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Abstract—Tiny Machine Learning (TinyML) enables the
deployment of machine learning models on ultra-low-power
and memory-constrained edge devices. This capability is crucial
for person detection systems in applications such as smart
homes, wearable health monitors, industrial safety, and wildlife
surveillance. However, deploying person detection on
microcontrollers poses significant challenges due to limited
computation, memory, and energy resources. This paper
presents a systematic literature review (SLR) of recent research
in TinyML-based person detection from 2014 to 2024. We
explore lightweight neural network architectures (e. g. ,
MobileNet, Tiny-YOLO), optimization techniques (e. g. ,
quantization,  pruning, knowledge distillation), and
performance metrics, including accuracy, latency, and energy
efficiency. We also assess the suitability of edge hardware
platforms such as ARM Cortex-M, ESP32, STM32, Jetson
Nano, and Raspberry Pi. The review identifies current trends,
highlights practical constraints, and proposes future directions
involving adaptive models, federated learning, and privacy-
preserving designs. This work serves as a reference for
researchers and practitioners aiming to build efficient, scalable,
and real-time TinyML-based person detection systems.

Person

Index Terms—Lightweight models, detection,

Resource-constrained devices, TinyML

I. INTRODUCTION

TINY Machine Learning (TinyML) represents a
transformative shift in artificial intelligence, enabling
the deployment of trained machine learning models directly
on ultra-low-power, memory-constrained devices such as
microcontrollers. This capability is particularly valuable in
real-time, always-on applications where cloud connectivity
is impractical, expensive, or privacy-sensitive [1]. Among
the many applications of TinyML, person detection—the
task of identifying the presence of individuals in images or
video streams—has emerged as a critical function across
domains such as smart homes, wearable health monitoring,
industrial ~ safety, environmental surveillance, and
autonomous systems. Unlike traditional deep learning
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methods that rely on high-resource cloud servers or GPUs,
TinyML-based person detection aims to perform on-device
inference within the strict limits of computation, memory,
and energy typical of embedded systems. [2]-[4].

Despite the growing interest in TinyML, deploying
person detection models on edge devices presents numerous
challenges. These include constrained memory (often limited
to kilobytes), low clock speed CPUs, limited or absent
accelerators, and strict power budgets. Consequently,
achieving accurate and efficient person detection in such
settings necessitates the use of lightweight neural network
architectures (e. g., MobileNet, Tiny-YOLO, SqueezeNet)
along with model optimization techniques such as
quantization, pruning, knowledge distillation, and neural
architecture search [5].

TinyML is an emerging subfield of machine learning that
focuses on deploying models on resource-constrained edge
devices—such as microcontrollers—with minimal power
and memory requirements [6]. Devices like the ARM
Cortex-M series, ESP32, and Arduino boards are low-cost
and low-power, making them well-suited for applications
that demand local, efficient, and real-time processing.
Additionally, TinyML enables machine learning in remote or
distributed environments without requiring continuous
internet connectivity or access to cloud infrastructure. This
capability is particularly valuable in scenarios that
necessitate privacy, low latency, or offline functionality [5].

One of the key applications of TinyML is person
detection [7]-[10], which involves identifying human
presence in various environments [11]. Thus, implementing
person detection on TinyML-enabled devices has practical
value across multiple domains [12], [13]. For instance, in
home automation, it can trigger lighting, climate control, or
security systems based on occupancy. In industrial settings,
it helps monitor hazardous areas, enhancing worker safety
without the need for continuous supervision. Similarly, in
health and fitness, it enables wearable devices to track
activity patterns and support wellness monitoring.
Furthermore, in agriculture and conservation, it can detect
unauthorized human presence to protect restricted areas and
wildlife habitats.

Person detection presents significant challenges for
resource-constrained devices due to their limited processing
power and memory capacity [14]. Although traditional
machine learning and deep learning models—such as YOLO
(You Only Look Once) and MobileNet—are widely
employed for person detection, they typically require
substantial computational resources [15]-[17].
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Likewise, recent advancements in large language models
(LLMs), while highly effective across various Al tasks,
demand considerable computing power and are generally
unsuitable for direct deployment on edge devices.

To address these limitations, TinyML adapts complex
models through a range of optimization techniques,
including model quantization, pruning, knowledge
distillation, neural architecture search (NAS), weight
sharing, low-rank factorization, and operator fusion. When
combined with efficient architectural design and hardware-
aware training, these methods enable the deployment of
intelligent models on low-power, memory-constrained
devices with minimal loss in accuracy [18].

This review adopts a rigorous methodology encompassing
the selection, evaluation, and synthesis of peer-reviewed
journal articles and conference papers published between
2014 and 2024. A total of 132 studies were initially
screened, of which 50 met the inclusion criteria. The review
focuses on key areas, including lightweight model
architectures, optimization techniques such as quantization
and pruning, and hardware-specific implementations across
microcontrollers, edge devices, and 1oT platforms.
Additionally, evaluation metrics—such as accuracy, latency,
and energy efficiency—were systematically analyzed to
assess the performance of the reviewed approaches.

The goal of this paper is to provide a comprehensive and
systematic literature review (SLR) of TinyML techniques
specifically applied to person detection systems. By
synthesizing insights from peer-reviewed publications
between 2014 and 2024, we aim to:

1) Holistic Review of TinyML Person Detection
Techniques: This review provides a comprehensive synthesis
of recent literature on TinyML models applied to person
detection, covering both vision-based and sensor-driven
approaches. Moreover, it examines a wide range of
embedded platforms, including microcontrollers and
lightweight edge devices, to evaluate how TinyML
techniques are practically implemented.

2) Comparative Analysis of Evaluation Metrics and
Hardware Platforms: Key performance indicators such as
accuracy, latency, model size, power consumption, and
frames per second (FPS) are discussed in detail.
Additionally, a comparative review of hardware platforms
commonly used in TinyML applications is provided to
highlight trade-offs and deployment considerations.

3) ldentification of Research Challenges and Gaps: This
review highlights key challenges in deploying person
detection models on ultra-low-power devices, including
constraints  related to  computational  resources,
generalization across diverse environmental conditions, lack
of standardized evaluation benchmarks, and privacy
concerns.

4) Direction for Future Research and Innovation: This
review outlines a roadmap for future research, emphasizing
the need for adaptive models, efficient federated learning,
multi-sensor fusion, privacy-preserving techniques, and
standardized datasets and evaluation frameworks. These
insights aim to guide researchers toward building scalable,
robust, and ethical TinyML-based person detection systems.

5) Inclusion of State-of-the-Art Studies: This review
integrates findings from the most recent academic and
industry contributions to ensure a current and forward-
looking perspective on the evolving TinyML ecosystem.

The remainder of this paper is organized as follows:
Section Il describes the methodology for conducting this
systematic review, including the criteria for selecting and
analyzing relevant studies, as well as the technical
requirements of person detection. Section Il provides
background on TinyML and the person detection task.
Section 1V categorizes and analyzes current approaches in
terms of models, optimization methods, hardware platforms,
and datasets. Section V discusses technical challenges,
research gaps, and future directions. Finally, Section VI
concludes the paper by summarizing findings and
implications for future work.

Il. RESEARCH METHODOLOGY

This section outlines the systematic approach used to
identify, select, and analyze relevant literature on TinyML-
based person detection systems. The review methodology is
designed to ensure transparency, reproducibility, and
comprehensive coverage of state-of-the-art research. A
systematic literature review is a structured method used to
identify, evaluate, and synthesize all relevant research on a
specific topic to answer predefined research questions
(RQs). To effectively assess the breadth of available
evidence, a systematic and transparent approach is essential.
Such reviews aim to provide a comprehensive and unbiased
evaluation of a research domain through a rigorous,
replicable, and auditable methodology. This approach
addresses the need for researchers to consolidate existing
knowledge on a given topic reliably and impartially. As a
result, systematic reviews enable the formulation of
generalizable conclusions beyond those of individual
studies, offer insights into the current state of the field, and
serve as a foundation for future investigations.

To conduct the SLR on TinyML-based person detection, a
structured and rigorous approach was employed to ensure
the completeness and reliability of the findings. Specifically,
the methodology consisted of the following steps:

A. Research Questions Formulation

The review was structured around clearly defined
research questions, which aimed to investigate the
predominant approaches, optimization techniques, and
existing challenges associated with TinyML-based person
detection. The goal of this review is to address the following
research questions (RQs):

1) RQ1: What are the key limitations and challenges in
implementing TinyML-based person detection on resource-
constrained devices?

2) RQ2: Which TinyML models are employed for
person detection?

3) RQ3: What state-of-the-art techniques are applied in
TinyML for person detection?

4) RQ4: Which performance
commonly reported?

metrics are most
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5) RQ5: What datasets and benchmarks are commonly
used for training and evaluating TinyML-based person
detection models?

6) RQ6: Which hardware platforms are utilized for
TinyML-based person detection, and what are their specific
constraints?

7) RQ7: What hardware constraints are typically
addressed, and what strategies are used to manage them?

8) RQ8: What future research directions and potential
improvements have been proposed?

These questions guide the literature search and help
frame the synthesis and discussion of findings.

B. Search Strategy

A comprehensive literature search was conducted using
the following academic databases: IEEE Xplore, ACM
Digital Library, SpringerLink, Scopus, Web of Science, and
Google Scholar. The search covered publications between
2014 and 2024, reflecting the emergence and growth of
TinyML research over the past decade.

Search queries included combinations of keywords such
as: “TinyML, ” “person detection, ” “human presence
recognition, ” “embedded object detection, ” “lightweight
CNN, ” “on-device inference, ” “quantization, ” “pruning, ”
“microcontroller, ” “edge AI, ” and “ultra-low-power
vision.”

For example, one query used was “TinyML person
detection” AND “edge computing” AND “low-power. ” To
ensure the inclusion of recent advancements, the search was
limited to articles published between 2014 and 2024. The
strategy involved using Boolean operators to combine
keywords, such as ("TinyML" OR "Tiny Machine
Learning™) AND ("person detection® OR "human
detection") AND ("low-resource™ OR "microcontroller” OR
"loT™), and incorporating synonyms or related terms like
“embedded AI” or “edge AI” to broaden the scope of the
search.

2 ¢

C. Inclusion and Exclusion

Studies were selected based on the predefined inclusion
and exclusion criteria presented in Table I.

D. Screening and Selection Process

The study selection process was conducted in three stages
to ensure the inclusion of high-quality and relevant
literature. First, an initial screening reviewed the titles and
abstracts of all identified studies to assess their relevance to
TinyML in person detection systems. Next, a full-text review
was performed on the selected studies to verify that they met
the predefined inclusion criteria. Finally, a quality
assessment evaluated each study’s methodological rigor,
relevance to the research objectives, and completeness of
reported data.

The study selection process in a SLR is a critical step to
ensure the inclusion of relevant, high-quality, and focused
papers [19]. The typical steps involved in this process,
tailored to the domain of TinyML person detection, are
outlined below. Initially, the literature search identified 132
research papers, as shown in Fig. 1. Subsequently, after
reviewing titles, abstracts, and keywords, and removing

duplicates, 79 papers were selected for further evaluation.
Then, following the application of inclusion and exclusion
criteria during the full-text review, a total of 50 papers were
selected for detailed analysis in this survey. Overall, Fig. 1
illustrates the systematic process of literature selection
conducted for this survey on TinyML and its related

domains.
TABLE |
INCLUSION AND EXCLUSION CRITERIA FOR STUDY SELECTION

Inclusion criteria

Exclusion criteria

Articles focused on person
detection using  TinyML
techniques.

Evaluated models or algorithms
on resource-constrained
hardware platforms.

Provided performance metrics
such as accuracy, latency, or
energy efficiency.

Studies  presenting  models
optimized for low-power or
resource-constrained devices.

Papers published within a
specific time frame (e.g., last
5-10 years).
Peer-reviewed  papers  and
reputable conferences (e.g.,
IEEE, ACM).

Papers focusing on TinyML
applications for person
detection.

Studies involving low-resource
hardware platforms like
microcontrollers or loT devices.
Research addressing hardware
constraints  (e.g., memory,
powver, computational
resources).

General object detection studies
without specific focus on person
detection.

Papers  lacking
validation or
implementation.
Non-English publications unless
translations are accessible.

experimental
real-world

Studies not related to TinyML or
person detection.

Papers with only theoretical or
simulation results without real-
world application.

Studies focused on generic
machine learning or Al but not
on TinyML.

Research  addressing  person
detection  on  high-resource
devices like GPUs or cloud
platforms.

Publications without
experimental validation or clear
methodological details.
Duplicates or papers
incomplete data.

with

Publications that propose or
evaluate  machine learning
models suitable for resource-
constrained environments.
Papers published in peer-
reviewed journals, conferences,
or reputable technical
platforms.

Studies that provide benchmark
datasets, metrics, or
experimental evaluations.

E. Data Extraction and Final Inclusion

A standardized data extraction form was employed to
systematically collect key information from each study. This
included publication details such as authors, year, and
venue; the techniques or algorithms applied, including
models like YOLO, MobileNet, and CNN; and dataset
information covering widely used benchmarks like MS
COCO, Pascal VOC, or custom datasets. Additionally, data
were gathered on the model architectures and applied
optimization techniques as well as the hardware platforms
used for evaluation, for example, microcontrollers and edge
Al chips. Furthermore, reported performance metrics such as
accuracy, inference latency, and energy consumption were
also collected to enable comprehensive analysis.

F. Data Synthesis and Analysis

The extracted data were synthesized to identify trends,
categorize approaches, and compare performance metrics.
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Quantitative metrics were aggregated for comparative
analysis, while qualitative insights were drawn to highlight
existing challenges and emerging opportunities.

Records identified from databases

2

(n=132)

l

Records screened after duplicate

removal and title/abstract filtering
(n=79)

l

Full-text articles assessed for
eligibility (n = 60)

A

Studies included in final review
(n=50)

Fig. 1. lllustrates the screening process

The findings from the reviewed studies were organized
into five key themes. First, Techniques and Algorithms
revealed a broad range of TinyML approaches for person
detection, including lightweight convolutional neural
networks (CNNs), quantized models, and pruning strategies
aimed at reducing model size and computational overhead.
Second, Datasets and Benchmarking highlighted the
frequent use of standard datasets such as MS COCO and
Pascal VOC, while also exposing a significant gap in
publicly available, real-world, small-scale datasets tailored
for embedded person detection. Third, the theme of
Challenges emphasized persistent issues such as limited
memory capacity, constrained processing power, high
inference latency, and the need for ultra-low power
consumption on edge devices. Fourth, Hardware and
Software  Optimization  explored commonly  used
microcontrollers and edge Al platforms, along with
supporting  frameworks like TensorFlow Lite for
Microcontrollers and CMSIS-NN, which facilitate
deployment on resource-limited hardware. Lastly, the theme
of Future Directions outlined open research challenges,
including improving model robustness under varying
environmental conditions, enhancing detection accuracy
without increasing resource demands, and minimizing
computation for real-time, on-device inference.

G. Reliability and Validity

To enhance reliability, the study selection and data
extraction processes were independently reviewed by
multiple researchers. Any discrepancies were subsequently
resolved through discussion in order to reach consensus and
uphold methodological rigor. Moreover, the purpose of this
literature review on TinyML is to capture the current state of
development in TinyML applications, particularly those

focused on person detection systems. To achieve this goal, it
is crucial to collect data on various aspects, including the
hardware platforms used, available memory, power
consumption, software frameworks, and implemented
algorithms. The insights obtained from this review will,
therefore, serve as a foundation for the design and
development of an efficient and reliable person detection
system leveraging TinyML technology.

I1l. BACKGROUND

This section provides foundational context for the two
core pillars of this review: Tiny Machine Learning
(TinyML) and person detection. It outlines their definitions,
relevance, and the motivation for their integration in
embedded Al systems.

Embedded
Systems

Fig. 2. Applying TinyML
A. Tiny Machine Learning (TinyML)

TinyML is a rapidly emerging subset of machine learning
that focuses on deploying trained models on
microcontrollers and other highly constrained embedded
devices, typically with limited memory (in the range of tens
to hundreds of kilobytes) and power consumption in the
milliwatt range. The key advantage of TinyML lies in its
ability to enable intelligent inference at the edge—without
the need for continuous cloud connectivity—thereby
reducing latency, improving privacy, and supporting real-
time responses in distributed systems.

To operate effectively within the constraints of such
hardware, TinyML relies heavily on [20]:

e Model compression techniques, such as quantization
and pruning, to reduce model size and memory footprint;

e Lightweight neural architectures, such as MobileNet,
Tiny-YOLO, and SqueezeNet, which balance efficiency and
accuracy;

e Specialized deployment toolchains, including
TensorFlow Lite for Microcontrollers (TFLM), CMSIS-NN,
and Edge Impulse, to optimize inference at runtime.

Fig. 2 illustrates the interdisciplinary nature of Tiny
Machine Learning (TinyML) within the context of person
detection systems. TinyML exists at the intersection of three
core domains: Machine Learning, Embedded Systems, and
Person Detection. From a machine learning perspective,
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TinyML leverages lightweight models and neural networks
designed for inference on low-power devices. Embedded
systems contribute the hardware and system-level constraints
that shape how these models are deployed, typically on
microcontrollers, SoCs, or edge devices with limited
memory and computational capacity. The third domain,
person detection, defines the target application, focusing on
the recognition of human presence or activity through sensor
data, often under real-time and privacy-sensitive conditions.
The convergence of these three areas enables the
development of intelligent, resource-efficient, and context-
aware systems that can operate autonomously at the edge
without relying on cloud infrastructure. This integration
highlights the need for optimized algorithms, efficient
hardware design, and robust sensing strategies to meet the
stringent demands of TinyML-based person detection
applications.

B. Person Detection

Person detection refers to the task of identifying human
presence in various input modalities, including RGB images,
video frames, and non-visual sensor data (e. g., thermal,
radar, or PIR sensors). As a foundational function in
computer vision and embedded Al, it enables a wide array of
context-aware applications across smart environments,
surveillance, healthcare, robotics, and automotive systems.

Traditionally, person detection has been addressed using
large-scale convolutional neural networks (CNNSs) such as
YOLO, SSD, and Faster R-CNN, which provide robust
accuracy but demand substantial computational resources.
However, these models are impractical for resource-
constrained embedded platforms due to their size, memory
requirements, and power draw. [21].

To enable on-device person detection under TinyML
constraints, several innovations have been adopted:

e Model simplification through the use of compact
CNNs or binary neural networks (BNNS);

e Non-visual sensing techniques, such as passive
infrared (PIR), ultrasonic, and low-resolution thermal
imaging, which reduce input dimensionality;

e Hybrid architectures that combine classical computer
vision techniques (e.g., Haar cascades) with lightweight deep
learning inference for enhanced robustness.

Furthermore, sensor fusion strategies that combine inputs
from visual and non-visual sources can improve detection
accuracy under adverse conditions such as poor lighting,
occlusion, or camera obstruction [22].

In the context of embedded Al, person detection must
meet stringent performance benchmarks: high inference
speed, low memory usage, real-time processing, and energy
efficiency. Thus, optimizing person detection for TinyML
platforms is an essential research challenge that drives
innovation in edge-Al model design and hardware-aware
learning.

IV. KEY RESULTS AND ANALYSIS

The sources for this review comprise 50 peer-reviewed
journal articles and conference papers, which were identified
through the methodology previously outlined. Fig. 3
illustrates the distribution of research papers related to

TinyML over the past decade, spanning from 2014 to 2024.
Specifically, the bar chart depicts the number of research
papers published each year within this period. The x-axis
represents the years, whereas the y-axis indicates the number
of papers published annually. From the chart, it is evident
that research activity in TinyML was minimal between 2014
and 2018.

However, a gradual increase began in 2019, marked by
the publication of two papers. This upward trend continued
through 2020 and 2021, with four papers published in each
of those years. Furthermore, a more significant rise in
research output is observed from 2022 onward. The number
of papers increased to eight in 2022, followed by eleven in
2023, and peaked at twelve in 2024. This trend clearly
suggests a growing interest and accelerating research activity
in the field of TinyML, particularly from 2019 onward.
Therefore, it may be concluded that TinyML is an emerging
or rapidly developing area of study, gaining increasing
attention from the research community.

The reviewed literature reveals several key research
focuses, including the development of lightweight model
architectures, the implementation of optimization techniques
such as quantization and pruning, and the adaptation of
machine learning models to hardware-constrained
environments, particularly microcontrollers [23] and edge
devices [24]. TinyML-based person detection has witnessed
considerable progress, driven by its applicability in domains
such as smart loT devices [25], security systems, and
wearable technologies [26]. Consequently, TinyML has
emerged as a transformative paradigm for enabling
intelligent functionalities on ultra-low-power embedded
systems. Despite these advancements, existing studies also
exhibit several limitations that impede broader deployment
and limit generalizability across diverse operational
contexts. Therefore, a critical evaluation of the core studies
is warranted to elucidate their contributions while also
identifying the methodological and practical constraints that
must be addressed to advance the field further.

14

12 Tt T

10 ——

Number of Papers

201420152016 2017 201820192020 20212022 20232024
Year

Fig. 3. Publication trend line

A. The Limitations and Challenges of Implementing
Person Detection on TinyML Devices

Despite its significant potential, implementing person
detection on TinyML devices presents several challenges
[27], as illustrated in Fig. 4. One of the primary obstacles is
memory and processing constraints. Microcontrollers
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typically offer limited RAM and flash storage—often
ranging from 64 to 512 KB of RAM and only a few
megabytes of flash memory—which significantly restricts
the size and complexity of models that can be deployed [28].
Moreover, TinyML devices are generally built around low-
power microcontrollers, such as those from the ARM
Cortex-M series, which operate at low clock speeds and lack
dedicated hardware accelerators like GPUs or NPUs. As a
result, the execution of complex neural networks becomes
infeasible, necessitating extreme model compression
techniques in order to maintain acceptable performance
within these hardware limitations.

Memory and ( Accuracy vs.
Processing Efficiency
Constraints J L Trade-off

Limitations and
challenges of
implementing person
detection on TinyML
devices

Deployment and

Power Constraints
Maintenance

Fig. 4. Limitations and challenges

Power consumption is a critical concern for many
TinyML devices, as they often rely on battery power;
therefore, maintaining low power usage while performing
frequent or real-time person detection poses significant
challenges, particularly when utilizing cameras or processing
continuous sensor streams. Consequently, person detection
models must be highly efficient to prevent rapid battery
depletion, especially in applications requiring continuous
monitoring. Moreover, there is an inherent trade-off between
model accuracy and efficiency: reducing model size to fit
within hardware constraints often results in decreased
detection accuracy, particularly under challenging conditions
such as occlusions, varied poses, or complex backgrounds.
Thus achieving robustness while maintaining efficiency
remains a central challenge.

In addition, deployment and maintenance of models on
TinyML devices present further difficulties due to limited
connectivity and hardware interfaces, which complicate both
initial deployment and subsequent updates in the field.
Therefore, striking an optimal balance between accuracy,
efficiency, and practical deployability is essential to enable
effective and sustainable person detection on TinyML
devices.

B. Several Lightweight Model for Person Detection

In the context of TinyML, lightweight models are
essential for enabling person detection on devices
constrained by limited computational resources, memory,
and power. To address these constraints, several compact

and efficient models have been developed specifically for
deployment on TinyML devices. For instance, MobileNet
variants (V1, V2, and V3) are widely adopted due to their
use of depthwise separable convolutions, which provide an
effective  balance between accuracy and resource
consumption. Similarly, Tiny-YOLO variants (such as Tiny-
YOLOvV3, v4, and v1l) streamline the original YOLO
architecture to support real-time person detection on low-
power hardware. Moreover, models like SqueezeNet and
ShuffleNet are designed to minimize model size and
computational complexity, making them particularly well-
suited for memory-constrained environments.

Additionally, Binary Neural Networks (BNNs), which
rely on binary weights and activations, drastically reduce
memory usage and computational demands, rendering them
ideal for ultra-low-power applications. Furthermore, custom
micro-CNNs and models optimized with CMSIS-NN are
specifically tailored for ARM Cortex-M microcontrollers,
achieving high efficiency in performing basic person
detection tasks. Collectively, these lightweight models form
the backbone of TinyML-enabled vision systems, where
both computational efficiency and low power consumption
are critical for practical deployment.

C. TinyML Leverages Several Techniques for Person
Detection

Modern TinyML person detection techniques leverage
lightweight neural network architectures specifically tailored
for edge devices. Models such as MobileNet [29],
EfficientNet-Lite, and YOLO-Tiny dominate the field, as
they emphasize a balance between accuracy and
computational efficiency. Furthermore, techniques such as
quantization-aware training, model pruning, and hardware-
specific optimizations significantly enhance the suitability of
these models for resource-constrained environments, as
illustrated in Table Il. This table outlines several widely
adopted methods aimed at improving model performance,
reducing computational overhead, and facilitating
deployment, particularly for edge and low-power devices. In
addition, emerging approaches are increasingly exploring
hybrid models that integrate traditional computer vision
algorithms with neural networks to achieve improved real-
time performance.

State-of-the-art techniques for enabling person detection
in TinyML applications primarily focus on optimizing
models for deployment on resource-constrained devices. To
this end, model quantization and pruning are widely adopted
to reduce model size and computational demands. These
techniques achieve efficiency by converting models to
lower-precision formats, such as 8-bit integers, and
eliminating redundant parameters, all while preserving
acceptable levels of accuracy. Moreover, efficient model
architectures such as MobileNet, SqueezeNet, and Tiny
YOLO are specifically engineered to function within the
strict memory and power limitations of embedded systems,
thereby making them particularly suitable for TinyML
applications. In addition, on-device data processing
techniques, including image filtering and resizing, are
utilized to preprocess input data locally. This not only
reduces the memory footprint but also alleviates the
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computational burden during inference, further enhancing
system efficiency.

TABLEII
TINYML TECHNIQUES FOR PERSON DETECTION
TZTJTI Description Advantages Limitations
Quanti  Reduces the - Reduces - May lead to a
zation precision of model memory and slight drop in
weights and computational  accuracy.
activations (e.g., 32-  requirements. - Requires
bit to 8-bit). - Improves  careful tuning.
energy
efficiency.
Prunin  Removes redundant - Can be - It can be
g neurons or challenging to tricky to
connections in the implement. implement and
model. - Reduces - May require often requires
model size and retraining the retraining the
inference time.  model. model to
- Improves maintain
efficiency on edge accuracy.
devices.
Knowle  Transfers knowledge - Requires a - Adds
dge from a larger, more  pre-trained complexity to
Distilla  accurate model to a large model. the  training
tion smaller model - Reduces  process.
computational  -Still needs
complexity. resources
- Enables  during training
smaller models
to achieve
higher
accuracy.
Model Uses lightweight - Balances - Limited by
Archite  architectures  like accuracy and hardware
cture MobileNet,  Tiny- efficiency. constraints
Optimi  YOLO, or - Smaller - May not
zation SqueezeNet. model size achieve state-
- Designed for low- of-the-art
power devices. accuracy.
Federa  Trains models on - Enhances - High burden
ted decentralized data privacy and on low-power
Learni  without sharing raw  security. TinyML
ng data. - Reduces data  devices
transfer costs. - Local data
- Requires may be biased
robust or limited.
communicatio - May increase
n protocols. training time.
Transfe  Fine-tunes pre- - Requires a -  Pretrained
r trained models on relevant pre- models may
Learni  specific person trained model. still be too
ng detection datasets. - - May not large
Reduces  training generalize well -  Still  too
time and data to new intensive for
requirements. domains. most MCUs
- Improves accuracy
for specific tasks.
On- Enables training or - Adapts to - Limited by
device fine-tuning models new data in device
Trainin  directly on edge real-time. resources.
g devices. - Reduces - Increases
dependency on  energy
cloud services.  consumption
Hybrid  Combines TinyML - Improves - Increases
Models  with traditional  robustness and  implementatio
computer vision  accuracy. n complexity.
techniques (e.g., - Leveragesthe - May require
Haar cascades). strengths  of more

both methods.

computational
resources.

D. Evaluation Metrics

Evaluation metrics for person detection are essential for

assessing the performance, efficiency, and suitability of
models, particularly in resource-constrained environments
such as TinyML applications. Common accuracy-based
metrics include precision, recall, and mean average precision
(mAP), which evaluate how effectively a model identifies
and localizes human figures while minimizing false positives
and false negatives. Additionally, inference latency measures
the time required for the model to make a prediction, a
critical factor for real-time applications. Frames per second
(FPS) indicate how many images the system can process per
second, directly reflecting responsiveness.

Model size (measured in KB or MB) and memory
footprint are crucial considerations in embedded
deployments, where storage capacity and RAM are limited.
Power consumption is another key metric, especially for
battery-powered or always-on systems, and is typically
measured in milliwatts (mW). Collectively, these metrics
provide a holistic view of both the effectiveness and
practicality of person detection models, thereby guiding
developers in selecting and optimizing models for real-world
edge deployments [30].

E. Datasets and Benchmarks

For training and evaluating TinyML person detection
systems, researchers often utilize datasets and benchmarks
that specifically focus on human detection while being
compatible with the constraints of TinyML, such as low
resolution, fewer labeled classes, and smaller dataset sizes,
as illustrated in Fig. 5 Commonly used datasets for TinyML
person detection include MLPerf Tiny [31], COCO [32],
Visual Wake Words [33], Wake Vision [34], as well as
proprietary datasets tailored to specific hardware constraints,
as shown in Table I1l. This table compares several popular
datasets and benchmarks used for training and evaluating
person detection models, particularly within the context of
TinyML on resource-constrained embedded and edge
devices. Each dataset caters to different use cases and offers
its own set of advantages and limitations, thereby guiding
researchers in selecting the most appropriate resources for

their specific applications.
r*[ Wake Vision ]
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Words
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Fig. 5. Datasets and Benchmarks for person detection
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In TinyML applications, the choice of dataset is critical.
While large-scale datasets such as COCO and Open Images
provide rich annotations and diverse data, they often demand
extensive preprocessing and computational resources that
exceed the capabilities of TinyML platforms. Conversely,
smaller, purpose-built datasets like Wake Vision and Visual
Wake Words offer a more practical foundation for training
efficient models suitable for edge deployment. Additionally,
custom datasets can provide domain-specific advantages;
however, they require significant manual effort to create and
maintain. Therefore, researchers must carefully balance
model complexity, resource constraints, and specific
application requirements when selecting an appropriate
dataset.

Despite their usefulness, these datasets often lack the
diversity or scale required for effective TinyML
applications. Moreover, the absence of publicly available,
standardized benchmarks that accurately reflect real-world
scenarios in resource-constrained environments represents a
critical gap in the field. To address this, efforts are currently
underway to develop datasets specifically designed for edge
Al applications, such as Edge Al Bench. Below are some of
the most frequently used datasets.

A significant contribution to this field is the introduction
of the Wake Vision dataset [34], a large-scale and diverse
collection specifically tailored for TinyML person detection.
Wake Vision comprises over 6 million images, representing
a substantial increase compared to previous datasets, and has
undergone thorough quality filtering. The dataset includes
two training sets: Wake Vision (Large) and Wake Vision
(Quality), with the latter offering higher-quality labels.
Studies have demonstrated that models trained on Wake
Vision (Quality) achieve greater accuracy, underscoring the
importance of label quality in training data. Additionally,
Wake Vision provides five detailed benchmark sets to
evaluate model performance in challenging real-world
scenarios, such as varying lighting conditions and distances
from the camera.

The COCO (Common Obijects in Context) dataset is one
of the most widely used benchmarks for object detection
[32], segmentation, and keypoint detection, offering a
diverse collection of images labeled across multiple object
categories, including people. However, in the context of
TinyML, the dataset’s large size often necessitates
downsampling or selecting only the "person" class to align
with the memory and processing limitations of edge devices.
Moreover, researchers may crop or resize images further to
accommodate the constraints of TinyML platforms. Despite
these adaptations, COCO remains a valuable benchmark due
to its rich variety of scenes, lighting conditions, and human
poses, which helps evaluate model generalizability, although
only subsets of the dataset are practical for TinyML
applications.

The PASCAL Visual Object Classes (VOC) dataset [35]
is a foundational benchmark in object detection, providing
labeled images across various object categories, including
"person.” Compared to COCO, VOC contains fewer images
and features simpler annotations, which makes it particularly
suitable for TinyML applications. Its smaller dataset size
and straightforward labeling structure facilitate proof-of-

concept development and enable rapid model deployment on
resource-constrained  devices. Consequently, VOC is
frequently used as a baseline in TinyML research, allowing
for quicker training and inference on edge hardware while

still providing meaningful performance evaluation.

TABLE IlI
THE DATASETS AND BENCHMARKS FOR TINYML-BASED PERSON
DETECTION SYSTEMS

Dataset
/Bench Description Use Cases Limitations
mark
Wake It is a state-of-the- - Training and - Large dataset
Vision art person detection evaluating size
[34] dataset specifically machine - Limited
created for TinyML learning Diversity
applications. models for
efficient
person
detection  on
embedded and
edge devices.
- Wake Vision
also includes a
fine-grain
benchmark
suite for
evaluating the
robustness  of
TinyML
models.
COCO A large-scale dataset - General - Large dataset
[32] with 80 object object and size may not
categories, including  person be suitable for
person detection. detection. TinyML
- training.
Benchmarking - Requires
TinyML significant
models. preprocessing.
- High
computational
resources
needed for
training.
Visual Identifying whether - Provides a -  Simplistic
Wake a person is present realistic Classifications
Words in the image or not. benchmark for - Lack of
[33] tiny vision  Diversity
models. - Small for
training larger,
more complex
models.
Pascal A dataset with 20 - - Smaller
vVoC object  categories, Benchmarking dataset  size
[35] including person  lightweight may limit
detection. models. training
- Transfer  diversity.
learning  for - Less complex
TinyML. than COCO.
Open A large dataset with - Training and - Large dataset
Images over 600 object evaluating size may not
Dataset categories, including  TinyML be suitable for
[36] person detection. models. TinyML.
- Multi-class - Requires
detection significant
tasks. computational
resources.
Custom  Domain-specific - Tailored to - Requires
Dataset datasets created for specific ~ use significant

S

specific applications

cases.

effort to collect

(e.0., industrial, - Improves and annotate.
home). accuracy in - May lack
targeted diversity.

environments.

Volume 52, Issue 11, November 2025, Pages 4074-4086



TAENG International Journal of Computer Science

The Open Images Dataset (OID) [36] is a large-scale
collection containing millions of images annotated with
bounding boxes and labels for a wide range of object
classes, including "person." It is significantly larger than
both COCO and VOC but includes pre-labeled subsets that
facilitate focused use in person detection tasks. In TinyML
applications, researchers typically extract and preprocess
specific  subsets containing human figures, often
downsampling or cropping images to meet the memory and
computational constraints of edge devices. Despite the need
for preprocessing, OID’s scale and diversity make it a
valuable resource for robust benchmarking and for
evaluating the generalization performance of TinyML
models.

Several Edge Al companies, such as Google, have
released specialized datasets specifically designed for person
detection in embedded environments, with Google’s person
detection dataset being a notable example. These datasets
are optimized for real-world TinyML applications by
featuring low-resolution images and minimal feature sets
suitable for microcontroller-based deployment. Moreover,
their preprocessed nature aligns well with the memory,
processing, and power limitations of TinyML devices,
thereby eliminating the need for extensive adaptation.
Consequently, these datasets serve as highly relevant
benchmarks, providing a realistic assessment of model
performance in actual embedded and edge scenarios, and are
instrumental in advancing practical TinyML solutions.

For TinyML, the challenge lies in finding datasets that
balance richness, which ensures model robustness, with
simplicity, which accommodates hardware constraints.
Common approaches include using subsets of larger
datasets, downsizing images, and creating custom datasets
tailored to the deployment environment. By benchmarking
TinyML person detection models on these datasets,
researchers can effectively assess model performance in
real-world, low-power applications. Consequently, this
process provides a solid foundation for improving and
deploying person detection systems on TinyML platforms.

F. Hardware Platforms

TinyML person detection relies on highly resource-
constrained hardware platforms, typically microcontroller-
based, which prioritize low power consumption and limited
processing capabilities. These platforms are specifically
designed to perform real-time inference while maintaining a
balance between memory usage, computational demands,
and energy efficiency [37]-[40]. Table IV presents a
comparative overview of the most commonly used hardware
platforms for TinyML person detection, highlighting their
individual constraints and characteristics.

Each hardware platform varies in terms of computational
power, memory capacity, connectivity options, and
suitability for specific machine learning workloads.
Microcontrollers such as the Arduino Nano 33 BLE Sense,
ESP32, and STM32 are well suited for lightweight, low-
power ML tasks, especially in 10T and wearable applications
[41]. In contrast, more powerful platforms like the Jetson
Nano provide significantly  higher  computational
capabilities, making them suitable for real-time inference

with more complex models. However, this comes with
increased power consumption and cost. Therefore, selecting
the appropriate platform depends on various application-
specific requirements, including model complexity, latency
tolerance, connectivity needs, power constraints, and budget
considerations.

TABLE IV
THE HARDWARE PLATFORMS USED FOR TINYML-BASED
PERSON DETECTION
Hardware CPU/ Power -
Platform Memory Use ML Support Suitability
. ARM .
Arduino Cortex-M4 / TensorFlow Basic tasks,
Nano 33 <05W . . wearable
BLE Sense 256 KB Lite Micro devices
RAM
Dual-core Low-power
ESP32 240 MHz /-y Edoe loT
520 KB Impulse, detection
RAM TFLM
Cortex-M7 / Intermediate
STM32 H7 1-2 MB TinyML
RAM <1WwW CMSIS-NN tasks
Complex
Quad-core i
Jetson CPU + 128 TensorRT, :ggldfl'; e""'th
Nano core GPU/ 5-10W PyTorch, requirement
up to 8 GB TFLite 5 4
RAM.
Flexible
Quad-core / . prototyping,
Raspberry  \,'o 8 6B 5-15W T H® high-
Pi4 OpenCV
RAM. resource
DNN
models

The ARM Cortex-M series microcontrollers, including
models such as Cortex-M4, M7, M33, and the more recent
Cortex-M55 [42], are widely adopted in TinyML
applications due to their strong balance between
performance and power efficiency. These microcontrollers
typically operate at frequencies of up to 480 MHz and offer
memory capacities ranging from 128 KB to several
megabytes of RAM and flash, making them well-suited for
deploying lightweight, optimized machine learning models.
Notably, the Cortex-M55 features ARM Helium technology,
which introduces vector processing capabilities that
significantly enhance ML performance. In addition, with
ultra-low power consumption, typically under 1 watt, and
support for deep sleep modes, Cortex-M devices are
particularly ideal for low-power person detection systems in
embedded environments. However, their constrained
computational and memory resources present challenges for
deploying more complex models. Consequently, techniques
such as model quantization, pruning, and architecture tuning
are essential to achieve efficient and effective operation on
these platforms.

The ESP32 and ESP32-S series microcontrollers,
developed by Espressif Systems, are popular low-cost
platforms that feature integrated Wi-Fi and Bluetooth [43],
making them well-suited for 10T and edge Al applications,
including person detection. These devices typically include
dual-core processors operating at up to 240 MHz, with
limited onboard SRAM (approximately 520 KB) and
support for external PSRAM (up to 8 MB) in some variants,
along with flash storage of up to 4 MB. Their moderate
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power consumption, combined with support for various
sleep modes, enables energy-efficient operation, particularly
in battery-powered scenarios. ESP32 devices are frequently
used with lightweight person detection models, especially in
connected systems where local inference is followed by
communication with the cloud. However, the limited RAM
significantly restricts the deployment of complex models,
thus requiring aggressive optimization techniques such as
quantization, pruning, and image downsampling to fit within
the available hardware resources.

STM32 microcontrollers, developed by
STMuicroelectronics, encompass a versatile family of
devices, including the STM32F, STM32H, and STM32L
series [44]. These are designed to balance performance and
power efficiency for embedded Al applications. With clock
speeds reaching up to 400 MHz in the STM32H series and
RAM ranging from 64 KB to several megabytes, these
microcontrollers provide sufficient resources for deploying
lightweight machine learning models. The integrated
STM32Cube. Al toolchain offers a dedicated environment
for converting and optimizing neural networks for STM32
hardware, thereby facilitating efficient TinyML deployment.
The STM32L series, in particular, is known for its ultra-low
power consumption, making it ideal for battery-powered
person detection systems. Overall, these microcontrollers are
well-suited for small-scale, simple person detection tasks.
However, limited memory and processing power continue to
pose challenges, especially when aiming for real-time
performance with more complex model architectures. This
necessitates the use of compact and highly optimized
models.

The NVIDIA Jetson Nano is a compact yet powerful
computing platform designed for edge Al applications [45].
It features a quad-core ARM Cortex-A57 CPU and a 128-
core Maxwell GPU, enabling the execution of more complex
Al models compared to typical microcontrollers. With 4 GB
of RAM and support for expandable storage, the Jetson
Nano can accommodate higher-capacity models and offers
greater deployment flexibility. While it delivers real-time
performance and is particularly well-suited for person
detection tasks in applications such as surveillance and smart
monitoring, its power consumption, which ranges from 5 to
10 watts, makes it significantly more power-intensive than
traditional TinyML platforms. As a result, it is less suitable
for ultra-low-power or battery-operated scenarios. However,
it excels in edge environments where moderate power
availability is acceptable and high accuracy and speed are
critical.

The Arduino Nano 33 BLE Sense [46], [47] is a compact
microcontroller designed for TinyML and 10T applications.
It features an ARM Cortex-M4 CPU running at 64 MHz and
is equipped with onboard sensors such as an accelerometer,
gyroscope, and microphone. With 256 KB of SRAM and 1
MB of flash storage, it offers sufficient resources for
deploying highly compact neural networks, making it
suitable for basic person detection tasks that do not require
high-resolution input or complex model architectures. Its
low power consumption and Bluetooth Low Energy (BLE)
capability make it ideal for wearable and battery-powered
devices. However, the limited memory and processing

power pose significant challenges, necessitating the use of
extremely small, quantized models and careful optimization
to ensure efficient on-device inference.

The Raspberry Pi family [48], including the Raspberry Pi
Zero and Raspberry Pi 4, is widely used in TinyML
applications due to its affordability and flexible computing
capabilities, particularly for prototyping and educational
purposes. While the Raspberry Pi Zero features a single-core
ARM CPU with 512 MB of RAM, making it suitable only
for simple, low-power person detection tasks, the Raspberry
Pi 4 offers a quad-core processor and up to 8 GB of RAM,
enabling it to run more complex models and support real-
time inference. Storage is typically handled via SD cards,
providing ample space for larger datasets and models
compared to microcontrollers. However, power consumption
ranges from 5 to 15 W, which is higher than typical TinyML
platforms and can present challenges in power- or thermally-
constrained environments. Despite this, the Raspberry Pi
platform remains a popular choice for person detection tasks
that require a balance between computational capability and
development flexibility, especially when moderate power
usage is acceptable.

The primary constraints across these platforms include
limited memory, low clock speeds, and strict power budgets.
To run person detection models on such devices, researchers
typically rely on model optimizations such as quantization,
pruning, and using low-resolution input data. Platforms like
ARM Cortex-M and ESP32 are ideal for ultra-low-power
applications, whereas devices like the Jetson Nano and Coral
Edge TPU cater to higher-performance needs where power
consumption is less constrained. Ultimately, balancing
accuracy, latency, and energy efficiency is key when
selecting a hardware platform for TinyML person detection.

G. Hardware Constraints

TinyML enables machine learning models to run on
resource-constrained devices, such as microcontrollers and
loT devices. These devices often encounter several hardware
limitations, including limited memory, low computational
power, restricted storage capacity, and stringent power
efficiency requirements. Therefore, addressing these
constraints is essential for the effective deployment of
TinyML applications.

Among these challenges, memory constraints are
particularly fundamental, as microcontrollers typically
provide limited RAM and flash storage. This limitation
restricts both the size of deployable models and the volume
of data that can be processed simultaneously. To overcome
this, several optimization strategies have been developed.
First, model quantization, which reduces the precision of
parameters (for example, from 32-bit floating-point to 8-bit
integers), significantly lowers memory usage with minimal
loss in accuracy. This technique is supported by frameworks
such as TensorFlow Lite [49]. Second, model pruning
reduces memory demands by eliminating unimportant
weights or neurons from the network, thereby compressing
the model. Moreover, employing efficient model
architectures like MobileNet and SqueezeNet, which are
specifically designed for low-memory environments, allows
the deployment of capable models within the tight memory

Volume 52, Issue 11, November 2025, Pages 4074-4086



TAENG International Journal of Computer Science

budgets typical of TinyML platforms [50].

Computational power constraints represent a significant
limitation in TinyML, as devices often operate at low clock
speeds and lack the processing capacity required for
complex computations. To address this challenge,
researchers and developers have adopted several strategies.
One effective approach is the use of efficient model
architectures, such as MobileNet, which utilizes depthwise
separable convolutions to drastically reduce the number of
required computations. In addition, hardware-specific
optimizations, such as the use of digital signal processing
(DSP) extensions or hardware accelerators (when available),
can significantly enhance inference speed on certain
microcontrollers. Furthermore, a particularly promising
solution is the deployment of binary neural networks
(BNNS), which employ binary weights and activations. This
approach not only minimizes computational complexity but
also reduces memory usage, making BNNs especially well-
suited for resource-constrained TinyML environments.

Storage constraints pose a critical challenge in TinyML,
as embedded systems often have limited onboard storage for
housing models and datasets. To address this issue,
developers frequently use model compression techniques
such as quantization and pruning, which significantly reduce
model size while maintaining acceptable levels of accuracy.
These methods enable complex models to fit within the
limited flash  memory  typically available on
microcontrollers. In cases where additional capacity is
needed, external storage solutions, such as SD cards or flash
modules, can be employed to extend available storage.
However, this may introduce additional latency during
model loading or data access, particularly in real-time
applications.

Power efficiency is a critical concern in TinyML, as many
devices are battery-powered and must operate for extended
periods without frequent recharging or replacement. To
address this challenge, developers adopt low-power model
architectures, such as Tiny YOLO, which are specifically
designed to perform inference efficiently while minimizing
energy consumption. Additionally, strategies such as duty
cycling and event-driven processing help conserve energy by
keeping the device in a low-power state and activating it
only in response to specific events or triggers, such as
motion detection. Furthermore, many microcontrollers
support ultra-low-power modes, which significantly reduce
energy usage during idle periods. These approaches
collectively enable the sustainable, long-term deployment of
TinyML applications in power-constrained environments.

Latency constraints are a major challenge in TinyML,
particularly for real-time applications such as person
detection, where rapid response is essential despite limited
computational resources. To mitigate latency issues,
developers increasingly rely on Edge Al accelerators, which
are specialized hardware components integrated into some
microcontrollers and edge devices. These accelerators
enable faster inference by offloading and accelerating Al
computations.  Additionally, on-device  processing
optimizations, such as fixed-point quantization, help reduce
computational overhead and enhance execution speed. These
strategies allow TinyML models to meet real-time

performance requirements while still operating within the
limitations of resource-constrained hardware.

Connectivity and data transmission constraints present
significant challenges in TinyML systems, particularly in
scenarios with limited or low-bandwidth connections. These
limitations can hinder real-time communication and increase
energy consumption, especially when large amounts of data
are transmitted frequently. To address this, on-device
processing is commonly employed, allowing for local
inference so that only essential results, rather than raw data,
are transmitted. Additionally, data compression techniques
are used to reduce the size of the output before transmission,
further minimizing bandwidth requirements. For wireless
communication, low-power protocols such as Bluetooth Low
Energy (BLE) are preferred, as they support efficient and
energy-conscious data exchange, making them well suited
for resource-constrained TinyML applications.

Addressing these hardware constraints requires a
combination of model optimizations, efficient hardware
utilization, and system-level strategies to ensure the effective
deployment of TinyML applications.

V. FUTURE RESEARCH DIRECTIONS AND DISCUSSION

As TinyML continues to evolve, several promising
directions can enhance the effectiveness, scalability, and
robustness of person detection systems deployed on
resource-constrained platforms. This section outlines key
research opportunities and unresolved challenges that the
academic and industrial communities must address to push
the frontier of edge Al. While many existing studies provide
valuable experimental results, they often lack insights into
practical deployment scenarios, particularly regarding
hardware heterogeneity, privacy implications, and ethical
considerations [51]-[53].

One major area for future exploration is the development
of advanced model compression techniques, such as
quantization-aware training and pruning strategies, to reduce
the computational and memory demands of person detection
models without significantly sacrificing performance. In
parallel, novel TinyML-specific architectures optimized for
low-power microcontrollers and neuromorphic hardware are
essential to support increasingly complex edge applications.
Additionally, there is a growing need to integrate multi-
sensor data, combining visual inputs with thermal, radar, or
acoustic signals, to improve detection accuracy and
reliability under challenging conditions such as low light or
occlusions. Furthermore, adaptive and self-optimizing
models that dynamically respond to changes in
environmental conditions or hardware constraints represent a
promising direction for enhancing model resilience and
efficiency [54].

To further support scalability and reliability, collaborative
edge computing, where multiple edge devices share
computational workloads, can improve processing efficiency
and fault tolerance. Federated learning frameworks,
particularly those adapted for TinyML devices, enable
distributed training while preserving data privacy and
minimizing communication overhead. Standardization is
another critical priority. Establishing shared benchmarks,
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datasets, and evaluation protocols will facilitate consistent
and fair comparisons across different TinyML systems,
fostering collaborative development and accelerating
progress in the field. Moreover, privacy and security must be
treated as integral components of system design. Techniques
such as differential privacy, on-device anonymization, and
defenses against adversarial attacks are essential for ethical
and secure deployments.

Looking ahead, hybrid optimization strategies that
combine software-level improvements, such as efficient
model architectures, with hardware-level innovations,
including custom accelerators and energy-aware scheduling,
will be key to meeting the strict constraints of edge
environments. Additionally, the creation of diverse real-
world datasets, capturing variability in lighting, occlusion,
motion, and background clutter, will be essential for training
models with greater generalizability.

In summary, TinyML for person detection represents a
convergence of machine learning, embedded systems, and
edge computing, offering the promise of intelligent, privacy-
aware systems deployed ubiquitously in the real world. By
addressing current gaps, particularly in scalability,
adaptability, and ethics, future research can pave the way for
more robust, efficient, and responsible TinyML solutions
with broad societal impact.

VI. CONCLUSION

Tiny Machine Learning (TinyML) has emerged as a
transformative paradigm that enables intelligent data
processing directly on ultra-low-power and memory-
constrained devices. As the demand for real-time, privacy-
aware, and energy-efficient systems continues to grow, the
integration of TinyML into person detection applications has
become both a critical challenge and a compelling
opportunity.

This paper presented a systematic literature review of
TinyML-based person detection systems published between
2014 and 2024. Through the analysis of 50 peer-reviewed
studies, we identified and categorized a wide range of
lightweight neural network architectures, optimization
techniques, datasets, and hardware platforms suitable for
deploying person detection on the edge. The review
highlighted prominent models such as MobileNet, Tiny-
YOLO, and SqueezeNet, as well as key techniques including
quantization, pruning, and knowledge distillation. It also
examined deployment across various microcontrollers and
single-board computers, including the ARM Cortex-M
family, ESP32, STM32, Jetson Nano, and Raspberry Pi.

Despite notable progress, several open challenges remain.
These include the limited availability of standardized
benchmarks for embedded settings, trade-offs between
model accuracy and resource usage, and the difficulty of
achieving robustness in diverse environmental conditions.
Additionally, power consumption, latency, and memory
constraints continue to shape the design and deployment of
TinyML models.

Looking ahead, future research must focus on adaptive
architectures, federated and on-device learning, multi-sensor
fusion, and privacy-preserving inference strategies to

enhance system resilience and scalability. Furthermore,
collaborative development of standardized evaluation
protocols and diverse real-world datasets will be crucial for
advancing reproducibility and generalizability in the field.

In conclusion, this review consolidates the current state of
TinyML for person detection, identifies existing research
gaps, and offers actionable insights for researchers and
practitioners. As TinyML technologies mature, their role in
enabling intelligent, secure, and efficient person-aware
systems at the edge is poised to become increasingly central
across a wide range of real-world applications.
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