
 

 
Abstract—Crack identification is critical for structural health 

monitoring and damage assessment in concrete structures. 
While numerous automated inspection methods have been 
developed to replace manual approaches, most exhibit 
limitations in adapting to diverse environmental conditions and 
achieving precise crack localization. In this paper, an 
end-to-end semantic segmentation neural network based on 
Attention U-Net. To mitigate the challenge of limited annotated 
data, sophisticated data augmentation techniques were 
employed to prevent overfitting. The proposed architecture 
maintains the original input dimensions while performing 
pixel-level classification (crack vs. non-crack) with high 
precision. Comparative experimental results demonstrate that 
the Attention U-Net model significantly outperforms 
conventional U-Net approaches across various complex 
scenarios, eliminating the need for manual feature extraction. 

Index Terms—Crack Detection, Machine Learning (ML), 
Attention U-Net, Semantic Segmentation 

I. INTRODUCTION 

ighway infrastructure is subject to significant 
environmental stressors and heavy traffic loads, leading 

to premature deterioration and reduced service life compared 
to international standards. The assessment and maintenance 
of pavement surface distress, particularly crack detection, 
constitute critical components of infrastructure management. 
Conventional manual inspection methods present substantial 
limitations, including labor intensiveness and suboptimal 
detection accuracy. Systematic crack monitoring is 
indispensable for structural health evaluation, as crack 
morphology and spatial distribution provide crucial 
diagnostic information regarding material degradation 
mechanisms and potential failure modes. Fracture 
characteristics, including dimensional parameters and 
propagation patterns, serve as essential indicators for 
structural condition assessment. However, the inherent 
limitations of the artificial crack characterization method lie 
in its time-consuming and subjective interpretation, which 
heavily depends on the inspector's expertise and may damage 
the reliability of quantitative analysis. To address these 
limitations, this study proposes the implementation of 
computer vision-based automated crack detection systems as 
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a viable alternative, using advanced imaging technologies for 
enhanced accuracy and efficiency. 

The structure of the article is as follows: Section II 
provides a comprehensive literature review of relevant 
research in this field. Section III details the proposed 
attention-based UNET architecture and its implementation. 
Section IV systematically analyzes the experimental results 
and their significance. Finally, the paper concludes with 
Section V, which outlines future research avenues and 
practical applications derived from the study's findings. 

II. RELATED WORK 

Conventional manual crack inspection methods are known 
to suffer from multiple drawbacks, such as being 
time-consuming, labor-intensive, posing safety risks, and 
yielding subjective evaluation results.[1]. Consequently, 
automated crack detection systems are increasingly 
supplanting traditional manual methods due to their superior 
efficiency, consistency, and rapid analytical capabilities in 
smart transportation infrastructure applications[2]. 

Crack detection methodologies can be categorized into two 
primary approaches: Destructive Testing (DT) and 
Non-Destructive Testing (NDT). Although ultrasonic 
techniques are widely utilized in NDT, conventional 
contact-based ultrasound methods demonstrate limited 
effectiveness across diverse structural configurations. 
Automated crack detection systems have emerged to 
overcome the inefficiencies of manual inspection methods, 
providing objective and efficient surface defect evaluation 
[3]. Over the past decade, researchers have proposed 
numerous computational algorithms for automated crack 
identification in various infrastructure elements, including 
concrete surfaces and pavement systems. However, most 
existing methodologies are constrained to addressing specific 
crack detection challenges. For instance, threshold-based 
techniques utilize local and global intensity thresholds to 
identify cracks through image illumination normalization, 
while segmentation-based approaches employ edge detection 
and region-based methods to partition images into discrete 
segments for crack localization based on predefined 
morphological features. The accuracy and reliability of these 
methods are fundamentally dependent on the precise 
characterization of crack features. Furthermore, while 
conventional approaches primarily focus on crack 
visualization, the accurate quantification of crack 
morphological properties for subsequent structural analysis 
remains a significant challenge in the field[4]. 

Deep learning has revolutionized computer vision by 
enabling deep neural networks (DNNs) to achieve 
state-of-the-art results in multiple visual processing domains 
such as image categorization, object identification, and 
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pattern analysis. While DNN architectures exhibit greater 
complexity through multiple hierarchical layers and 
extensive parameters compared to traditional methods, they 
substantially improve detection accuracy by enabling 
pixel-level analysis rather than conventional image-level 
interpretation. This sophisticated analytical capability allows 
for exact identification of target object pixels, establishing a 
reliable framework for precise crack detection and 
quantitative assessment. Consequently, the application of 
deep neural networks supports detailed fracture 
characterization at the microscopic level, successfully 
overcoming the challenges associated with diverse crack 
patterns and morphologies[5, 6]. 

Contemporary image processing techniques offer diverse 
approaches for automated fracture detection and 
characterization, as documented in reference[7]. The 
fundamental framework for crack identification through 
digital image analysis is comprehensively described in 
reference[8]. However, automated crack detection presents 
significant technical challenges due to several factors: the 
inherent variability in crack morphology and dimensional 
characteristics, coupled with various imaging artifacts. These 
artifacts include illumination inconsistencies, shadow effects, 
surface imperfections, and concrete spalling phenomena, all 
of which can substantially affect detection accuracy in 
images. 

Modern visual inspection systems utilize diverse 
computational approaches, mainly including six key 
methodologies: gradient-based edge detection, 
morphological operations, intensity thresholding, porous 
media modeling, machine learning-based decision systems, 
and advanced algorithmic solutions[9, 10]. 

Edge detection algorithms exhibit robust performance in 
high-contrast image scenarios but demonstrate significant 
vulnerability to noise interference, frequently producing 
fragmented crack patterns[11]. These computational 
approaches encompass various transform-based methods, 
including the Haar Transform (HT), Fast Fourier Transform 
(FFT), as well as gradient-based operators such as Sobel and 

Canny edge detectors. Morphological processing techniques 
have been effectively implemented for road surface image 
analysis[12]. Threshold-based segmentation methods 
provide effective mechanisms for crack isolation from 
background elements[13] , with advanced implementations 
incorporating Fuzzy C-Means (FCM) clustering for adaptive 
threshold determination[14]. 

The advancement of machine learning technologies has 
facilitated the development of numerous sophisticated 
methodologies for crack detection, particularly emphasizing 
automated feature extraction and pattern recognition 
capabilities. 

Recent advancements in machine learning-based crack 
detection have yielded various methodological approaches. 
Oliveira et al. developed CrackIT, an unsupervised learning 
framework utilizing standard deviation analysis to 
differentiate between cracked and intact image blocks[15]. 
Cord et al. implemented an AdaBoost algorithm for optimal 
selection of textural descriptors in crack image 
characterization[16]. Convolutional Neural Networks (CNNs) 
have emerged as a predominant architecture for concrete 
crack identification[17-21], with Cha et al. introducing a 
sliding window-based partitioning technique that segments 
images into discrete regions for CNN-based crack presence 
classification[21]. Zhang et al. extended CNN applications to 
pixel-level analysis, initially developing a framework for 
single-pixel classification based on local contextual 
information[22], followed by a comprehensive pixel-wise 
classification system[23]. However, these approaches exhibit 
limitations in capturing spatial relationships between pixels 
and tend to overestimate crack dimensions. Additionally, the 
requirement for manual feature engineering and the network's 
dependency on input image dimensions constrain the 
method's generalizability. In a distinct application domain, 
Elhariri et al. successfully adapted U-Net architecture for 
crack detection in historical surface preservation[24]. 

III. ATTENTION U-NET MODEL 

This section provides a concise overview of the 
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Fig. 1.  Block diagram of U-Net segmentation model 
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attention-based U-Net architecture and its implementation in 
the proposed methodology. 

A. Block Diagram of U-Net Model 

In 2015, Ronneberger et al. proposed a U-Net architecture, 
a specialized convolutional neural network (CNN) 
framework designed for image segmentation tasks, 
particularly in medical imaging applications[25]. This 
network architecture extends the fundamental principles of 
fully convolutional networks[26], leveraging their inherent 
capability to generate hierarchical feature representations. 
Experimental results demonstrate that when trained 
end-to-end using pixel-level annotations, this architecture 
achieves superior performance in semantic segmentation 
tasks compared to previous state-of-the-art methods. The 
block diagram of the U-Net model is presented in Fig.1. 

The U-Net architecture uses a symmetrical 
encoder-decoder structure characterized by its U-shaped 
topology, optimized for biomedical image segmentation 
tasks. The encoder (contracting path) hierarchically extracts 
semantic features through successive processing blocks, each 
comprising dual 3×3 convolutional layers with ReLU 
activation, followed by 2×2 max-pooling (stride=2) for 
progressive spatial dimensionality reduction. This 
down-sampling mechanism systematically halves feature 
map resolutions while doubling channel depth at each stage, 
capturing high-level semantic representations. 

Conversely, the decoder (expansive path) reconstructs 
segmentation masks through 2×2 transposed convolutions 
(stride=2), restoring spatial resolution while halving channel 
depth. Up-sampled features are concatenated with 
skip-connected encoder outputs via channel-wise fusion, 
enabling precise boundary recovery by integrating 
multi-scale contextual information. Subsequent 3×3 
convolutional operations refine the merged feature maps, 
reducing channel dimensionality to generate pixel-level 
segmentation outputs. 

The contracting path in U-Net follows conventional CNN 
architecture principles, employing successive convolutional 

layers, ReLU activations, and max-pooling operations. The 
architectural pipeline establishes hierarchical feature learning 
through successive down-sampling operations, where 
systematic augmentation of channel dimensions 
counterbalances spatial resolution reduction to maintain 
representational fidelity. The symmetric expanding pathway 
enhances feature resolution through successive up-sampling 
operations. Skip connections between corresponding encoder 
and decoder layers integrate high-resolution features from the 
contracting path with contextual information from the 
expanding path, thereby maintaining both global context and 
precise localization. 

The network architecture employs 3×3 convolutional 
filters throughout, with the exception of the final layer which 
utilizes a 1×1 convolution to reduce feature channels to the 
required number of output classes. ReLU activation functions 
are implemented after each convolutional layer (except the 
final layer), with sigmoid activation used for binary 
classification tasks and soft-max for multi-class segmentation. 
The architecture consistently applies 2×2 max-pooling for 
down-sampling and 2×2 up-sampling for feature map 
expansion. The network output consists of pixel-wise 
classification masks that precisely delineate object 
boundaries and categories. 

B. Block Diagram of Attention U-Net Model 

The Attention U-Net architecture builds upon the 
conventional U-Net framework by incorporating an attention 
mechanism into its structural design[27], as illustrated in 
Fig.2. Specifically, the enhancement integrates the attention 
mechanism within the skip-connection pathways, enabling 
more effective feature aggregation and spatial attention 
weighting during the feature fusion process. 

The Attention U-Net architecture introduces a hierarchical 
attention mechanism within the U-Net framework, 
specifically integrating attention gate (AG) modules. These 
modules dynamically weight multi-scale features through 
soft attention coefficients, enabling selective amplification of 
crack-related patterns while suppressing irrelevant 

 

 
Fig. 2.  Block diagram of Attention U-Net segmentation model 
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background noise[28]. This localized attention coefficient 
generation demonstrates superior performance compared to 
conventional global feature vector-based gating approaches, 
effectively enhancing segmentation precision and 
computational efficiency. 

The block diagram of Attention U-Net is shown in Fig.2. 
The encoder part is basically the same as the U-Net encoder, 
with the main change being the decoder part. The structure is 
briefly described as follows: in the encoder part, the input 
image undergoes two sets of 3×3 convolution and ReLU 
activation, then undergoes max pooling down-sampling. 
Following a sequence of four convolutional and pooling units, 
the architecture transitions into the decoding phase. The final 
encoder layer’s feature map undergoes direct upscaling and 
also engages in an attention gating process with the encoder's 
feature map before its integration with the upscaled map. 
With the completion of four upscaling units like this, the 
ultimate segmented image output is produced. 

Attention U-Net enhances feature fusion by implementing 
cross-scale attention mechanisms between encoder and 
decoder pathways. This architecture first computes attention 
weights for skip-connected features, then performs weighted 
fusion before upsampling operations. The resultant 
attention-augmented feature maps exhibit spatial-adaptive 
receptive fields, enabling dynamic region-of-interest 
emphasis. 

Fig.3 presents the attention gate mechanism in the 
Attention U-Net architecture. The output feature map of the 
layer l  is represented as lx . Meanwhile, the feature map g  

represents the up-sampling of the decoder. It is used to 
calculate the attention gating signal parameters and lx . So, 

the size of g  is half of lx . It needs to down-sample lx  or 

up-sample g  to ensure consistent size. The feature lx  

convolves 1 1  to obtain T l
xW x . The feature map of the 

previous layer in up-sampling is g , and after 1 1  

convolution, T
gW g  is obtained. After the size is adjusted, 

T l
xW x  and T

gW g  perform a point by point add operation, 

then pass through ReLU to obtain 1( )T l T
x g gW x W g b   . 

Then 1 1  convolution the result is l
attq . Subsequently, by 

applying the sigmoid function for activation processing, the 
ultimate attention score l  is derived from the convoluted 
result.  

 1( ( ))l T T l T
att x g gq W x W g b b      (1) 

 2 ( ( , ; ))l l l
att attq x g    (2) 

Multiply the attention coefficients l  and lx , it can be to 

obtain ˆ lx . ˆ lx  is the feature map after attention gating 
calculation. The attention mechanism scales the feature map, 
diminishing the influence of extraneous areas while 
amplifying the importance of the focal region, which in turn 

enhances the network's predictive efficiency and the 
precision of the image segmentation. Furthermore, the study's 
findings demonstrate an improvement in the performance of 
the U-Net with the integration of attention gates over the 
baseline U-Net model. 

IV. EXPERIMENTS AND RESULTS 

A. Experiments 

A publicly available crack dataset is CFD[29]，which 

contains 118 annotated crack images with a resolution of 
480×320. The dataset is an annotated road crack image 
database that can roughly reflect the condition of urban road 
surfaces. 

It is apparent that these pictures are marred by interference 
like shadows, oily marks, and damp patches. For the images, 
we apply a division of 60% for training and 40% for testing. 

To enhance model generalization and mitigate overfitting, 
augmented versions of crack images and their corresponding 
annotations were generated through geometric and 
photometric transformations. These included such as rotating, 
width shifting, height adjusting, shearing, increasing or 
decreasing luminosity, scaling randomly, and flipping 
horizontally. This approach was taken to prevent the model 
from overfitting and to bolster the network's capacity to 
generalize. Enhanced crack images and their corresponding 
annotated images were generated based on the original crack 
images through methods such as rotation angle, width offset, 
height offset, shear strength, brightness enhancement, 
brightness reduction, random scaling, and horizontal 
mirroring. The study outlines the employed methods in Table 
I. In this research, the table summarizes the range of data 
augmentation techniques utilized, with 20 degrees for 
rotation, 0.1 for width shifting, 0.1 for height shifting, 0.05 
for shearing, 0.05 for zooming, and a 0.25 probability for 
horizontal flipping. 

B.  Results 

Within the research, the assessment of crack identification 
methods employs metrics such as accuracy, F1 Score, and the 
Intersection over Union (IoU). The calculation of precision 
and recall is based on true positives (TP), false negatives 
(FN), and false positives (FP). For gauging the accuracy of 

 
Fig. 3.  Attention Gate 

 

 
TABLE I  

DATA AUGMENTATION METHODS APPLIED IN THIS STUDY 

Methods Range 

Rotation range 20 

Width shift range 0.1 

Height shift range 0.1 

Shear range 0.05 

Zoom range 0.05 

Horizontal flip 0.25 
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image segmentation, these criteria proficiently quantify the 
correlation between the algorithm's output and the actual 
reference data. The formulae may be articulated in the 
subsequent manner:  

 
TP

Precision
TP FP




 (3) 

 
TP

Re call
TP FN




 (4) 

 
Pr ecision Re call

F1_Score
Pr ecision Re call

2 



 (5) 

 
GroundTruth Prediction

IoU
GroundTruth Prediction





 (6) 

Fig.4(a) presents the raw crack specimen, with its 
corresponding manually annotated ground truth displayed in 
Fig.4(b). For enhanced visual interpretation, Fig.4(c) 

superimposes the crack segmentation results (highlighted in 
red) onto the original image. 

This comparative study quantitatively evaluates the crack 
detection performance between standard U-Net and its 
attention-enhanced variant. While Fig.4(d) presents U-Net's 
segmentation output, Fig.4(e) demonstrates Attention 
U-Net's superior prediction clarity. The visual comparison in 
Fig.4(f) further highlights the attention mechanism's 
effectiveness through red-highlighted crack regions, showing 
significant reduction in both false positives and negatives. 

In order to facilitate intuitive analysis of the segmentation 
effect of Attention U-Net, take an image with oil stains for 
crack segmentation. The original image and ground truth of 
cracks are shown in Fig.5(a) and Fig.5(b) respectively. The 
crack segmentation result of Attention U-Net is shown in 
Fig.5(d). The binarized image of Fig.5(d) is shown in Fig.5(e). 

 

 
Fig. 4.  Crack images and predicted results 

 

 

 
Fig. 5.  Crack images and Attention U-Net predicted results 
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From Fig.5(e), it can be seen that the adverse effects of noise 
such as oil pollution on segmentation have been effectively 
suppressed. 

The crack segmentation results of U-Net and Attention 
U-Net are shown in Table II. 

From Table II, it can be seen that the segmentation 
performance of Attention U-Net is better than that of U-Net. 

V. CONCLUSIONS 

The paper conducts a systematic performance evaluation 
between conventional U-Net and its attention-enhanced 
variant, with particular emphasis on architectural differences. 
Utilizing the standardized CFD crack detection dataset, both 
models undergo rigorous comparative testing. Experimental 
findings demonstrate the superior performance of Attention 
U-Net, which exhibits significantly enhanced robustness 
against common industrial noise interference. Notably, the 
attention-based architecture achieves satisfactory detection 
accuracy across diverse complex backgrounds without 
requiring post-processing procedures. 
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TABLE II  

CRACK DETECTION RESULTS 

Method Precision F1 Score Recall IOU 
U-Net 91.1% 72.5% 79.9% 57.0% 

Attention U-Net 95.2% 76.8% 85.1% 62.8% 
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