn, where each vertex
has degree n−1. The edge set of the complete graph is given
by

E(Kn) = {νiνj | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j} .

Here, |V (Kn)| = n and |E(Kn)| = n(n−1)
2 .

Now, create a duplicate of any arbitrarily chosen vertex
νk with degree n− 1, and denote the new vertex as υ. This
duplication process generates a new vertex υ which inherits
the exact neighborhood of νk, preserving the structural
properties of the original graph Kn. The resulting graph,
denoted K ′

n, contains the vertex set

V (K ′
n) = {υ, ν1, ν2, . . . , νn},

and the edge set is defined as

E(K ′
n) = {νiνj | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j}

∪ {υνj | 1 ≤ j ≤ n, j ̸= k} .
In this new graph, all vertices except νk have degree n, while
νk and υ each retain degree n− 1.

To determine the TPDCN, a systematic coloring strategy is
adopted to satisfy both the proper coloring and TPDCrequire-
ments. The graph K ′

n is colored using n colors c1, c2, . . . , cn,
such that:

• Each original vertex νi, for 1 ≤ i ≤ n, is assigned a
distinct color ci,

• The duplicate vertex υ is assigned the same color ck as
the vertex νk it duplicates.

This coloring is proper because no two adjacent vertices
share the same color, and υ is not adjacent to νk, the only
vertex that shares its color. The coloring also satisfies the
power domination condition:

• Each vertex νi is adjacent to all other vertices except
itself, and hence power dominates all color classes cj
for j ̸= i.

• The vertex υ, being adjacent to all vertices except νk,
similarly power dominates all color classes other than
ck, and νk itself, being connected to all νj for j ̸= k,
also power dominates all required color classes.

Suppose, for contradiction, that fewer than n colors could
be used for the TPDCof K ′

n. In such a case, at least two

adjacent vertices among the original vertices ν1, ν2, . . . , νn
would necessarily share the same color, violating the condi-
tion of proper vertex coloring. Alternatively, it may become
impossible to ensure that each color class is power dominated
by a different color class, as required by TPDC. Therefore,
using fewer than n colors fails to meet one or both essential
criteria. Hence, n colors are necessary.

Therefore, the coloring is both valid and minimal, and the
TPDCN for the graph K ′

n, created through the process of
duplicating a vertex in the complete graph Kn, is given by

χtpd(K
′
n) = n.

Example 6. In figure 6,the TPDC of graph K
′

4 created
through the process of duplicating a vertex ν3 by υ in
Complete graph K4 is shown.

b

b

b

b

b

u

v1

v2

v3

v4

c1

c2

c3

c3

c4

Fig. 6. Modified graph K′
n created through the process of duplicating a

vertex ν3, and the color classes of the K′
4 are c1 = {ν1}, c2 = {ν4},

c3 = {ν3, υ}, and c4 = {ν2} Then χtpd(K
′
4) = 4.

Remark 2. In the case of complete graph Kn, it is note-
worthy to notice that the case where n = 1 and n = 2 do
result in valid complete graphs with trivial answers 1 and 2
respectively.

In contrast to cycle graphs, it is especially interesting to
note that complete graphs with When we examine the case
of n being 1 and n being 2, we discover that both of these
instances give us valid and well-defined graphs. Yet, it is
significant to point out that these graphs have fairly trivial
properties. For the case where n is 1, the entire graph,
known as K1, consists of a mere isolated vertex that is by
itself with no edges to connect it to anything else. In spite of
there being no connections whatsoever, this arrangement is
still considered to be a complete graph because all potential
edges that might be drawn between vertices are indeed
present—although it should be pointed out that there are
simply no other vertices to provide anything to connect to.

Likewise, for n=2, the entire graph K2 has precisely two
vertices that are linked by a single edge. As there is only
one possible edge linking such two distinct vertices, and as
this edge does exist, it is then true that the graph satisfies
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the conditions for completeness. Such small instances are
easy examples wherein the combinatorial characteristics of
a complete graph hold, but the resulting configurations are
easy or are ”trivial” in structure. Nevertheless, they have
a way of being included in theoretical proofs or formal
definitions, especially when trying to generalize properties
that hold for all graphs.

Theorem 7. For any m ≥ 1, n ≥ 2, the TPDCN for the
graph K

′

m,n created through the process of duplicating any
arbitrary vertex in bipartite graph Km,n is 2.

Proof: Let Km,n be a complete bipartite graph with
vertex sets V1 and V2, where

V1 = {ν1, ν2, ν3, . . . , νm} and V2 = {ν′1, ν′2, ν′3, . . . , ν′n} .

Let E(Km,n) denote the edge set of the bipartite graph,
defined as

E(Km,n) =
{
νiν

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

Here, the number of vertices in Km,n is |V (Km,n)| = m+n,
and the number of edges is |E(Km,n)| = mn.

Based on the structural role of the duplicated vertex,
two distinct cases arise in the bipartite graph Km,n. The
vertex selected for duplication may belong either to the
partite set V1 = {ν1, ν2, . . . , νm} or to the partite set
V2 = {ν′1, ν′2, . . . , ν′n}. Each case results in a structurally
modified graph, with specific implications for TPDC, as
detailed in the following sections.

Case (i): When m = 1, and duplicating any pendant vertex
ν′i in K1,n.

When m = 1, the bipartite graph K1,n is isomorphic to
the Star graph with apex vertex ν1, and pendant vertices
{ν′1, ν′2, . . . , ν′n} forming the second partite set. The edge set
and vertex set of K1,n are defined as:

E(K1,n) = {ν1ν′i | 1 ≤ i ≤ n}

|V (K1,n)| = n+ 1,

|E(K1,n)| = n.

Now, create a duplicate of any arbitrary pendant vertex ν′k
in V2. This duplication yields a new vertex υ, which inherits
the exact neighborhood of ν′k, i.e., it is adjacent to the apex
vertex ν1. The resulting graph K ′

1,n has:

V (K ′
1,n) = {ν1, ν′1, ν′2, . . . , ν′n, υ}

E(K ′
1,n) = {ν1ν′i | 1 ≤ i ≤ n} ∪ {ν1υ}

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both the proper coloring and the
TPDC requirements. Specifically, this method ensures that
every color class is power dominated by at least one vertex
from a distinct color class, thereby producing a valid TPDC
configuration.

The graph K ′
1,n is colored using two colors, c1 and c2, as

follows:
• The apex vertex ν1 is assigned color c1.
• All pendant vertices {ν′1, ν′2, . . . , ν′n}, as well as the

duplicated vertex υ, are assigned color c2.

This coloring is proper, since adjacent vertices receive
different colors. The domination relationships under this
coloring scheme are:

• The vertices {ν′1, ν′2, . . . , ν′n, υ}, being adjacent to ν1,
collectively power dominate the color class c1 = {ν1}.

• The apex vertex ν1, being adjacent to every
vertex in c2, power dominates the color class
c2 = {ν′1, ν′2, . . . , ν′n, υ}.

To show that two colors are necessary, assume only one
color is used for a TPDC of K ′

1,n. Then, at least one pair of
adjacent vertices would share the same color, violating the
requirement for proper coloring. Furthermore, if the coloring
is proper but only uses one color, the power domination
condition fails, as no vertex can power dominate a different
color class. Hence, a valid TPDC cannot be achieved with
fewer than two colors.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class distinct from its
own, in accordance with the definition of TPDC. Thus, the
TPDCN of the bipartite graph K ′

1,n, created by duplicating
any arbitrary pendant vertex of K1,n, is:

χtpd(K
′
1,n) = 2.

Case (ii): When m = 1, and duplicating the apex vertex ν1
in K1,n.

When m = 1, the bipartite graph K1,n corresponds to
the Star graph, with apex vertex ν1 and pendant vertices
{ν′1, ν′2, . . . , ν′n}. The edge set and vertex set of K1,n are:

E(K1,n) = {ν1ν′i | 1 ≤ i ≤ n},

Now, consider duplicating the apex vertex ν1. This process
creates a new vertex υ, which inherits the exact neighborhood
of ν1, i.e., it is adjacent to all pendant vertices. The resulting
graph K ′

2,n has:

V (K ′
2,n) = {ν1, υ, ν′1, ν′2, . . . , ν′n}

E(K ′
2,n) = {ν1ν′i | 1 ≤ i ≤ n} ∪ {υν′i | 1 ≤ i ≤ n}

with
|V (K ′

2,n)| = n+ 2,

|E(K ′
2,n)| = 2n.

.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both the proper coloring and the
TPDC requirements. Specifically, this method ensures that
every color class is power dominated by at least one vertex
from a distinct color class, thereby producing a valid TPDC
configuration.
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The graph K ′
2,n is colored using two colors, c1 and c2, as

follows:
• The apex vertex ν1 and its duplicate υ are assigned color

c1.
• All pendant vertices {ν′1, ν′2, . . . , ν′n} are assigned color

c2.

This coloring satisfies the proper coloring condition, as
all adjacent vertices receive distinct colors. The domination
relationships under this coloring scheme are:

• The pendant vertices {ν′1, ν′2, . . . , ν′n}, being adjacent
to both ν1 and υ, collectively power dominate the color
class c1 = {ν1, υ}.

• The apex vertices ν1 and υ, being adjacent to all
pendant vertices, power dominate the color class
c2 = {ν′1, ν′2, . . . , ν′n}.

To establish the minimality of this coloring, assume that
only one color is used. Then, adjacent vertices must share the
same color, violating the condition of proper vertex coloring.
Furthermore, even if proper coloring is somehow preserved,
the power domination condition fails, as a single color class
cannot dominate itself. Therefore, at least two colors are
necessary.

Hence, the color assignment described is both valid and
minimal. Each vertex in the graph power dominates all
vertices in at least one color class different from its own,
fulfilling the requirements of TPDC. Therefore, the TPDCN
of the graph K ′

2,n, obtained by duplicating the apex vertex
in the bipartite graph K1,n, is:

χtpd(K
′
2,n) = 2.

Case (iii): When m = 2, and duplicating a vertex ν′j from
V2 in K2,n.

Let K2,n be a bipartite graph with two partite sets:

V1 = {ν1, ν2}, V2 = {ν′1, ν′2, ν′3, . . . , ν′n},

where each vertex in V1 is connected to every vertex in V2.
The edge set and graph order are defined as:

E(K2,n) = {νiν′j | 1 ≤ i ≤ 2, 1 ≤ j ≤ n},

|V (K2,n)| = n+ 2,

|E(K2,n)| = 2n.

Now, assume that an arbitrary vertex ν′2 from the set V2

undergoes duplication. The new vertex υ inherits the exact
neighborhood of ν′2, that is, it becomes adjacent to both ν1
and ν2. The resulting graph, denoted K ′

2,n, has vertex set:

V (K ′
2,n) = {ν1, ν2, ν′1, ν′2, . . . , ν′n, υ}

and edge set:

E(K ′
2,n) = {νiν′j | 1 ≤ i ≤ 2, 1 ≤ j ≤ n} ∪ {ν1υ, ν2υ}.

Thus,
|V (K ′

2,n)| = n+ 3,

|E(K ′
2,n)| = 2n+ 2.

The procedure outlined below is based on a systematic

approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both proper coloring and TPDC
requirements. Specifically, this method ensures that every
color class is power dominated by at least one vertex from
a distinct color class, thereby producing a valid TPDC
configuration.

The graph K ′
2,n is colored using two colors, c1 and c2, as

follows:
• Vertices in V1 = {ν1, ν2} are assigned color c1.
• Vertices in V2 = {ν′1, ν′2, . . . , ν′n}, along with the

duplicate vertex υ, are assigned color c2.

This coloring satisfies the proper coloring condition,
as no two adjacent vertices receive the same color. The
domination relationships under this coloring scheme are:

• Vertices in V1 = {ν1, ν2}, being adjacent to all of V2

and υ, collectively power dominate the color class c2 =
{ν′1, ν′2, . . . , ν′n, υ}.

• Vertices in V2 ∪ {υ}, being adjacent to both ν1
and ν2, collectively power dominate the color class
c1 = {ν1, ν2}.

To prove the minimality of the coloring, assume that only
one color is used. Then, adjacent vertices would share the
same color, violating the proper coloring condition. Even
if proper coloring were somehow maintained, the power
domination requirement would fail, since a single color class
cannot power dominate another. Hence, two colors are both
necessary and sufficient.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. The TPDCN of
the graph K ′

2,n, obtained by duplicating an arbitrary vertex
from V2 in the bipartite graph K2,n, is:

χtpd(K
′
2,n) = 2.

Case (iv): When m ≥ 3, and duplicating a vertex ν′i from
V2 in Km,n.

Let Km,n be a bipartite graph with two partite sets:

V1 = {ν1, ν2, . . . , νm}, V2 = {ν′1, ν′2, . . . , ν′n},

where each vertex in V1 is adjacent to every vertex in V2.
The edge set and order of the graph are given by:

E(Km,n) = {νiν′j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
|V (Km,n)| = m+ n,

|E(Km,n)| = mn.

Assume that a vertex ν′i from V2 undergoes duplication.
The new vertex υ inherits the exact neighborhood of ν′i, i.e., it
is adjacent to all vertices in V1. The resulting graph, denoted
K ′

m,n, has vertex set:

V (K ′
m,n) = {ν1, ν2, . . . , νm, ν′1, ν

′
2, . . . , ν

′
n, υ}

and edge set:

E(K ′
m,n) = {νiν′j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {νlυ | 1 ≤ l ≤ m}.
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Thus,
|V (K ′

m,n)| = m+ n+ 1,

|E(K ′
m,n)| = mn+m.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both proper coloring and TPDC
requirements. Specifically, this method ensures that every
color class is power dominated by at least one vertex from
a distinct color class, thereby producing a valid TPDC
configuration.

The graph K ′
m,n is colored using two colors, c1 and c2,

as follows:
• Vertices in V1 = {ν1, ν2, . . . , νm} are assigned color

c1.
• Vertices in V2 = {ν′1, ν′2, . . . , ν′n}, along with the

duplicated vertex υ, are assigned color c2.

This coloring satisfies the proper coloring condition, as
adjacent vertices receive distinct colors. The domination
relationships under this coloring scheme are as follows:

• The vertices in V1 = {ν1, ν2, . . . , νm}, being adjacent to
all vertices in V2 and to υ, collectively power dominate
the color class

c2 = {ν′1, ν′2, . . . , ν′n, υ}.

• The vertices in V2 ∪ {υ} = {ν′1, ν′2, . . . , ν′n, υ}, being
adjacent to all vertices in V1, collectively power domi-
nate the color class

c1 = {ν1, ν2, . . . , νm}.

To prove the minimality of this coloring, assume that only
one color is used. Then, adjacent vertices must share the
same color, which contradicts the condition of proper vertex
coloring. Even if such a coloring avoids direct conflicts, the
power domination condition will be violated, as no color
class will be dominated by a different one. Hence, two colors
are both necessary and sufficient.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. Consequently,
the TPDCN for the bipartite graph K ′

m,n, obtained by
duplicating an arbitrary vertex from either V1 or V2, is:

χtpd(K
′
m,n) = 2.

In all four structural scenarios examined—whether dupli-
cating a pendant vertex in K1,n, duplicating the apex vertex
in K1,n, duplicating a vertex in K2,n, or duplicating any
vertex in Km,n for m ≥ 3—a TPDCusing exactly two
colors can be successfully constructed. In each case, the
coloring satisfies both the proper vertex coloring condition
and the power domination requirement, thereby making it
both valid and minimal. Therefore, the TPDCN for the
modified bipartite graph is

χtpd(K
′
m,n) = 2.

Example 7. In figure 7, the TPDC for the bipartite graph
graph K

′

1,11 created through the process of duplicating a
pendent vertex ν6 by υ in bipartite graph K1,11 is shown.

b

b
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c2 c2 c2
c2

v′2
v′3

v′4 v′5
v′6

v′7v′8v′9

v′12

v′11 v′10

Fig. 7. Modified graph K
′
1,11, created through the process of duplicating a

pendent vertex ν6, and the color classes of the K′
1,11 are c1 = {υ, ν1, ν3},

c2 = {ν2, ν4} Then χtpd( K
′
1,11)=2.

Remark 3. In the case of bipartite graph Km,n, it is
noteworthy to notice that the case where n = 1 and m = 1
do result in a valid Path graph, which was proved in Theorem
1.

In the context of bipartite graphs, specifically the complete
bipartite graph denoted as Km,n , it is noteworthy that
the case where m = 2 and n = 1 results in a graph that
is structurally equivalent to a simple path graph. In this
configuration, the graph consists of two vertices in one
partition and a single vertex in the other. Each of the two
vertices in the m−partition is connected to the single vertex
in the n− partition, forming a Y-shaped structure that, when
viewed as an undirected graph, is isomorphic to a path of
length two.

This observation confirms that K2,1 represents a valid
and minimal example of a path graph, a result that is
formally established in Theorem 1. It highlights how certain
complete bipartite graphs, even with small values of m and
n, can correspond to well-known graph classes under specific
conditions. This case also illustrates how bipartite graphs can
encompass a diverse range of structures, including paths,
cycles (under proper configurations), and more complex
networks.

Theorem 8. For any n ≥ 3, the TPDCN for the graph
F

′

n, created through the process of duplicating any arbitrary
vertex of Fan graph Fn is 3.

Proof: Let Fn be the Fan graph with vertex set
{ν0, ν1, ν2, . . . , νn}, where ν0 is the apex vertex and the
remaining vertices form a path Pn. Let E(Fn) denote the
edge set of the Fan graph, where

E(Fn) = {ν0νi | 1 ≤ i ≤ n} ∪ {νiνi+1 | 1 ≤ i ≤ n− 1}.

Here, |V (Fn)| = n+ 1, where n is any positive integer.
Based on the structural role of the duplicated vertex, two

distinct cases arise in the Fan graph Fn. The vertex chosen
for duplication may either be the apex vertex ν0 or any
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arbitrary vertex from the path Pn. Each case results in a
structurally distinct graph with corresponding implications
for TPDC , as detailed below.

Case (i): Duplication of the apex vertex

Assume that the apex vertex ν0 undergoes duplication.
This process yields a new vertex υ, which inherits the exact
neighborhood of ν0, thereby preserving the structure of the
original graph. The resulting graph F ′

n has vertex set

{υ, ν0, ν1, ν2, . . . , νn}

and edge set

E(F ′
n) = {ν0νi | 1 ≤ i ≤ n}

∪ {νiνi+1 | 1 ≤ i ≤ n− 1}
∪ {υνi | 1 ≤ i ≤ n}.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both proper coloring and TPDC
requirements. Specifically, this method ensures that every
color class is power dominated by at least one vertex from
a distinct color class, thereby producing a valid TPDC
configuration.

The graph F ′
n is colored using three colors, c1, c2, and

c3, as follows:

• The apex vertex ν0 and the duplicate vertex υ are
assigned color c1.

• Vertices at even-numbered positions along the path, i.e.,
{ν2i | 1 ≤ i ≤ n

2 }, are assigned color c2.
• Vertices at odd-numbered positions along the path, i.e.,

{ν2i−1 | 1 ≤ i ≤ n+1
2 }, are assigned color c3.

The domination relationships under this coloring scheme
are as follows:

• The path vertices {ν1, ν2, . . . , νn} are adjacent to both
apex vertices and therefore collectively power dominate
the color class c1 = {ν0, υ}.

• The apex vertices ν0 and υ are adjacent to all path
vertices and hence together power dominate the color
classes:

– {c2}, which contains all even-indexed path vertices,
and

– {c3}, which contains all odd-indexed path vertices.

To demonstrate the necessity of three colors for a valid
TPDC of F ′

n, suppose, for the sake of contradiction, that
only two colors are used. Under this assumption, it becomes
inevitable that some adjacent vertices must share the same
color, thereby violating the condition of proper vertex col-
oring. Alternatively, even if a proper coloring is somehow
preserved, the power domination condition would fail, as at
least one color class would not be monitored or dominated

by any vertex from a different color class. Consequently, it
is impossible to construct a valid TPDC for F ′

n using fewer
than three colors.

Therefore, the color assignment described is both valid and
minimal, as it guarantees that each vertex in the graph power
dominates all vertices in at least one color class different
from its own, in accordance with the definition of TPDC.
Consequently, the TPDCN for the graph F ′

n, obtained by
duplicating the apex vertex in the Fan graph Fn, is

χtpd(F
′
n) = 3.

Case (ii): Duplication of an arbitrary path vertex

Assume that an arbitrary vertex νk from the path Pn in
the Fan graph Fn undergoes duplication. This process yields
a new vertex υ, which inherits the exact neighborhood of νk,
i.e., it connects to ν0, νk−1, and νk+1. The resulting graph
F ′
n has vertex set

{υ, ν0, ν1, ν2, . . . , νn}

and edge set

E(F ′
n) = {ν0νi | 1 ≤ i ≤ n} ∪ {νiνi+1 | 1 ≤ i ≤ n− 1}

∪ {υνk−1, υνk+1, υν0}.
The coloring procedure uses the same strategy to ensure

both proper coloring and TPDC:

• The apex vertex ν0 is assigned color c1.
• Vertices at even-numbered positions along the path,

{ν2i | 1 ≤ i ≤ n
2 }, are assigned color c2.

• Vertices at odd-numbered positions, {ν2i−1 | 1 ≤ i ≤
n+1
2 }, are assigned color c3.

• The duplicated vertex υ is assigned the same color as
the original vertex νk.

The domination relationships under this coloring scheme
are as follows:

• The path vertices {ν1, ν2, . . . , νn} and the duplicated
vertex υ, all of which are adjacent to the apex vertex ν0,
collectively power dominate the color class c1 = {ν0}.

• The apex vertex ν0, being adjacent to every path vertex,
power dominates the following:

– The color class {c2}, consisting of even-indexed
path vertices.

– The color class {c3}, consisting of odd-indexed
path vertices.

To demonstrate the necessity of three colors for a valid
TPDC of F ′

n, suppose, for the sake of contradiction, that
only two colors are used. Under this assumption, there
would inevitably exist adjacent vertices sharing the same
color, thereby violating the proper vertex coloring condition.
Alternatively, even if such a coloring avoids direct conflicts,
it would fail the TPDC condition, as at least one color class
would remain unmonitored by any vertex from another color
class. Hence, it is impossible to construct a valid TPDC for
F ′
n using fewer than three colors.
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Therefore, the color assignment described is both valid and
minimal, as it guarantees that each vertex in the graph power
dominates all vertices in at least one color class different
from its own, in accordance with the definition of TPDC.
Consequently, the TPDCN for the graph F ′

n, obtained by
duplicating an arbitrary path vertex in the Fan graph Fn, is

χtpd(F
′
n) = 3.

In both scenarios considered in the modified Fan graph
F ′
n—namely, duplicating the apex vertex or duplicating any

arbitrary path vertex—a TPDC using exactly three colors
can be successfully constructed. In each case, the coloring
satisfies both the proper vertex coloring condition and the
power domination requirement, making it both valid and
minimal. Therefore, the TPDCN of the modified Fan graph
is

χtpd(F
′
n) = 3.

Example 8. In figure 8, the TPDC for the graph F
′

n created
through the process of duplicating a ν2 by υ in Fan graph
F

′

n is shown.

Fig. 8. Modified Fan graph F
′
n created through the process of duplicating

a vertex ν2 the color classes of the F ′
4 are c1 = {ν0}, c2 = {ν1, ν3} and

c3 = {ν2, υ} Then χtpd( F
′
4)=3.

Theorem 9. For any n ≥ 3, the TPDCN for the graph DF
′

n,
created through the process of duplicating any arbitrary
vertex of Double Fan graph DFn is 3.

Proof:
Let DFn be the double fan graph with vertex

set {ν0, ν1, ν2, . . . , νn, ν
′

0}, where ν0 and ν
′

0 are
the apex vertices, and all the vertices of the path
Pn, namely {ν1, ν2, . . . , νn}, are shared with both
apex vertices ν0 and ν

′

0. Let E(DFn) denote
the edge set of the double fan graph, where
E(DFn) = {ν0νi | 1 ≤ i ≤ n} ∪ {νiνi+1 | 1 ≤ i < n}
∪{ν′

0νi | 1 ≤ i ≤ n}. Here, |V (DFn)| = n+ 2, where n is
any positive integer. Based on the selection of the vertex ν
to be duplicated by a new vertex υ, two cases may arise.

Case (i): Duplicating any one of the apex vertex
To streamline the discussion while maintaining generality, we

assume that one of the apex vertices, namely ν0, undergoes
duplication. This process yields a new vertex υ, which
inherits the exact neighborhood of ν0, thereby preserving
the structural properties of the original graph DFn. As a
result, the duplicated graph DF

′

n is obtained, with the vertex
set {υ, ν1, ν2, ν3, . . . , νn, ν0, ν

′

0} and the edge set defined
as, E(DF

′

n) = {ν0νi | 1 ≤ i ≤ n} ∪ {νiνi+1 | 1 ≤ i < n}
∪{ν′

0νi | 1 ≤ i ≤ n} ∪ {υνi | 1 ≤ i ≤ n}.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both proper coloring and the TPDC
requirements. Specifically, this method ensures that every
color class is power dominated by at least one vertex from
a distinct color class, thereby producing a valid TPDC
configuration.

The graph DF ′
n is colored using three colors, c1, c2, and

c3, according to the positions of the vertices:
• Vertices ν0, ν

′

0, which are the apex vertices, along with
the newly introduced duplicate vertex υ, are all assigned
color c1.

• Vertices at even-numbered positions along the path, that
is, {ν2i | 1 ≤ i ≤ ⌊n

2 ⌋}, are assigned color c2.
• Vertices at odd-numbered positions along the path, that

is, {ν2i−1 | 1 ≤ i ≤ ⌈n
2 ⌉}, are assigned color c3.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color. Hence, it satisfies the fundamental requirement
of proper coloring needed for TPDC. Additionally, the
assignment of colors ensures that each color class is power
dominated by a vertex of a different color class, thereby
fulfilling the TPDC condition.

The domination relationships under this coloring scheme
are as follows:

• All the path vertices {ν1, ν2, . . . , νn} power dominate
the apex color class c1 = {υ, ν0, ν

′

0}, since each apex
vertex and its duplicate are adjacent to all vertices on
the path.

• All apex vertices and the duplicate vertex {ν0, ν
′

0, υ}
power dominate the path vertices in color class c2
(even-indexed) and c3 (odd-indexed), as they are
adjacent to every path vertex.

To show that three colors are necessary, suppose that
only two colors are used for the TPDC of DF ′

n. In such
a case, some adjacent vertices must necessarily share the
same color, thereby violating the condition of proper vertex
coloring. Alternatively, even if proper coloring is somehow
maintained, the power domination condition will be violated,
as at least one color class will not be power dominated by
any vertex from another color class. Therefore, it is not
possible to construct a valid TPDC of DF ′

n using fewer
than three colors.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. Therefore, every
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vertex in the graph DF
′

n power-dominates every vertex
from at least one distinct color class. The TPDCN for the
graph DF

′

n created through the process of duplicating one
of the apex vertex ν0 in double fan graph DFn is 3.
i.e.,χtpd

(
DF

′

n

)
= 3.

Case (ii): Duplicating any arbitrary vertex of path Pn in
Double fan graph DFn

To streamline the discussion while maintaining generality,
let us assume that an arbitrary vertex νk of the path Pn

in the double fan graph DFn undergoes duplication. This
duplication results in the creation of a new vertex υ,
which inherits the exact neighborhood of νk. As a result, the
structural properties of the original graph DFn are preserved.
The resulting graph, denoted by DF ′

n, has the vertex set
{υ, ν1, ν2, ν3, ν4, . . . , νn, ν0, ν′0}, and the edge set is given
by: E(DF ′

n) = {ν0νi | 1 ≤ i ≤ n} ∪ {νiνi+1 | 1 ≤ i < n}
∪{ν′0νi | 1 ≤ i ≤ n} ∪ {υνk−1, υνk+1, υν0, υν

′
0}.

The procedure outlined below follows a systematic
approach to coloring the vertices of the graph, ensuring
that the resulting coloring satisfies both the proper coloring
condition and the TPDC requirements. Furthermore,
this procedure guarantees that each color class is power
dominated by at least one vertex from a different color
class, thereby achieving a valid TPDC configuration.

The graph DF
′

n is colored using three colors, c1, c2, and
c3, based on the positions of the vertices:

• The apex vertices ν0 and ν
′

0 are assigned the color c1.
• The vertices at even-numbered positions along the path,

i.e., {ν2i | 1 ≤ i ≤ ⌊n
2 ⌋}, are assigned the color c2.

• The vertices at odd-numbered positions along the path,
i.e., {ν2i−1 | 1 ≤ i ≤ ⌈n+1

2 ⌉}, are assigned the color
c3.

• The newly introduced vertex υ is assigned the same
color as the duplicated vertex νk.

The proposed coloring ensures that adjacent vertices are
assigned distinct colors, thereby fulfilling the condition for
proper vertex coloring, which is essential for TPDC. The
domination relationships under this coloring scheme are as
follows:

• The set of path vertices along with the duplicated
vertex υ, that is, {ν1, ν2, . . . , νn, υ}, collectively power
dominate the apex vertices ν0 and ν

′

0, which are colored
with c1.

• In turn, the apex vertices ν0 and ν
′

0 power dominate the
path vertices, thereby covering the color classes c2 and
c3.

This vertex domination among different color classes
confirms that the coloring satisfies all the conditions required
for a valid TPDC.

To demonstrate the necessity of three colors for a valid
TPDC of DF ′

n, suppose, for the sake of contradiction, that
only two colors are used. Under this assumption, there would
inevitably exist adjacent vertices sharing the same color,
thereby violating the condition of proper vertex coloring.
Alternatively, even if a proper coloring is somehow achieved

with two colors, the power domination condition would
fail, as at least one color class would not be monitored
or dominated by any vertex from a different color class.
Consequently, it is impossible to construct a TPDC DF ′

n

using fewer than three colors.

Therefore, the color assignment described is both valid
and minimal, as it guarantees that each vertex in the graph
power dominates all vertices in at least one color class
different from its own, in accordance with the definition
of TPDC. Consequently, the TPDCN for the graph DF ′

n,
obtained by duplicating an arbitrary vertex in the double fan
graph DFn, is 3. That is, χtpd(DF ′

n) = 3.

In both scenarios—whether duplicating an apex vertex or
a path vertex—a TPDC with exactly three colors can be
constructed. This coloring satisfies both the proper vertex
coloring condition and the power domination requirement,
making it both valid and minimal. Therefore, the TPDCN
for the modified double fan graph is

χtpd(DF ′
n) = 3.

Example 9. In figure 9, the TPDC for the graph DF
′

n

created through the process of duplicating a ν2 by υ in
Double fan graph DF

′

n is shown.

Fig. 9. Modified Double Fan graph DF
′
n created through the process of

duplicating a vertex ν2 the color classes of the DF ′
4 are c1 = {ν0, ν

′
0},

c2 = {ν1, ν3} and c3 = {ν2, υ} Then χtpd( DF
′
4)=3.

Theorem 10. For any n ≥ 3, the TPDCN for graph O
′

n,
created through the process of duplicating any arbitrary
vertex of the Octopus graph On is 3.

Proof: Let On be the Octopus graph with vertex set
V (On) = {ν1, ν2, ν3, . . . , ν2n+1}, where ν1 is designated
as the apex vertex. The vertex subset {ν2, ν3, . . . , νn+1}
forms a Fan graph Fn connected sequentially, while
{νn+2, νn+3, . . . , ν2n+1} forms a Star graph K1,n, where
each vertex is connected only to the apex vertex ν1.

Let E(On) denote the edge set of the Octopus graph,
defined as:

E(On) = {ν1νi | 2 ≤ i ≤ 2n+ 1} ∪ {νiνi+1 | 2 ≤ i ≤ n}.
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Here, |V (On)| = 2n + 1, where n is a positive integer.
The graph consists of a single apex vertex ν1 that connects to
all other vertices. The path subgraph formed by ν2 through
νn+1 constitutes a Fan, and νn+2 through ν2n+1 are pendant
vertices forming the Star component.

To determine the TPDCN χtpd(On) under vertex
duplication, we will analyze different duplication scenarios
with corresponding proper TPDC s.

Case (i): Duplicating an apex vertex.

Assume that the apex vertex ν1 undergoes duplication.
This operation yields a new vertex υ, which inherits the
exact neighborhood of ν1, thereby preserving the structural
integrity of the original graph On. Consequently, the result-
ing graph, denoted as O′

n, is constructed with the vertex set

V (O′
n) = {υ, ν1, ν2, ν3, . . . , νn+1, νn+2, νn+3, . . . , ν2n+1}

and the edge set given by E(O′
n) = {ν1νi | 2 ≤ i ≤ 2n +

1} ∪ {νiνi+1 | 2 ≤ i ≤ n} ∪ {υνi | 2 ≤ i ≤ 2n+ 1}.

To determine the TPDCN of the graph O′
n, we apply a

systematic vertex coloring strategy that satisfies both the
proper vertex coloring condition and the power domination
constraint.

The graph O′
n is colored using three colors: c1, c2, and

c3, as follows:

• Vertices ν1 and its duplicate υ (the apex vertices) are
assigned color c1.

• Vertices at even-numbered positions in the fan path, i.e.,
{ν2i | 1 ≤ i ≤ ⌊n

2 ⌋}, are assigned color c2.
• Vertices at odd-numbered positions in the fan path, i.e.,

{ν2i−1 | 1 ≤ i ≤ ⌈n+1
2 ⌉}, are assigned color c3.

• All pendant vertices of the star, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, are assigned color c2.

This coloring configuration guarantees a proper vertex
coloring, since no two adjacent vertices share the same
color. Furthermore, the power domination requirement is
satisfied under the following domination relationships:

• All vertices in the fan path {ν2, ν3, . . . , νn+1}, being
adjacent to ν1 and υ, collectively power dominate the
color class c1 = {ν1, υ}.

• All pendant vertices {νn+2, . . . , ν2n+1} are also adja-
cent to ν1 and υ, hence they too contribute to the power
domination of c1.

• In turn, the apex vertices ν1 and υ are adjacent to every
fan and star vertex, thus power dominating both c2 and
c3.

To demonstrate the necessity of three colors, suppose
only two colors are used. In such a case, adjacent vertices
would inevitably share the same color, thereby violating the
requirement of proper coloring. Alternatively, if the coloring
is somehow proper with two colors, the power domination
condition fails because at least one color class would not be
dominated by any vertex of another color class. Therefore,
three colors are necessary.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph O

′

n power
dominates all vertices in at least one color class different
from its own, in accordance with the definition of TPDC.
The TPDCN for the graph O

′

n created through the process
of duplicating apex vertex in Octopus graph On is 3. i.e.,
χtpd

(
O

′

n

)
= 3.

Case (ii): Duplicating an arbitrary vertex of the Fan graph
in Octopus graph On.

Assume that the vertex ν3, which lies on the Fan graph Fn,
undergoes duplication. This process results in the creation
of a new vertex υ, which inherits the exact neighborhood
of ν3. Consequently, the structural properties of the original
Octopus graph On are preserved. The resulting graph is
denoted by O

′

n, and has the vertex set:

V (O′
n) = {υ, ν1, ν2, ν3, ν4, . . . , νn+1, νn+2, . . . , ν2n+1}

and the edge set: E(O′
n) = {ν1νi | 2 ≤ i ≤ 2n + 1} ∪

{νiνi+1 | 2 ≤ i ≤ n} ∪ {υν2, υν4, υν1}.

The following coloring strategy guarantees a TPDC of O′
n

that is both valid and minimal. The graph is colored using
three distinct colors: c1, c2, and c3, assigned as follows:

• The apex vertex ν1 is assigned color c1.
• Vertices at even-numbered positions along the Fan path,

i.e., {ν2i | 1 ≤ i ≤ ⌊n
2 ⌋}, are assigned color c2.

• Vertices at odd-numbered positions along the Fan path,
i.e., {ν2i−1 | 1 ≤ i ≤ ⌈n+1

2 ⌉}, including the duplicated
vertex υ, are assigned color c3.

• All the pendant vertices of the star graph, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, are assigned color c2.

This coloring satisfies the condition of a proper coloring
because no two adjacent vertices share the same color.
Moreover, the coloring satisfies the TPDC requirements as
described below:

• The vertices of the Fan graph Fn, including the dupli-
cated vertex υ, collectively power dominate the color
class c1 = {ν1}, since each is adjacent to the apex
vertex.

• All pendant vertices of the star graph K1,n, colored
c2, are adjacent to ν1 (colored c1), and hence power
dominate the class c1.

• The apex vertex ν1 is adjacent to every vertex of both
color classes c2 and c3, and thus power dominates those
classes.

To demonstrate the minimality of the coloring, suppose
that only two colors are used. Under this assumption, it is
impossible to assign distinct colors to all adjacent vertices
while simultaneously ensuring that every color class is power
dominated by a vertex from a different color class. Therefore,
at least three colors are necessary to achieve a valid TPDC
for the graph O′

n.

Thus, the coloring presented is both valid and minimal,
fulfilling all the criteria for TPDC . The TPDCN of the graph
O′

n, resulting from the duplication of a Fan graph vertex in
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the Octopus graph On, is

χtpd(O
′
n) = 3.

Case (iii): Duplicating an arbitrary pendent vertex of Star
graph in Octopus graph On.

To maintain generality, consider the case in which a
pendant vertex νn+k of the star subgraph K1,n in the Octopus
graph On undergoes duplication. This process produces a
new vertex υ, which inherits the exact neighborhood of νn+k,
thereby preserving the structural properties of the original
graph. The resulting graph, denoted as O′

n, contains the
following vertex set:

V (O′
n) = {ν1, ν2, . . . , νn, νn+1, νn+2, , . . . , ν2n+1, υ}.

The corresponding edge set is defined as:

E(O′
n) = {ν1νi | 2 ≤ i ≤ 2n+ 1}

∪ {νiνi+1 | 2 ≤ i ≤ n}
∪ {υν1}.

To determine the TPDCN of O′
n, a valid coloring strategy

employing three colors c1, c2, and c3 is applied. The colors
are assigned as follows:

• Color c1 is assigned to the apex vertex ν1 and to all
odd-indexed vertices of the Fan graph:

{ν1} ∪ {ν2i−1 | 1 ≤ i ≤ ⌈n+1
2 ⌉}.

• Color c2 is assigned to the even-indexed vertices of the
Fan graph:

{ν2i | 1 ≤ i ≤ ⌊n
2 ⌋}.

• Color c3 is assigned to all pendant vertices of the star
subgraph, including the newly introduced vertex υ:

{νn+2, νn+3, . . . , ν2n+1, υ}.

This coloring satisfies the conditions for a proper vertex
coloring, ensuring that no two adjacent vertices receive the
same color. Furthermore, the TPDC requirements are fulfilled
as described below:

• The vertices of the Fan graph Fn, namely
{ν2, ν3, . . . , νn+1}, are adjacent to the apex vertex ν1
and therefore power dominate the color class c1.

• All pendant vertices of the star subgraph, including υ,
are adjacent to ν1 and thus power dominate the color
class c1.

• The apex vertex ν1 is adjacent to all vertices in both
c2 and c3, and therefore power dominates those color
classes.

To establish the minimality of the coloring, suppose that
only two colors are used. Under such an assumption, it
becomes impossible to assign distinct colors to all adjacent
vertices while ensuring that each color class is power dom-
inated by a vertex of a different color class. Thus, at least
three colors are necessary to achieve a valid TPDC.

Hence, the coloring described above is both valid and
minimal, and satisfies all the criteria of TPDC . Therefore,

the TPDCN of the graph O′
n, obtained by duplicating an

arbitrary pendant vertex of the star subgraph in the Octopus
graph On, is: χtpd(O

′
n) = 3.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. The TPDCN for
the graph O

′

n created through the process of duplicating
any arbitrary pendent vertex in a Star graph of Octopus
graph On is 3..i.e., χtpd

(
O

′

n

)
= 3.

In all the three cases whether duplicating an apex vertex
of a Fan graph or a path vertex or pendedent vertex of
the star graph —a TPDC with exactly three colors can be
constructed. This coloring satisfies both the proper vertex
coloring condition and the power domination requirement,
making it both valid and minimal. Therefore, the TPDCN
for the modified Octopus graph is

χtpd(O
′
n) = 3.

Example 10. In figure 10, the TPDC for the graph O
′

5

created through the process of duplicating a pendent vertex
ν11 by υ in Octopus graph O5 is shown

b

b bbb

b
b b b b

b

b
u

v1

v2 v3 v4 v5 v6

v7 v8 v9 v10
v11

c1

c2 c3 c2 c2

c2

c2c2
c2

c3

c3c3

Fig. 10. A modified octopus graph O′
5 created through the process of

duplicating a pendent vertex ν11, the color classes of the O′
4 are c1 =

{ν1}, c2 = {υ, ν2, ν4, ν6, ν7, ν9, ν11} and c3 = {ν3, ν5, ν8, ν10 Then
χtpd( O

′
5)=3.

Theorem 11. For any n ≥ 3, the TPDCN for graph FP
′

n,
created through the process of duplicating any arbitrary
vertex of the Flower pot graph FPn is 3.

Proof: Let FPn denote a flower pot graph defined
on 2n + 1 vertices, where n is any positive integer. The
vertex set of FPn consists of three components: an apex
vertex ν1; a cycle of n vertices {ν2, ν3, . . . , νn+1} that
form the cycle graph Cn; and a set of n pendant vertices
{νn+2, νn+3, . . . , ν2n+1} that are connected to the apex
ν1, forming a star graph K1,n. The edge set of FPn is
constructed as follows: the cycle part consists of the edges
{νiνi+1 | 2 ≤ i ≤ n} ∪ {νn+1ν2}; the star part consists
of the edges {ν1νj | n + 2 ≤ j ≤ 2n + 1}; and two
additional edges ν1ν2 and ν1νn+1 connect the apex vertex
to two vertices of the cycle, linking the cycle and the star
components. Thus, the graph FPn has |V (FPn)| = 2n+ 1
vertices and |E(FPn)| = 2n+2 edges. The overall structure
resembles a flower pot, with the cycle graph forming the
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rim of the pot, the star graph representing the flower or
leaves, and the apex vertex ν1 acting as the central hub
connecting both structures.

Case (i): Duplicating the Apex Vertex.

Assume that the apex vertex ν1 of the Flower Pot Graph
FPn undergoes duplication. This operation introduces a new
vertex υ, which inherits the exact neighborhood of ν1. That
is, the vertex υ is connected to all the vertices to which
ν1 is originally adjacent. As a result, the structure and
connectivity of the graph are preserved, and the new graph,
denoted FP ′

n, is formed. The vertex set of FP ′
n is given

by {υ, ν1, ν2, ν3, . . . , νn+1, νn+2, . . . , ν2n+1}, which
includes the duplicated apex vertex along with the original
vertices of FPn. The corresponding edge set of FP ′

n is
defined as follows:

E(FP ′
n) = {ν1νi | n+ 2 ≤ i ≤ 2n+ 1} ∪ {ν1ν2, ν1νn+1}

∪ {νiνi+1 | 2 ≤ i ≤ n} ∪ {νn+1ν2}
∪ {υνi | n+ 2 ≤ i ≤ 2n+ 1} ∪ {υν2, υνn+1}.

Here, the duplicated vertex υ mirrors the role of the apex ν1
by connecting to all vertices of the star component as well
as to two specific vertices of the cycle. This duplication
preserves the graph’s original properties while creating an
extended structure suitable for further analysis, particularly
in contexts such as power domination coloring or structural
resilience.

The TPDC of the graph FP ′
n is defined using three colors

c1, c2, c3, with the following vertex assignments:

• The apex vertex ν1, its duplicate ν′1, and the newly
introduced vertex υ are assigned color c1.

• Vertices at even-numbered positions along the cycle,
i.e., {ν2i | 1 ≤ i ≤ ⌊n

2 ⌋}, are assigned color c2.
• Vertices at odd-numbered positions along the cycle, i.e.,

{ν2i−1 | 1 ≤ i ≤ ⌈n+1
2 ⌉}, are assigned color c3.

• All the pendant vertices of the star graph, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, are assigned color c2.

This coloring guarantees a proper vertex coloring and
ensures that each color class is power dominated by vertices
from a different color class, thereby satisfying the conditions
for a valid TPDC.

The domination relationships under this coloring scheme
are as follows:

• The vertices of the cycle graph, {ν2, ν3, ν4, . . . , νn+1},
power dominate the color class c1 = {ν1, υ}, since both
apex vertices are adjacent to all cycle vertices.

• Every pendant vertex of the star graph K1,n, i.e., {νi |
n + 2 ≤ i ≤ 2n + 1}, also power dominates the color
class c1 = {ν1, υ}, as each of these vertices is connected
to both apex vertices.

• The apex vertex ν1 power dominates the cycle vertices
colored with c2 (even-indexed) and c3 (odd-indexed),
since it is adjacent to all vertices in the cycle graph.

To show that three colors are necessary, suppose that only
two colors are used for the TPDC of the graph FP ′

n. In such
a case, some adjacent vertices must necessarily share the
same color, thereby violating the condition of proper vertex
coloring. Alternatively, even if proper coloring is somehow
preserved, the power domination condition will be violated,
as at least one color class will not be power dominated by any
vertex from another color class. Therefore, it is not possible
to construct a valid TPDC of FP ′

n using fewer than three
colors.

Hence, the color assignment is both valid and minimal, as
it ensures that every vertex in the graph power dominates all
vertices in at least one color class different from its own, in
accordance with the definition of TPDC. That is, each vertex
in the graph FP ′

n power dominates all the vertices of at least
one distinct color class.

Therefore, the TPDCN of the graph FP ′
n, created through

the duplication of the apex vertex ν1 in the Flower Pot graph
FPn, is:

χtpd (FP ′
n) = 3.

Case (ii): Duplicating any arbitrary vertex of Cycle graph
in Flower pot graph FPn.

To streamline the discussion while maintaining generality,
let us assume that an arbitrary vertex νk of the cycle Cn

in the Flower Pot graph FPn undergoes duplication. This
duplication results in the creation of a new vertex υ, which
inherits the exact neighborhood of νk. As a result, the
structural properties of the original graph FPn are preserved.

The resulting graph, denoted by FP ′
n, has the vertex set:

{υ, ν1, ν2, ν3, . . . , νn+1, νn+2, . . . , ν2n+1},

and the edge set is given by:

E(FP ′
n) = {ν1νi | n+ 2 ≤ i ≤ 2n+ 1} ∪ {ν1ν2, ν1νn+1}

∪ {νiνi+1 | 2 ≤ i ≤ n} ∪ {νn+1ν2}
∪ {υνk−1, υνk+1}.

Here, υ replicates the role of νk, maintaining the connections
to its neighboring vertices in the cycle Cn, thereby
preserving the cycle structure and the overall Flower Pot
graph configuration.

The procedure provided below, based on a systematic
approach to coloring the graph’s vertices, guarantees a
resulting coloring that satisfies both the proper coloring
and TPDC requirements. Moreover, applying this procedure
ensures that every color class is power dominated by at least
one vertex from a different color class, thereby establishing
a valid TPDC configuration.

The graph FP ′
n is colored using three colors c1, c2, and

c3, based on the positions and roles of the vertices in the
structure:

• The apex vertex ν1 is assigned color c1.
• Vertices at even-numbered positions in the cycle (path

portion of the fan), i.e., {ν2i | 1 ≤ i ≤ n
2 }, are assigned

color c2.
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• Vertices at odd-numbered positions in the cycle, i.e.,
{ν2i−1 | 1 ≤ i ≤ n+1

2 }, along with the newly
introduced vertex υ, are assigned color c3.

• All pendant vertices of the star graph K1,n, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, are also assigned color c2.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color, thereby maintaining the fundamental condition
required for a TPDC.

The domination relationships under this coloring scheme
are as follows:

• The cycle vertices {ν2, ν3, ν4, . . . , νn+1}, along with
the duplicated vertex υ, collectively power dominate
the color class c1 = {ν1}, as each of these vertices
is adjacent to the apex vertex ν1.

• Every pendant vertex of the star graph K1,n, i.e., {νi |
n + 2 ≤ i ≤ 2n + 1}, is also adjacent to ν1, and thus
contributes to the power domination of the color class
c1.

• The apex vertex ν1, being adjacent to all cycle and star
vertices, power dominates both color classes c2 and c3,
which include the cycle path vertices and the pendant
vertices of the star graph.

To demonstrate the necessity of three colors for a valid
TPDC of FP ′

n, suppose, for contradiction, that only two
colors are used. Under this assumption, some adjacent
vertices would inevitably share the same color, violating
the condition of proper vertex coloring. Even if proper
coloring is somehow maintained, the power domination
requirement would fail, as at least one color class would not
be monitored by any vertex of another color class. Hence,
it is impossible to construct a valid TPDC of FP ′

n using
fewer than three colors.

Therefore, the color assignment described is both valid
and minimal, as it ensures that each vertex in the graph
power dominates all vertices in at least one color class
different from its own, fully satisfying the definition of
TPDC .

Consequently, the TPDCN for the graph FP ′
n, formed by

duplicating an apex or cycle vertex in the Flower Pot graph
FPn, is:

χtpd(FP ′
n) = 3.

Case (iii): Duplicating any arbitrary pendent vertex of Star
graph in Flower Pot graph FPn.

To streamline the discussion while maintaining generality,
let us assume that the pendant vertex νn+k in the Flower Pot
graph FPn undergoes duplication. This process introduces
a new vertex υ, which inherits the exact neighborhood of
νn+k, i.e., it is adjacent to the apex vertex ν1. Thus, the
structural properties of the original graph FPn are preserved.

The resulting graph, denoted by FP ′
n, has the vertex set:

{ν1, ν2, ν3, . . . , νn+1, νn+2, . . . , ν2n+1, υ},

and the edge set:

E(FP ′
n) = {ν1νi | n+ 2 ≤ i ≤ 2n+ 1} ∪ {ν1ν2, ν1νn+1}

∪ {νiνi+1 | 2 ≤ i ≤ n} ∪ {νn+1ν2}
∪ {υν1}.

Here, the duplicated vertex υ acts as an additional
pendant vertex adjacent to the apex ν1, preserving the
star-like structure attached to ν1 while keeping the original
topology intact.

To determine the TPDCN of the graph FP ′
n, the following

coloring strategy is applied, ensuring that all conditions of
a valid TPDC are satisfied.

The graph FP ′
n is colored using three colors, c1, c2, and

c3, based on vertex positions:
• The apex vertex ν1, along with the vertices at odd-

numbered positions on the cycle Cn, i.e., {ν2i−1 | 1 ≤
i ≤ n+1

2 }, are assigned color c1.
• The vertices at even-numbered positions on the cycle,

i.e., {ν2i | 1 ≤ i ≤ n
2 }, are assigned color c2.

• All pendant vertices of the star K1,n, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, together with the newly
introduced duplicated vertex υ, are also assigned color
c2.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color, thereby satisfying the fundamental requirement
of a TPDC.

The domination relationships under this coloring scheme
are as follows:

• The vertices of the cycle Cn, i.e., {ν2, ν3, . . . , νn+1},
collectively power dominate the color class c1 = {ν1},
as they are adjacent to the apex vertex.

• All pendant vertices of the star K1,n, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, together with the duplicated
pendant vertex υ, also power dominate the color class
c1 = {ν1}, since each is adjacent to ν1.

• The apex vertex ν1 power dominates both color classes
c2 and c3, as it is adjacent to all cycle vertices and
pendant vertices of the star.

To demonstrate the necessity of three colors for a valid
TPDC of FP ′

n, suppose, for contradiction, that only two
colors are used. Under this assumption, some adjacent
vertices would inevitably share the same color, violating
the condition of proper vertex coloring. Even if proper
coloring is somehow maintained, the power domination
requirement would fail, as at least one color class would not
be monitored by any vertex of another color class. Hence,
it is impossible to construct a valid TPDC of FP ′

n using
fewer than three colors.
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Therefore, the color assignment described is both valid and
minimal, as it ensures that each vertex in the graph power
dominates all vertices in at least one color class different
from its own, fully satisfying the definition of TPDC. The
TPDCN for the graph FP

′

n created through the process of
duplicating any arbitrary pendent vertex in a Star graph of
Flower Pot FPn is 3..i.e.,

χtpd

(
FP

′

n

)
= 3.

In all three scenarios—whether duplicating an apex
vertex, a vertex on the cycle, or a pendant vertex—a TPDC
with exactly three colors can be successfully constructed.
This coloring satisfies the constraints of being a proper
vertex coloring, wherein adjacent vertices receive different
colors, and also meets the power domination condition,
wherein all vertices are eventually observed starting from a
dominating set composed of colored vertices.

Since no coloring with fewer than three colors can si-
multaneously satisfy both the proper coloring and the power
domination requirements for the modified graph, the con-
structed coloring is both valid and minimal. Therefore, the
TPDCN of the modified double fan graph FP ′

n is given by

χtpd(FP ′
n) = 3.

Example 11. In figure 11, the TPDC for the graph FP
′

5

created through the process of duplicating a pendent vertex
ν11 by υ in Flower Pot graph FP5 is shown

bb b

b

b b b b b b

b

v1

v2 v3 v4 v5 v6

v7 v8 v9

u

v10

c1

c2 c3c2

c2 c2 c2 c2 c2 c2

c3

Fig. 11. Modified flower Pot graph FP ′
5 created through the process of

duplicating a pendent vertex ν11, the color classes of the FP ′
4 are c1 =

{ν1}, c2 = {υ, ν2, ν4, ν6, ν7, ν9, ν11} and c3 = {ν3, ν5, ν8, ν10 Then
χtpd( FP

′
5)=3.

Theorem 12. For any n ≥ 3, the TPDCN for ν
′

n, created
through the process of duplicating any arbitrary vertex of
Vanessa graph, νn is 3.

Proof: Let Vn be the Vanessa graph with vertex ν0
as the apex vertex. Let {ν1, ν2, ν3, . . . , νn} be the ver-
tices of the first fan graph Fn, and let {ν′

1, ν
′

2, ν
′

3, . . . , ν
′

n}
be the vertices of the second fan graph Fn. Further, let
{νn+1, νn+2, νn+3, . . . , ν2n} be the pendant vertices of a star
graph K1,n, all of which are adjacent to the apex vertex ν0.

Let E(νn) denote the edge set of the Vanessa graph, where

E(Vn) = {ν0νi | 1 ≤ i ≤ 2n}
∪ {νiνi+1 | 1 ≤ i ≤ n− 1}
∪ {ν0ν′i | 1 ≤ i ≤ n}
∪ {ν′iν′i+1 | 1 ≤ i ≤ n− 1}.

Here, |V (νn)| = 3n+ 1, where n is any positive integer.

The graph thus consists of a central apex vertex ν0,
two fan graphs Fn formed by paths of length n − 1 each
connected to ν0, and a star graph K1,n formed by n pendant
vertices also adjacent to ν0.

Case (i): Duplicating an apex vertex.

Assume that the apex vertex ν1 undergoes duplication.
This process yields a new vertex υ, which inherits the
exact neighborhood of ν1, thus maintaining the structural
properties of the original graph Vn. As a result, the modified
graph V

′

n is generated, having the vertex set,

E(Vn) = {υ, ν0, ν1, ν2, ν3, ν4, . . . , νn, νn+1, νn+2, νn+3,

. . . , ν2n, ν′1, ν
′
2, ν

′
3, . . . , ν

′
n}.

The edge set of the modified graph V ′
n is given by:

E(V ′
n) = {ν0νi | 1 ≤ i ≤ 2n}

∪ {νiνi+1 | 1 ≤ i ≤ n− 1}
∪ {ν0ν′i | 1 ≤ i ≤ n}
∪ {ν′iν′i+1 | 1 ≤ i ≤ n− 1}
∪ {υνi | 1 ≤ i ≤ 2n}
∪ {υν′i | 1 ≤ i ≤ n}.

The procedure provided below, based on a systematic
approach to coloring the graph’s vertices, guarantees a
resulting coloring that satisfies both the proper coloring
condition and the TPDC requirements. Moreover, this
coloring ensures that every color class is power dominated
by at least one vertex from a different color class, thus
achieving a valid TPDC configuration.

The graph V
′

n is colored using three distinct colors, c1,
c2, and c3, according to the positional classification of its
vertices.

• The apex vertex ν1 and its duplicate vertex υ are
assigned color c1.

• Vertices at even-numbered positions in the first fan
graph, i.e., {ν2i | 1 ≤ i ≤ n

2 }, are assigned color c2.
• Vertices at even-numbered positions in the second fan

graph, i.e., {ν′

2i | 1 ≤ i ≤ n
2 }, are also assigned color

c2.
• Vertices at odd-numbered positions in the first fan graph,

i.e., {ν2i−1 | 1 ≤ i ≤ n+1
2 }, are assigned color c3.

• Vertices at odd-numbered positions in the second fan
graph, i.e., {ν′

2i−1 | 1 ≤ i ≤ n+1
2 }, are also assigned

color c3.
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• All pendant vertices of the star graph K1,n, namely
{νn+1, νn+2, . . . , ν2n}, are assigned color c2.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color. Hence, it satisfies the fundamental requirement
of proper coloring needed for TPDC. Additionally, the
assignment of colors ensures that each color class is power
dominated by a vertex of a different color class, thereby
fulfilling the TPDC condition.

The domination relationships under this coloring scheme
are as follows:

• The path vertices from the first and second fan graphs,
i.e., {ν1, ν2, . . . , νn, ν′1, ν′2, . . . , ν′n}, collectively power
dominate the color class c1 = {ν1, υ}, since they are
all adjacent to the apex vertex ν1 and its duplicate υ.

• The pendant vertices of the star graph K1,n, namely
{νn+1, νn+2, . . . , ν2n}, are adjacent to both ν0 and υ,
and hence power dominate the color class c1 = {ν0, υ}.

• The apex vertex ν0 is adjacent to all path vertices and
pendant vertices. Therefore, it power dominates the
color classes c2 and c3, which include:

– Even-indexed vertices from both fan paths and all
pendant vertices (assigned c2), and

– Odd-indexed vertices from both fan paths (assigned
c3).

To show that three colors are necessary, suppose that only
two colors are used for the TPDC of V ′

n. In such a case, it
becomes inevitable that some adjacent vertices must share
the same color, thereby violating the condition of proper
vertex coloring. Alternatively, even if a proper coloring is
somehow preserved with two colors, the power domination
condition would be violated, as at least one color class
would not be power dominated by any vertex from another
color class. Therefore, it is not possible to construct a valid
TPDC of V ′

n using fewer than three colors.

Hence, the assignment of three colors is both valid and
minimal. The color assignment ensures that each vertex in the
graph V ′

n power dominates all vertices in at least one color
class distinct from its own, in accordance with the definition
of TPDC. Consequently, every vertex in the graph V ′

n either
directly or indirectly power dominates a color class other than
its own.Therefore, the TPDCN for the graph V ′

n, obtained by
duplicating an apex or path vertex in the Vanessa graph Vn,
is:

χtpd(V
′
n) = 3.

Case (ii): Duplicating any arbitrary vertex of any Fan graph
in Vanessa graph Vn.

To streamline the discussion while maintaining generality,
proceed under the assumption that the arbitrary vertex ν3
undergoes duplication. This process yields a new vertex

υ, which inherits the exact neighborhood of ν3, thereby
maintaining the structural properties of the original graph
Vn. As a result, the modified graph V ′

n is generated, with the
vertex set:{

υ, ν0, ν1, ν2, . . . , νn, νn+1, νn+2,

νn+3, . . . , ν2n, ν′1, ν′2, . . . , ν′n

}
The edge set of the modified graph V ′

n is defined as:

E(V ′
n) = {ν0νi | 1 ≤ i ≤ 2n}

∪ {νiνi+1 | 1 ≤ i ≤ n− 1}
∪ {ν0ν′i | 1 ≤ i ≤ n}
∪ {ν′iν′i+1 | 1 ≤ i ≤ n− 1}
∪ {υν2, υν4, υν0}.

The procedure provided below, based on a systematic
approach to coloring the graph’s vertices, guarantees a
resulting coloring that satisfies both the proper coloring
condition and the TPDC requirements. Moreover, this
procedure ensures that every color class is power dominated
by at least one vertex from a different color class, thereby
achieving a valid TPDC configuration.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both the proper coloring and the
TPDC requirements. Specifically, this method ensures that
every color class is power dominated by at least one vertex
from a distinct color class, thereby producing a valid TPDC
configuration.

The graph V ′
n is colored using three colors, c1, c2, and

c3, according to the positions of the vertices:

• The apex vertex ν0 is assigned color c1.
• Vertices at even-numbered positions in the two fan

graphs, i.e., {ν2i | 1 ≤ i ≤ n
2 } ∪ {ν′2i | 1 ≤ i ≤ n

2 }, are
assigned color c2.

• Vertices at odd-numbered positions in the fan graphs,
i.e., {ν2i−1 | 1 ≤ i ≤ n+1

2 } ∪ {ν′2i−1 | 1 ≤ i ≤ n+1
2 },

along with the newly introduced vertex υ, are assigned
color c3.

• All pendant vertices of the star graph K1,n, i.e.,
{νn+2, νn+3, . . . , ν2n+1}, are also assigned color c2.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color. Hence, it satisfies the fundamental requirement
of proper coloring needed for TPDC. Additionally, the
assignment of colors ensures that each color class is power
dominated by a vertex from a different color class, thereby
fulfilling the TPDC condition.

The domination relationships under this coloring scheme
are as follows:

• The path vertices from both fan graphs, i.e.,
{ν1, ν2, . . . , νn, ν′1, ν

′
2, . . . , ν

′
n}, along with the dupli-

cate vertex υ, power dominate the color class c1 = {ν0},
as they are all adjacent to the apex vertex.
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• All pendant vertices of the star graph,
{νn+2, νn+3, . . . , ν2n+1}, are also adjacent to ν0,
and hence contribute to dominating the color class c1.

• The apex vertex ν0, being adjacent to every fan path
vertex and every pendant vertex, power dominates the
color classes c2 and c3.

To show that three colors are necessary, suppose that
only two colors are used for the TPDCof V ′

n. In such a
case, some adjacent vertices must necessarily share the
same color, thereby violating the condition of proper vertex
coloring. Alternatively, even if proper coloring is somehow
maintained, the power domination condition will be violated,
as at least one color class will not be power dominated by
any vertex from another color class. Therefore, it is not
possible to construct a valid TPDCof V ′

n using fewer than
three colors.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. Hence, every
vertex in the graph V ′

n power-dominates all vertices in at
least one distinct color class. The TPDCN for the graph V ′

n,
created through the process of duplicating an arbitrary vertex
in the fan graph of the Vanessa graph Vn, is 3. That is,

χtpd(V
′
n) = 3.

Case (iii): Duplicating any arbitrary pendant vertex of the
Star graph in the Vanessa graph νn.

To streamline the discussion while maintaining generality,
proceed under the assumption that a pendant vertex of the
star graph K1,n, say νn+2, undergoes duplication. This
process yields a new vertex υ, which inherits the exact
neighborhood of νn+2, that is, it is adjacent to the apex vertex
ν0. The structural properties of the original graph νn are thus
preserved, and the resulting modified graph is denoted by ν′n.
The vertex set of ν′n becomes:{

υ, ν0, ν1, . . . , νn, ν′1, ν′2, . . . , ν′n,

νn+1, νn+2, . . . , ν2n+1

}

The edge set of the graph ν′n is defined as:

E(ν′n) = {ν0νi | 1 ≤ i ≤ 2n+ 1}
∪ {νiνi+1 | 1 ≤ i ≤ n− 1}
∪ {ν0ν′i | 1 ≤ i ≤ n}
∪ {ν′iν′i+1 | 1 ≤ i ≤ n− 1} ∪ {υν0}.

The procedure outlined below is based on a systematic
approach to coloring the vertices of the graph and guarantees
a coloring that satisfies both proper coloring and TPDC
requirements. Specifically, this method ensures that every
color class is power dominated by at least one vertex from
a distinct color class, thereby producing a valid TPDC
configuration.

The graph ν′n is colored using three colors, c1, c2, and
c3, based on the vertex positions:

• The apex vertex ν0 is assigned color c1.
• Vertices at even-numbered positions in the fan graphs,

i.e., {ν2i | 1 ≤ i ≤ n
2 }∪{ν

′
2i | 1 ≤ i ≤ n

2 }, are assigned
color c2.

• Vertices at odd-numbered positions in the fan graphs,
i.e., {ν2i−1 | 1 ≤ i ≤ n+1

2 } ∪ {ν′2i−1 | 1 ≤ i ≤ n+1
2 },

are assigned color c3.
• All pendant vertices of the star graph, i.e.,

{νn+2, νn+3, . . . , ν2n+1, υ}, are assigned color
c2.

This procedure guarantees a proper vertex coloring of the
graph, ensuring that no two adjacent vertices receive the
same color. Hence, it satisfies the fundamental requirement
of proper coloring needed for TPDC. Additionally, the
assignment of colors ensures that each color class is power
dominated by a vertex of a different color class, thereby
fulfilling the TPDC condition.

The domination relationships under this coloring scheme
are as follows:

• The path vertices from both fan graphs,
{ν1, ν2, . . . , νn, ν′1, ν

′
2, . . . , ν

′
n}, are adjacent to

the apex vertex ν0, and hence collectively power
dominate the color class c1 = {ν0}.

• The pendant vertices of the star graph, including the
duplicate vertex υ, i.e., {νn+2, . . . , ν2n+1, υ}, are also
adjacent to ν0, and thus additionally power dominate
the color class c1 = {ν0}.

• The apex vertex ν0, being adjacent to all fan vertices and
all pendant vertices, power dominates the color classes
c2 and c3.

To show that three colors are necessary, suppose that
only two colors are used for the TPDCof ν′n. In such a
case, some adjacent vertices must necessarily share the
same color, thereby violating the condition of proper vertex
coloring. Alternatively, even if a proper coloring is somehow
maintained, the power domination condition will be violated,
as at least one color class will not be power dominated by
any vertex from another color class. Therefore, it is not
possible to construct a valid TPDC of ν′n using fewer than
three colors.

Therefore, the color assignment is both valid and minimal,
as it ensures that each vertex in the graph power dominates
all vertices in at least one color class different from its own,
in accordance with the definition of TPDC. Hence, every
vertex in the graph ν′n power dominates all vertices in at
least one distinct color class. The TPDCN for the graph ν′n,
created through the process of duplicating a pendant vertex
of the star in the Vanessa graph νn, is:

χtpd(ν
′
n) = 3.

In all three scenarios considered in the modified Vanessa
graph ν′n—namely, duplicating an apex vertex, duplicating
any arbitrary path vertex from the fan components, and
duplicating a pendant vertex of the star graph K1,n—a
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TPDC using exactly three colors can be successfully
constructed.

In each case, the coloring satisfies both the proper vertex
coloring condition, ensuring that adjacent vertices receive
distinct colors, and the power domination requirement, ensur-
ing that each color class is power dominated by at least one
vertex from a different color class. Therefore, the coloring
is both valid and minimal in all three structural variations.
Consequently, the TPDCN of the modified Vanessa graph ν′n
is

χtpd(ν
′
n) = 3.

Example 12. In figure 12, the TPDC for the graph ν
′

3

through the process of duplicating a vertex ν
′

2 by υ in
Vanessa graph ν3 is shown.

b

bbbb

b

b
b

b

bbc1

c2

c3

c2 c2 c2
c2

c2 c2

c3
c3u

v0

v1

v2

v3 v4
v5 v6

v′1

v′2

v′3

Fig. 12. The modified Vanessa graph ν
′
3 created through the process of

duplicating a pendent vertex ν
′
2, the color classes of the ν

′
3 are c1 = {ν0},

c2 = {ν1, ν3, ν4, ν5, ν6, ν′1, ν′3} and c3 = {ν2, ν′2, υ} Then χtpd( ν
′
3)=3.

Remark 4. In the case of graphs which were discussed in
Theorems 7, 8, 9 and 10, for n = 3 is a complete graph,
for which we gave proofs systematically in Theorem 4.

When n = 1 and n = 2 for the theorems stated in 7, 8, 9
and 10, we will have path graphs, for which we have proved
the in Theorem 1 and 2.

IV. TABLE OF RESULTS

The folowing table compiles the results of this article and
compares them χtpd with their chromatic number χ.
Table 1 summarizes the chromatic number χ, the power
domination chromatic number χpd, and the TPDCN χtpd for
eight different graph families obtained through the process
of vertex duplication. These values reflect the coloring char-
acteristics under standard proper coloring, power domination
constraints, and power domination constraints, respectively.

For most of the graphs examined—namely K ′
n, K ′

m,n, F ′
n,

DF ′
n, O′

n, FP ′
n, and V ′

n—it is observed that the chromatic
number χ and the TPDCN χtpd are equal. This implies that

TABLE I
CHROMATIC NUMBERS, PDN’S, AND TPDCN’S FOR DUPLICATED

GRAPHS

S.No Graph χ χpd χtpd

1 C
′
n

χ = 2
for odd n
χ = 3

for even n

χpd = 2
for odd n
χpd = 3

for even n

χtpd = 3

2 K
′
n χ = n χpd = n χtpd = n

3 K
′
m,n χ = 2 χpd = 2 χtpd = 2

4 F
′
n χ = 3 χpd = 3 χtpd = 3

5 DF
′
n χ = 3 χpd = 3 χtpd = 3

6 O
′
n χ = 3 χpd = 3 χtpd = 3

7 FP
′
n χ = 3 χpd = 3 χtpd = 3

8 V
′
n χ = 3 χpd = 3 χtpd = 3

in these cases, the minimum number of colors required to
achieve a proper coloring is also sufficient to satisfy the more
stringent conditions imposed by TPDC .

However, an exception occurs in the case of the duplicated
cycle graph C ′

n. Here, the chromatic number χ depends on
the parity of n; that is, χ = 2 when n is odd and χ = 3
when n is even. Regardless of this variation, the TPDCN
for C ′

n remains fixed at χtpd = 3. This indicates that while
the standard coloring number can vary with structural prop-
erties like parity, the TPDC condition introduces a stricter
constraint that necessitates the use of at least three colors
for all n ≥ 3.

V. CONCLUSION

In this study, the TPDC concept, which is a blend of
power domination and graph coloring, was explored for
various classes of graphs. We determined the total power
dominator chromatic number for various types of graphs,
such as paths, cycles, complete graphs, bipartite graphs,
double fan graphs, octopus graphs, and Venessa graphs. The
effect of vertex duplication was particularly highlighted,
which had different effects on the chromatic number
depending on the particular structure of the graph.

The results of this research confirm the complexity of this
parameter and its structural sensitivity. This research sheds
light on domination-coloring relations and lays the ground
for research on more complex graph families. Snake graph-
related graphs could be the subject of future research, as
they present intriguing structural configurations worthy of
research in this field.
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