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Abstract—Image inpainting is a fundamental problem in
image processing and computer vision. Due to its ill-posedness
nature, regularization methods have been become a very
important class of approaches for this problem. In recent
years, by exploiting nonlocal low-rank prior on images,
regularization methods based on low-rank minimization are
widely proposed for this problem and obtained significant
image restoration effects. Since the direct low-rank
minimization problem suffers from solving difficulties, the
matrix’s rank is always replaced by its tractable
approximations, such as matrix nuclear norm, weighted
nuclear norm and weighted Schatten p-norm etc. In this
paper, we report a novel low-rank minimization-based
regularization method for the problem, in which the image
inpainting model is developed by utilizing the direct matrix
rank function. Although the matrix rank function makes the
image inpainting model be a nonconvex and nonsmooth
optimization problem. A two-blocks alternating proximal
gradient algorithm is designed to solve it, and the convergence
of the algorithm is proved by Kurdyka-Łojasiewicz property.
Numerical results show that the proposed method can
compete with some current state-of-the-art nonlocal low-rank
minimization-based methods for image inpainting in terms of
both image recovery quantities and visual qualities.

Index Terms—image inpainting, low-rank minimization,
proximal gradient method, Kurdyka-Łojasiewicz property.

I. INTRODUCTION

Image inpainting originates from restoring of damaged
old paintings or photographs with small damages such as
scratches, cracks and spots, etc, [1], [2]. With the rapid
evolution of computers in recent decades, it is becoming a
fundamental task in image processing and computer vision
domains. Since digital images are inevitably corrupted by
pixels missing degradations (e. g., spots or entire blocks
pixels missing) during their acquisition or transmission
processes [3], [4]. Image inpainting plays an important role
in many image processing and low-level vision
applications, such as the restoration of old photos [5] or
cultural relic images [6], preconditioning in biomedicine
disciplines [7]–[9], post-production of film videos and
images [10], [11], astronomical imaging [12], [13], etc.

In mathematics, the degraded image in image inpainting
is modelled as

g = Hu+ v, (1)
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where g, u, v ∈ Rmn are the vectors corresponding to
m-by-n observed image, original clean image and
zero-mean additive white Gaussian noise, respectively.
H ∈ Rmn×mn is a binary mask matrix related to the pixels
missing degradation in g, see, [5], [6], [13]–[16].

Various methods have been proposed for image
inpainting and different classifications of these methods
have also been made in the literatures [1], [2]. Since it is
an ill-posedness inverse problem, regularization approaches
are a very important class of methods for this problem to
overcome the ill-posedness nature. Regularization methods
for image restoration are generally designed by exploiting
different image priors, such as the local smoothness,
nonlocal similarity, and sparse representation, etc, [3], [4].
Based on different image priors, it generates regularization
approaches including the diffusion-based methods,
exemplar-based methods, sparse representation methods,
and nonlocal low-rank minimization methods. Of which,
the diffusion-based algorithms are proposed by exploiting
the geometrical structure information and local smooth
prior on images, and complete the missing pixels by
solving partial differential equations [17]–[19]. The
exemplar-based methods are proposed based on image’s
nonlocal self-similarity prior, which assume many similar
patches to a target patch existed non-locally within an
image [20], [21], and the corrupted region can be restored
by using information from some of its known nonlocal
similar patches [5], [16], [22]. The sparse representation
methods are constructed via the sparse representation prior,
which posits that an image can be sparsely represented by
over-redundant dictionaries and sparse coefficients. Image
restoration thus involves to find suitable representation
bases or sparse coefficients [23]–[25]. By combining sparse
representation with nonlocal self-similarity priors, group
sparse representation methods have also been proposed for
image inpainting [26]. Unlike general sparse representation,
group sparse representation methods adopt patch groups as
the basis unit instead of single image patch to pursuit
sparse representation and perform much better than many
previous algorithms.

In recent years, the nonlocal low-rank prior on images
has been studied and applied to image restoration. Some
pioneering works can be dated back to [27], [28], where
similar patches in a degraded image are matched and
reshaped into column vectors to stack into a patch
matching matrix. The corresponding patch matching matrix
in the original clean image is believe to be low-rank and
with sparse singular values. As a consequence, image
restoration is transformed into a matrix rank minimization

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 4016-4030

 
______________________________________________________________________________________ 



problem [29], [30]. Since the direct rank minimization
problem is a NP hard problem and surfers from significant
computational challenges. Numerous surrogates have been
proposed to approximate the matrix rank in the problem
and provide feasible solutions. For example, the nuclear
norm, defined as the sum of all singular values of a matrix,
has been proven to be the tightest convex relaxation of the
matrix’s rank [30]. By utilizing the F-norm date term
nuclear norm minimization (NNM, nuclear norm
minimization) model [29], Ji et al. [27] developed a
NNM-based method for video image denoising. Although
NNM model provides a convex approximation, and it also
results a closed-form solution which can be solved via a
singular value decomposition (SVD, singular value
decomposition)-based soft-thresholding algorithm [29].
However, there are biases in the optimal rank minimization
estimation. Because the largest singular values constitute
the most important part of a matrix’s rank, and the
SVD-based soft-thresholding algorithm shrinks them
equally. To overcome this drawback, the weighted nuclear
norm minimization (WNNM, weighted nuclear norm
minimization) model was further proposed by introducing
different weights to different singular values in nuclear
norm. WNNM model can be solved by an SVD-based
weighted soft-thresholding algorithm, which is able to treat
different singular values differently [31]. Owing to this
advantage, WNNM model has been demonstrated
impressive restoration effects in tasks such as image
denoising, deblurring, and inpainting [31]–[36]. Besides,
similar to matrix nuclear norm and weighted nuclear norm,
the matrix Schatten p-norm was proposed in [37], which is
in fact the vector Schatten p-norm defined on singular
values of a matrix. In [38], matrix Schatten p-norm
minimization model [37] was extended to a weighted
Schatten p-norm minimization (WSNM, weighted Schatten
p-norm minimization) model and further applied to image
denoising and background subtraction problems. In [39], a
truncated nuclear norm minimization (TNNM, truncated
nuclear norm minimization) model was proposed and the
truncated nuclear norm is defined to be the sum of few
largest singular values of a matrix. By using TNNM to
characterize nonlocal low-rank prior on images, a
nonconvex TNNM-based regularization model was
developed and solved by using an efficient alternating
direction method of multipliers in [40]. In addition, the
relationships between patch-based group sparse
representation and nonlocal low-rank prior were discussed
in the literatures [41], [42] and the WSNM was adopted to
develop the final image restoration models and algorithms.

In this paper, we propose a novel nonlocal low-rank
minimization method for image inpainting. This work is
inspired by our previous works in [43], where an F-norm
data term matrix rank minimization (RM, rank
minimization) model was proposed and solved by a
SVD-based hard-thresholding algorithm. By leveraging the
advantages of image nonlocal self-similarity, the RM model
have been successfully applied to image denoising
problems, such as Gaussian white additive noise removal
and multiplicative Gamma noise removal problems, and
significant image denoising results have been achieved.
Here, we further extend the application of the RM model

for image inpainting, and construct a regularization method
for this problem. The method mainly includes a RM-based
regularization model and its alternating proximal gradient
solving algorithm. The energy function of the RM-based
regularization model consists the sum of all patch matching
matrices’ rank and a L2 norm date fidelity term. Although
the matrix rank terms render the image restoration model a
nonconvex and nonsmooth optimization problem. An
alternating proximal gradient algorithm is designed to solve
it. With the matrix rank function satisfying the famous
Kurdyka-Łojasiewicz property, the global convergence of
the alternating proximal gradient algorithm can be well
analyzed and proved. Numerical results show that the
proposed method can outperform some current
state-of-the-art nonlocal low-rank methods for image
inpainting.

Compared to WNNM, TNNM, and WSNM-based
methods, we highlight two advantages of using direct
matrix’s rank to construct a nonlocal low-rank minimization
method for image inpainting. First, it successfully avoids
the tedious weight parameters in the WNNM, TNNM, and
WSNM-based image restoration models, and also can
achieve a more accurate low-rank estimation than them.
Second, the reduced weight parameters makes the solving
of the RM-based image restoration model much easier than
that of WNNM, TNNM, and WSNM-based image
restoration models, and also facilitates the analysis of the
global convergence of the iterative solving algorithm. The
main contributions of this paper are as follows.

• A novel nonlocal low-rank minimization model is
developed for image inpainting using direct matrix
rank minimization.

• An alternating proximal gradient algorithm is designed
to solve the proposed nonconvex and nonsmooth RM-
based image restoration model.

• The convergence of the alternating proximal gradient
algorithm is analyzed and proved based on the famous
Kurdyka-Łojasiewicz property.

• Numerical results demonstrate that the proposed
method can perform better than some current
state-of-the-art nonlocal low-rank minimization
methods for image inpainting.

The rest of the paper is organized as follows. In Section
2, a novel nonlocal RM-based image inpainting model is
constructed. In Section 3, an alternating proximal gradient
algorithm is developed to solve the nonlocal RM-based
image inpainting model. The convergence of the proposed
alternating proximal gradient algorithm is analyzed and
proved in Section 4. Numerical experiments are shown in
Section 5 to demonstrate the effectiveness of the proposed
image inpainting method. Finally, concluding remarks are
given in Section 6.

II. RM-BASED REGULARIZATION MODEL FOR IMAGE
INPAINTING

In this section, we propose a RM-based regularization
model for image inpainting. Based on image nonlocal
similarity, for a local

√
s-by-

√
s patch gi in g, we can

extract its t − 1 most similar patches g2i , · · · , gti in the
image. By reshaping these image patches into column
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vectors, a s-by-t patch matching matrix can be formed as

Mi = [Vgi,Vg2i , · · · ,Vgti ],

where V is denoted as the operator that reshapes the
corresponding matrix column by column into a vector.
Since each element of Mi is extracted from the degraded
image g, there must exist a binary matrix Ri ∈ Rst×mn

with elements being 0 or 1, such that

VMi = Rig ∈ Rst,

where VMi is the stacked vector by columns of Mi. The
binary matrix Ri is called as the matching patch extracting
matrix to the reference patch gi. By introducing another
reshaping operator M, which reshapes a matrix column by
column into a vector. It satisfies that

MRig = Mi,

and thus MRiu are the low-rank matrix in the clean image
u corresponding to Mi.

Suppose there have p reference patches
gi (i = 1, 2, · · · , p) in g. By minimizing the sum of the
rank of each MRiu, we construct the RM-based
regularization model for image inpainting as

min
u

1

2
∥Hu− g∥22 +

p∑
i=1

ωirank(MRiu), (2)

where ∥Hu − g∥22 is the generally used L2-norm date
fidelity term,

∑p
i=1 ωirank(MRiu) is the RM-based

regularization term, ωi (i = 1, 2, · · · , p) are the
corresponding regularization related parameters.

For the sake of efficient methods to solve model (2), we
introduce the auxiliary variable matrices Xi ∈ Rs×t to patch
matching matrixes MRiu for i = 1, 2, · · · , p. By using the
variable splitting and half quadratic penalty techniques, (2)
can be solved by the following optimization problem

min
(X,u)

J (X,u), (3)

and

J (X,u) =
1

2
∥Hu− g∥22

+
λ

2

p∑
i=1

∥Xi −MRiu∥2F +

p∑
i=1

ωirank(Xi),

where X = (X1, X2, · · · , Xp) and λ is a positive constant.
Based on the ideals of half quadratic penalty method, as
λ → ∞, the solution of (3) approaches that of (2).

III. ALTERNATING PROXIMAL GRADIENT METHOD

Denote by

Q(u) =
1

2
∥Hu− g∥22, H(X,u) =

p∑
i=1

Hi(X,u),

and

Hi(X,u) =
λ

2
∥Xi −MRiu∥2F , i = 1, 2, · · · , p.

The objection function J in (3) can be reformulated as

J (X,u) = Q(u) +H(X,u) +

p∑
i=1

ωirank(Xi).

Since X1, X2, · · · , Xp and H1(X,u), H2(X,u), · · · ,
Hp(X,u) in H and J are separable. Each Hi(X,u) has
the second order differentiable about variables Xi and Riu.
Next, we introduce an alternating proximal gradient
minimization scheme to solve (3).

Starting from an initial guess
(
X(0), u(0)

)
with X(0) =(

X
(0)
1 , X

(0)
2 , · · · , X(0)

p

)
, the k-th iteration of the method is

to solve X(k) =
(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
and u(k),

X
(k)
1 ∈ argmin

X1

α1

2

∥∥∥X1 −X
(k−1)
1

∥∥∥2
F
+ ω1rank(X1)

+
⟨
∇X1

H
(
X(k−1), u(k−1)

)
, X1 −X

(k−1)
1

⟩
;

X
(k)
2 ∈ argmin

X2

α2

2

∥∥∥X2 −X
(k−1)
2

∥∥∥2
F
+ ω2rank(X2)

+
⟨
∇X2H

(
X(k−1), u(k−1)

)
, X2 −X

(k−1)
2

⟩
;

...

X(k)
p ∈ argmin

Xp

αp

2

∥∥∥Xp −X(k−1)
p

∥∥∥2
F
+ ωprank(Xp)

+
⟨
∇XpH

(
X(k−1), u(k−1)

)
, Xp −X(k−1)

p

⟩
;

u(k) = argmin
u

Q(u) +
β

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2

+

p∑
i=1

⟨
∇RiuH

(
X(k), u(k−1)

)
, Riu−Riu

(k−1)
⟩
;

(4)

where ⟨·⟩ is the inner product of the vectors or matrices, ∇
is the gradient operator of the corresponding function.
α1, α2, · · · , αp, β are the positive relaxation parameters in
the algorithm, which are generally selected larger than the
lipschitz constants of H with respective to variables
X1, X2, · · · , Xp and u. By a complete squared derivation,
(4) can be reformulated as

X
(k)
1 ∈ argmin

X1

ω1rank(X1)

+
α1

2

∥∥∥∥X1 −
ϱ1
α1

X
(k−1)
1 − λ

α1
MR1u

(k−1)

∥∥∥∥2
F

;

X
(k)
2 ∈ argmin

X2

ω2rank(X2)

+
α2

2

∥∥∥∥X2 −
ϱ2
α2

X
(k−1)
2 − λ

α2
MR2u

(k−1)

∥∥∥∥2
F

;

...

X(k)
p ∈ argmin

Xp

ωprank(Xp)

+
αp

2

∥∥∥∥Xp −
ϱp
αp

X(k−1)
p − λ

αp
MRpu

(k−1)

∥∥∥∥2
F

;

u(k) = argmin
u

1

2
∥Hu− g∥22

+

p∑
i=1

β

2

∥∥∥∥Riu− ϱ

β
Riu

(k−1) − λ

β
VX(k)

i

∥∥∥∥2
2

;

(5)

where ϱi = αi − λ, i = 1, 2, · · · , p and ϱ = β − λ. For
i = 1, 2, · · · , p, suppose it has the SVD decomposition

ϱi
αi

X
(k−1)
i +

λ

αi
MRiu

(k−1) = U
(k−1)
i Σ

(k−1)
i

(
V

(k−1)
i

)T
.
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Taking advantages of the SVD-based hard-thresholding
algorithm in [43], each X

(k)
i in (5) can be solved as

X
(k)
i = U

(k−1)
i Dωi

αi

(
Σ

(k−1)
i

)(
V

(k−1)
i

)T
, i = 1, 2, · · · , p.

Where Dτ (Σ) is the hard thresholding function defined on a
diagonal matrix Σ with parameter τ , and for each diagonal
element Σii in Σ,

Dτ (Σ)ii =

{
Σii, for Σii ≥

√
2τ ,

0, for Σii <
√
2τ ,

see, for instance [43].
Since u(k) in (5) is the minimizer point of a quadratic

function. Based on the first order differential condition, it
can be solved by linear system

(HTH + βW )u = HT g + ϱWu(k−1) + λ

p∑
i=1

RT
i VX

(k)
i ,

where W =
∑p

i=1 R
T
i Ri, and W ∈ Rmn×mn is a diagonal

matrix with each diagonal entry being the extracting times
of corresponding pixel in the image. Due to the reference
patches overlapped the whole image, the diagonal values of
W must be integers no less than one. As a consequence,

u(k) = A−1

(
HT g + ϱWu(k−1) + λ

p∑
i=1

RT
i VX

(k)
i

)
,

where A = HTH + βW is a positive definite symmetric
matrix.

IV. CONVERGENCE ANALYSIS

In this section, we show the convergence of the proposed
alternating proximal gradient method (5). Our convergence
analysis is based on the famous Kurdyka-Łojasiewicz
property. Denote ∥ · ∥ as the Euclidean norm, we refer the
definitions of Fréchet subdifferential [44] and
Kurdyka-Łojasiewicz property firstly.

The Fréchet subdifferential is in fact consistent with the
classical differential for continuously differentiable
function. Specifically, the well-known Fermat’s rule with
respective to continuously differentiable functions is
unchanged under the definition of Fréchet subdifferential.
Without loss of generality, the subdifferential of function f
at a point x is denoted by ∂f(x). Thus, the necessary but
not sufficient condition for x ∈ Rd to be a local minimizer
of f is 0 ∈ ∂f(x), where 0 is the corresponding zero point.

The Kurdyka-Łojasiewicz property was originally
proposed by Łojasiewicz and Kurdyka, and further
developed by Bolte et al., which has wide applications in
nonconvex and nonsmooth optimization problems
[45]–[48]. Checking whether a function has the
Kurdyka-Łojasiewicz property at some given point is, in
fact, a challenge task. However, the Kurdyka-Łojasiewicz
functions which have the Kurdyka-Łojasiewicz property at
each point of their domains are ubiquitous, such as
uniformly convex functions, convex functions with growth
conditions, metric regularities, constraint qualifications, and
semialgebraic and definable functions, see, [45]–[49].

Since it has been proved that the matrix rank function is
a semi-algebraic function [50], and semi-algebraic
functions under operations of finite sums, products, scalar

products and compositions are still semi-algebraic function
[46], [47], [49]. The objective function J in (3) is clearly a
semi-algebraic and Kurdyka-Łojasiewicz function.

Next, we develop the convergence theory of the proposed
alternating proximal gradient algorithm by the
Kurdyka-Łojasiewicz property of J .

Theorem 1: Suppose
{
ξ(k)

}
is a sequence generated by

the proposed alternating minimization method (5), with
ξ(k) =

(
X(k), u(k)

)
and X(k) =

(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
.

For k ≥ 1, it satisfies

J
(
ξ(k)

)
+

p∑
i=1

ϱi
2

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥2
F

+
ϱ

2

p∑
i=1

∥∥∥Riu
(k) −Riu

(k−1)
∥∥∥2
2
≤ J

(
ξ(k−1)

)
, (6)

namely, J
(
ξ(k)

)
dose not increase, and more over

lim
k→∞

∥∥∥ξ(k) − ξ(k−1)
∥∥∥2 = 0. (7)

Proof: Since each Hi(X,u) has second order
differentiable about variables Xi and Riu. We have the
Taylor expansions

Hi

(
X,u(k−1)

)
= Hi

(
X,u(k−1)

)
+
λ

2

∥∥∥Xi −X
(k−1)
i

∥∥∥2
F

+
⟨
∇XiHi

(
X(k−1), u(k−1)

)
, Xi −X

(k−1)
i

⟩
, (8)

and

Hi

(
X(k), u

)
= Hi

(
X(k), u(k−1)

)
+
⟨
∇RiuHi

(
X(k), u(k−1)

)
, Riu−Riu

(k−1)
⟩

+
λ

2

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
, (9)

for i = 1, 2, · · · , p. Combined (8), (9) with (4), it can be
derived that

X
(k)
i ∈ argmin

Xi

Hi

(
X,u(k−1)

)
+ ωirank(Xi)

+
ϱi
2

∥∥∥Xi −X
(k−1)
i

∥∥∥2
F
, i = 1, 2, · · · , p, (10)

and

u(k) = argmin
u

Q(u) +

p∑
i=1

Hi

(
X(k), u(k−1)

)
+

ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
. (11)

Therefore,

X(k) ∈ argmin
X

J
(
X,u(k−1)

)
+

p∑
i=1

ϱi
2

∥∥∥Xi −X
(k−1)
i

∥∥∥2
F
,

(12)
and

u(k) ∈ argmin
X

J
(
X(k), u

)
+

ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
.

(13)
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As a consequence of (12) and (13),

J
(
X(k), u(k−1)

)
+

p∑
i=1

ϱi
2

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥2
F

≤ J
(
X(k−1), u(k−1)

)
,

and

J
(
X(k), u(k)

)
+

ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2

≤ J
(
X(k), u(k−1)

)
.

Adding above two inequalities, it satisfies

J
(
X(k), u(k)

)
+

p∑
i=1

ϱi
2

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥2
F

+
ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
≤ J

(
X(k−1), u(k−1)

)
.

(14)

By adding inequality (14) from k = 1 to some k = K,

K∑
k=1

(
p∑

i=1

ϱi
2

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥2
F

+
ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2

)
≤ J

(
ξ(0)
)
− J

(
ξ(K)

)
.

Since ϱ1, ϱ2, · · · , ϱp, ϱ are bounded positive constants, and∥∥∥u− u(k−1)
∥∥∥2
2
<

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
,

(7) is definitely satisfied.

Theorem 2: Suppose
{
ξ(k)

}
is a sequence generated by

the proposed alternating minimization method (5), with
ξ(k) =

(
X(k), u(k)

)
and X(k) =

(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
.

For k ≥ 1, denote by

X̂i

(k)
= −αi

(
X

(k)
i −X

(k−1)
i

)
− λMRi

(
u(k) − u(k−1)

)
,

for i = 1, 2, · · · , p, and

û(k) = −ϱW
(
u(k) − u(k−1)

)
.

Then, it holds that

ξ̂(k) =

(
X̂1

(k)
, X̂2

(k)
, · · · X̂p

(k)
, û(k)

)
∈ ∂J

(
ξ(k)

)
,

and ∥∥∥ξ̂(k)∥∥∥ ≤ c
∥∥∥ξ(k) − ξ(k−1)

∥∥∥ , (15)

where c is a bounded positive constant.

Proof: Since X
(k)
1 , X

(k)
2 , · · · , X(k)

p and u(k) are
minimizers of (10) and (11). For k ≥ 1, (10) suggests that

0 ∈ λ
(
X

(k−1)
i −MRiu

(k−1)
)
+ ϱi

(
X

(k)
i −X

(k−1)
i

)
+ ωi∂rank

(
X

(k)
i

)
, i = 1, 2, · · · , p. (16)

where 0 ∈ Rs×t and ∂rank (·) is the subdifferential of the
corresponding matrix rank function. Then, by adding

−λMRi

(
u(k) − u(k−1)

)
+ λ

(
X

(k)
i −X

(k−1)
i

)
in both

sides of formulation (16), we can derive that

− αi

(
X

(k)
i −X

(k−1)
i

)
− λMRi

(
u(k) − u(k−1)

)
∈ λ

(
X

(k)
i −MRiu

(k)
)
+ ω∂rank

(
X

(k)
i

)
, (17)

for i = 1, 2, · · · , p. Therefore, for k ≥ 1,

X̂i

(k)
∈ λ

(
X

(k)
i −MRiu

(k)
)
+ ω∂rank

(
X

(k)
i

)
= ∂Xi

J
(
X(k), u(k)

)
, i = 1, 2, · · · , p. (18)

Analogously, for all k ≥ 1, (11) suggests that

0 = ∇uQ(u(k))− λ

p∑
i=1

RT
i

(
VX(k)

i −Riu
(k)
)

+ ϱW
(
u(k) − u(k−1)

)
,

and

û(k) = ∇uQ(u(k))− λ

p∑
i=1

RT
i

(
VX(k)

i −Riu
(k)
)

= ∇uJ
(
X(k), u(k)

)
. (19)

For some ξ = (X1, X2, · · · , Xp, u) ∈ domJ , the
subdifferential calculation formulations of variable
separated functions [44] suggests that,

∂J (ξ) = ∂X1J (ξ)× ∂X2J (ξ)× · · · × ∂XpJ (ξ)× ∂uJ (ξ).

Hence, (18) and (19) imply that

ξ̂(k) =
(
X̂

(k)
1 , X̂

(k)
2 , · · · X̂(k)

p , û(k)
)
∈ ∂J

(
ξ(k)

)
.

Moreover, for all k ≥ 1, it can be further derived that∥∥∥ξ̂(k)∥∥∥ ≤ λ

p∑
i=1

∥∥∥MRi

(
u(k) − u(k−1)

)∥∥∥
F

+

p∑
i=1

αi

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥
F
+ ϱ

∥∥∥W (
u(k) − u(k−1)

)∥∥∥
2

≤
(
αmax + λρ

(
W

1
2

)
+ ϱρ(W )

)∥∥∥ξ(k) − ξ(k−1)
∥∥∥ ,

where αmax is the maximum value of α1, α2, · · · , αp, and
ρ(·) is the spectral norm of the matrix.

Theorem 3: Suppose
{
ξ(k)

}
is a sequence generated by

the proposed alternating minimization method (5), with
ξ(k) =

(
X(k), u(k)

)
and X(k) =

(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
,

S is the limit point set of
{
ξ(k)

}
. If

{
ξ(k)

}
is a bounded

sequence, then,

(i) S is a nonempty compact and connected set,

lim
k→+∞

dist
(
ξ(k),S

)
→ 0;

(ii) S ⊂ critJ ;
(iii) J is finite and constant on S, and which equals to

inf
k∈N

J (ξ(k)) = lim
k→∞

J (ξ(k)).

Proof: Based on (7) and the classical properties of
bounded sequences, the conclusion (i) is certainly satisfied.

For any X = (X1, X2, · · · , Xp) and u ∈ Rmn, it can be
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derived by (12) and (13) that

J
(
X(k), u(k−1)

)
+

p∑
i=1

ϱi
2

∥∥∥X(k)
i −X

(k−1)
i

∥∥∥2
F

≤ J
(
X,u(k−1)

)
+

p∑
i=1

ϱi
2

∥∥∥Xi −X
(k−1)
i

∥∥∥2
F
,

and

J
(
X(k), u(k)

)
+

ϱ

2

p∑
i=1

∥∥∥Riu
(k) −Riu

(k−1)
∥∥∥2
2

≤ J
(
X(k), u

)
+

ϱ

2

p∑
i=1

∥∥∥Riu−Riu
(k−1)

∥∥∥2
2
.

Adding above two inequalities and setting u = u(k−1), it can
obtain that

J
(
X(k), u(k)

)
+

ϱmin

2

∥∥∥ξ(k) − ξ(k−1)
∥∥∥2

≤ J
(
X,u(k−1)

)
+

p∑
i=1

ϱi
2

∥∥∥Xi −X
(k−1)
i

∥∥∥2
F
, (20)

where ϱmin is the minimum value of ϱi (i = 1, 2, · · · , p) and
ϱ. Suppose ξ∗ =

(
X∗

1 , X
∗
2 , · · · , X∗

p , u
∗) to be some point in

S, then there must exist a subsequence
{
ξ(k

′)
}

of
{
ξ(k)

}
and which converges to ξ∗. Considering of k = k′ and X =(
X∗

1 , X
∗
2 , · · · , X∗

p

)
in (20), we have

J
(
X(k′), u(k′)

)
+

ϱmin

2

∥∥∥ξ(k′) − ξ((k−1)′)
∥∥∥2

≤ J
(
X∗, u((k−1)′)

)
+

p∑
i=1

ϱi
2

∥∥∥X∗
i −X

((k−1)′)
i

∥∥∥2
F
. (21)

Cause J is continuous about u, by (7) and (21),

limJ
(
X(k′), u(k′)

)
≤ J (X∗, u∗) .

However, J is a lower semicontinuous function,

limJ
(
X(k′), u(k′)

)
≥ J (X∗, u∗) .

Therefore, it holds

limJ
(
X(k′), u(k′)

)
= J (X∗, u∗) .

Denote by

ξ̂(k
′) =

(
X̂1

(k′)
, X̂2

(k′)
, · · · X̂p

(k′)
, û(k′)

)
,

and which is the same definition as that in Theorem 1. Then,
by (15), ξ̂(k

′) ∈ ∂J
(
ξ(k

′)
)

and ξ̂(k
′) → 0. Owing to the

closedness properties of ∂J , 0 ∈ ∂J (ξ∗), and therefore ξ∗ ∈
S is a critical point of J .

For any point ξ∗ ∈ S , we have just seen that there must
exist a subsequence

{
ξ(k

′)
}

with J (ξ(k
′)) → J (ξ∗) as k →

∞. By the nonincreasing of J
(
ξ(k)

)
, it must satisfy

lim
k→∞

J
(
ξ(k)

)
= inf

k∈N
J
(
ξ(k)

)
= J (ξ∗) .

By Theorems 1-3 and the Kurdyka-Łojasiewicz property
of J , we show the sequence

{
ξ(k)

}
generated by algorithm

(5) with some initial value converges to a local minima of
J .

Theorem 4: Suppose
{
ξ(k)

}
is a bounded sequence

generated by the proposed alternating minimization method
(5) with some initial point ξ(0), ξ(k) =

(
X(k), u(k)

)
and

X(k) =
(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
. Then,

{
ξ(k)

}
has finite

length, i.e.,
+∞∑
k=0

∥∥∥ξ(k+1) − ξ(k)
∥∥∥ < +∞,

and as a consequence,
{
ξ(k)

}
converges to a critical point

of J .

Proof: Since
{
ξ(k)

}
is a bounded sequence. Based on

Theorem 3, there must exist a limit point ξ∗ ∈ S , ξ∗ is a
critical point of J and

{
J
(
ξ(k)

)}
converges to J (ξ∗). As

a consequence, there must exist some k1 > 0 and for k > k1,
either

J
(
ξ(k1)

)
= J

(
ξ(k)

)
= J (ξ∗) (22)

or
J
(
ξ(k1)

)
> J

(
ξ(k)

)
> J (ξ∗). (23)

Clearly, if it is the first case (22), ξ(k) = ξ(k1) = ξ∗ for all
k ≥ k1 and the theorem holds certainly.

On the other hand, suppose it holds the second case (23).
By Theorem 3, both the sequences

{
J (ξ(k))− J (ξ∗)

}
and{∥∥ξ(k) − ξ∗

∥∥} admit zero as a cluster point. Then, for any
ε > 0 and η > 0, there must be some k2 ≥ k1, and for
k ≥ k2, it has∥∥∥ξ(k) − ξ∗

∥∥∥ < ϵ, J (ξ∗) < J
(
ξ(k)

)
< J (ξ∗) + η. (24)

Denote by ∆J
(
ξ(k)

)
= J

(
ξ(k)

)
− J (ξ∗),

0 < ∆J
(
ξ(k)

)
< η, ∀ k ≥ k2.

Cause ξ∗ to be a critical point of J , in the sense of the
Kurdyka-Łojasiewicz property, 0 < φ′ (∆J

(
ξ(k)

))
for all

k ≥ k2. Based on (6) and φ being a concave function, for
all k ≥ k2,

ϱmin

2

∥∥∥ξ(k+1) − ξ(k)
∥∥∥2 ≤ J

(
ξ(k)

)
− J

(
ξ(k+1)

)
, (25)

and

ϱmin

2
φ′
(
∆J

(
ξ(k)

))∥∥∥ξ(k+1) − ξ(k)
∥∥∥2

≤ φ′
(
∆J

(
ξ(k)

))(
J
(
ξ(k)

)
− J

(
ξ(k+1)

))
≤ φ

(
∆J

(
ξ(k)

))
− φ

(
∆J

(
ξ(k+1)

))
. (26)

With the same definition in Theorem 2, we suppose ξ̂(k) =(
X̂

(k)
1 , X̂

(k)
2 , · · · X̂(k)

p , û(k)
)

to be an element of ∂J
(
ξ(k)

)
.

According to the Kurdyka-Łojasiewicz property at point ξ(k),
it holds that

1 ≤ φ′
(
∆J

(
ξ(k)

))
dist

(
0, ∂J

(
ξ(k)

))
= φ′

(
∆J

(
ξ(k)

))∥∥∥ξ̂(k)∥∥∥ , ∀ k ≥ k2,
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and by (15),

1

c
∥∥ξ(k) − ξ(k−1)

∥∥ ≤ 1∥∥∥ξ̂(k)∥∥∥ ≤ φ′
(
∆J

(
ξ(k)

))
. (27)

Combining (26) with (27), for k ≥ k2 + 1,

ϱmin

2c

∥∥ξ(k+1) − ξ(k)
∥∥2∥∥ξ(k) − ξ(k−1)
∥∥

≤ φ
(
∆J

(
ξ(k)

))
− φ

(
∆J

(
ξ(k+1)

))
.

The above inequality can be further reformed as∥∥∥ξ(k+1) − ξ(k)
∥∥∥ ≤

∥∥∥ξ(k) − ξ(k−1)
∥∥∥ 1

2

·
√

2c

ϱmin

[
φ
(
∆J

(
ξ(k)

))
− φ

(
∆J

(
ξ(k+1)

))] 1
2

.

By the inequality theory 2ab ≤ a2 + b2,

2
∥∥∥ξ(k+1) − ξ(k)

∥∥∥ ≤
∥∥∥ξ(k) − ξ(k−1)

∥∥∥
+

2c

ϱmin

[
φ
(
∆J

(
ξ(k)

))
− φ

(
∆J

(
ξ(k+1)

))]
. (28)

Summing (28) for k running from k = k2+1 to some K,

K∑
k=k2+1

∥∥∥ξ(k+1) − ξ(k)
∥∥∥+ ∥∥∥ξ(k+1) − ξ(k)

∥∥∥
≤ 2c

ϱmin

[
φ
(
∆J

(
ξ(k2+1)

))
− φ

(
∆J

(
ξ(k+1)

))]
+
∥∥∥ξ(k2+1) − ξ(k2)

∥∥∥ .
Therefore,

K∑
k=k2+1

∥∥∥ξ(k+1) − ξ(k)
∥∥∥

≤
∥∥∥ξ(k2+1) − ξ(k2)

∥∥∥+ 2c

ϱmin
φ
(
∆J

(
ξ(k2+1)

))
. (29)

Let K → ∞, it yields that

∞∑
k=k2+1

∥∥∥ξ(k+1) − ξ(k)
∥∥∥

≤
∥∥∥ξ(k2+1) − ξ(k2)

∥∥∥+ 2c

ϱmin
φ
(
∆J

(
ξ(k2+1)

))
.

By (24) and (25),

∞∑
k=k2+1

∥∥∥ξ(k+1) − ξ(k)
∥∥∥ ≤

√
2

ϱmin
J
(
ξ(k2)

)
− J (ξ∗)

+
2c

ϱmin
φ
(
J
(
ξ(k2+1)

)
− J (ξ∗)

)
, (30)

which means
+∞∑
k=0

∥∥∥ξ(k+1) − ξ(k)
∥∥∥ < +∞,

and

lim
k→∞

∞∑
l=k

∥∥∥ξ(l+1) − ξ(l)
∥∥∥ = 0.

Clearly,
{
ξ(k)

}
is a Cauchy sequence and convergent

sequence. According to Theorem 3,
{
ξ(k)

}
converges to a

critical point of J and the theorem is proved.

V. NUMERICAL RESULTS

In this section, numerical experimental results are
illustrated to demonstrate the effectiveness of the proposed
method. The constantly used 256-by-256 images
Cameraman, Butterfly, Light, House, Zebra, Mickey; and
512-by-512 images Bridge, Boat, Barbara, Hill, Man,
Fence are adopted in our experiments. These original tested
images are shown in Fig. 1. The degraded images are
obtained by image degradation model (1), which are the
clean images down-sampled by different partial
down-sampling operators without additive white Gaussian
noise. A text pixels missing operator and random 50%,
60%, 70% and 80% pixels missing operators are
respectively considered in the experiments.

Algorithm 1 Alternating Proximal Gradient Method for
Image Inpainting

1. Input observed image g, initialize parameters s, t, λ,
α1, α2, · · · , αp, β and the maximum iteration number
K0, set iteration index k = 1.

2. Initialize u(0) and determine matching patch extracting
matrices R1, R2, · · · , Rp by conducting image block
matching schemes on u(0), set X(0)

i = Riu
(0) for i =

1, 2, · · · , p.
3. When k < K, do
1) Update matching patch extracting matrices R1, R2,

· · · , Rp by conducting image block matching schemes
on u(k−1);

2) For i = 1, 2, · · · , p, conduct SVD[
U

(k)
i ,Σ

(k)
i , V

(k)
i

]
=

(
ϱi
αi

X
(k−1)
i +

λ

αi
MRiu

(k−1)

)
,

and update

X
(k)
i = U

(k−1)
i Dωi

αi

(
Σ

(k−1)
i

)(
V

(k−1)
i

)T
,

End for and output

X(k) =
(
X

(k)
1 , X

(k)
2 , · · · , X(k)

p

)
;

3) Update

u(k) = A−1

(
HT g + ϱWu(k−1) + λ

p∑
i=1

RT
i VX

(k)
i

)
;

4) Compute

Tol =
||u(k) − u(k−1)||2

||u(k)||2
,

if Tol < 10−4, stop; else k = k + 1, and go back to
step 3;

4. End for and output X(k), u(k).

To evaluate the performances of the proposed method,
six current state-of-the-art methods are also conducted in
the experiments as compared methods. They are the
exemplar-based methods named by “EPLL” [16] and
“IPPO” [51]; multi-scale weighted nuclear norm
minimization method named by “WNNM” [35]; group
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sparsity and WSNM-based low-rank method named by
“WSNM” [42]; customized low-rank prior-based method
named by “CLRP” [52]; proximal alternating and matrix
rank minimization-based method named by “PARM” [53].
The proposed method is denoted as “RM-APG” and its
details are concluded in Algorithm 1. The peak
signal-to-noise ratio (PSNR, peak signal-to-noise ratio) and
structure similarity index measure (SSIM, structure
similarity index measure) [54] are used to measure the
qualities of the recovered images in all experiments. PSNR
is defined as

PSNR = 10 log 10
mn · |max(u)−min(u)|2

∥û− u∥22
(dB),

here u is the column stacked mn-by-1 noise-free image and
û is its restored version. SSIM is a full reference metric and
it can efficiently measure the similarity between two images.

The parameters in proposed “APG-RM” method are set
as follows. The size of each reference patch is 8 × 8 and
the number of similar image patches to each reference patch
is set to be 60. The size of nonlocal window within which
the similar patches are searched is set to be 60 × 60. Since
missing pixels in degraded image may influence the matching
of similar patches. We utilize a simple interpolation operation
to fill the missing pixels to get an initial guess u(0), and
then conduct the block matching schemes on u(0) to get the
matching patch extracting matrices R1, R2, · · · , Rp. For i =
1, 2, · · · , p, each X

(0)
i is consequently set to be Riu

(0), and
the parameter ωi is set to be 2

√
2tδ2i , where δi is the standard

deviation of the noise in corresponding degraded low-rank
matrix and can be estimated by approaches introduced in
literatures [28], [31]. The parameter λ is selected in interval
[0.0001, 0.1]. The more seriously degraded the image, the
smaller the parameter λ is selected. α1, α2, · · · , αp, β are
set to be λ+ 10−5.∥∥u(k+1) − u(k)

∥∥
2∥∥u(k+1)

∥∥
2

< 10−4

is adopted as the stopping criterion in “APG-RM” method
and the maximum iteration number is set to be 600. The
required parameters in the six compared methods are set as
those suggested by their authors except for which to achieve
the best recovery results.

The PSNRs and SSIMs of all recovered images by
different methods for the text and random 50%, 60%, 70%,
80% pixels missing degradation experiments are listed in
Table I-Table V, respectively. We can see obviously that the
nonlocal low-rank minimization methods “PARM”,
“WSNM” and proposed method “APG-RM” obtain much
better recovered measure quantities than the other methods.
The best PSNRs and SSIMs for each image restoration in
these tables are shown in boldface, and they are almost all
obtained by our proposed “APG-RM” methods. To further
evaluate the performances of these methods, the average
PSNRs, SSIMs and TIMEs of all recovered images in Table
I-Table V are listed in Table VI, where “TIME” denotes the
average consumed time in seconds of all recovered images
by each method. In Table VI, the best average PSNRs and
SSIMs are also shown in boldface and they are all obtained
by the proposed “APG-RM” methods. To make a more
intuitive comparison of the average PSNRs and SSIMs, the

Fig. 1. Original tested images, from left to right, the first column:
Cameraman, Boat, Hill, Butterfly, House and Mickey; the second column:
Bridge, Barbara, Man, Light, Zebra and Fence; respectively.
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 APG-RM

 APG-RM

Fig. 2. Histograms of average PSNRs and SSIMs in Table VI.

histograms of them are shown in Fig. 2.
The computation complexity of “APG-RM” method is

very similar to that of “PARM” method, except for the
solving of linear system (5) which can be solved by a
direct inverse operation instead of the conjugate gradient
method in “PARM”, see, [32], [53]. Moreover, the
complexity of our proposed method compared with the
other methods can be investigated by the average consumed
time listed in Table VI. In Table VI, it can be seen that the
nonlocal low-rank minimization methods “WNNM”,
“PARM”, “WSNM” and “APG-RM” are much more time
consuming. This is because the patch matching matrix
extraction and the SVD decomposition-based low-rank
matrix minimization operations in these methods are quite
time consuming and much more round of iterations of them
are also needed. The “WSNM” and “APG-RM” are the
most time consuming, because the image block matching
schemes are conducted in each iteration of these methods
to achieve the image restoration qualities.

Due to space limitation considerations, we show the
recovered House images for Text pixels missing
degradation, Butterfly images for random 50% pixels

missing degradation, Boat images for random 60% pixels
missing degradation, Barbara images for random 70%
pixels missing degradation and Fence images for random
80% pixels missing degradation to illustrate the visual
effects in Fig. 3-Fig. 7. In each of these figures, from left
to right, the first line are the pixels missing degraded image
and recovered images by methods “CLRP”, “EPLL” and
“WNNM”, the second line are the recovered images by
methods “IPPO”, “PARM”, “WSNM” and “APG-RM”,
respectively. It can be seen from Fig. 3-Fig. 7 that the
visual effects of the recovered images by different methods
are consistent with the recovered quantity measures in
Tables I-V, respectively. The “IPPO”, “PARM”, “WSNM”
and proposed “APG-RM” methods recovered images have
much better visual effects than that of the “CLRP”, “EPLL”
and “WNNM” methods. To see more clearly the recovered
visual effects, we extract one small block encircled by
white square box and show it in a larger block encircled by
a white square box in each image in these figures. From
enlarged blocks in Fig. 3-Fig. 7, it can be seen that
“WSNM” and the proposed “APG-RM” methods recovered
images have obviously better visual effects than those of
“IPPO” and “PARM” methods, and the enlarged blocks in
“APG-RM” method recovered images show slightly better
visual effects than that of “WSNM” method recovered
images. For instance, the enlarged blocks in “APG-RM”
method recovered Boat image in Fig. 5 and Fence image in
Fig. 7 are much more clearer than that of “WSNM”
recovered images. Since “WNNM”, “IPPO”, “PARM” and
“WSNM” methods are all current state-of-the-art methods
for image inpainting, the numerical results in these tables
and figures illustrate that the proposed “APG-RM” methods
can well complete with these methods.

VI. CONCLUSION

In this paper, a novel nonlocal low-rank
minimization-based regularization method is proposed for
image inpainting. The regularization model is developed by
a direct rank minimization-based regularization term and a
L2-norm fidelity term. An alternating proximal gradient
algorithm is designed to solve the nonconvex regularization
model, and the convergence of the algorithm is analyzed
and proved by the famous Kurdyka-Łojasiewicz property.
Numerical experiments demonstrate that the proposed
method is comparable to the current state-of-the-art
nonlocal low-rank minimization methods for image
inpainting.
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RECOVERED MEASURES FOR RANDOM 80% PIXELS MISSING.
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Fence PSNR 23.76 25.97 27.76 28.40 28.89 29.43 29.50
SSIM 0.6534 0.7301 0.7683 0.8001 0.7925 0.8006 0.8075

TABLE VI
THE AVERAGE RECOVERED MEASURES.

Pixels Measures Methods
missing CLRP EPLL WNNM IPPO PARM WSNM APG-RM

PSNR 28.855 30.948 32.472 33.205 33.233 34.032 34.165
Text SSIM 0.9324 0.9589 0.9674 0.9702 0.9722 0.9748 0.9750

TIME 1.04 31.27 604.07 116.32 831.23 2712.22 2507.11
PSNR 28.616 30.908 31.826 32.596 32.612 33.400 33.503

50% SSIM 0.8933 0.9200 0.9258 0.9420 0.9333 0.9431 0.9470
TIME 6.02 67.76 1003.11 712.62 498.62 3546.87 3696.78
PSNR 26.954 29.001 30.053 30.847 30.858 31.531 31.665

60% SSIM 0.8510 0.8855 0.8959 0.9180 0.9110 0.9209 0.9265
TIME 4.78 57.72 1059.91 568.36 722.06 2567.23 2700.72
PSNR 25.346 26.887 28.238 29.034 29.133 29.733 29.893

70% SSIM 0.7874 0.8333 0.8540 0.8838 0.8771 0.8895 0.8967
TIME 3.49 57.75 1036.54 405.78 909.96 1892.10 1609.27
PSNR 23.613 24.428 26.116 26.837 26.927 27.582 27.720

80% SSIM 0.6969 0.7468 0.7886 0.8308 0.8206 0.8400 0.8476
TIME 3.91 57.71 1027.13 294.57 1047.84 1984.83 1787.27
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Fig. 3. Experimental results of House image for text pixels missing
degradation. From up to down, the first line: the degraded image and its
recovered image by “CLRP” method; the second to forth lines: the recovered
images by methods “EPLL” and “WNNM”, “IPPO” and “PARM”, “WSNM”
and “APG-RM”, respectively.

1956–1982, 2010.
[30] M. Fazel, H. Hindi and S. P. Boyd, “A rank minimization heuristic with

application to minimum order system approximation,” in Proceedings
of the American Control Conference 2001, pp. 4734–4739.

[31] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in CVPR 2014,
pp. 2862–2867.

[32] Y.-M. Huang and H.-Y. Yan, “Weighted nuclear norm minimization
based-regularization method for image restoration,” Commun. Appl.
Math Comput., vol. 3, no. 3, pp. 371–389, 2021.

[33] X. Lv and F. Li, “A Decoupled method for image inpainting
with patch-based low rank regularization,” Applied Mathematics and
Computation, vol. 314, pp. 334–348, 2017.

[34] X. Lv and F. Li, “An iterative decoupled method with weighted nuclear

“Text pixels missing” “CLRP”

“EPLL” “WNNM”

“IPPO” “PARM”

“WSNM” “APG-RM”

Fig. 4. Experimental results of Butterfly image for text pixels missing
degradation. From up to down, the first line: the degraded image and its
recovered image by “CLRP” method; the second to forth lines: the recovered
images by methods “EPLL” and “WNNM”, “IPPO” and “PARM”, “WSNM”
and “APG-RM”, respectively.

norm minimization for image restoration,” Int. J. Comput. Math., vol.
97, no. 3, pp. 602–623, 2020.

[35] N. Yair and T. Michaeli, “Multi-scale weighted nuclear norm image
restoration,” in CVPR, pp. 3165–3174, 2018.

[36] H.-Y. Yan and Z. Zheng, “Image cartoon-texture decomposition by
a generalized non-convex low-rank minimization method,” Journal of
the Franklin Institute, vol. 361, no. 2, pp. 796–815, 2024.

[37] F. Nie, H. Wang, H. Huang and C. Ding, “Joint schatten p-norm
and p-norm robust matrix completion for missing value recovery,”
Knowledge and Information Systems, vol. 42, no. 3, pp. 525–544,
2015.

[38] Y. Xie, S. Gu, Y. Liu, W.Zuo, W. Zhang and L. Zhang, “Weighted
schatten p-norm minimization for image denoising and background
subtraction,” IEEE Trans. Image Process., vol. 25, no. 10, pp. 4842–

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 4016-4030

 
______________________________________________________________________________________ 



“Text pixels missing” “CLRP”

“EPLL” “WNNM”

“IPPO” “PARM”

“WSNM” “APG-RM”

Fig. 5. Experimental results of Boat image for text pixels missing
degradation. From up to down, the first line: the degraded image and its
recovered image by “CLRP” method; the second to forth lines: the recovered
images by methods “EPLL” and “WNNM”, “IPPO” and “PARM”, “WSNM”
and “APG-RM”, respectively.
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Fig. 6. Experimental results of Barbara image for text pixels missing
degradation. From up to down, the first line: the degraded image and its
recovered image by “CLRP” method; the second to forth lines: the recovered
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Fig. 7. Experimental results of Fence image for text pixels missing
degradation. From up to down, the first line: the degraded image and its
recovered image by “CLRP” method; the second to forth lines: the recovered
images by methods “EPLL” and “WNNM”, “IPPO” and “PARM”, “WSNM”
and “APG-RM”, respectively.
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