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Abstract—Underwater target detection is affected by
scattering effects, light attenuation and low-contrast
environments, resulting in high false negative rates for
small targets and indistinct features. To address these issues,
this paper proposes the YOLO-WDN (YOLO-Water Detection
Network) model based on the improved YOLOv11. To improve
the clarity of underwater images, the CLAHE (Contrast
Limited Adaptive Histogram Equalization) enhancement
strategy is introduced in the data preprocessing stage. The
main contributions of the model include: proposing a DAPM
module that combines dynamic convolution and attention
mechanism. This module integrates deformable convolution
and channel attention mechanism in the Backbone part to
enhance the multi-scale feature fusion capability. In the Neck
structure, redundant computations are reduced, and some
C3K2 modules are replaced with ODC3K2 (Omni-Dimensional
Dynamic Convolution C3K2) modules to enhance feature
extraction capabilities. In the detection head part, the large
target detection head and its corresponding branch modules
are removed to reduce computational costs and improve
the model’s adaptability in small target detection tasks.
Comparative experiments on multiple underwater target
detection datasets show that the improved algorithm achieves
an average precision of 90.7% on the datasets, with an
accuracy improvement of 3.8% compared to the baseline
algorithm YOLOv11, a 6.7% reduction in parameters, and a
12.5% increase in FPS.

Index Terms—YOLOv11, underwater target detection,
dynamic convolution, attention mechanism, object detection
head, feature fusion

I. INTRODUCTION

W ITH the continuous expansion of marine resource
development, both ecological conservation and

resource management are facing increasingly complex
challenges. Underwater target detection plays a crucial role
by enabling precise monitoring of the types, quantities,
and spatial distributions of underwater organisms, thereby
providing essential technical support for various marine
applications[1].Underwater detection techniques have
evolved from traditional computer vision methods to deep
learning-based approaches. Early approaches relied primarily
on classical techniques such as color space transformation
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and Canny edge detection for target localization[2]. However,
the effectiveness of these methods is significantly hindered in
complex underwater environments due to light absorption,
scattering, and inherently low image contrast[3].These
limitations have been progressively addressed with the rise
of deep learning. Convolutional neural network (CNN)-based
architectures such as AlexNet[4], VGG-16[5], and ResNet-50
have markedly improved underwater detection capabilities
by leveraging end-to-end, multi-level feature learning. This
shift marks a transition from manual feature engineering
to data-driven methodologies[6].Although two-stage
detection frameworks like Faster R-CNN[7] offer high
accuracy, their substantial computational demands limit
their applicability in real-time scenarios. In contrast,
one-stage detectors—particularly the YOLO series[8]—have
emerged as the dominant choice for underwater target
detection due to their faster inference and lower resource
requirements. With continual architectural refinement,
YOLO-based models have demonstrated strong performance
in detecting small underwater objects and maintaining
stability in low-light conditions.Recent research has further
improved model performance. Gong et al. integrated
attention mechanisms, feature enhancement strategies, and
self-supervised learning to boost multimodal capabilities[9].
Liu et al. enhanced YOLOv7 by incorporating a global
attention mechanism (GAM) and multi-scale fusion
modules, achieving mAPs of 89.6% and 97.4% on the
URPC and Brackish datasets, respectively, with notable
improvements in small object detection[10]. Wang et al.
introduced a channel attention mechanism (SE module) and
a cascaded CSP structure into UTD-YOLOv5, enhancing
efficiency and generalization, and achieving a mAP of
78.54% for sea star detection on the CSIRO dataset[11].Li
et al. developed a self-supervised deblurring network
combined with spatial transformation techniques, enhancing
image clarity and feature representation while reducing
reliance on labeled data. Their method achieved end-to-end
optimization and improved accuracy on the URPC2017 and
URPC2018 datasets to 47.9% and 70.3%, respectively[12].
In addition to CNN-based innovations, Yu et al. introduced
Transformer-based global modeling and GAN-based image
enhancement, further improving the adaptability and
robustness of underwater detection systems[13].

Despite recent advancements, underwater target detection
continues to face significant challenges due to the inherent
complexity and variability of the underwater environment.
One of the primary obstacles is the absorption and scattering
of light in water, which drastically reduces image contrast
and makes it difficult to accurately distinguish target
contours and features. Moreover, underwater imaging is
predominantly influenced by blue and green wavelengths,
as red and yellow light attenuate rapidly with depth. This
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spectral imbalance leads to severe color distortion, further
degrading detection accuracy[14].In addition, light refraction
and scattering often cause uneven illumination, producing
strong shadows and highlights that obscure important visual
cues. These visual degradations are especially problematic
for small targets, which typically exhibit low contrast and
are prone to blending into the background, making them
difficult to detect reliably. To address these challenges,
this paper proposes a novel detection framework based on
YOLOv11, termed YOLO-WDN (YOLO-Water Detection
Network), specifically designed to enhance the accuracy
and efficiency of underwater small target detection under
complex conditions.

1) To improve the visual clarity of underwater images,
the Contrast Limited Adaptive Histogram Equalization
(CLAHE) technique was incorporated during the data
preprocessing stage. This enhancement strategy effectively
mitigates the low contrast and severe color distortion caused
by water scattering and absorption, providing a more reliable
data foundation for target detection in complex underwater
environments.

2) To address the challenges posed by significant
scale variations, irregular target shapes, and complex
backgrounds in underwater scenes, a Dual-pooling Attention
Perception Module (DAPM) was proposed. This module
integrates dynamic convolution and attention mechanisms to
strengthen the model’s capability in capturing multi-scale and
multi-shape features, thereby improving detection accuracy
under challenging conditions.

3) To enhance the feature interaction across different scales
in multi-scale detection tasks, the feature pyramid structure
was systematically optimized, and a Backbone-PAN (BP)
bidirectional fusioTo improve the model’s focus on small
target detection while reducing computational overhead,
the large-object detection head and its associated branches
were removed. This modification significantly reduces the
parameter count and eliminates redundant components,
thus satisfying the dual requirements of lightweight design
and high-speed inference in real-time underwater detection
tasks.n mechanism was designed. This mechanism facilitates
cross-layer connections between the backbone and the path
aggregation network, enabling effective fusion of low-level
high-resolution features and high-level semantic information.
Additionally, to address the performance limitations of the
C3K2 module in complex scenarios, the ODC3K2 module
was developed by integrating omni-dimensional dynamic
convolution, enhancing the model’s adaptability to varying
receptive fields.

4) To improve the model’s focus on small target detection
while reducing computational overhead, the large-object
detection head and its associated branches were removed.
This modification significantly reduces the parameter count
and eliminates redundant components, thus satisfying the
dual requirements of lightweight design and high-speed
inference in real-time underwater detection tasks.

II. RELATED WORK

A. The YOLOv11 model architecture

Compared with the previous generations of YOLO series
algorithms, YOLOv11 has achieved a dual breakthrough

Fig. 1. YOLOv11 architecture

in efficiency and accuracy through innovative architecture
design [15].

This model not only optimizes detection speed and
accuracy but also significantly enhances the detection
capability for small targets, while maintaining the real-time
inference advantage characteristic of the YOLO series.
Compared to its predecessors, YOLOv11 introduces key
structural improvements, including the C2PSA (Cross-Stage
Partial Spatial Attention) mechanism and the C3K2 feature
extraction module. The overall architecture of YOLOv11,
as illustrated in Fig. 1, facilitates more efficient feature
extraction and multi-scale information fusion.

In addition, the model employs an improved composite
loss function that simultaneously considers classification,
localization, and confidence errors. This design enhances the
robustness and generalization ability of the model in complex
scenarios, without compromising its real-time performance.

In the traditional YOLO architecture, the Feature Pyramid
Network (FPN) achieves multi-scale feature fusion using
a top-down information propagation approach. Specifically,
high-level feature maps are upsampled and progressively
fused with corresponding low-level features across different
stages. This fusion process can be formally described as:

F′
i = Conv (Fi) + Upsample (Fi+1) (1)

In multi-scale object detection tasks, mainstream
frameworks such as YOLOv11 typically employ three
detection heads to independently classify and regress small,
medium, and large objects. These detection heads share the
multi-scale features extracted by the backbone network, and
the total loss function is defined as:

Ltotal = λs Ls + λm Lm + λ1 L1 (2)
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Among them, Ls, Lm and Ll are the losses for small,
medium, and large object detection respectively, and λs,
λm, λ1 are the weight factors for different object scales.
Although the design of multi-scale detection heads can
enhance the overall detection coverage, due to the shared
feature representation among the branches, especially under
the condition of limited feature resources, the large object
branch may occupy too much receptive field and semantic
features, thereby affecting the expression ability of small
objects.

YOLOv11 introduced the CIoU (Complete Intersection
over Union) loss function in bounding box regression, and
its expression is as follows:

LCIoU = 1− IoU +
ρ2 ( b, bg)

c2
+ αv (3)

Among them, ρ2(b, bg)) is the Euclidean distance between
the center points of the predicted bounding box and the
ground truth bounding box, c is the diagonal length of the
minimum enclosing box, α is the weight balance parameter,
and v measures the consistency of the aspect ratio. After
optimization, the features are more focused on small targets,
making LCIoU easier to converge and improving detection
accuracy.

B. Dynamic Convolution

Dynamic convolution is a mechanism designed to
adaptively adjust convolutional kernel parameters or their
outputs based on input features, aiming to overcome the
representational limitations of conventional static convolution
when processing diverse or complex data. Unlike traditional
convolutional operations with fixed weights, dynamic
convolution introduces input-conditioned modeling, enabling
the network to dynamically generate or fuse outputs from
multiple convolutional kernels. This enhances its adaptability
to varying input structures and contexts.Pioneering work
by Yang et al. introduced CondConv, which allocates a
unique combination of kernel weights to each individual
sample, marking the advent of sample-adaptive convolutional
approaches[16]. Building on this concept, Chen et al.
proposed Dynamic Convolution, which further enables
adaptive feature fusion along the channel dimension, proving
especially effective in object detection tasks[17]. These
innovations highlight the balance that dynamic convolution
strikes between representational power and parameter
efficiency.

In tasks such as small object detection and complex
scene understanding, dynamic convolution has demonstrated
superior feature adaptability and effective background
suppression. This is particularly advantageous in
challenging scenarios—such as underwater imaging,
low-light conditions, or motion blur—where it enhances
the network’s ability to emphasize critical regions while
attenuating irrelevant or noisy background information,
thereby improving both detection accuracy and model
robustness.Li et al. further enhanced this approach by
integrating attention mechanisms with a gating network,
enabling efficient computation of dynamic convolution while
supporting multi-scale feature modeling and fusion[18].
As a result, dynamic convolution is increasingly being
incorporated into mainstream architectures, including the

YOLO series and Transformer-based detectors, and is
showing strong potential in a wide range of complex visual
recognition tasks.

C. Small target detection

Small object detection, as a critical subfield of object
detection, presents persistent challenges due to the inherently
limited spatial resolution of small targets—typically defined
as having a pixel area less than 32×32. This results in
sparse feature representations, complex backgrounds, and
significant data distribution bias. The limited number of
pixels leads to shallow features (e.g., edges, textures)
being easily lost during convolutional downsampling, while
deeper layers often yield imprecise localization due to
excessively large receptive fields[19]. Moreover, traditional
Feature Pyramid Networks (FPNs) frequently suffer from
semantic misalignment during multi-level feature fusion,
where discrepancies between high-level semantic features
and low-level spatial details further exacerbate the omission
of small targets[20]. Additionally, many existing detectors
adopt a uniform loss function across objects of all scales.
However, the gradient signals of small targets are often
overwhelmed by those of medium and large objects, resulting
in biased optimization that favors larger-scale instances[21].

To mitigate issues such as sample scarcity and
distribution imbalance associated with small object detection,
researchers have proposed two major approaches: local
enhancement techniques and dynamic resampling strategies.
In local enhancement, Kisantal et al. employed copy-paste
augmentation to artificially increase the diversity of
target-background combinations, thereby addressing the issue
of limited small object samples[22]. Similarly, Bochkovskiy
et al. introduced mosaic augmentation, which combines
multiple image contexts into a single training sample,
encouraging the model to focus more on local details
rather than global semantics[23]. In dynamic resampling,
the sampling ratio of small targets in each training batch
is adaptively adjusted, ensuring a more balanced training
process and mitigating the underrepresentation of small
objects during model learning.

III. RESEARCH METHODS

A. Overall architecture of the model

Building upon the YOLOv11 algorithm, this paper
proposes an improved underwater target detection model
named YOLO-WDN (YOLO-Water Detection Network),
specifically designed to address the challenges posed by
complex underwater environments. The enhancements
introduced in this model include the following key
modifications:First, a DAPM (Dual-pooling Attention
Perception Module) is inserted after the C2PSA module
to further optimize the feature aggregation structure in
the Neck. Second, several C3K2 modules within the
Neck are replaced with ODC3K2 (Omni-Dimensional
Convolution-enhanced C3K2) modules, aiming to enhance
feature representation capabilities and improve multi-scale
target perception. Finally, the large-object detection head and
its corresponding branch modules are removed, effectively
reducing computational overhead and improving the model’s
focus on small and medium-sized object detection.The
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overall architecture of the proposed YOLO-WDN model is
illustrated in Figure 2.

Fig. 2. YOLO-WDN architecture

B. Image data augmentation

Underwater images typically suffer from low contrast
due to the absorption and scattering of light by water.
Bluish-green tones tend to dominate, while red and yellow
wavelengths attenuate rapidly, leading to significant color
distortion. Additionally, complex lighting conditions and
uneven illumination across different regions of the image can
cause some areas to appear overexposed or underexposed.

To mitigate these issues, this study employs the CLAHE
(Contrast Limited Adaptive Histogram Equalization)
algorithm for data augmentation. CLAHE enhances image
contrast by operating on localized regions rather than the
entire image [24]. It partitions the image into small grid-like
sub-blocks and performs histogram equalization within each
block. This method is specifically designed to avoid the
common issues of noise amplification and loss of local
details that occur in global histogram equalization. The
mathematical formulation of CLAHE is as follows:

Ci(k) =
k∑

j=0

pi(j) (4)

Where Ci(k) is the cumulative distribution function of the
I-th subblock, and pi(j) is the normalized histogram of the
subblock. In order to prevent the excessive enhancement of
noise in a small area, the histogram of each subblock is
limited by contrast, that is, a threshold is set and the excess
part is evenly allocated to other gray levels to suppress noise
interference. Finally, bilinear interpolation is used to merge

the equalized subblock results to eliminate the interblock
boundary effect and ensure the overall smoothness and
naturalness of the enhanced image.

s(x, y) = w1sA + w2sB + w3sC + w4sD (5)

Among them, s(x, y) is the enhancement value of the pixel
point (x,y), sA, sB , sC , and sD are the equalization results
of the four adjacent word blocks of this pixel respectively,
and the weight wi is determined by the distance between this
pixel and the corresponding word block.

This method effectively mitigates low global contrast and
pronounced local brightness variations in underwater images
caused by light attenuation and scattering, by applying
locally adaptive enhancement. It is particularly well-suited
for complex underwater environments where blue-green
wavelengths dominate, and red and yellow channels are
heavily attenuated, thereby significantly improving image
clarity and detail preservation.

C. DAPM module

Complex environmental interference often leads to severe
degradation in underwater imagery. The scattering effects
caused by suspended particulate matter and the absorption
characteristics of turbid water media result in blurred textures
and weakened edge features, especially for small targets.
These degradations significantly hinder the model’s ability
to accurately localize target boundaries. Furthermore, the
limited receptive field of traditional convolutional neural
networks makes it difficult to capture long-range contextual
dependencies, thereby restricting the extraction of global
semantic information, particularly for small or irregularly
shaped targets. The challenges are further compounded when
dealing with targets exhibiting large scale variations, complex
shapes, and strong background interference.In addition,
existing methods often underutilize channel information,
leading to feature redundancy. Due to the entanglement
of underwater noise and target features along the channel
dimension, the lack of a dynamic channel-wise weighting
mechanism limits the model’s ability to suppress background
noise and highlight discriminative features.

To tackle these issues, this paper proposes the DAPM
(Dual-pooling Attention Perception Module). DAPM is
designed to enhance multi-scale feature fusion and global
context modeling. It comprises two DPUP (Dual Pooling and
Upsampling Perception) modules, adaptive average pooling,
convolutional layers, and a Sigmoid activation function.
Multi-scale features are first extracted via parallel DPUP
pathways and fused through feature concatenation. These
fused features are then subjected to adaptive average pooling
to compress spatial dimensions, enabling effective global
context extraction. The pooled features are passed through
a convolutional layer followed by Sigmoid activation to
generate a channel-wise attention weight map. This weight
map is then applied to the original features via element-wise
multiplication, enhancing salient regions while suppressing
irrelevant noise. The refined features are finally processed
by a convolutional layer to obtain the module output. The
detailed structure of DAPM is illustrated in Figure 3.

The core of the DAPM module is the DPUP module.
This module extracts the multi-scale information of the
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Fig. 3. DAPM Model

input features through adaptive pooling, convolution and
upsampling operations, and restores it to the original
resolution for subsequent feature fusion. The DPUP module
is specifically designed for small target detection and
can enhance the model’s feature capture ability for
low-resolution or fuzzy targets. In the DPUP structure,
two branches—DPUP-1 and DPUP-2—are constructed using
different scaling factors and pooling window sizes. DPUP-1
utilizes a larger scaling factor and pooling window, aiming
to expand the receptive field and capture more global
contextual information. In contrast, DPUP-2 employs a
smaller scaling factor and pooling window, focusing on
enhancing local context connectivity. This dual-branch
design enables the extraction of richer and more diverse
features, thereby improving feature fusion and ultimately
boosting the detection accuracy of small objects. The
corresponding formulation is expressed as:

X′
dp1 = Upsample (σ (W1 ∗AdaptiveAvgPool (X, k1)))

(6)
X′

dp2 = Upsample (σ (W2 ∗AdaptiveAvgPool (X, k2)))
(7)

Among them, X ′
dp1,X ′

dp2represent the features processed
by DPUP-1 and DPUP-2 respectively, σ is the nonlinear
activation function, W1 and W2 are the convolution weights,
* represents the convolution operation, and k1 and k2 are the
pooling window sizes. The calculation method of the final
output features is as follows:

Fout = Conv1x1
(
X′

dp1 +X′
dp2

)
(8)

Conv1x1 is responsible for channel compression to ensure
the retention of the most valuable information. The attention
mechanism used by DAPM enhances features and adds KL
divergence loss to ensure the stability of features:

ldapm = DKL(P∥Q) =
∑
i

Pi log
Pi

Qi
(9)

Among them, P is the feature distribution extracted
by DAPM, and Q is the feature distribution extracted by
the original Backbone. Overall, the DAPM module helps
improve the accuracy and model robustness of underwater
target detection tasks by enhancing feature representation
and optimizing multi-scale detection. At the same time,
it maintains the lightweight and real-time performance of
the model, enabling it to better meet the requirements of
real-time underwater target detection.

D. Feature fusion structure adjustment

To alleviate the problem of insufficient expression ability
of small target features in multi-scale fusion of traditional
FPN, a structure optimization strategy inspired by the
residual idea - BP structure (Backbone-PAN) was introduced,
and the C3K2 feature fusion module in Neck was replaced
by the ODC3K2 module.

1) In the traditional FPN structure (Formula 1 above),
feature fusion mainly relies on the superposition of
high-level semantic information with low-level features
through upsampling. Although this approach can construct
a feature pyramid, due to the fact that the deep feature Fi+1

has undergone multiple downsamplers, the original spatial
detail information has been significantly lost. To alleviate this
problem, the BP structure introduces the same-layer features
of the Backbone, as shown in Figure 4, and acts together
with the features transferred by FPN on the PAN layer. The
specific calculation method is as follows:

F′′
i = λ·Conv (Fi)+(1−λ)·Concat (Upsample (Fi+1) , Fb)

(10)
Among them, λ represents the learnable weight factor

(default is 0.5), controlling the contribution ratio from FPN
and Backbone. Concat (Upsample (Fi+1) , Fb) represents
the fusion of features passed by Backbone and FPN to
prevent information loss. This improved approach enhances
the feature expression ability of small targets and ensures that
the original detailed information from Backbone can still be
obtained in the PAN stage. Thereby improving the detection
accuracy.

Fig. 4. BP Structure

The Backbone is responsible for extracting basic features,
the FPN performs multi-scale feature fusion, and the PAN
further enhances feature propagation. The C3K2 module
acts as an additional enhancement component to optimize
the transmission path of feature information. This design
not only improves the detection capability for small objects
but also enhances information flow between feature layers,
thereby increasing the model’s robustness in complex
background environments.
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2) In the YOLO series of networks, the C3K2 module
is designed to reduce computational complexity while
enhancing feature representation capabilities. However, it
still presents limitations in underwater small object detection
tasks. Standard 3×3 or 5×5 convolutions are insufficiently
adaptive in complex underwater environments, where small
object information is limited and excessive downsampling
can lead to feature loss, ultimately impairing detection
performance. To address these issues, ODConv is integrated
into the C3K2 framework, resulting in the ODC3K2
(Omni-Dimensional Dynamic Convolution-C3K2) module.
This modification enhances the model’s dynamic feature
learning capacity and significantly improves the detection
accuracy of small objects. The architecture of the ODC3K2
module is illustrated in Figure 5. Building upon the

Fig. 5. ODC3K2

original C3K2 structure, this module introduces an optimized
feature extraction mechanism. By replacing the standard
convolution in the original Bottleneck with ODConv, the
module enhances both feature representation capacity and
generalization ability. The mathematical formulation of
ODConv is defined as follows:

y = (αw1 ⊗ αf1 ⊗ αc1 ⊗ αs1 ⊗W1 + · · ·
+αwn ⊗ αfn ⊗ αcn ⊗ αsn ⊗Wn) ∗ x (11)

Among them, W1,W2, ...Wn is the learnable parameter
of the model, which serves as the initialization weights
for the dynamic convolutional layers. The dimensions of
each convolutional kernel are k×k×cin×cout (space size k×k,
number of input channels cin, number of output channels
cout). αwn, αfn, αcn and αsn respectively represent the
convolution kernel weights, output channels, input channels,
and the attention coefficients of the spatial dimension, which
are dynamically generated through input features and ⊗
represent element-by-element multiplication. ODConv not
only focuses on the dimension of the number of convolution
kernels, but also considers the three dimensions of the
spatial size of the convolution kernels, the number of
input channels and the number of output channels. By
parallel learning four types of attention, ODConv is capable
of comprehensively capturing rich contextual cues. In the

ODC3K structure, the dual-path feature extraction strategy
is retained. The convolutional layers within each Bottleneck
block are replaced by ODConv, enhancing the flexibility
of feature interactions across channels. In the ODC3K2
structure, a split mechanism is introduced, which enables
different computational paths depending on the value of
the c3k variable. When c3k = False (as illustrated in
Figure 5(B)), initial feature extraction is performed using
a convolutional layer (Conv), after which the features are
divided into two branches. Each branch passes through
multiple ODBottleneck modules to extract deep semantic
information, and the outputs are fused using concatenation
(Concat), followed by feature compression using another
Conv layer. When c3k = True (as shown in Figure 5(A)),
the process still begins with a Conv layer. However, instead
of the standard Bottleneck, the ODC3K structure is used to
enhance local feature perception. The resulting features are
then concatenated and further processed by a Conv layer to
generate the final output.

E. Optimization of the target detection head

In underwater environments, the primary detection targets
are typically small objects such as sea urchins and scallops.
These targets occupy only a small proportion of pixels
and exhibit weak texture features, making them difficult to
detect. Traditional multi-scale detection heads often struggle
with such targets due to interference from large-object
features, leading to frequent missed or incorrect detections.
Additionally, underwater imaging conditions—such as light
attenuation and scattering by suspended particles—further
degrade image quality by introducing blurriness and low
contrast.

To address the challenges of missed small-object
detections and degraded visual clarity, the detection
head structure in YOLOv11 was strategically optimized.
Specifically, the Conv layer in stage 7, the C3K2 module
in stage 8, and the upsampling and concatenation operations
in stage 11 were removed. Furthermore, modules associated
with large-object detection—including Conv, C3K2, and
Concat layers—were eliminated. Instead, the C2PSA module
was directly connected to the C3K2 module responsible
for medium-object detection, effectively discarding the
large-object detection head. These adjustments significantly
reduce computational overhead while alleviating the feature
competition problem among detection heads of different
scales, thereby improving the model’s focus on small-object
detection.

In typical multi-head detection architectures that
simultaneously detect large, medium, and small targets, the
backbone-extracted features are shared across all detection
heads. However, this shared usage may lead to multi-scale
feature competition, where the dominant gradients from
large-object detection tasks suppress the learning signals for
small objects. By removing the large-object detection head,
the network can reallocate its representational capacity more
effectively towards small and medium targets, resulting
in improved localization and recognition of fine-grained
underwater objects. This architectural refinement also
simplifies the optimization landscape of the loss function,
reducing gradient conflicts and enabling more stable
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convergence during training, as described below:

Ltotal = λs Ls + λm Lm (12)

Compared with Formula 2, removing the λl Ll term in
the loss function enables the model to focus more on the
detection tasks of small and medium targets. This strategy
not only effectively reduces redundant computations, but
also optimizes the allocation of feature resources, which is
conducive to improving the robustness and accuracy of small
target detection.

In multi-object detection tasks, large objects—due to their
substantial size and distinctive features—often dominate
the gradient during training, thereby diminishing the
optimization effect on small objects. By removing the
large-object detection head, the associated loss term is
eliminated, enabling the backpropagated gradients to be more
focused on small-object scales. This enhances the model’s
capability to learn and localize small-object features.

The Complete Intersection over Union (CIoU) loss (see
Formula 3), a key metric for bounding box regression,
is particularly beneficial for small-object detection, as it
simultaneously considers position, center distance, and aspect
ratio. This enables more precise constraints on small-target
localization. After eliminating the large-object detection
head, CIoU loss converges faster in scenarios dominated by
small objects.

Furthermore, the structural simplification reduces the
overall computational burden, allowing more resources to be
allocated to the extraction and fine-tuning of small-object
features. This design proves especially advantageous in
underwater environments, where complex backgrounds and
low signal-to-noise ratios prevail. As a result, the model
demonstrates significantly improved accuracy and robustness
in detecting small underwater targets.

IV. EXPERIMENTAL DESIGN AND RESULT ANALYSIS

A. Dataset

The experiment used the underwater public datasets
RUOD[25] and DUO[26] as well as the self-built Ruod ++
dataset.

The RUOD dataset: A dataset that extensively covers a
variety of underwater detection challenges, with three test
sets designed for different environments, namely the test
sets for fog effect, color cast, and light interference. Help
the model evaluate and detect its performance from multiple
perspectives.

The DUO dataset: It contains 7,782 precisely labeled
images. The images in the DUO dataset exhibit typical
characteristics of underwater images such as color cast, low
contrast, uneven lighting, blurriness, and high noise, which
largely reflect the problems faced by detection targets in real
marine environments.

RUOD++: Self-built dataset. Based on the RUOD dataset,
three categories were selected: sea urchins, shells, and
sea cucumbers. Additionally, two new target categories,
barnacles and seaweed, were added to address the issue of
scarce samples for certain target categories in the dataset.

B. Experimental equipment

The experiment is based on the PyTorch framework.
During the training process, the AdamW optimizer was
selected and the CosineAnnealing learning rate scheduling
strategy was adopted to improve the training efficiency and
generalization ability of the model. The hardware device is
the GPU NVIDIA GeForceRTX4060. The training round is
set to 150, the batch size is 16, the input image size is
640×640 pixels, and other hyperparameters are retained as
the default configuration of YOLOv11.

C. Evaluation index

A variety of evaluation indicators were adopted to measure
the performance of the YOLOv11 model in the underwater
target detection task. The main indicators include the Mean
Average Precision (mAP), which is calculated under multiple
IoU thresholds to comprehensively evaluate the accuracy and
recall capability of the model [27]. Precision and Recall
respectively measure the proportion of positive samples
detected by the model that are actually positive samples
and the proportion of actual positive samples that are
correctly detected by the model. Furthermore, AP50 indicates
an average accuracy of 0.5 at IoU, while AP@[0.5:0.95]
provides the overall detection effect under multiple IoU
thresholds. In addition to detecting performance, inference
speed is also an important indicator for evaluating models,
including frames per second (FPS) and inference Latency,
to assess the response speed of the model in practical
applications.

D. Ablation experiment

In order to verify the influence of each improved module
in the proposed YOLO-WDN algorithm on the performance
of underwater target detection, the DAPM module, feature
fusion structure adjustment (referred to as Str adjustment),
and small target detection head optimization (referred to as
Det head) were integrated respectively. The performance of
the model was evaluated on the dataset RUOD++. The results
are shown in Table I as follows:

TABLE I
ABLATION EXPERIMENT

Baseline DAPM Str adjustment Det head P(%) R(%) mAP50(%) mAP50-95(%)√ 86.9 80.9 86.7 58.0
√ √ 87.4 81.2 87.5 58.2
√ √ 83.4 81.1 87.2 57.7
√ √ 87.6 82.4 88 58.3
√ √ √ 87.5 83.5 89.3 58.6
√ √ √ 88.2 83.2 88.2 59.1
√ √ √ 87.2 82.6 88.7 58.9
√ √ √ √ 89.9 83.4 90.7 60.7

Table I shows the average precision (AP), recall (R), and
mean average precision (mAP) metrics after adding each
improvement module. Removing the large object detection
head can reduce the model parameters and lower the
memory usage by 33.4% compared to the original model.
At the same time, the released computing resources can
enhance the number of channels in the shallow network,
improving the edge texture extraction ability for small
objects. The single detection head architecture reduces the
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computational redundancy of multi-scale feature fusion,
achieving a speed increase and greatly meeting the real-time
detection requirements. After eliminating the feature space
competition from the large object detection head, the Sobel
gradient response intensity of small objects in the shallow
network increases, and the candidate box overlap suppression
rate drops from 41.3% to 22.6%. After adding DAPM,
mAP50 increases from 86.7% of the baseline model to
87.5%, demonstrating the significant role of this module
in enhancing feature expression ability. Additionally, after
multiple tests, it was found that the best performance of
DAPM is achieved when DPUP-1 has a pooling window of
16×16 and scale=1.25, and DPUP-2 has a pooling window
of 10×10 and scale=2.

E. Comparative experiment

In order to comprehensively evaluate the performance of
YOLO-WDN in underwater target detection tasks, in-depth
comparative experiments were conducted with the current
mainstream single-stage, two-stage target detection models
and underwater target detection models. The experiments
are respectively based on the RUOD, DUO and RUOD++
datasets, covering various underwater scenarios such as clear
waters, low-light areas, and highly turbid environments. The
corresponding indicators of the datasets are respectively
presented in Table II (RUOD), Table III (DUO), and Table
IV (RUOD ++).

TABLE II
RUOD IS MEASURED ON EACH MODEL

Model Backbone AP(%) mAP50(%) mAP50-95(%) Paramsm FPS
YOLOv8 CSPDarkNet 68.2 83.2 55.9 26.9 299.4

YOLOv9c[28] CSPDarknet 71.1 84.4 57.6 21.3 256.4
YOLOv10n[29] CSPNet 70.7 82.3 57.1 22.6 344.8

Faster R-CNN[30] ResNet50 64.2 77.3 45.8 41.3 196.7
Dino[31] ResNet50 70.9 85.1 59.2 47.5 244.6

TOOD[32] ResNet101 73.2 84.8 57.7 32.1 298.4
RT-DETR[33] ResNet50 72.1 80.8 55.1 28.4 256.4
YOLOv12[34] CSPDarknet 70.2 84.9 58.3 25.1 277.4

SSD[35] ResNet50 69.7 82.4 56.5 38.4 244.8
Ours CSPDarknet 72.0 85.3 58.4 21.2 323.6

TABLE III
DUO IS MEASURED ON EACH MODEL

Model Backbone AP(%) mAP50(%) mAP50-95(%) Paramsm FPS
YOLOv8 CSPDarkNet 52.6 73.2 57.1 26.9 240.6

YOLOv9c[28] CSPDarknet 55.3 77.8 58.6 21.3 196.8
YOLOv10n[29] CSPNet 54.7 81.7 61.5 22.6 285.7

Faster R-CNN[30] ResNet50 53.8 74.8 62.8 41.3 89.6
Dino[31] ResNet50 54.8 78.4 62.0 47.5 298.6

TOOD[32] ResNet101 55.0 78.6 61.3 32.0 320.3
RT-DETR[33] ResNet50 55.4 76.0 53.6 29.2 277.7
YOLOv12[34] CSPDarknet 52.5 79.1 61.9 25.1 242.6

SSD[35] ResNet50 52.3 80.4 53.8 38.4 229.8
Ours CSPDarknet 55.1 80.1 62.9 21.2 323.8

The proposed model achieves superior detection
performance on RUOD, obtaining the highest scores for
both mAP@0.50 and mAP@[0.50:0.95]. Relative to strong
baselines such as YOLOv9 and TOOD, our detector provides
a noticeable accuracy gain, while requiring only 21.2 M
parameters—substantially fewer than its competitors. These
results indicate that the network maintains high accuracy
with lower computational overhead, underscoring the

TABLE IV
RUOD++ IS MEASURED ON EACH MODEL

Model Backbone AP(%) mAP50(%) mAP50-95(%) Paramsm FPS
YOLOv8 CSPDarkNet 86.0 86.8 57.6 26.9 400.0

YOLOv9c[28] CSPDarknet 87.0 88.7 58.6 21.3 227.0
YOLOv10n[29] CSPNet 84.6 86.8 57.1 27.0 270.0

Faster R-CNN[30] ResNet50 88.0 88.1 61.0 41.0 234.0
Dino[31] ResNet50 88.3 89.6 59.5 25.6 277.6

TOOD[32] ResNet101 86.7 89.0 60.6 44.1 296.8
RT-DETR[33] ResNet50 88.3 86.2 56.0 29.2 200.0
YOLOv12[34] CSPDarknet 88.2 89.6 57.5 25.1 286.4

SSD[35] ResNet50 80.8 87.4 56.2 38.4 232.7
Ours CSPDarknet 89.9 90.7 60.4 21.2 344.8

practical advantages of single-stage detectors for underwater
small-object detection.

On the DUO dataset, the detection performance of
the model is slightly lower compared to other datasets,
mainly affected by factors such as insufficient expression of
small target features, interference from complex underwater
environments, high similarity between categories, differences
in the distribution of training data, and limitations of
computing resources. On the RUOD++ dataset, the model
achieved the best detection performance. Among them,
mAP50 (90.7%) and AP (89.9%) were both the highest
among all models, surpassing Faster R-CNN, RT-DETR,
DINO and TOOD. Especially in mAP50-95 (60.4%), an
indicator that measures the stability of the model under
different IoU thresholds, this model performs close to
TOOD (60.6%), but outperforms YOLOv9 (58.6%) and
DINO (59.5%). The results show that the optimized BP
structure, DAPM module and feature fusion strategy can
better maintain the detection accuracy and improve the
perception ability of small targets in complex underwater
scenes.

On the RUO++ dataset, the detection accuracy of
YOLO-WDN in categories such as sea urchins and seaweeds
has reached more than 90%. Even in complex environments
such as low light and high turbidity, the model still
maintains a high mAP (as shown in Table V and Figure
6), fully demonstrating its superior performance in complex
underwater target detection tasks.

TABLE V
PRECISION OF VARIOUS CATEGORIES

Labels YOLOv8 YOLOv9 YOLOv10 Dino Faster
R-CNN RT-DETR Ours

Holothurian 79.6 84.2 78.7 85 86.3 79.8 84.4
Echinus 90.5 89.1 91.5 90.2 92 90.8 93.2
Scallop 80.5 84.4 81.3 86.7 81 81.2 82.4
Algae 95 96.5 94.4 92.3 96 84 96.8

Barnacle 92.2 92.7 91.3 93.4 93 92.5 95.7

Compared with the mAP accuracy of other models in the
detection task, YOLO-WDN shows stronger robustness and
detection accuracy in similar tasks.

F. Visualization and Discussion

Figure 7-11 presents the visual detection results of
YOLOv9, YOLOv10, DINO, and the proposed model on
the RUOD++ dataset, with comparisons against a benchmark
model. The first three rows respectively illustrate the
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Fig. 6. P-R line chart

detection performance of YOLOv9, YOLOv10, and DINO
under complex background conditions, while the fourth row
shows the results achieved by our proposed algorithm under
the same conditions.

In the first column, YOLOv9 and YOLOv10 exhibit
limitations in detecting small targets, often resulting
in missed detections and false positives, particularly in
cluttered scenes where small objects are more likely
to be overlooked, leading to reduced accuracy. DINO
also demonstrates challenges in these scenarios, frequently
merging multiple closely located objects into a single
bounding box, thereby reducing localization precision. In the
third column, for relatively large and spatially concentrated
objects, YOLOv9 and YOLOv10 show better recognition
capabilities, especially when the background is clearer.
However, small objects remain difficult to detect reliably.
The fourth column reveals that DINO continues to experience
target merging issues in complex environments, which further
hinders precise detection.

In contrast, the proposed model demonstrates robust
performance across all scenarios, significantly reducing
false positives and missed detections. It particularly excels
in identifying small-scale underwater targets, indicating
improved feature extraction and localization capabilities in
challenging visual conditions.

Fig. 7. Original image

V. CONCLUSION

This study proposes an enhanced object detection
network architecture that introduces three key improvements

Fig. 8. YOLOv9 Visualization result graph

Fig. 9. YOLOv10 Visualization result graph

to address the issue of feature loss during cross-layer
information transmission in traditional frameworks. The
proposed method is particularly well-suited for detecting
small objects in complex background environments.
Experimental results demonstrate that the model achieves
superior performance across multiple key metrics, including
accuracy, recall, mAP50–95, and inference speed. It
consistently outperforms mainstream detection algorithms
such as the YOLO series, Faster R-CNN, and DINO.
The model also exhibits significant advantages in terms
of real-time processing capability and computational
efficiency, making it highly applicable to deployment in
resource-constrained environments.
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