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Abstract—Chronic Obstructive Pulmonary Disease (COPD)
and asthma remain diagnostically challenging in resource-
constrained environments. Cough is a primary symptom of
both COPD and asthma and is used to distinguish between
these conditions. This paper identifies the cough sounds’ key
acoustic features that enhance the performance of the machine
learning-based classification of COPD, asthma, and normal
conditions. Forty-nine temporal, spectral, and cepstral features
are derived from annotated cough sounds, and Analysis of
Variance, Mutual Information, Kendall’s Tau, ReliefF, Pear-
son’s Correlation, and Gradient Boosting Machines (GBM)
feature selection techniques are applied. The selected features
are grouped into prioritized subsets of 10, 15, 25, 35, and
all 49 features and the classification efficiency is evaluated
using Convolutional Neural Networks, Transformers, and GBM
models through cross-validation. The GBM model achieved
optimal performance with 91.6% accuracy, 91.74% sensitivity,
95.64% specificity, and 91.71% F1-score using the top 25 fea-
tures and attained 86.41% accuracy, 87.02% sensitivity, 93.07%
specificity, and 86.59% F1-score using 19 overlapping features
derived from all considered feature selection methods. The
results emphasize that feature grouping significantly improves
classification over single-feature approaches, offering a scalable
solution for automated respiratory disease diagnosis.

Index Terms—Respiratory diseases, Cough sounds, Gradient
Boosting Machines, Transformers, Convolutional Neural Net-
works, Machine Learning, Deep Learning.

I. INTRODUCTION

CHRONIC Obstructive Pulmonary Disease (COPD) and
asthma are among the most prevalent chronic respira-

tory disorders globally, affecting over 300 million [1] and 262
million [2] people, respectively, with significant morbidity
and healthcare burdens. Despite overlapping symptoms like
coughing, wheezing, and dyspnea, accurate differentiation
is critical for tailored treatment [3], as misdiagnosis rates
exceed 30% in primary care settings [4]. Traditional di-
agnostic tools such as spirometry [5], bronchoprovocation
tests, and clinical assessments are often time-consuming,
costly, and inaccessible in low-resource regions, highlighting
the need for non-invasive, scalable alternatives [6]. Recent
advances in machine learning (ML) and acoustic analytics
have demonstrated the potential of cough sound analysis as
a diagnostic tool [7]. Cough acoustics encode discriminative
features reflecting airway obstruction, inflammation, and
mucus retention, which differ between COPD and asthma
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[8]. For instance, time-frequency features like Mel-Frequency
Cepstral Coefficients (MFCCs) [9] and non-linear dynamics
have been shown to capture disease-specific patterns [10].
However, the efficacy of ML models hinges on optimal
feature selection [11], as irrelevant or redundant features can
degrade performance [12].

Previous research examined varied sets of features such
as time-domain (eg., peak amplitude, zero-crossing rate)
[13], frequency-domain (e.g., spectral centroid, harmonic-to-
noise ratio) [14] and cepstral features [15]. However, there’s
no agreement on the discriminative features of COPD and
asthma, in part because of inter-patient heterogeneity and en-
vironmental noise [16]. The public cough datasets (e.g., Hyfe
and COUGHVID) [17] tend to be class imbalanced with a
predominance of healthy controls. Methods such as synthetic
minority oversampling technique or generative adversarial
network-based augmentation are needed to counteract bias
[18]. Most studies employ single-center, small datasets with
low external validity [19]. However, standardized COPD and
asthma cough sounds are not available.

While numerous studies have explored cough sound clas-
sification, many rely on hand-crafted or generalized feature
sets that may overlook the nuanced acoustic characteristics
inherent to different respiratory conditions [20]–[23]. These
approaches often fail to account for the subtle temporal and
spectral variations that distinguish diseases such as COPD
and asthma from normal respiratory conditions [24]. As
a result, there is a risk of misclassification and reduced
model reliability, especially in real-world, heterogeneous data
environments [25]. To bridge this gap, the present research
identifies key acoustic features of cough sounds that cap-
ture pathophysiological differences among COPD, asthma,
and healthy conditions, and evaluates Convolutional Neu-
ral Networks (CNNs), transformers, and Gradient Boosting
Machines (GBM) to build a robust, interpretable framework
for accurate, non-invasive and cost-effective cough sound
classification in diverse healthcare sceneries.

The structure of this paper is as follows: Section I provides
an overview of the research, including relevant background
and a review of related literature. Section II outlines the
methodology, dataset, extracting and selecting features, and
applying both machine learning and deep learning models to
distinguish between COPD and asthma coughs. Section III
presents the evaluation outcomes, examining the effective-
ness of different feature selection methods, analyzing feature
significance through model performance, and identifying the
most dominant features shared across techniques. Finally,
Section IV summarizes the key findings and conclusions of
the experimentations.
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II. MATERIALS AND METHODS

Fig. 1 presents the framework for classifying COPD,
asthma, and normal/healthy cough sounds using ML algo-
rithms. Cough recordings are collected from COPD, asthma,
and healthy subjects and extracted 49 temporal, spectral, and
cepstral features [26]. Feature selection prioritized subsets
(49, 35, 25, 15, 10 features) for evaluation. Models are
trained and tested across all feature combinations, with per-
formance assessed via mean accuracy, sensitivity, specificity,
and F1-score. The analysis identifies optimal feature groups
and impactful shared features for respiratory classification.

A. Dataset

The absence of standardized cough sound databases re-
quires curated datasets for reliable analysis. This research
work collected 2142 cough recordings, including 629 COPD,
897 asthma, and 616 healthy samples, from participants aged
18 to 64 in a controlled environment using a Zoom H5
recorder at 44.1 kHz. The recordings, ranging from 380 to
970 milliseconds, are captured at distances ranging from 30
cm and 60 cm and stored in uncompressed WAV format.

B. Feature Extraction

Effective cough sound analysis for respiratory disease
diagnosis relies on robust feature extraction techniques. This
research employs 49 distinct features from temporal, spectral,
and cepstral domains, extracted using a 50% overlapping
frame approach to ensure signal integrity. Key spectral fea-
tures include centroid (with minimum, maximum, mean, 25th

percentile, median, 75th percentile, and standard deviation),
roll-off (25th percentile), flatness (maximum and mean), flux
(25th percentile), and bandwidth (median) [27]–[30]. Time-
domain analysis incorporates zero-crossing rate (maximum
and 75th percentile) and mean energy [20], [27]. Frequency
characteristics are captured through the mean of formant
frequencies (F1, F2, and F3) and fundamental frequency
statistics (mean, median, and standard deviation) [31]–[33].
Sound eminence is assessed via jitter (local and RAP) and
shimmer (local), while cepstral analysis utilizes MFCC0 to
MFCC12 and Linear Prediction Coefficients(LPCs) LPC1 to
LPC12 coefficients [34], [35]. This comprehensive feature
set enables precise characterization of cough acoustics for
diagnostic modeling.

C. Feature Selection techniques

The cough sound dataset consists of continuous numerical
features capturing frequency patterns, energy distribution,
and temporal variations, which serve as inputs for ML
models, while the target variable is categorical indicating
COPD, asthma, or normal cough forming a supervised
classification problem. This distinction requires appropriate
feature selection and classification techniques capable of
handling continuous numerical inputs and categorical out-
puts. Filter-based and embedded methods [36] are well-
suited for this task due to their model-agnostic nature and
effectiveness. Accordingly, this research employs techniques
such as ANOVA F-value, Mutual Information, Kendall’s
Tau, ReliefF, Pearson’s Correlation, and GBM for feature
selection [37], ensuring the chosen features enhance the ML

model [38] performance by focusing on their relevance and
contribution to classification performance [39].

The ANOVA F-value measures whether group means
differ significantly by comparing variance between groups to
variance within groups, as shown in Eq. 1. A high F-value
suggests significant differences, while a low value indicates
similarity among group means.

F =

∑k
i=1 ni(X̄i−x̄overall )

2

k−1∑k
i=1

∑ni
j=1(xij−X̄i)

2

N−k

(1)

Where F is the ANOVA F-value, which measures the ratio
of variation between group means to the variation within
the group, k is the number of groups, ni is the number of
observations in group i, X̄i is the mean of group i, x̄overall
is the overall mean across all groups and observations, xij

is the value of the jth observation in the ith group, and N is
the total number of observations across all groups.

Mutual Information (MI) measures the dependency be-
tween features and target labels, capturing both linear and
non-linear relationships. Features with higher MI scores
share more information with the target, indicating greater
relevance. Eq. 2 defines this dependency.

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(2)

Where I(X;Y ) is the MI between X features and Y targets,
P (x, y) is the joint probability distribution of X and Y , P (x)
and P (y) are the marginal probabilities of X and Y .

Kendall’s Tau (τ ) measures the strength and direction of
a monotonic relationship between variables. Higher absolute
values indicate stronger associations, helping rank feature
importance. Eq. 3 defines this rank-based correlation.

τ =
C −D

1
2n(n− 1)

(3)

Where C is the number of concordant pairs, D is the number
of discordant, and n is the total number of data points.

ReliefF Score evaluates feature relevance by comparing
them to nearest neighbors, assigning scores based on their
ability to distinguish between classes. Features that differen-
tiate well are rewarded, as shown in Eq. 4.

W (f) = W (f)− 1

m

m∑
i=1

[A−B] (4)

Where,

A =
1

k

k∑
j=1

diff (f, instancei, nearest hitj) (5)

B =
1

k

k∑
j=1

diff (f, instancei, nearest missj) (6)

W (f) is the weight of feature f , m is the total number
of sampled instances, k is the number of nearest neighbors
considered for hits and misses, instancei is a sampled data
instance, nearest hitj is the jth nearest neighbor of instancei
from the same class, nearest missj is the jth nearest neighbor
of instancei from a different class.
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Fig. 1: Methodology for identifying discriminative features and classifying respiratory conditions.

Pearson’s correlation coefficient (r) measures the linear
relationship between features and the target variable, appli-
cable to both continuous and classification tasks, as shown
in Eq. 7.

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (7)

Where Xi and Yi are individual data points, X̄ and Ȳ are
mean values, and n is the number of data points.

GBM calculates feature importance by measuring each
feature’s contribution to reducing prediction errors, typically
through improvements in loss functions during decision tree
splits. Features are ranked based on their impact on accuracy,
aiding in feature selection. The score of feature importance
for a feature Xj , FI (Xj) can be measured using Eq. 8.

FI (Xj) =
T∑

t=1

∑
s∈ Splits t

1 (s uses Xj) ·∆L(s) (8)

Where T is the total number of boosting iterations, Splitst
splits in the tth tree, 1 (susesXj) is the indicator function
that is 1 if the split s involves feature Xj , otherwise 0, and
∆L(s) is the reduction in the loss function achieved by split
s.

D. Machine and Deep Learning Approaches for Classifying
COPD and Asthma from Cough Sounds

A detailed evaluation is performed by grouping features
into five ranked sets top 10, 15, 25, 35, and all 49 based

on their importance, and testing these sets across vari-
ous machine and deep learning models, including CNN,
transformers, and GBM. Performance is assessed using
cross-validated metrics such as mean accuracy, sensitivity,
specificity, and F1-score, along with confusion matrices to
evaluate classification results. The CNN model architecture
includes two 1D convolutional layers with ReLU activation,
max-pooling, a dense layer, and a softmax output for multi-
class classification. It is trained with the Adam optimizer and
categorical cross-entropy for 150 epochs. The Transformer
model maps input features to a higher-dimensional space,
processes them through self-attention-based encoder layers,
and outputs predictions via a final dense layer. It is trained for
200 epochs using Adam and cross-entropy loss. The GBM
model uses 100 estimators with a learning rate of 0.1 and
a maximum depth of 7; after training, it outputs feature
importance scores to identify the most impactful features.
The architecture of GBM is demonstrated in Fig. 2.

III. RESULTS AND DISCUSSION

The results present the ranking of feature importance by
various selection methods, the utilization of ML models to
classify COPD and asthma cough sounds, and the evaluation
of how feature significance impacts model performance.

A. Assessment of Feature Influence Under Various Selection
Methods

The importance of individual features is assessed us-
ing ANOVA F-value, Mutual Information, Kendall’s Tau,
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Fig. 2: The architecture of GBM.

ReliefF, Pearson’s Correlation, and GBM feature selection
techniques. These methods are well-suited for classifying
COPD, asthma, and normal cough sounds using continu-
ous numerical features and categorical labels. ANOVA F-
value ranks features based on the variance between class
means, identifying MFCC1 as most significant and shimmer
local as least. Mutual Information evaluates feature-target
dependency, highlighting LPC8 as the most important and
the median fundamental frequency as the least important.
Kendall’s Tau assesses ordinal correlation, again ranking
LPC8 high and shimmer local low. ReliefF measures a

feature’s ability to distinguish between similar and dissimilar
instances, prioritizing LPC2 and minimizing shimmer local.
Pearson’s Correlation detects linear associations, ranking
LPC11 highest and shimmer local lowest. GBM prioritizes
features that most reduce loss across iterations. GBM ranked
MFCC1 highest and Jitter (RAP) lowest. Collectively, these
methods emphasize the value of integrating multiple features
for improved classification of cough sounds. The importance
of cough sound features using the GBM method is depicted
in Fig. 3.

B. Cough sound classification for COPD, asthma, and nor-
mal conditions

The classification of COPD, asthma, and normal cough
sounds is performed using machine and deep learning mod-
els, including CNN, transformer, and GBM. To evaluate
the impact of feature prioritization on model performance,
features are grouped into five sets containing the top 10,
15, 25, 35, and 49 features. Each model is trained and tested
using 5-fold cross-validation and evaluated using mean accu-
racy, sensitivity, specificity, and F1-score. Among all models
and feature combinations, GBM consistently outperformed
others, with the best results achieved using the top 25 features
yielding a mean accuracy of 91.6%, sensitivity of 91.74%,
specificity of 95.64%, and an F1-score of 91.71%. These
findings emphasize the significance of targeted feature selec-
tion in enhancing model efficiency and diagnostic accuracy.
The top 25 features identified using the GBM method include
MFCC1, LPC4, MFCC9, LPC8, MFCC3, MFCC7, MFCC2,
MFCC0, 25th percentile of spectral flux, MFCC8, mean
energy, MFCC5, median of spectral bandwidth, MFCC10,
LPC6, MFCC12, MFCC11, MFCC4, standard deviation in
spectral centroid, LPC5, mean of first formant frequencies,
mean of spectral flatness, 25th percentile of spectral centroid,
LPC12, and mean of third formant frequencies.

The outcome of the analysis is tabulated in Table I to
Table V, which gives the benchmarking CNN, transformers,
and GBM on the top 10, 15, 25, 35, and 49 features for cough
sound classification. Fig. 4 to Fig. 8 present the investigation
of ML models using the top 10, 15, 25, 35, and 49 prioritized
features, and the importance of the efficacy of different
feature groups.

C. Quantification of feature importance driven by model
performance

The quantification measures how feature subsets influence
model performance by testing various feature-ML algorithm
combinations. Key metrics including accuracy, sensitivity,
specificity, and F1-score are recorded for each scenario.
Comparisons are made between using all 49 features and
smaller subsets. GBM shows the most significant improve-
ment, performing best with 25 selected features.

Tables VI, VIII, X, and XII analyze variations in mean
accuracy, sensitivity, specificity, and F1-score for models
built using prioritized feature subsets comprising the top
35, 25, 15, and 10 features. Correspondingly, Fig. 9, 11,
13, and 15 present the trends in mean accuracy, sensitivity,
specificity, and F1-score across models using these priori-
tized feature subsets. Tables VII, IX, XI, and XIII summarize
the differences in mean accuracy, sensitivity, specificity, and
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Fig. 3: Importance of cough sound features using the GBM method.

TABLE I: Benchmarking CNN, transformers, and GBM on top 10 features for cough sound classification

Feature Selection
Method – Mean Mean Mean Mean F1-
ML Technique Accuracy (%) Sensitivity (%) Specificity (%) Score (%)
ANOVA – CNN 72.78 72.69 85.83 72.8
ANOVA - Transformers 70.17 71.09 84.69 70.56
MI – CNN 70.31 71.12 84.75 70.23
MI – Transformers 71.01 72.26 85.25 71.4
Kendall’s – CNN 70.03 70.32 84.33 70.04
Kendall’s - Transformers 68.39 69.6 83.87 68.89
ReliefF – CNN 78.48 79.05 88.97 78.75
ReliefF - Transformers 77.17 77.78 88.29 77.46
Pearson’s – CNN 72.22 73.53 85.96 72.32
Pearson’s - Transformers 68.58 70.39 84.21 68.88
GBM 86.6 86.91 93.08 86.76

Fig. 4: Analyzing ML model performance using the top 10 prioritized features

F1 score for models built with 49 features compared to
prioritized subsets containing 35, 25, 15, and 10 features.
Fig. 10, 12, 14, and 16 demonstrate the trends in differences
in mean accuracy, sensitivity, specificity, and F1 score for
models using 49 features compared to prioritized subsets
with 35, 25, 15, and 10 features.

As the feature count decreases from 49 to 35, mean
accuracy drops by 0.94% to 3.64% across most feature-
ML model combinations, except GBM, which improves
slightly by 0.33%. This pattern persists at 25 features, where

accuracy declines ranging from 1.08% to 13.92%, while
GBM continues to improve by 0.61%. The disparity grows
more evident with smaller feature sets: accuracy falls by
1.17% to 18.35% at 15 features and by 4.39% to 22.55%
at 10 features, underscoring the strong influence of feature
selection on model performance.

When decreasing from 49 to 35 features, mean sensitivity
drops between 0.73% and 3.52% across most models, while
GBM shows a slight improvement of 0.32%. At 25 features,
the decline becomes more noticeable, ranging from 1.27%
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TABLE II: Benchmarking CNN, transformers, and GBM on top 15 features for cough sound classification

Feature Selection
Method – Mean Mean Mean Mean F1-
ML Technique Accuracy (%) Sensitivity (%) Specificity (%) Score (%)
ANOVA – CNN 77.5 78.5 88.63 77.61
ANOVA - Transformers 75.07 75.92 87.21 75.38
MI – CNN 75.54 76.46 87.49 75.55
MI – Transformers 75.49 76.14 87.43 75.8
Kendall’s – CNN 75.49 76.72 87.57 75.73
Kendall’s - Transformers 74.46 75.34 86.95 74.8
ReliefF – CNN 83.1 83.6 91.28 83.16
ReliefF – Transformers 84.27 85 91.98 84.43
Pearson’s – CNN 76.89 77.24 88.08 76.79
Pearson’s - Transformers 74.7 75.41 87.04 74.93
GBM 89.82 89.94 94.69 89.95

Fig. 5: Analyzing ML model performance using the top 15 prioritized features

TABLE III: Benchmarking CNN, transformers, and GBM on top 25 features for cough sound classification

Feature Selection
Method – Mean Mean Mean Mean F1-
ML Technique Accuracy (%) Sensitivity (%) Specificity (%) Score (%)
ANOVA – CNN 80.63 81.46 90.09 80.8
ANOVA - Transformers 82.35 83.51 91.13 82.58
MI – CNN 82.54 83.42 91.1 82.71
MI – Transformers 84.87 85.56 92.31 85.04
Kendall’s – CNN 81.84 82.33 90.64 81.93
Kendall’s - Transformers 83.38 84.14 91.57 83.55
ReliefF – CNN 87.3 87.77 93.49 87.41
ReliefF – Transformers 87.63 88.05 93.68 87.73
Pearson’s – CNN 79.79 81.09 89.8 79.99
Pearson’s - Transformers 81.89 83.11 90.9 82.12
GBM 91.6 91.74 95.64 91.71

Fig. 6: Analyzing ML model performance using the top 25 prioritized features

to 13.65%, with GBM improving by 0.58%. The downward
trend continues as sensitivity decreases between 1.12% and
18.11% at 15 features and between 4.25% and 21.59% at 10
features.

Between 49 and 35 features, mean specificity drops by
0.49% to 1.84% across models, while GBM slightly im-
proves by 0.15%. At 25 features, specificity falls by 0.61%
to 7.14%, with GBM showing a modest gain of 0.3%. The
decline continues at 15 features, ranging from 0.65% to

9.51%, and becomes more pronounced at 10 features, with
drops between 2.26% and 11.47%.

From 49 to 35 features, mean F1-scores decrease by 0.9%
to 3.61% across models, while GBM improves slightly by
0.34%. At 25 features, the decline ranges from 1.15 to
13.74%, though GBM continues to improve with a 0.61%
gain. The drop becomes steeper at 15 features, with F1 scores
falling between 1.15% and 18.04%, and is most pronounced
at 10 features, where the decrease is between 4.34% and
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TABLE IV: Benchmarking CNN, transformers, and GBM on top 35 features for cough sound classification

Feature Selection
Method – Mean Mean Mean Mean F1-
ML Technique Accuracy (%) Sensitivity (%) Specificity (%) Score (%)
ANOVA – CNN 89.73 90.17 94.74 89.85
ANOVA - Transformers 88.61 89.37 94.24 88.87
MI – CNN 88.33 88.7 94 88.44
MI – Transformers 88.56 88.87 94.11 88.66
Kendall’s – CNN 88.98 89.34 94.32 89.06
Kendall’s - Transformers 88.47 89.11 94.14 88.7
ReliefF – CNN 90.05 90.52 94.96 90.08
ReliefF - Transformers 89.31 89.72 94.54 89.45
Pearson’s – CNN 88.65 89.2 94.22 88.73
Pearson’s - Transformers 87.67 88.17 93.67 87.87
GBM 91.32 91.48 95.49 91.44

Fig. 7: Analyzing ML model performance using the top 35 prioritized features

TABLE V: Benchmarking CNN, transformers, and GBM on top 49 features for cough sound classification

Feature Selection
Method – Mean Mean Mean Mean F1-
ML Technique Accuracy (%) Sensitivity (%) Specificity (%) Score (%)
CNN 91.18 91.25 95.48 91.12
Transformers 90.94 91.19 95.34 91.03
GBM 90.99 91.16 95.34 91.1

Fig. 8: Analyzing ML model performance using the top 49 prioritized features

22.14%.

D. Detection and assessment of top prioritized overlapping
features

The analysis identified 19 key overlapping features among
the top 35 priority features across all evaluated feature
selection methods. These overlapping features include LPC1,

25th percentile of spectral flux, mean of third formant fre-
quencies, LPC6, MFCC2, MFCC7, maximum spectral cen-
troid, MFCC3, LPC8, LPC3, LPC4, MFCC4, LPC7, standard
deviation of spectral centroid, 75th percentile of spectral cen-
troid, mean of spectral flatness, LPC5, LPC12, and median
of spectral bandwidth. The classification of cough sounds
based on machine learning models CNN, transformers, and
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TABLE VI: Evaluating mean accuracy variations across prioritized feature subsets.

Feature Selection – ML/DL mean accuracy (%) mean accuracy (%) mean accuracy (%) mean accuracy (%)
using 35 Prioritized using 25 Prioritized using 15 Prioritized using 10 Prioritized

Features Features Features Features
ANOVA – CNN 89.73 80.63 77.5 72.78
ANOVA – Transformers 88.61 82.35 77.56 70.17
MI – CNN 88.33 82.54 75.54 70.31
MI – Transformers 88.56 81.64 75.47 71.01
Kendall’s – CNN 88.98 81.84 75.49 71.17
Kendall’s – Transformers 88.91 82.43 78.37 68.39
ReliefF – CNN 90.05 83.43 81.27 75.81
ReliefF – Transformers 89.5 83.48 84.47 77.72
Pearson’s – CNN 88.65 79.79 76.89 69.88
Pearson’s – Transformers 88.58 82.37 83.97 68.32
GBM 91.32 91.6 89.82 86.6

Fig. 9: Assessment of mean accuracy trends across models using prioritized feature subsets

TABLE VII: Analysis of mean accuracy differences in models built with selected feature subsets

Feature Selection – ML/DL mean accuracy (%) mean accuracy (%) mean accuracy (%) mean accuracy (%)
difference (%) using difference (%) using difference (%) using difference (%) using

35 Prioritized 25 Prioritized 15 Prioritized 10 Prioritized
Features Features Features Features

ANOVA - CNN 1.45 10.55 13.68 18.4
ANOVA - Transformers 2.33 8.59 15.87 20.77
MI - CNN 2.85 9.87 13.95 18.93
MI - Transformers 2.38 9.07 14.16 19.13
Kendall’s - CNN 2.2 9.17 14.33 21.55
Kendall’s - Transformers 2.47 9.56 16.08 21.5
ReliefF - CNN 1.6 3.4 8.18 12.76
ReliefF - Transformers 1.63 3.31 6.97 11.27
Pearson’s - CNN 2.25 8.43 11.6 18.96
Pearson’s - Transformers 3.27 9.06 16.24 22.36
GBM -0.33 -0.61 1.17 4.39

GBM are developed using this optimized 19-feature set and
evaluated through 5-fold cross-validation. Among these, the
GBM model demonstrated the best performance, achieving a
mean accuracy of 86.41%, sensitivity of 87.02%, specificity
of 93.07%, and an F1-score of 86.59%, outperforming the
other models across all evaluation metrics. The results are
summarized in Table XIV and demonstrated in Fig. 17.

The GBM-based cough sound classification model demon-
strated substantial performance gains using its optimized
set of 25 selected features, achieving impressive metrics

across all evaluation criteria. It attained a mean accuracy
of 91.6%, a mean sensitivity of 91.74%, a mean specificity
of 95.64%, and a mean F1-score of 91.71%. These results
represent a significant improvement over previous configura-
tions, highlighting the effectiveness of the feature selection
approach. When the GBM applied their feature selection
techniques and utilized their top 25 selected features, they
achieved significantly improved performance metrics. For
GBM, the mean accuracy reaches 91.6%, the mean sensitivity
is 91.74%, the mean specificity is 95.64%, and the mean F1-
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Fig. 10: Trends of mean accuracy difference in models using prioritized feature subsets.

TABLE VIII: Evaluating mean sensitivity variations across prioritized feature subsets.

Feature Selection – ML/DL mean sensitivity(%) mean sensitivity(%) mean sensitivity(%) mean sensitivity(%)
using 35 Prioritized using 25 Prioritized using 15 Prioritized using 10 Prioritized

Features Features Features Features
ANOVA – CNN 90.17 81.46 78.5 72.69
ANOVA – Transformers 89.37 83.51 75.92 71.09
MI – CNN 88.7 83.42 76.46 71.12
MI – Transformers 88.87 85.56 76.14 72.26
Kendall’s – CNN 89.34 82.33 76.72 70.32
Kendall’s – Transformers 89.11 84.14 75.34 69.6
ReliefF – CNN 90.52 87.77 83.6 79.05
ReliefF – Transformers 89.72 88.05 85 77.78
Pearson’s – CNN 89.2 81.09 77.24 73.53
Pearson’s – Transformers 88.17 83.11 75.41 70.39
GBM 91.48 91.74 89.94 86.91

Fig. 11: Assessment of mean sensitivity trends across models using prioritized feature subsets.

score achieves 91.71%. Table XV and Fig. 18 presents the
performance comparison of models built with 19 common
features identified by all feature selection methods and the
top 25 features from GBM.

E. Comprehensive results and evaluations
The identification of significant features and classification

of COPD, asthma, and normal cough sounds is thoroughly
evaluated using CNN, Transformer, and GBM models with
five-fold cross-validation. Features are grouped into sets of

10, 15, 25, 35, and all 49, and each model’s performance is
assessed using mean accuracy, sensitivity, specificity, and F1-
score. Among the models, GBM consistently outperformed
the others, achieving its best results with the top 25 features,
where it reached a mean accuracy of 91.6%, a sensitivity of
91.74%, a specificity of 95.64%, and an F1-score of 91.71%.
While CNN and Transformer models showed performance
degradation as the number of features decreased, GBM
exhibited improvements, indicating its robustness to feature
reduction. Even with only 19 overlapping features selected
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TABLE IX: Analysis of mean sensitivity differences in models built with selected feature subsets

Feature Selection – ML/DL mean sensitivity(%) mean sensitivity(%) mean sensitivity(%) mean sensitivity(%)
difference (%) using difference (%) using difference (%) using difference (%) using

35 Prioritized 25 Prioritized 15 Prioritized 10 Prioritized
Features Features Features Features

ANOVA – CNN 1.08 9.79 12.75 18.56
ANOVA - Transformers 1.82 7.68 15.27 20.1
MI – CNN 2.55 7.83 14.79 20.13
MI – Transformers 2.32 5.63 15.05 18.93
Kendall’s – CNN 1.91 8.92 14.53 20.93
Kendall’s - Transformers 2.08 7.05 15.85 21.59
ReliefF – CNN 0.73 3.48 7.65 12.2
ReliefF - Transformers 1.47 3.14 6.19 13.41
Pearson’s – CNN 2.05 10.16 14.01 17.72
Pearson’s - Transformers 3.02 8.08 15.78 20.8
GBM -0.32 -0.58 1.22 4.25

Fig. 12: Trends of mean sensitivity difference in models using prioritized feature subsets.

TABLE X: Evaluating mean specificity variations across prioritized feature subsets.

Feature Selection – ML/DL mean specificity(%) mean specificity(%) mean specificity(%) mean specificity(%)
using 35 Prioritized using 25 Prioritized using 15 Prioritized using 10 Prioritized

Features Features Features Features
ANOVA – CNN 94.74 90.09 88.63 85.83
ANOVA - Transformers 94.24 91.13 87.21 84.69
MI – CNN 94 91.1 87.49 84.75
MI – Transformers 94.11 92.31 87.43 85.25
Kendall’s – CNN 94.32 90.64 87.57 84.33
Kendall’s - Transformers 94.14 91.57 86.95 83.87
ReliefF – CNN 94.96 93.49 91.28 88.97
ReliefF - Transformers 94.54 93.68 91.98 88.29
Pearson’s – CNN 94.22 89.8 88.08 85.96
Pearson’s - Transformers 93.67 90.9 87.04 84.21
GBM 95.49 95.64 94.69 93.08

TABLE XI: Analysis of mean specificity differences in models built with selected feature subsets

Feature Selection – ML/DL mean specificity(%) mean specificity(%) mean specificity(%) mean specificity(%)
difference (%) using difference (%) using difference (%) using difference (%) using

35 Prioritized 25 Prioritized 15 Prioritized 10 Prioritized
Features Features Features Features

ANOVA – CNN 0.74 5.39 6.85 9.65
ANOVA - Transformers 1.1 4.21 8.13 10.65
MI – CNN 1.48 4.38 7.99 10.73
MI – Transformers 1.23 3.03 7.91 10.09
Kendall’s – CNN 1.16 4.84 7.91 11.15
Kendall’s - Transformers 1.2 3.77 8.39 11.47
ReliefF – CNN 0.52 1.99 4.2 6.51
ReliefF - Transformers 0.8 1.66 3.36 7.05
Pearson’s – CNN 1.26 5.68 7.4 9.52
Pearson’s - Transformers 1.67 4.44 8.3 11.13
GBM -0.15 -0.3 0.65 2.26

across all feature selection techniques, GBM maintained high
performance, achieving 86.41% mean accuracy and an F1-

score of 86.59%. These results highlight the effectiveness of
prioritized feature selection in improving diagnostic accuracy
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Fig. 13: Assessment of mean specificity trends across models using prioritized feature subsets.

Fig. 14: Trends of mean specificity difference in models using prioritized feature subsets.

TABLE XII: Evaluating mean F1-score variations across prioritized feature subsets.

Feature Selection – ML/DL mean F1-score(%) mean F1-score(%) mean F1-score(%) mean F1-score(%)
using 35 Prioritized using 25 Prioritized using 15 Prioritized using 10 Prioritized

Features Features Features Features
ANOVA – CNN 89.85 80.8 77.61 72.8
ANOVA - Transformers 88.87 82.58 75.38 70.56
MI – CNN 88.44 82.71 75.55 70.23
MI – Transformers 88.66 85.04 75.8 71.4
Kendall’s – CNN 89.06 81.93 75.73 70.04
Kendall’s - Transformers 88.7 83.55 74.8 68.89
ReliefF – CNN 90.08 87.41 83.16 78.75
ReliefF - Transformers 89.45 87.73 84.43 77.46
Pearson’s – CNN 88.73 79.99 76.79 72.32
Pearson’s - Transformers 87.87 82.12 74.93 68.88
GBM 91.44 91.71 89.95 86.76

and enhancing model efficiency for the classification of
respiratory diseases.

F. Comparison with existing models
Most existing research analyzes respiratory conditions us-

ing a combination of cough sounds, symptoms, lung sounds,
spirometry, clinical tests, and radiology images. However,
only a few researchers focus exclusively on the sounds of
coughing. The proposed approach aligns with state-of-the-
art methods that rely solely on cough sounds. Table XVI

presents a comparative analysis of the proposed method
with several leading approaches from the literature. The
table summarizes various studies on respiratory condition
classification using cough sounds. Most approaches utilize
a mix of hand-crafted and/or deep features (e.g., MFCCs,
spectrograms), with classifiers like CNNs, Support Vector
Machines (SVMs), and Transformers. Reported accuracies
range from 74% to 91.6%. The proposed method outperforms
others, achieving the highest accuracy (91.6%) and strong
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Fig. 15: Assessment of mean F1-score trends across models using prioritized feature subsets.

TABLE XIII: Analysis of mean F1-score differences in models built with selected feature subsets

Feature Selection – ML/DL mean F1-score(%) mean F1-score(%) mean F1-score(%) mean F1-score(%)
difference (%) using difference (%) using difference (%) using difference (%) using

35 Prioritized 25 Prioritized 15 Prioritized 10 Prioritized
Features Features Features Features

ANOVA – CNN 1.27 10.32 13.51 18.32
ANOVA - Transformers 2.16 8.45 15.65 20.47
MI – CNN 2.68 8.41 15.57 20.89
MI – Transformers 2.37 5.99 15.23 19.63
Kendall’s – CNN 2.06 9.19 15.39 21.08
Kendall’s - Transformers 2.33 7.48 16.23 22.14
ReliefF – CNN 1.04 3.71 7.96 12.37
ReliefF - Transformers 1.58 3.3 6.6 13.57
Pearson’s – CNN 2.39 11.13 14.33 18.8
Pearson’s - Transformers 3.16 8.91 16.1 22.15
GBM -0.34 -0.61 1.15 4.34

Fig. 16: Trends of mean F1-score difference in models using prioritized feature subsets.

TABLE XIV: Model evaluation with 19 overlapped features from top-ranked subsets.

ML/DL Models Mean Accuracy (%) Mean Sensitivity (%) Mean Specificity (%) Mean F1-Score (%)
CNN 83.71 84.55 91.7 83.89
Transformers 80.63 81.46 90.09 80.8
GBM 86.41 87.02 93.07 86.59

performance across all metrics using GBM with selected
hand-crafted features.
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Fig. 17: Performance comparison of models built with 19 overlapped Features.

TABLE XV: Performance comparison of the GBM-based model using 19 overlapped and 25 prioritized features.

Performance metrics GBM built with 19 overlapped features GBM with its top 25 features
Mean Accuracy (%) 86.41 91.6
Mean Sensitivity (%) 87.02 91.74
Mean Specificity (%) 93.07 95.64
Mean F1-Score (%) 86.59 91.71

Fig. 18: Performance evaluation of GBM using 19 overlapping and top 25 features.

G. Extensions and Future directions

To extend the proposed work of COPD, asthma, and health
classification using cough sound features, various deep audio
representation models and hybrid feature strategies have
been evaluated. Table XVII compares various combinations
of feature extraction techniques and classification methods
for cough-based classification tasks. The highest accuracy
of 91% is achieved using a combination of WavLM, log
mel spectrogram, and multiple handcrafted features (spectral
centroid, rolloff, flatness, ZCR, MFCC, LPC) with a SVM
classifier. Using the same rich feature set with BiLSTM
with Attention yielded a slightly lower accuracy of 89%,
while Transformer and EfficientFormer models using only
WavLM and log mel spectrogram achieved 90% and 88%
accuracy, respectively. A model based on HuBERT and
BiLSTM with Attention reached an accuracy of 88%, show-
ing that WavLM-based features combined with handcrafted
features and SVM outperform other configurations in this
comparison. Integration of self-supervised pretrained models
such as WavLM with handcrafted acoustic features to further
enhance performance and support the development of more
robust and reliable classification systems.

The proposed work demonstrates robust ML and DL

methods for distinguishing COPD, asthma, and normal res-
piratory conditions using handcrafted cough sound features.
To further advance this work, future research should explore
integrating pre-trained self-supervised audio models like
WavLM [45], wav2vec 2.0 [46] and HuBERT embeddings
[47], which have shown superior performance in patho-
logical sound recognition by capturing complex temporal
and spectral nuances. Additionally, feature fusion approaches
that combine acoustic data with other physiological signals
such as spirometry, respiration rate, or imaging (e.g., X-
rays) [48], [49] have been shown to significantly improve
diagnostic accuracy in clinical AI applications [50]. Im-
provement in pulmonary disease classification [51] when
multimodal features [52] are combined with DL models
[53]. Edge deployment also represents a promising avenue,
as low-cost devices using EfficientFormer [54] and TinyML
solutions have been proven for real-time health diagnostics
[55] in rural areas. Explainable AI tools [56] like SHAP
and LIME can build clinician trust by visualizing how input
features influence predictions, aiding in the adoption of
AI diagnostics. To address limited labeled data, contrastive
learning [50], and few-shot methods have shown promise
in improving model generalization, particularly in health-
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TABLE XVI: Comparison with state-of-art models

Study Classes Features extraction and selec-
tion techniques

Classification methods Performance

S.Xu et al. [40] Asthma vs
Healthy; COPD vs
Healthy

Gabor time-frequency
transformation; Neighborhood
Component Analysis for
feature selection

RF, SVM, Decision Trees,
k-nearest neighbor (KNN);
majority-voting ensemble

Majority-voting ensemble with
Accuracy: 83.31%, Sensitivity:
82.8%, Precision: 83.0%, F1 score:
82.9%.

S.Ghrabli et al.
[28]

Pneumonia and
Asthma

Power spectral density in seg-
mented coughs

LDA and KNN Accuracy: 78%

M.Ghourabi et
al. [41]

Wet vs Dry cough STFT spectrogram images
from cough audio;time mask
and classical image transforms

Swin Transformer, 2D CNN
baseline

Accuracy: 88.37% (Swin Trans-
former), 90.87% (CNN baseline on
classically augmented data)

P.Miotła et al.
[42]

cough vs non-
cough

Spectrogram MobileNet, ResNet 50,
DenseNet121

MobileNet with Accuracy: 84%,
Precision: 80.8%, Recall: 88.7%,
F1-score: 84.6%

B.T.Balamurali
et al. [43]

Healthy vs Patho-
logical coughs in
children

MFCCs and log-compressed
mel-filterbanks

Transformers with self-
supervised contrastive pre-
training (Transformer-CP);
VGGish, GRU, and ensemble
methods

Transformer-CP) + fine-tuning +
Ensemble with Accuracy: 84.3%,
Recall: 73.1%, Precision: 82%, F1
Score: 77.3%

E.A.Mohammed
et al. [44]

COVID-19
positive, negative,
and healthy coughs

spectrograms Pre-trained
CNNs combined with
ensemble of top performing
classifiers

Precision: 80% Sensitivity:
71%

F1-score: 75%

O.Zealouk et
al. [31]

TB-positive vs
negative

23 MFCC features selected us-
ing Recursive feature elimina-
tion using RF

Logistic Regression (LR),
SVM, KNN, and CNN

LR with Accuracy:81.5% ± 7.7%,
Sensitivity: 74.5% ± 13.7%,
Specificity: 86.5% ± 7.5%, F1-
Score: 76.0% ± 11.7%

Proposed
Model

COPD, Asthma,
and Healthy

25 features (refer section
III-B) selected using GBM
from 49 hand-crafted features

GBM, CNN, Transformer GBM with 25 prioritized features
with Accuracy: 91.6%, Sensitiv-
ity: 91.74%, Precision:95.64%, F1
score: 91.71%

TABLE XVII: Classification performance of COPD, asthma, and normal cough sounds using self-supervised pre-trained
audio models

Features extraction Classification methods accuracy (in %)
WavLM + Log melspectrogram + [spectral centroid,
spectral roll-off, spectral flatness, ZCR, MFCC, LPC]

SVM 91

WavLM + Log melspectrogram Transformer 90
WavLM + Log melspectrogram EfficientFormer 88
WavLM + Log melspectrogram + [spectral centroid,
spectral roll-off, spectral flatness, ZCR, MFCC, LPC]

BiLSTM with Attention 89

HuBERT BiLSTM with Attention 88

related acoustic benchmarks [57]. Evaluating models on
diverse, longitudinal datasets such as Coswara [58] can
further ensure consistent performance across age, gender, and
comorbidities. Ultimately, aligning with regulatory standards
and validating through clinical trials will be crucial for
ensuring the safe and effective deployment in the real world.

IV. CONCLUSION

This paper presents that the machine learning model
GBM effectively differentiates between COPD, asthma, and
healthy individuals using optimized cough sound features.
By systematically evaluating temporal, spectral, and cepstral
features through multiple selection techniques, the research
identifies an optimal subset of 25 features that achieves
high diagnostic accuracy of 91.6%, sensitivity of 91.74%,
specificity of 95.64%, and F1-score of 91.71%. Addition-
ally, the 19 overlapping features derived from consensus
across selection methods maintain robust performance. The
findings highlight that the group of features significantly
enhances classification efficiency compared to single-feature
approaches. This automated, feature-driven diagnostic frame-
work presents a scalable and cost-effective solution for
COPD and asthma disease screening, particularly beneficial
in resource-limited settings where early and accurate diag-
nosis remains challenging.
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