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Abstract—Tiny Machine Learning (TinyML) enables the 

deployment of machine learning models on ultra-low-power 

and memory-constrained edge devices. This capability is crucial 

for person detection systems in applications such as smart 

homes, wearable health monitors, industrial safety, and wildlife 

surveillance. However, deploying person detection on 

microcontrollers poses significant challenges due to limited 

computation, memory, and energy resources. This paper 

presents a systematic literature review (SLR) of recent research 

in TinyML-based person detection from 2014 to 2024. We 

explore lightweight neural network architectures (e. g. , 

MobileNet, Tiny-YOLO), optimization techniques (e. g. , 

quantization, pruning, knowledge distillation), and 

performance metrics, including accuracy, latency, and energy 

efficiency. We also assess the suitability of edge hardware 

platforms such as ARM Cortex-M, ESP32, STM32, Jetson 

Nano, and Raspberry Pi. The review identifies current trends, 

highlights practical constraints, and proposes future directions 

involving adaptive models, federated learning, and privacy-

preserving designs. This work serves as a reference for 

researchers and practitioners aiming to build efficient, scalable, 

and real-time TinyML-based person detection systems. 

 
Index Terms—Lightweight models, Person detection, 

Resource-constrained devices, TinyML 

 

I. INTRODUCTION 

INY Machine Learning (TinyML) represents a 

transformative shift in artificial intelligence, enabling 

the deployment of trained machine learning models directly 

on ultra-low-power, memory-constrained devices such as 

microcontrollers. This capability is particularly valuable in 

real-time, always-on applications where cloud connectivity 

is impractical, expensive, or privacy-sensitive [1]. Among 

the many applications of TinyML, person detection—the 

task of identifying the presence of individuals in images or 

video streams—has emerged as a critical function across 

domains such as smart homes, wearable health monitoring, 

industrial safety, environmental surveillance, and 

autonomous systems. Unlike traditional deep learning 
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methods that rely on high-resource cloud servers or GPUs, 

TinyML-based person detection aims to perform on-device 

inference within the strict limits of computation, memory, 

and energy typical of embedded systems. [2]-[4]. 

 Despite the growing interest in TinyML, deploying 

person detection models on edge devices presents numerous 

challenges. These include constrained memory (often limited 

to kilobytes), low clock speed CPUs, limited or absent 

accelerators, and strict power budgets. Consequently, 

achieving accurate and efficient person detection in such 

settings necessitates the use of lightweight neural network 

architectures (e. g., MobileNet, Tiny-YOLO, SqueezeNet) 

along with model optimization techniques such as 

quantization, pruning, knowledge distillation, and neural 

architecture search [5].  

TinyML is an emerging subfield of machine learning that 

focuses on deploying models on resource-constrained edge 

devices—such as microcontrollers—with minimal power 

and memory requirements [6]. Devices like the ARM 

Cortex-M series, ESP32, and Arduino boards are low-cost 

and low-power, making them well-suited for applications 

that demand local, efficient, and real-time processing. 

Additionally, TinyML enables machine learning in remote or 

distributed environments without requiring continuous 

internet connectivity or access to cloud infrastructure. This 

capability is particularly valuable in scenarios that 

necessitate privacy, low latency, or offline functionality [5].  

One of the key applications of TinyML is person 

detection [7]–[10], which involves identifying human 

presence in various environments [11]. Thus, implementing 

person detection on TinyML-enabled devices has practical 

value across multiple domains [12], [13]. For instance, in 

home automation, it can trigger lighting, climate control, or 

security systems based on occupancy. In industrial settings, 

it helps monitor hazardous areas, enhancing worker safety 

without the need for continuous supervision. Similarly, in 

health and fitness, it enables wearable devices to track 

activity patterns and support wellness monitoring. 

Furthermore, in agriculture and conservation, it can detect 

unauthorized human presence to protect restricted areas and 

wildlife habitats.  

Person detection presents significant challenges for 

resource-constrained devices due to their limited processing 

power and memory capacity [14]. Although traditional 

machine learning and deep learning models—such as YOLO 

(You Only Look Once) and MobileNet—are widely 

employed for person detection, they typically require 

substantial computational resources [15]–[17]. 
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 Likewise, recent advancements in large language models 

(LLMs), while highly effective across various AI tasks, 

demand considerable computing power and are generally 

unsuitable for direct deployment on edge devices. 

 To address these limitations, TinyML adapts complex 

models through a range of optimization techniques, 

including model quantization, pruning, knowledge 

distillation, neural architecture search (NAS), weight 

sharing, low-rank factorization, and operator fusion. When 

combined with efficient architectural design and hardware-

aware training, these methods enable the deployment of 

intelligent models on low-power, memory-constrained 

devices with minimal loss in accuracy [18].  

This review adopts a rigorous methodology encompassing 

the selection, evaluation, and synthesis of peer-reviewed 

journal articles and conference papers published between 

2014 and 2024. A total of 132 studies were initially 

screened, of which 50 met the inclusion criteria. The review 

focuses on key areas, including lightweight model 

architectures, optimization techniques such as quantization 

and pruning, and hardware-specific implementations across 

microcontrollers, edge devices, and IoT platforms. 

Additionally, evaluation metrics—such as accuracy, latency, 

and energy efficiency—were systematically analyzed to 

assess the performance of the reviewed approaches. 

 The goal of this paper is to provide a comprehensive and 

systematic literature review (SLR) of TinyML techniques 

specifically applied to person detection systems. By 

synthesizing insights from peer-reviewed publications 

between 2014 and 2024, we aim to: 

1)    Holistic Review of TinyML Person Detection 

Techniques: This review provides a comprehensive synthesis 

of recent literature on TinyML models applied to person 

detection, covering both vision-based and sensor-driven 

approaches. Moreover, it examines a wide range of 

embedded platforms, including microcontrollers and 

lightweight edge devices, to evaluate how TinyML 

techniques are practically implemented. 

2)    Comparative Analysis of Evaluation Metrics and 

Hardware Platforms: Key performance indicators such as 

accuracy, latency, model size, power consumption, and 

frames per second (FPS) are discussed in detail. 

Additionally, a comparative review of hardware platforms 

commonly used in TinyML applications is provided to 

highlight trade-offs and deployment considerations. 

3)    Identification of Research Challenges and Gaps: This 

review highlights key challenges in deploying person 

detection models on ultra-low-power devices, including 

constraints related to computational resources, 

generalization across diverse environmental conditions, lack 

of standardized evaluation benchmarks, and privacy 

concerns. 

4)    Direction for Future Research and Innovation: This 

review outlines a roadmap for future research, emphasizing 

the need for adaptive models, efficient federated learning, 

multi-sensor fusion, privacy-preserving techniques, and 

standardized datasets and evaluation frameworks. These 

insights aim to guide researchers toward building scalable, 

robust, and ethical TinyML-based person detection systems. 

5)     Inclusion of State-of-the-Art Studies: This review 

integrates findings from the most recent academic and 

industry contributions to ensure a current and forward-

looking perspective on the evolving TinyML ecosystem. 

 The remainder of this paper is organized as follows: 

Section II describes the methodology for conducting this 

systematic review, including the criteria for selecting and 

analyzing relevant studies, as well as the technical 

requirements of person detection. Section III provides 

background on TinyML and the person detection task. 

Section IV categorizes and analyzes current approaches in 

terms of models, optimization methods, hardware platforms, 

and datasets. Section V discusses technical challenges, 

research gaps, and future directions. Finally, Section VI 

concludes the paper by summarizing findings and 

implications for future work.  

II. RESEARCH METHODOLOGY 

This section outlines the systematic approach used to 

identify, select, and analyze relevant literature on TinyML-

based person detection systems. The review methodology is 

designed to ensure transparency, reproducibility, and 

comprehensive coverage of state-of-the-art research. A 

systematic literature review is a structured method used to 

identify, evaluate, and synthesize all relevant research on a 

specific topic to answer predefined research questions 

(RQs). To effectively assess the breadth of available 

evidence, a systematic and transparent approach is essential. 

Such reviews aim to provide a comprehensive and unbiased 

evaluation of a research domain through a rigorous, 

replicable, and auditable methodology. This approach 

addresses the need for researchers to consolidate existing 

knowledge on a given topic reliably and impartially. As a 

result, systematic reviews enable the formulation of 

generalizable conclusions beyond those of individual 

studies, offer insights into the current state of the field, and 

serve as a foundation for future investigations.  

To conduct the SLR on TinyML-based person detection, a 

structured and rigorous approach was employed to ensure 

the completeness and reliability of the findings. Specifically, 

the methodology consisted of the following steps: 

A. Research Questions Formulation 

 The review was structured around clearly defined 

research questions, which aimed to investigate the 

predominant approaches, optimization techniques, and 

existing challenges associated with TinyML-based person 

detection. The goal of this review is to address the following 

research questions (RQs): 

1)    RQ1: What are the key limitations and challenges in 

implementing TinyML-based person detection on resource-

constrained devices? 

2)    RQ2: Which TinyML models are employed for 

person detection? 

3)    RQ3: What state-of-the-art techniques are applied in 

TinyML for person detection? 

4)    RQ4: Which performance metrics are most 

commonly reported? 
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5)    RQ5: What datasets and benchmarks are commonly 

used for training and evaluating TinyML-based person 

detection models? 

6)    RQ6: Which hardware platforms are utilized for 

TinyML-based person detection, and what are their specific 

constraints? 

7)    RQ7: What hardware constraints are typically 

addressed, and what strategies are used to manage them? 

8)    RQ8: What future research directions and potential 

improvements have been proposed?  

      These questions guide the literature search and help 

frame the synthesis and discussion of findings. 

B. Search Strategy  

A comprehensive literature search was conducted using 

the following academic databases: IEEE Xplore, ACM 

Digital Library, SpringerLink, Scopus, Web of Science, and 

Google Scholar. The search covered publications between 

2014 and 2024, reflecting the emergence and growth of 

TinyML research over the past decade.  

 Search queries included combinations of keywords such 

as: ―TinyML, ‖ ―person detection, ‖ ―human presence 

recognition, ‖ ―embedded object detection, ‖ ―lightweight 

CNN, ‖ ―on-device inference, ‖ ―quantization, ‖ ―pruning, ‖ 

―microcontroller, ‖ ―edge AI, ‖ and ―ultra-low-power 

vision.‖  

For example, one query used was ―TinyML person 

detection‖ AND ―edge computing‖ AND ―low-power. ‖ To 

ensure the inclusion of recent advancements, the search was 

limited to articles published between 2014 and 2024. The 

strategy involved using Boolean operators to combine 

keywords, such as ("TinyML" OR "Tiny Machine 

Learning") AND ("person detection" OR "human 

detection") AND ("low-resource" OR "microcontroller" OR 

"IoT"), and incorporating synonyms or related terms like 

―embedded AI‖ or ―edge AI‖ to broaden the scope of the 

search. 

C. Inclusion and Exclusion  

Studies were selected based on the predefined inclusion 

and exclusion criteria presented in Table I. 

D. Screening and Selection Process   

The study selection process was conducted in three stages 

to ensure the inclusion of high-quality and relevant 

literature. First, an initial screening reviewed the titles and 

abstracts of all identified studies to assess their relevance to 

TinyML in person detection systems. Next, a full-text review 

was performed on the selected studies to verify that they met 

the predefined inclusion criteria. Finally, a quality 

assessment evaluated each study’s methodological rigor, 

relevance to the research objectives, and completeness of 

reported data.  

 The study selection process in a SLR is a critical step to 

ensure the inclusion of relevant, high-quality, and focused 

papers [19]. The typical steps involved in this process, 

tailored to the domain of TinyML person detection, are 

outlined below. Initially, the literature search identified 132 

research papers, as shown in Fig. 1. Subsequently, after 

reviewing titles, abstracts, and keywords, and removing 

duplicates, 79 papers were selected for further evaluation. 

Then, following the application of inclusion and exclusion 

criteria during the full-text review, a total of 50 papers were 

selected for detailed analysis in this survey. Overall, Fig. 1 

illustrates the systematic process of literature selection 

conducted for this survey on TinyML and its related 

domains. 
TABLE I 

INCLUSION AND EXCLUSION CRITERIA FOR STUDY SELECTION 

Inclusion criteria Exclusion criteria 

Articles focused on person 

detection using TinyML 

techniques. 

General object detection studies 

without specific focus on person 

detection. 

Evaluated models or algorithms 

on resource-constrained 

hardware platforms. 

Papers lacking experimental 

validation or real-world 

implementation. 

Provided performance metrics 

such as accuracy, latency, or 

energy efficiency. 

Non-English publications unless 

translations are accessible. 

Studies presenting models 

optimized for low-power or 

resource-constrained devices. 

Studies not related to TinyML or 

person detection. 

Papers published within a 

specific time frame (e.g., last 

5–10 years). 

Papers with only theoretical or 

simulation results without real-

world application. 

Peer-reviewed papers and 

reputable conferences (e.g., 

IEEE, ACM). 

Studies focused on generic 

machine learning or AI but not 

on TinyML. 

Papers focusing on TinyML 

applications for person 

detection. 

Research addressing person 

detection on high-resource 

devices like GPUs or cloud 

platforms. 

Studies involving low-resource 

hardware platforms like 

microcontrollers or IoT devices. 

Publications without 

experimental validation or clear 

methodological details. 

Research addressing hardware 

constraints (e.g., memory, 

power, computational 

resources). 

Duplicates or papers with 

incomplete data. 

Publications that propose or 

evaluate machine learning 

models suitable for resource-

constrained environments. 

 

Papers published in peer-

reviewed journals, conferences, 

or reputable technical 

platforms. 

 

Studies that provide benchmark 

datasets, metrics, or 

experimental evaluations. 

 

E. Data Extraction and Final Inclusion   

A standardized data extraction form was employed to 

systematically collect key information from each study. This 

included publication details such as authors, year, and 

venue; the techniques or algorithms applied, including 

models like YOLO, MobileNet, and CNN; and dataset 

information covering widely used benchmarks like MS 

COCO, Pascal VOC, or custom datasets. Additionally, data 

were gathered on the model architectures and applied 

optimization techniques as well as the hardware platforms 

used for evaluation, for example, microcontrollers and edge 

AI chips. Furthermore, reported performance metrics such as 

accuracy, inference latency, and energy consumption were 

also collected to enable comprehensive analysis. 

F. Data Synthesis and Analysis   

The extracted data were synthesized to identify trends, 

categorize approaches, and compare performance metrics. 
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Quantitative metrics were aggregated for comparative 

analysis, while qualitative insights were drawn to highlight 

existing challenges and emerging opportunities. 

 

 
 

Fig. 1.  Illustrates the screening process 

 

The findings from the reviewed studies were organized 

into five key themes. First, Techniques and Algorithms 

revealed a broad range of TinyML approaches for person 

detection, including lightweight convolutional neural 

networks (CNNs), quantized models, and pruning strategies 

aimed at reducing model size and computational overhead. 

Second, Datasets and Benchmarking highlighted the 

frequent use of standard datasets such as MS COCO and 

Pascal VOC, while also exposing a significant gap in 

publicly available, real-world, small-scale datasets tailored 

for embedded person detection. Third, the theme of 

Challenges emphasized persistent issues such as limited 

memory capacity, constrained processing power, high 

inference latency, and the need for ultra-low power 

consumption on edge devices. Fourth, Hardware and 

Software Optimization explored commonly used 

microcontrollers and edge AI platforms, along with 

supporting frameworks like TensorFlow Lite for 

Microcontrollers and CMSIS-NN, which facilitate 

deployment on resource-limited hardware. Lastly, the theme 

of Future Directions outlined open research challenges, 

including improving model robustness under varying 

environmental conditions, enhancing detection accuracy 

without increasing resource demands, and minimizing 

computation for real-time, on-device inference. 

G. Reliability and Validity  

To enhance reliability, the study selection and data 

extraction processes were independently reviewed by 

multiple researchers. Any discrepancies were subsequently 

resolved through discussion in order to reach consensus and 

uphold methodological rigor. Moreover, the purpose of this 

literature review on TinyML is to capture the current state of 

development in TinyML applications, particularly those 

focused on person detection systems. To achieve this goal, it 

is crucial to collect data on various aspects, including the 

hardware platforms used, available memory, power 

consumption, software frameworks, and implemented 

algorithms. The insights obtained from this review will, 

therefore, serve as a foundation for the design and 

development of an efficient and reliable person detection 

system leveraging TinyML technology. 

III. BACKGROUND 

This section provides foundational context for the two 

core pillars of this review: Tiny Machine Learning 

(TinyML) and person detection. It outlines their definitions, 

relevance, and the motivation for their integration in 

embedded AI systems. 

 

 
 

Fig. 2. Applying TinyML 

A. Tiny Machine Learning (TinyML) 

TinyML is a rapidly emerging subset of machine learning 

that focuses on deploying trained models on 

microcontrollers and other highly constrained embedded 

devices, typically with limited memory (in the range of tens 

to hundreds of kilobytes) and power consumption in the 

milliwatt range. The key advantage of TinyML lies in its 

ability to enable intelligent inference at the edge—without 

the need for continuous cloud connectivity—thereby 

reducing latency, improving privacy, and supporting real-

time responses in distributed systems.  

 To operate effectively within the constraints of such 

hardware, TinyML relies heavily on [20]: 

    Model compression techniques, such as quantization 

and pruning, to reduce model size and memory footprint; 

    Lightweight neural architectures, such as MobileNet, 

Tiny-YOLO, and SqueezeNet, which balance efficiency and 

accuracy; 

    Specialized deployment toolchains, including 

TensorFlow Lite for Microcontrollers (TFLM), CMSIS-NN, 

and Edge Impulse, to optimize inference at runtime. 

Fig. 2 illustrates the interdisciplinary nature of Tiny 

Machine Learning (TinyML) within the context of person 

detection systems. TinyML exists at the intersection of three 

core domains: Machine Learning, Embedded Systems, and 

Person Detection. From a machine learning perspective, 

IAENG International Journal of Computer Science

Volume 52, Issue 11, November 2025, Pages 4074-4086

 
______________________________________________________________________________________ 



 

TinyML leverages lightweight models and neural networks 

designed for inference on low-power devices. Embedded 

systems contribute the hardware and system-level constraints 

that shape how these models are deployed, typically on 

microcontrollers, SoCs, or edge devices with limited 

memory and computational capacity. The third domain, 

person detection, defines the target application, focusing on 

the recognition of human presence or activity through sensor 

data, often under real-time and privacy-sensitive conditions. 

The convergence of these three areas enables the 

development of intelligent, resource-efficient, and context-

aware systems that can operate autonomously at the edge 

without relying on cloud infrastructure. This integration 

highlights the need for optimized algorithms, efficient 

hardware design, and robust sensing strategies to meet the 

stringent demands of TinyML-based person detection 

applications. 

B. Person Detection  

Person detection refers to the task of identifying human 

presence in various input modalities, including RGB images, 

video frames, and non-visual sensor data (e. g., thermal, 

radar, or PIR sensors). As a foundational function in 

computer vision and embedded AI, it enables a wide array of 

context-aware applications across smart environments, 

surveillance, healthcare, robotics, and automotive systems. 

Traditionally, person detection has been addressed using 

large-scale convolutional neural networks (CNNs) such as 

YOLO, SSD, and Faster R-CNN, which provide robust 

accuracy but demand substantial computational resources. 

However, these models are impractical for resource-

constrained embedded platforms due to their size, memory 

requirements, and power draw. [21].  

To enable on-device person detection under TinyML 

constraints, several innovations have been adopted: 

    Model simplification through the use of compact 

CNNs or binary neural networks (BNNs); 

    Non-visual sensing techniques, such as passive 

infrared (PIR), ultrasonic, and low-resolution thermal 

imaging, which reduce input dimensionality; 

    Hybrid architectures that combine classical computer 

vision techniques (e.g., Haar cascades) with lightweight deep 

learning inference for enhanced robustness. 

 Furthermore, sensor fusion strategies that combine inputs 

from visual and non-visual sources can improve detection 

accuracy under adverse conditions such as poor lighting, 

occlusion, or camera obstruction [22]. 

  In the context of embedded AI, person detection must 

meet stringent performance benchmarks: high inference 

speed, low memory usage, real-time processing, and energy 

efficiency. Thus, optimizing person detection for TinyML 

platforms is an essential research challenge that drives 

innovation in edge-AI model design and hardware-aware 

learning. 

IV. KEY RESULTS AND ANALYSIS 

The sources for this review comprise 50 peer-reviewed 

journal articles and conference papers, which were identified 

through the methodology previously outlined. Fig. 3 

illustrates the distribution of research papers related to 

TinyML over the past decade, spanning from 2014 to 2024. 

Specifically, the bar chart depicts the number of research 

papers published each year within this period. The x-axis 

represents the years, whereas the y-axis indicates the number 

of papers published annually. From the chart, it is evident 

that research activity in TinyML was minimal between 2014 

and 2018.  

However, a gradual increase began in 2019, marked by 

the publication of two papers. This upward trend continued 

through 2020 and 2021, with four papers published in each 

of those years. Furthermore, a more significant rise in 

research output is observed from 2022 onward. The number 

of papers increased to eight in 2022, followed by eleven in 

2023, and peaked at twelve in 2024. This trend clearly 

suggests a growing interest and accelerating research activity 

in the field of TinyML, particularly from 2019 onward. 

Therefore, it may be concluded that TinyML is an emerging 

or rapidly developing area of study, gaining increasing 

attention from the research community.  

The reviewed literature reveals several key research 

focuses, including the development of lightweight model 

architectures, the implementation of optimization techniques 

such as quantization and pruning, and the adaptation of 

machine learning models to hardware-constrained 

environments, particularly microcontrollers [23] and edge 

devices [24]. TinyML-based person detection has witnessed 

considerable progress, driven by its applicability in domains 

such as smart IoT devices [25], security systems, and 

wearable technologies [26]. Consequently, TinyML has 

emerged as a transformative paradigm for enabling 

intelligent functionalities on ultra-low-power embedded 

systems. Despite these advancements, existing studies also 

exhibit several limitations that impede broader deployment 

and limit generalizability across diverse operational 

contexts. Therefore, a critical evaluation of the core studies 

is warranted to elucidate their contributions while also 

identifying the methodological and practical constraints that 

must be addressed to advance the field further. 

 
Fig. 3. Publication trend line 

A. The Limitations and Challenges of Implementing 

Person Detection on TinyML Devices 

Despite its significant potential, implementing person 

detection on TinyML devices presents several challenges 

[27], as illustrated in Fig. 4. One of the primary obstacles is 

memory and processing constraints. Microcontrollers 
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typically offer limited RAM and flash storage—often 

ranging from 64 to 512 KB of RAM and only a few 

megabytes of flash memory—which significantly restricts 

the size and complexity of models that can be deployed [28]. 

Moreover, TinyML devices are generally built around low-

power microcontrollers, such as those from the ARM 

Cortex-M series, which operate at low clock speeds and lack 

dedicated hardware accelerators like GPUs or NPUs. As a 

result, the execution of complex neural networks becomes 

infeasible, necessitating extreme model compression 

techniques in order to maintain acceptable performance 

within these hardware limitations. 

 

 
 

Fig. 4. Limitations and challenges 

 

 Power consumption is a critical concern for many 

TinyML devices, as they often rely on battery power; 

therefore, maintaining low power usage while performing 

frequent or real-time person detection poses significant 

challenges, particularly when utilizing cameras or processing 

continuous sensor streams. Consequently, person detection 

models must be highly efficient to prevent rapid battery 

depletion, especially in applications requiring continuous 

monitoring. Moreover, there is an inherent trade-off between 

model accuracy and efficiency: reducing model size to fit 

within hardware constraints often results in decreased 

detection accuracy, particularly under challenging conditions 

such as occlusions, varied poses, or complex backgrounds. 

Thus achieving robustness while maintaining efficiency 

remains a central challenge. 

 In addition, deployment and maintenance of models on 

TinyML devices present further difficulties due to limited 

connectivity and hardware interfaces, which complicate both 

initial deployment and subsequent updates in the field. 

Therefore, striking an optimal balance between accuracy, 

efficiency, and practical deployability is essential to enable 

effective and sustainable person detection on TinyML 

devices. 

B. Several Lightweight Model for Person Detection 

In the context of TinyML, lightweight models are 

essential for enabling person detection on devices 

constrained by limited computational resources, memory, 

and power. To address these constraints, several compact 

and efficient models have been developed specifically for 

deployment on TinyML devices. For instance, MobileNet 

variants (V1, V2, and V3) are widely adopted due to their 

use of depthwise separable convolutions, which provide an 

effective balance between accuracy and resource 

consumption. Similarly, Tiny-YOLO variants (such as Tiny-

YOLOv3, v4, and v11) streamline the original YOLO 

architecture to support real-time person detection on low-

power hardware. Moreover, models like SqueezeNet and 

ShuffleNet are designed to minimize model size and 

computational complexity, making them particularly well-

suited for memory-constrained environments. 

 Additionally, Binary Neural Networks (BNNs), which 

rely on binary weights and activations, drastically reduce 

memory usage and computational demands, rendering them 

ideal for ultra-low-power applications. Furthermore, custom 

micro-CNNs and models optimized with CMSIS-NN are 

specifically tailored for ARM Cortex-M microcontrollers, 

achieving high efficiency in performing basic person 

detection tasks. Collectively, these lightweight models form 

the backbone of TinyML-enabled vision systems, where 

both computational efficiency and low power consumption 

are critical for practical deployment. 

C. TinyML Leverages Several Techniques for Person 

Detection 

Modern TinyML person detection techniques leverage 

lightweight neural network architectures specifically tailored 

for edge devices. Models such as MobileNet [29], 

EfficientNet-Lite, and YOLO-Tiny dominate the field, as 

they emphasize a balance between accuracy and 

computational efficiency. Furthermore, techniques such as 

quantization-aware training, model pruning, and hardware-

specific optimizations significantly enhance the suitability of 

these models for resource-constrained environments, as 

illustrated in Table II. This table outlines several widely 

adopted methods aimed at improving model performance, 

reducing computational overhead, and facilitating 

deployment, particularly for edge and low-power devices. In 

addition, emerging approaches are increasingly exploring 

hybrid models that integrate traditional computer vision 

algorithms with neural networks to achieve improved real-

time performance. 

 State-of-the-art techniques for enabling person detection 

in TinyML applications primarily focus on optimizing 

models for deployment on resource-constrained devices. To 

this end, model quantization and pruning are widely adopted 

to reduce model size and computational demands. These 

techniques achieve efficiency by converting models to 

lower-precision formats, such as 8-bit integers, and 

eliminating redundant parameters, all while preserving 

acceptable levels of accuracy. Moreover, efficient model 

architectures such as MobileNet, SqueezeNet, and Tiny 

YOLO are specifically engineered to function within the 

strict memory and power limitations of embedded systems, 

thereby making them particularly suitable for TinyML 

applications. In addition, on-device data processing 

techniques, including image filtering and resizing, are 

utilized to preprocess input data locally. This not only 

reduces the memory footprint but also alleviates the 
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computational burden during inference, further enhancing 

system efficiency. 
TABLE II 

TINYML TECHNIQUES FOR PERSON DETECTION 

Techni

que 
Description Advantages Limitations 

Quanti

zation 

Reduces the 

precision of model 

weights and 

activations (e.g., 32-

bit to 8-bit). 

- Reduces 

memory and 

computational 

requirements. 

- Improves 

energy 

efficiency. 

- May lead to a 

slight drop in 

accuracy. 

- Requires 

careful tuning. 

Prunin

g 

Removes redundant 

neurons or 

connections in the 

model. - Reduces 

model size and 

inference time. 

- Improves 

efficiency on edge 

devices. 

- Can be 

challenging to 

implement. 

- May require 

retraining the 

model. 

- It can be 

tricky to 

implement and 

often requires 

retraining the 

model to 

maintain 

accuracy. 

Knowle

dge 

Distilla

tion 

Transfers knowledge 

from a larger, more 

accurate model to a 

smaller model 

- Requires a 

pre-trained 

large model. 

- Reduces 

computational 

complexity. 

 - Enables 

smaller models 

to achieve 

higher 

accuracy. 

- Adds 

complexity to 

the training 

process. 

-Still needs 

resources 

during training 

Model 

Archite

cture 

Optimi

zation 

Uses lightweight 

architectures like 

MobileNet, Tiny-

YOLO, or 

SqueezeNet. 

 - Designed for low-

power devices. 

- Balances 

accuracy and 

efficiency. 

- Smaller 

model size 

  - Limited by 

hardware 

constraints 

- May not 

achieve state-

of-the-art 

accuracy. 

Federa

ted 

Learni

ng 

Trains models on 

decentralized data 

without sharing raw 

data. 

- Enhances 

privacy and 

security. 

- Reduces data 

transfer costs. 

- Requires 

robust 

communicatio

n protocols. 

- High burden 

on low-power 

TinyML 

devices 

- Local data 

may be biased 

or limited. 

- May increase 

training time. 

Transfe

r 

Learni

ng 

Fine-tunes pre-

trained models on 

specific person 

detection datasets. - 

Reduces training 

time and data 

requirements. 

- Improves accuracy 

for specific tasks. 

- Requires a 

relevant pre-

trained model. 

- May not 

generalize well 

to new 

domains. 

- Pretrained 

models may 

still be too 

large 

- Still too 

intensive for 

most MCUs 

On-

device 

Trainin

g 

Enables training or 

fine-tuning models 

directly on edge 

devices. 

- Adapts to 

new data in 

real-time. 

- Reduces 

dependency on 

cloud services. 

- Limited by 

device 

resources. 

- Increases 

energy 

consumption 

Hybrid 

Models 

Combines TinyML 

with traditional 

computer vision 

techniques (e.g., 

Haar cascades). 

- Improves 

robustness and 

accuracy. 

- Leverages the 

strengths of 

both methods. 

- Increases 

implementatio

n complexity. 

- May require 

more 

computational 

resources. 

 

D. Evaluation Metrics 

Evaluation metrics for person detection are essential for 

assessing the performance, efficiency, and suitability of 

models, particularly in resource-constrained environments 

such as TinyML applications. Common accuracy-based 

metrics include precision, recall, and mean average precision 

(mAP), which evaluate how effectively a model identifies 

and localizes human figures while minimizing false positives 

and false negatives. Additionally, inference latency measures 

the time required for the model to make a prediction, a 

critical factor for real-time applications. Frames per second 

(FPS) indicate how many images the system can process per 

second, directly reflecting responsiveness. 

 Model size (measured in KB or MB) and memory 

footprint are crucial considerations in embedded 

deployments, where storage capacity and RAM are limited. 

Power consumption is another key metric, especially for 

battery-powered or always-on systems, and is typically 

measured in milliwatts (mW). Collectively, these metrics 

provide a holistic view of both the effectiveness and 

practicality of person detection models, thereby guiding 

developers in selecting and optimizing models for real-world 

edge deployments [30]. 

E. Datasets and Benchmarks 

For training and evaluating TinyML person detection 

systems, researchers often utilize datasets and benchmarks 

that specifically focus on human detection while being 

compatible with the constraints of TinyML, such as low 

resolution, fewer labeled classes, and smaller dataset sizes, 

as illustrated in Fig. 5 Commonly used datasets for TinyML 

person detection include MLPerf Tiny [31], COCO [32], 

Visual Wake Words [33], Wake Vision [34], as well as 

proprietary datasets tailored to specific hardware constraints, 

as shown in Table III. This table compares several popular 

datasets and benchmarks used for training and evaluating 

person detection models, particularly within the context of 

TinyML on resource-constrained embedded and edge 

devices. Each dataset caters to different use cases and offers 

its own set of advantages and limitations, thereby guiding 

researchers in selecting the most appropriate resources for 

their specific applications. 

 
 

Fig. 5. Datasets and Benchmarks for person detection 
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  In TinyML applications, the choice of dataset is critical. 

While large-scale datasets such as COCO and Open Images 

provide rich annotations and diverse data, they often demand 

extensive preprocessing and computational resources that 

exceed the capabilities of TinyML platforms. Conversely, 

smaller, purpose-built datasets like Wake Vision and Visual 

Wake Words offer a more practical foundation for training 

efficient models suitable for edge deployment. Additionally, 

custom datasets can provide domain-specific advantages; 

however, they require significant manual effort to create and 

maintain. Therefore, researchers must carefully balance 

model complexity, resource constraints, and specific 

application requirements when selecting an appropriate 

dataset.  

Despite their usefulness, these datasets often lack the 

diversity or scale required for effective TinyML 

applications. Moreover, the absence of publicly available, 

standardized benchmarks that accurately reflect real-world 

scenarios in resource-constrained environments represents a 

critical gap in the field. To address this, efforts are currently 

underway to develop datasets specifically designed for edge 

AI applications, such as Edge AI Bench. Below are some of 

the most frequently used datasets. 

 A significant contribution to this field is the introduction 

of the Wake Vision dataset [34], a large-scale and diverse 

collection specifically tailored for TinyML person detection. 

Wake Vision comprises over 6 million images, representing 

a substantial increase compared to previous datasets, and has 

undergone thorough quality filtering. The dataset includes 

two training sets: Wake Vision (Large) and Wake Vision 

(Quality), with the latter offering higher-quality labels. 

Studies have demonstrated that models trained on Wake 

Vision (Quality) achieve greater accuracy, underscoring the 

importance of label quality in training data. Additionally, 

Wake Vision provides five detailed benchmark sets to 

evaluate model performance in challenging real-world 

scenarios, such as varying lighting conditions and distances 

from the camera. 

The COCO (Common Objects in Context) dataset is one 

of the most widely used benchmarks for object detection 

[32], segmentation, and keypoint detection, offering a 

diverse collection of images labeled across multiple object 

categories, including people. However, in the context of 

TinyML, the dataset’s large size often necessitates 

downsampling or selecting only the "person" class to align 

with the memory and processing limitations of edge devices. 

Moreover, researchers may crop or resize images further to 

accommodate the constraints of TinyML platforms. Despite 

these adaptations, COCO remains a valuable benchmark due 

to its rich variety of scenes, lighting conditions, and human 

poses, which helps evaluate model generalizability, although 

only subsets of the dataset are practical for TinyML 

applications.  

The PASCAL Visual Object Classes (VOC) dataset [35] 

is a foundational benchmark in object detection, providing 

labeled images across various object categories, including 

"person." Compared to COCO, VOC contains fewer images 

and features simpler annotations, which makes it particularly 

suitable for TinyML applications. Its smaller dataset size 

and straightforward labeling structure facilitate proof-of-

concept development and enable rapid model deployment on 

resource-constrained devices. Consequently, VOC is 

frequently used as a baseline in TinyML research, allowing 

for quicker training and inference on edge hardware while 

still providing meaningful performance evaluation. 

 
TABLE III 

THE DATASETS AND BENCHMARKS FOR TINYML-BASED PERSON 

DETECTION SYSTEMS 

Dataset

/Bench

mark 

Description Use Cases Limitations 

Wake 

Vision 

[34] 

It is a state-of-the-

art person detection 

dataset specifically 

created for TinyML 

applications. 

- Training and 

evaluating 

machine 

learning 

models for 

efficient 

person 

detection on 

embedded and 

edge devices. 

- Wake Vision 

also includes a 

fine-grain 

benchmark 

suite for 

evaluating the 

robustness of 

TinyML 

models. 

- Large dataset 

size 

- Limited 

Diversity 

COCO  

[32] 

A large-scale dataset 

with 80 object 

categories, including 

person detection. 

- General 

object and 

person 

detection. 

- 

Benchmarking 

TinyML 

models. 

- Large dataset 

size may not 

be suitable for 

TinyML 

training. 

- Requires 

significant 

preprocessing. 

- High 

computational 

resources 

needed for 

training. 

Visual 

Wake 

Words 

[33] 

Identifying whether 

a person is present 

in the image or not. 

- Provides a 

realistic 

benchmark for 

tiny vision 

models. 

- Simplistic 

Classifications 

- Lack of 

Diversity 

- Small for 

training larger, 

more complex 

models. 

Pascal 

VOC 

[35] 

A dataset with 20 

object categories, 

including person 

detection. 

- 

Benchmarking 

lightweight 

models. 

- Transfer 

learning for 

TinyML. 

  - Smaller 

dataset size 

may limit 

training 

diversity. 

- Less complex 

than COCO. 

Open 

Images 

Dataset 

[36] 

A large dataset with 

over 600 object 

categories, including 

person detection. 

- Training and 

evaluating 

TinyML 

models. 

- Multi-class 

detection 

tasks. 

- Large dataset 

size may not 

be suitable for 

TinyML. 

- Requires 

significant 

computational 

resources. 

Custom 

Dataset

s 

Domain-specific 

datasets created for 

specific applications 

(e.g., industrial, 

home). 

- Tailored to 

specific use 

cases. 

- Improves 

accuracy in 

targeted 

environments. 

- Requires 

significant 

effort to collect 

and annotate. 

- May lack 

diversity. 
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 The Open Images Dataset (OID) [36] is a large-scale 

collection containing millions of images annotated with 

bounding boxes and labels for a wide range of object 

classes, including "person." It is significantly larger than 

both COCO and VOC but includes pre-labeled subsets that 

facilitate focused use in person detection tasks. In TinyML 

applications, researchers typically extract and preprocess 

specific subsets containing human figures, often 

downsampling or cropping images to meet the memory and 

computational constraints of edge devices. Despite the need 

for preprocessing, OID’s scale and diversity make it a 

valuable resource for robust benchmarking and for 

evaluating the generalization performance of TinyML 

models. 

Several Edge AI companies, such as Google, have 

released specialized datasets specifically designed for person 

detection in embedded environments, with Google’s person 

detection dataset being a notable example. These datasets 

are optimized for real-world TinyML applications by 

featuring low-resolution images and minimal feature sets 

suitable for microcontroller-based deployment. Moreover, 

their preprocessed nature aligns well with the memory, 

processing, and power limitations of TinyML devices, 

thereby eliminating the need for extensive adaptation. 

Consequently, these datasets serve as highly relevant 

benchmarks, providing a realistic assessment of model 

performance in actual embedded and edge scenarios, and are 

instrumental in advancing practical TinyML solutions. 

 For TinyML, the challenge lies in finding datasets that 

balance richness, which ensures model robustness, with 

simplicity, which accommodates hardware constraints. 

Common approaches include using subsets of larger 

datasets, downsizing images, and creating custom datasets 

tailored to the deployment environment. By benchmarking 

TinyML person detection models on these datasets, 

researchers can effectively assess model performance in 

real-world, low-power applications. Consequently, this 

process provides a solid foundation for improving and 

deploying person detection systems on TinyML platforms. 

F. Hardware Platforms 

   TinyML person detection relies on highly resource-

constrained hardware platforms, typically microcontroller-

based, which prioritize low power consumption and limited 

processing capabilities. These platforms are specifically 

designed to perform real-time inference while maintaining a 

balance between memory usage, computational demands, 

and energy efficiency [37]–[40]. Table IV presents a 

comparative overview of the most commonly used hardware 

platforms for TinyML person detection, highlighting their 

individual constraints and characteristics. 

Each hardware platform varies in terms of computational 

power, memory capacity, connectivity options, and 

suitability for specific machine learning workloads. 

Microcontrollers such as the Arduino Nano 33 BLE Sense, 

ESP32, and STM32 are well suited for lightweight, low-

power ML tasks, especially in IoT and wearable applications 

[41]. In contrast, more powerful platforms like the Jetson 

Nano provide significantly higher computational 

capabilities, making them suitable for real-time inference 

with more complex models. However, this comes with 

increased power consumption and cost. Therefore, selecting 

the appropriate platform depends on various application-

specific requirements, including model complexity, latency 

tolerance, connectivity needs, power constraints, and budget 

considerations. 

 
TABLE IV 

THE HARDWARE PLATFORMS USED FOR TINYML-BASED 

PERSON DETECTION 

Hardware 

Platform 

CPU / 

Memory 

Power 

Use 
ML Support Suitability 

Arduino 

Nano 33 

BLE Sense 

ARM 

Cortex-M4 / 

256 KB 

RAM 

< 0.5 W 
TensorFlow 

Lite Micro 

Basic tasks, 

wearable 

devices 

ESP32 

Dual-core 

240 MHz / 

520 KB 

RAM 

~1 W 

 

Edge 

Impulse, 

TFLM 

Low-power 

IoT 

detection 

STM32 H7 

Cortex-M7 / 

1–2 MB 

RAM 

 

< 1 W 

 

CMSIS-NN 

Intermediate 

TinyML 

tasks 

Jetson 

Nano 

 

Quad-core 

CPU + 128-

core GPU/ 

up to 8 GB 

RAM. 

 

5–10 W 

 

TensorRT, 

PyTorch, 

TFLite 

Complex 

models with 

real-time 

requirement

s 

Raspberry 

Pi 4 

Quad-core / 

up to 8 GB 

RAM. 

5–15 W  

 

TFLite, 

OpenCV 

DNN 

Flexible 

prototyping, 

high-

resource 

models 

 

The ARM Cortex-M series microcontrollers, including 

models such as Cortex-M4, M7, M33, and the more recent 

Cortex-M55 [42], are widely adopted in TinyML 

applications due to their strong balance between 

performance and power efficiency. These microcontrollers 

typically operate at frequencies of up to 480 MHz and offer 

memory capacities ranging from 128 KB to several 

megabytes of RAM and flash, making them well-suited for 

deploying lightweight, optimized machine learning models. 

Notably, the Cortex-M55 features ARM Helium technology, 

which introduces vector processing capabilities that 

significantly enhance ML performance. In addition, with 

ultra-low power consumption, typically under 1 watt, and 

support for deep sleep modes, Cortex-M devices are 

particularly ideal for low-power person detection systems in 

embedded environments. However, their constrained 

computational and memory resources present challenges for 

deploying more complex models. Consequently, techniques 

such as model quantization, pruning, and architecture tuning 

are essential to achieve efficient and effective operation on 

these platforms. 

The ESP32 and ESP32-S series microcontrollers, 

developed by Espressif Systems, are popular low-cost 

platforms that feature integrated Wi-Fi and Bluetooth [43], 

making them well-suited for IoT and edge AI applications, 

including person detection. These devices typically include 

dual-core processors operating at up to 240 MHz, with 

limited onboard SRAM (approximately 520 KB) and 

support for external PSRAM (up to 8 MB) in some variants, 

along with flash storage of up to 4 MB. Their moderate 
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power consumption, combined with support for various 

sleep modes, enables energy-efficient operation, particularly 

in battery-powered scenarios. ESP32 devices are frequently 

used with lightweight person detection models, especially in 

connected systems where local inference is followed by 

communication with the cloud. However, the limited RAM 

significantly restricts the deployment of complex models, 

thus requiring aggressive optimization techniques such as 

quantization, pruning, and image downsampling to fit within 

the available hardware resources. 

STM32 microcontrollers, developed by 

STMicroelectronics, encompass a versatile family of 

devices, including the STM32F, STM32H, and STM32L 

series [44]. These are designed to balance performance and 

power efficiency for embedded AI applications. With clock 

speeds reaching up to 400 MHz in the STM32H series and 

RAM ranging from 64 KB to several megabytes, these 

microcontrollers provide sufficient resources for deploying 

lightweight machine learning models. The integrated 

STM32Cube. AI toolchain offers a dedicated environment 

for converting and optimizing neural networks for STM32 

hardware, thereby facilitating efficient TinyML deployment. 

The STM32L series, in particular, is known for its ultra-low 

power consumption, making it ideal for battery-powered 

person detection systems. Overall, these microcontrollers are 

well-suited for small-scale, simple person detection tasks. 

However, limited memory and processing power continue to 

pose challenges, especially when aiming for real-time 

performance with more complex model architectures. This 

necessitates the use of compact and highly optimized 

models. 

The NVIDIA Jetson Nano is a compact yet powerful 

computing platform designed for edge AI applications [45]. 

It features a quad-core ARM Cortex-A57 CPU and a 128-

core Maxwell GPU, enabling the execution of more complex 

AI models compared to typical microcontrollers. With 4 GB 

of RAM and support for expandable storage, the Jetson 

Nano can accommodate higher-capacity models and offers 

greater deployment flexibility. While it delivers real-time 

performance and is particularly well-suited for person 

detection tasks in applications such as surveillance and smart 

monitoring, its power consumption, which ranges from 5 to 

10 watts, makes it significantly more power-intensive than 

traditional TinyML platforms. As a result, it is less suitable 

for ultra-low-power or battery-operated scenarios. However, 

it excels in edge environments where moderate power 

availability is acceptable and high accuracy and speed are 

critical. 

The Arduino Nano 33 BLE Sense [46], [47] is a compact 

microcontroller designed for TinyML and IoT applications. 

It features an ARM Cortex-M4 CPU running at 64 MHz and 

is equipped with onboard sensors such as an accelerometer, 

gyroscope, and microphone. With 256 KB of SRAM and 1 

MB of flash storage, it offers sufficient resources for 

deploying highly compact neural networks, making it 

suitable for basic person detection tasks that do not require 

high-resolution input or complex model architectures. Its 

low power consumption and Bluetooth Low Energy (BLE) 

capability make it ideal for wearable and battery-powered 

devices. However, the limited memory and processing 

power pose significant challenges, necessitating the use of 

extremely small, quantized models and careful optimization 

to ensure efficient on-device inference. 

The Raspberry Pi family [48], including the Raspberry Pi 

Zero and Raspberry Pi 4, is widely used in TinyML 

applications due to its affordability and flexible computing 

capabilities, particularly for prototyping and educational 

purposes. While the Raspberry Pi Zero features a single-core 

ARM CPU with 512 MB of RAM, making it suitable only 

for simple, low-power person detection tasks, the Raspberry 

Pi 4 offers a quad-core processor and up to 8 GB of RAM, 

enabling it to run more complex models and support real-

time inference. Storage is typically handled via SD cards, 

providing ample space for larger datasets and models 

compared to microcontrollers. However, power consumption 

ranges from 5 to 15 W, which is higher than typical TinyML 

platforms and can present challenges in power- or thermally-

constrained environments. Despite this, the Raspberry Pi 

platform remains a popular choice for person detection tasks 

that require a balance between computational capability and 

development flexibility, especially when moderate power 

usage is acceptable. 

The primary constraints across these platforms include 

limited memory, low clock speeds, and strict power budgets. 

To run person detection models on such devices, researchers 

typically rely on model optimizations such as quantization, 

pruning, and using low-resolution input data. Platforms like 

ARM Cortex-M and ESP32 are ideal for ultra-low-power 

applications, whereas devices like the Jetson Nano and Coral 

Edge TPU cater to higher-performance needs where power 

consumption is less constrained. Ultimately, balancing 

accuracy, latency, and energy efficiency is key when 

selecting a hardware platform for TinyML person detection. 

G. Hardware Constraints 

TinyML enables machine learning models to run on 

resource-constrained devices, such as microcontrollers and 

IoT devices. These devices often encounter several hardware 

limitations, including limited memory, low computational 

power, restricted storage capacity, and stringent power 

efficiency requirements. Therefore, addressing these 

constraints is essential for the effective deployment of 

TinyML applications. 

Among these challenges, memory constraints are 

particularly fundamental, as microcontrollers typically 

provide limited RAM and flash storage. This limitation 

restricts both the size of deployable models and the volume 

of data that can be processed simultaneously. To overcome 

this, several optimization strategies have been developed. 

First, model quantization, which reduces the precision of 

parameters (for example, from 32-bit floating-point to 8-bit 

integers), significantly lowers memory usage with minimal 

loss in accuracy. This technique is supported by frameworks 

such as TensorFlow Lite [49]. Second, model pruning 

reduces memory demands by eliminating unimportant 

weights or neurons from the network, thereby compressing 

the model. Moreover, employing efficient model 

architectures like MobileNet and SqueezeNet, which are 

specifically designed for low-memory environments, allows 

the deployment of capable models within the tight memory 
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budgets typical of TinyML platforms [50].  

Computational power constraints represent a significant 

limitation in TinyML, as devices often operate at low clock 

speeds and lack the processing capacity required for 

complex computations. To address this challenge, 

researchers and developers have adopted several strategies. 

One effective approach is the use of efficient model 

architectures, such as MobileNet, which utilizes depthwise 

separable convolutions to drastically reduce the number of 

required computations. In addition, hardware-specific 

optimizations, such as the use of digital signal processing 

(DSP) extensions or hardware accelerators (when available), 

can significantly enhance inference speed on certain 

microcontrollers. Furthermore, a particularly promising 

solution is the deployment of binary neural networks 

(BNNs), which employ binary weights and activations. This 

approach not only minimizes computational complexity but 

also reduces memory usage, making BNNs especially well-

suited for resource-constrained TinyML environments.  

Storage constraints pose a critical challenge in TinyML, 

as embedded systems often have limited onboard storage for 

housing models and datasets. To address this issue, 

developers frequently use model compression techniques 

such as quantization and pruning, which significantly reduce 

model size while maintaining acceptable levels of accuracy. 

These methods enable complex models to fit within the 

limited flash memory typically available on 

microcontrollers. In cases where additional capacity is 

needed, external storage solutions, such as SD cards or flash 

modules, can be employed to extend available storage. 

However, this may introduce additional latency during 

model loading or data access, particularly in real-time 

applications. 

Power efficiency is a critical concern in TinyML, as many 

devices are battery-powered and must operate for extended 

periods without frequent recharging or replacement. To 

address this challenge, developers adopt low-power model 

architectures, such as Tiny YOLO, which are specifically 

designed to perform inference efficiently while minimizing 

energy consumption. Additionally, strategies such as duty 

cycling and event-driven processing help conserve energy by 

keeping the device in a low-power state and activating it 

only in response to specific events or triggers, such as 

motion detection. Furthermore, many microcontrollers 

support ultra-low-power modes, which significantly reduce 

energy usage during idle periods. These approaches 

collectively enable the sustainable, long-term deployment of 

TinyML applications in power-constrained environments. 

Latency constraints are a major challenge in TinyML, 

particularly for real-time applications such as person 

detection, where rapid response is essential despite limited 

computational resources. To mitigate latency issues, 

developers increasingly rely on Edge AI accelerators, which 

are specialized hardware components integrated into some 

microcontrollers and edge devices. These accelerators 

enable faster inference by offloading and accelerating AI 

computations. Additionally, on-device processing 

optimizations, such as fixed-point quantization, help reduce 

computational overhead and enhance execution speed. These 

strategies allow TinyML models to meet real-time 

performance requirements while still operating within the 

limitations of resource-constrained hardware. 

Connectivity and data transmission constraints present 

significant challenges in TinyML systems, particularly in 

scenarios with limited or low-bandwidth connections. These 

limitations can hinder real-time communication and increase 

energy consumption, especially when large amounts of data 

are transmitted frequently. To address this, on-device 

processing is commonly employed, allowing for local 

inference so that only essential results, rather than raw data, 

are transmitted. Additionally, data compression techniques 

are used to reduce the size of the output before transmission, 

further minimizing bandwidth requirements. For wireless 

communication, low-power protocols such as Bluetooth Low 

Energy (BLE) are preferred, as they support efficient and 

energy-conscious data exchange, making them well suited 

for resource-constrained TinyML applications. 

Addressing these hardware constraints requires a 

combination of model optimizations, efficient hardware 

utilization, and system-level strategies to ensure the effective 

deployment of TinyML applications. 

V. FUTURE RESEARCH DIRECTIONS AND DISCUSSION 

As TinyML continues to evolve, several promising 

directions can enhance the effectiveness, scalability, and 

robustness of person detection systems deployed on 

resource-constrained platforms. This section outlines key 

research opportunities and unresolved challenges that the 

academic and industrial communities must address to push 

the frontier of edge AI. While many existing studies provide 

valuable experimental results, they often lack insights into 

practical deployment scenarios, particularly regarding 

hardware heterogeneity, privacy implications, and ethical 

considerations [51]–[53].  

One major area for future exploration is the development 

of advanced model compression techniques, such as 

quantization-aware training and pruning strategies, to reduce 

the computational and memory demands of person detection 

models without significantly sacrificing performance. In 

parallel, novel TinyML-specific architectures optimized for 

low-power microcontrollers and neuromorphic hardware are 

essential to support increasingly complex edge applications. 

Additionally, there is a growing need to integrate multi-

sensor data, combining visual inputs with thermal, radar, or 

acoustic signals, to improve detection accuracy and 

reliability under challenging conditions such as low light or 

occlusions. Furthermore, adaptive and self-optimizing 

models that dynamically respond to changes in 

environmental conditions or hardware constraints represent a 

promising direction for enhancing model resilience and 

efficiency [54].  

To further support scalability and reliability, collaborative 

edge computing, where multiple edge devices share 

computational workloads, can improve processing efficiency 

and fault tolerance. Federated learning frameworks, 

particularly those adapted for TinyML devices, enable 

distributed training while preserving data privacy and 

minimizing communication overhead. Standardization is 

another critical priority. Establishing shared benchmarks, 
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datasets, and evaluation protocols will facilitate consistent 

and fair comparisons across different TinyML systems, 

fostering collaborative development and accelerating 

progress in the field. Moreover, privacy and security must be 

treated as integral components of system design. Techniques 

such as differential privacy, on-device anonymization, and 

defenses against adversarial attacks are essential for ethical 

and secure deployments.  

Looking ahead, hybrid optimization strategies that 

combine software-level improvements, such as efficient 

model architectures, with hardware-level innovations, 

including custom accelerators and energy-aware scheduling, 

will be key to meeting the strict constraints of edge 

environments. Additionally, the creation of diverse real-

world datasets, capturing variability in lighting, occlusion, 

motion, and background clutter, will be essential for training 

models with greater generalizability.  

In summary, TinyML for person detection represents a 

convergence of machine learning, embedded systems, and 

edge computing, offering the promise of intelligent, privacy-

aware systems deployed ubiquitously in the real world. By 

addressing current gaps, particularly in scalability, 

adaptability, and ethics, future research can pave the way for 

more robust, efficient, and responsible TinyML solutions 

with broad societal impact.  

VI. CONCLUSION 

Tiny Machine Learning (TinyML) has emerged as a 

transformative paradigm that enables intelligent data 

processing directly on ultra-low-power and memory-

constrained devices. As the demand for real-time, privacy-

aware, and energy-efficient systems continues to grow, the 

integration of TinyML into person detection applications has 

become both a critical challenge and a compelling 

opportunity.  

This paper presented a systematic literature review of 

TinyML-based person detection systems published between 

2014 and 2024. Through the analysis of 50 peer-reviewed 

studies, we identified and categorized a wide range of 

lightweight neural network architectures, optimization 

techniques, datasets, and hardware platforms suitable for 

deploying person detection on the edge. The review 

highlighted prominent models such as MobileNet, Tiny-

YOLO, and SqueezeNet, as well as key techniques including 

quantization, pruning, and knowledge distillation. It also 

examined deployment across various microcontrollers and 

single-board computers, including the ARM Cortex-M 

family, ESP32, STM32, Jetson Nano, and Raspberry Pi. 

 Despite notable progress, several open challenges remain. 

These include the limited availability of standardized 

benchmarks for embedded settings, trade-offs between 

model accuracy and resource usage, and the difficulty of 

achieving robustness in diverse environmental conditions. 

Additionally, power consumption, latency, and memory 

constraints continue to shape the design and deployment of 

TinyML models.  

Looking ahead, future research must focus on adaptive 

architectures, federated and on-device learning, multi-sensor 

fusion, and privacy-preserving inference strategies to 

enhance system resilience and scalability. Furthermore, 

collaborative development of standardized evaluation 

protocols and diverse real-world datasets will be crucial for 

advancing reproducibility and generalizability in the field.  

In conclusion, this review consolidates the current state of 

TinyML for person detection, identifies existing research 

gaps, and offers actionable insights for researchers and 

practitioners. As TinyML technologies mature, their role in 

enabling intelligent, secure, and efficient person-aware 

systems at the edge is poised to become increasingly central 

across a wide range of real-world applications.  
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