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Abstract—The Laplace regression model is widely used in
statistical analysis, assuming that the error terms follow a
Laplace distribution. To address the issue of information
redundancy, we utilize the proposed Laplace LIC criterion to
select the optimal subset from the large-scale data. The Laplace
LIC criterion is derived based on minimizing the confidence
interval length and maximizing the determinant of information
matrix. Experimental analysis demonstrates that the Laplace
LIC criterion has robust stability.

Index Terms—Laplace LIC criterion, distributed estimation,
optimal subset.

I. INTRODUCTION

IN the field of statistical analysis, traditional ordinary
least squares (OLS) regression assumes that the error

term follows a normal distribution. These models are highly
sensitive to outliers and lack adaptability to non-normal data.
To address this issue, this paper introduces the Laplace
regression model. By leveraging the Laplace distribution, the
model reduces the influence of outliers and enhances compu-
tational efficiency (see [5], [6]). This approach strengthens
the models robustness and flexibility, enabling better han-
dling of outliers and non-normal data.

A. Current research status

In statistics, research on redundant data has always been
a hot topic (see [2], [11], [12]). This paper proposes a
new method based on the Laplace regression model. The
model aims to solve the problem of optimal subset selec-
tion in redundant data (see [1], [4]). It fills key research
gaps, improves computational efficiency and accuracy, and
demonstrates good adaptability to outliers and non-normal
distributions.

B. Our work

This paper explores the theoretical properties of the
Laplace LIC criterion. By applying the LIC criterion, we
select the optimal subset from the datasets, where the error

Manuscript received April 10, 2024; revised September 25, 2025.
This work was supported by a grant from National Social Science Foun-

dation Project under project ID 23BTJ059, a grant from Natural Science
Foundation of Shandong under project ID ZR2020MA022, a grant from
Natural Science Foundation of Shandong under project ID ZR2020QF040,
and a grant from National Statistical Research Program under project ID
2022LY016. The authors are with equal contributions.

Yaxuan Wang is an undergraduate student of School of Mathematics
and Statistics, Shandong University of Technology, Zibo, China (e-mail:
yaxuan041005@163.com).

Guangbao Guo is a professor of School of Mathematics and Statistics,
Shandong University of Technology, Zibo, China (corresponding author to
provide phone:15269366362; e-mail: ggb11111111@163.com).

Weidong Wu is a lecturer of School of Mathematics and Statis-
tics, Shandong University of Technology, Zibo, China (e-mail: wuwei-
dong.happy@163.com).

terms follow the Laplace distribution. Additionally, we em-
ploy the Mean Absolute Error (MAE) and Mean Squared
Error (MSE) as performance metrics, and evaluate the LIC
criterion’s effectiveness through simulation experiments un-
der five common distributions (see [3], [7]).

Finally, we develop an R package named LLIC, built upon
the Laplace regression model. The package includes func-
tions for data preprocessing, variable selection, model fitting,
and result visualization, enhancing prediction accuracy and
improving information utilization in small datasets.

II. INTERVAL ESTIMATION OF DISTRIBUTED LAPLACE
MODEL

In this section, we are interested in the distributed Laplace
regression model. It is represented as follows:

YIk = XIkβ + εIk , εIk ∼ Laplace(µ1,bInIk
×nIk

),

k = 1, ...,Kn.

XIk is a nIk × p submatrix with nIk ≥ p. εIk is an error
subvector. InIk

×nIk
is an unit matrix in nIk × nIk . β =

(β1, · · · , βp)
T is the regression coefficient vector. µ1 is a

location parameter. b is a scale parameter, which is positive.
For ease of computation, the dataset can be expressed in

matrix form:

Y = (Y T
I1 , Y

T
I2 , . . . , Y

T
IKn

)T, X = (XT
I1 , X

T
I2 , . . . , X

T
IKn

)T.

Furthermore, the model can be simply represented by the
following formula:

Y = Xβ + ε, ε ∼ Laplace(µ1,bI).

The fundamental idea behind distributed estimation is as
follows: the massive data on a single computer is distributed
across multiple computers. Each computer generates its own
local estimator using a statistical inference method [8]. Then,
these local estimators are aggregated and averaged to obtain
the overall estimator. If the number of blocks for the data
is set too large, it may lead to anomalies in some local
estimators, which impact the overall estimation result. Here,
all the data on a machine is randomly and equally divided
into Kn blocks, which are subsequently transmitted to the
corresponding computers for processing (see [9], [10]). The
Kn subsets are denoted as QIk = (YIk , XIk)

Kn

k=1. The
process of the distributed estimation algorithm is as follows:

1) For YIk = (YIk,1, . . . , YIk,nIk
)T,k = 1, . . . ,Kn, the

local estimator of the the mean µ = E(Y |x) is
calculated as follows:

µ̂Ik = Y Ik =

nIk∑
i=1

YIk,i/nIk .
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2) Aggregate above local estimators and average them to
obtain the overall estimator,

µ̂(a) =
1

Kn

Kn∑
i=1

µ̂Ik .

3) The variance for µ̂(a) is denoted as

var(µ̂(a)) =
1

K2
n

Kn∑
i=1

var(µ̂Ik).

In order to assess the stability and reliability of the local
estimator for each block, we construct a confidence interval
C(YIk) for µ based on QIk (shortly, µIk ), with a specified
confidence level of 1 − α. The parameter w ∈ (0, 1)
corresponds to a confidence domain function, meaning that
each value of w is associated with a specific confidence
level. Based on the parameter w, Aw(µIk) is denoted as the
acceptance region for each µIk .

Aw(µIk) = {Y Ik : (µIk − tnk−p,1−awσ̂Ik · C̄Ik ,

µIk − tnk−p,α(1−w)σ̂Ik · C̄Ik)},

where CIk =
∑nIk

i=1 CIk,xi/nIk , xi ∈ XIk , and CIk,xi =
x⊤
i (X

⊤
Ik
XIk)

−1xi is the diagonal element of the matrix
XIk(X

⊤
Ik
XIk)

−1X⊤
Ik

.
Specifically, the confidence interval is derived by inverting

the acceptance region at a confidence level α. For example,
when w = 0.5, the confidence interval of the mean µIk is
defined as

C(YIk) = {µIk : Y Ik + tnk−p, a2
σ̂Ik · CIk ≤ µIk

≤ Y Ik + tnIk
−p,1− a

2
σ̂Ik · CIk},

where E(σ̂2
Ik
) = σ2

Ik
. Then σ̂2

Ik
can be calculated as follows:

σ̂2
Ik

=
1

nIk − P
ε̂⊤Ik ε̂Ik =

1

nIk − P
Y ⊤
Ik
(InIk

×nIk
−HIk)YIk ,

where ε̂Ik = YIk − ŶIk = (InIk
×nIk

−HIk)YIk .

For the full-rank submatrix X⊤
Ik
XIk , we have

HIk = XIk(X
⊤
Ik
XIk + λIn×n)

−1X⊤
Ik
,

where λ is the disturbance term and In×n) is a n-order
identity matrix.

Consequently, the shortest confidence interval length for
µIk can be expressed as

L(C(YIk)) = 2σ̂Ik · C̄Ik · tnIk
−p,1−α

2
.

III. LAPLACE LIC CRITERION FOR OPTIMAL SUBSET
SELECTION

In this section, we present concrete steps for the optimal
subset selection, which are known as Laplace LIC criterion.
This criterion can effectively remove redundant information
and shorten the interval length.

Step 1. For indicator subset sequence {Ik}Kn

k=1, we select
the optimal indicator subset based on the shortest interval
length of µIk . The subset I1opt can be expressed as

I1opt = argmin
Ik

{σ̂Ik · C̄Ik · tnIk−1,1−α
2
},

where σ̂Ik , C̄Ik and tnIk−1,1−α
2

are obtained from
L(C(YIk)) = 2σ̂Ik · C̄Ik · tnIk−1,1−α

2
.

Step 2. The least squares of β based on QIk and the
variance of β̂Ik are given by

β̂Ik = (XT
Ik
XIk)

−1XT
Ik
YIk , var(β̂Ik) = σ̂2

Ik
(XT

Ik
XIk)

−1,

where E(σ̂2
Ik
) = σ2

Ik
. By maximizing the determinant of

the information matrix XT
Ik
XIk , the indicator subset I2opt is

computed as follows:

I2opt = argmax
Ik

|XT
Ik
XIk |.

Step 3. When leveraging the intersection of two datasets
to estimate the mean µ, the resulting confidence interval
exhibits reduced length relative to that obtained from each
dataset. The final optimal subset can be obtained as follows:

Iopt = I1opt ∩ I2opt.

Through the aforementioned steps, the optimal subset
QIopt = (YIopt , XIopt) is selected from all subsets {Q =

(YIk , XIk)}
Kn

k=1. The shortest interval length of µIopt can be
expressed as

L(C(YIopt)) = 2σ̂Iopt · C̄Iopt · tnIopt−1,1−α
2
.

IV. NUMERICAL ANALYSIS

In this section,we present a few examples to demonstrate
the performance of the Laplace LIC criterion in optimal
subset selection. Under identical experimental conditions, we
also analyze the performance of two alternative methods for
subsets I1opt and I2opt. We calculate the MSE values and MAE
values of estimators µ̂ with respect to I1opt, I

2
opt, and Iopt.

Through experimental comparisons of MAE and MSE values
across different methods, the performance of Laplace LIC is
evaluated. Notably, lower MAE and MSE values indicate
higher predictive stability.

A. Preparatory work

For the subsets, I1opt, I
2
opt, and Iopt, the local estimators

are computed individually using the following formulations:

µ̂I1
opt

= XI1
opt

β̂I1
opt

, µ̂I2
opt

= XI2
opt

β̂I2
opt

, µ̂Iopt = XIopt β̂Iopt .

Then, the MSE values of the local estimators are calculated
as follows:

MSE(µ̂I1
opt

) =
1

nI1
opt

[(YI1
opt

− ŶI1
opt

)⊤(YI1
opt

− ŶI1
opt

)],

MSE(µ̂I2
opt

) =
1

nI2
opt

[(YI2
opt

− ŶI2
opt

)⊤(YI2
opt

− ŶI2
opt

)],

MSE(µ̂Iopt) =
1

nIopt

[(YIopt − ŶIopt)
⊤(YIopt − ŶIopt)].

Besides, the MAE values of the local estimators are
defined by the following equations,

MAE(µ̂I1
opt

) = |Y Ik − µ̂I1
opt

|,

MAE(µ̂I2
opt

) = |Y Ik − µ̂I2
opt

|,

MAE(µ̂Iopt) = |Y Ik − µ̂Iopt |.
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B. Numerical simulation

It is assumed that the error term follows a Laplace dis-
tribution. The experimental dataset is generated from five
distinct distributions: Geometric, Beta, Cauchy, Chi-square,
and Uniform.

For dataset (Y,X), it is denoted as Y = Xβ + ε, ε ∼
Laplace(µ1, bI). X consists of (X1, X2), and Y is composed
of (Y1, Y2). The notations involved are defined as follows:

X1 ∈ IRn1×p,
X2 ∈ IRn2×p,
Y1 = X1β + ε1, n1 = n− nr,
Y2 = X2β + ε2, n2 = nr.

Specifically, X1 ∼ N(0, 2), X2 = (Xij) follows other
distribution in different cases.

Subsequently, X2 is defined according to each of the
following distributions:

(1) Geometric distribution: X2 ∼ Geom(0.28),
(2) Beta distribution: X2 ∼ Beta(2, 4),
(3) Cauchy distribution: X2 ∼ Cauchy,
(4) Chi-square distribution: X2 ∼ χ2(3),
(5) Uniform distribution: X2 ∼ Uniform(0, 1).
Besides, the error terms with respect to X1 and X2 are

defined by ε1 ∼ Laplace(0, σ1), ε2 ∼ Laplace(0, σ2).
By varying the values of n and p, we test the stability of

Laplace LIC criterion under different cases.
Example 1: Geometric distribution
Two experiments are demonstrated about the stability

of the Laplace LIC criterion under geometric distribution
conditions.

i: The impact of n on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: p = 8, Kn = 10, α = 0.01, σ1 = 2, σ2 = 6,
nr = 50, together with n = 1000, 2000, 3000, 4000, 5000.

Fig. 1. Stability under geometric distribution when p = 8 and n =
(1000, 2000, 3000, 4000, 5000).

Fig. 1 demonstrates that under the geometric distribution,
the LIC criterion exhibits superior stability in both MAE
values and MSE values compared to the other two methods
as the sample size increases. Specifically, when the sample
size expands from 1000 to 3000, the MAE values exhibit
relatively large fluctuations. However, within the range of
3000 to 5000, the MAE values gradually stabilize and show
a downward trend. Meanwhile, the MSE values remain

consistently low with minimal variability. These findings
indicate that the LIC criterion achieves lower error margins
and demonstrates high stability.

ii: The impact of p on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: n = 2000, Kn = 10, α = 0.01, σ1 = 2,
σ2 = 6, nr = 50, together with p = 5, 6, 7, 8, 9.

Fig. 2. Stability under geometric distribution when n = 2000 and p =
(5, 6, 7, 8, 9).

Fig. 2 demonstrates that under geometric distribution, both
MAE values and MSE values for the other two methods
exhibit significant fluctuations, whereas the LIC criterion
maintains consistently low error values as p increases. No-
tably, when p = 8, the LIC criterion maintains low error
levels compared to the other two approaches.

Example 2:Beta distribution
Two experiments are demonstrated about the stability of

the Laplace LIC criterion under Beta distribution conditions.
i: The impact of n on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: p = 8, Kn = 10, α = 0.01, σ1 = 4, σ2 = 6,
nr = 50, together with n = 1000, 2000, 3000, 4000, 5000.

Fig. 3. Stability under beta distribution when p = 8 and n =
(1000, 2000, 3000, 4000, 5000).

Fig. 3 shows that under the Beta distribution, as the sample
size increases, the MAE values and MSE values of the LIC
criterion exhibit minor fluctuations while remaining consis-
tently lower than the other two methods. These findings
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Fig. 4. Stability under beta distribution when n = 2000 and p =
(5, 6, 7, 8, 9).

Fig. 5. Stability under cauchy distribution when p = 8 and n =
(1000, 2000, 3000, 4000, 5000).

indicate that the LIC criterion achieves smaller errors and
superior performance.

ii: The impact of p on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: n = 2000, Kn = 10 ,α = 0.01, σ1 = 2,
σ2 = 8, nr = 50, together with p = 5, 6, 7, 8, 9.

Fig. 4 illustrates that under the Beta distribution, as the
parameter p increases from 5 to 8, the MAE values and MSE
values derived from the LIC criterion exhibit minimal fluc-
tuations. In contrast, the other two methods show significant
variability in MAE values and MSE values. Notably, when
p = 7, the error values for the other two methods exhibit
the largest fluctuations. These findings confirm that the LIC
criterion offers superior stability and performance.

Example 3: Cauchy distribution
Two experiments are demonstrated about the stability of

the Laplace LIC criterion under Cauchy distribution condi-
tions.

i: The impact of n on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: p = 8, Kn = 10, α = 0.01, σ1 = 2, σ2 = 6,
nr = 50, together with n = 1000, 2000, 3000, 4000, 5000.

Fig. 6. Stability under cauchy distribution when n = 2000 and p =
(5, 6, 7, 8, 9).

Fig. 7. Stability under chi-square distribution when p = 8 and n =
(1000, 2000, 3000, 4000, 5000).

Fig. 5 demonstrates that under the Cauchy distribution,
compared to the other two methods, the MAE and MSE
values based on the LIC criterion are smaller. Notably, the
MSE values derived from the LIC criterion exhibit less
variability, demonstrating strong numerical stability.

ii: The impact of p on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: n = 2000, Kn = 10, α = 0.01, σ1 = 2,
σ2 = 6, nr = 50, together with p = 5, 6, 7, 8, 9.

Fig. 6 shows that under the Cauchy distribution, as the
parameter p increases from 5 to 8, the LIC method exhibits
a decreasing trend in both MAE values and MSE values,
with minimal fluctuations. In contrast, the other two method
displays significant variability in MAE and MSE values.
These results confirm that the LIC criterion offers superior
stability and performance.

Example 4: Chi-square distribution
Two experiments are demonstrated about the stability

of the Laplace LIC criterion under Chi-square distribution
conditions.

i: The impact of n on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: p = 8, Kn = 10, α = 0.01, σ1 = 2, σ2 = 6,
nr = 50, together with n = 1000, 2000, 3000, 4000, 5000.
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Fig. 7 shows that under the Chi-square distribution, as the
sample size increases, the LIC criterion exhibits a decreasing
trend in both MAE and MSE values, with high stability. In
contrast, while the other two methods also show decreasing
trends in MAE and MSE, their error magnitudes remain sig-
nificantly larger. These results indicate that the LIC method
is more effective and demonstrates superior stability.

ii: The impact of p on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: n = 3000, Kn = 10, α = 0.01, σ1 = 4,
σ2 = 6, nr = 50, together with p = 5, 6, 7, 8, 9.

Fig. 8. Stability under chi-square distribution when n = 3000 and p =
(5, 6, 7, 8, 9).

Fig. 8 shows that under the Chi-square distribution, as the
parameter p increases from 5 to 8, MAE values and MSE
values for the LIC criterion remain consistently lower than
those of the other methods.

Example 5: Uniform distribution
Two experiments are demonstrated about the stability

of the Laplace LIC criterion under Uniform distribution
conditions.

i: The impact of n on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: p = 8, Kn = 10, α = 0.01, σ1 = 4, σ2 = 8,
nr = 50, together with n = 1000, 2000, 3000, 4000, 5000.

Fig. 9. Stability under uniform distribution when p = 8 and n =
(1000, 2000, 3000, 4000, 5000).

Fig. 9 shows that under the Uniform distribution, as the
sample size increases, the MAE values and MSE values

of all three methods exhibit fluctuations. However, the LIC
criterion demonstrates a smaller range of fluctuations and
lower error magnitudes compared to the others. These results
indicate that the LIC criterion is both more effective and
more stable.

ii: The impact of p on the stability of the LIC criterion.
The parameter configurations for the experiment are sum-

marized below: n = 2000, Kn = 10, α = 0.01, σ1 = 2,
σ2 = 6, nr = 50, together with p = 5, 6, 7, 8, 9.

Fig. 10. Stability under uniform distribution when n = 2000 and p =
(5, 6, 7, 8, 9).

Fig. 10 shows that under the Uniform distribution, as the
parameter p increases from 5 to 8, MAE vaues and MSE
values for the LIC criterion exhibit minor fluctuations. In
contrast, the other two methods show significantly larger
fluctuations and higher error magnitudes.

III. Summary of the experiments.
Through numerical experiments, we analyze the stability

and sensitivity of data under different distributions. The
results demonstrate that the LIC criterion exhibits superior
stability, effectively reducing errors and improving data reli-
ability. Notably, as the data scale increases, the LIC criterion
maintains a consistently lower error level.

V. CONCLUSION

This paper investigates the theoretical properties of the
Laplace regression model, providing practical guidelines for
redundant data processing. Specially, a comparative analysis
is conducted about the Laplace LIC criterion. The results
demonstrate that the Laplace LIC criterion demonstrates out-
standing performance in optimal subset selection, exhibiting
superior stability and sensitivity across diverse distributions.

DATA AVAILABILITY

We have implemented this criterion in the R package
LLIC. Please visit the following website: https://cran.r-
project.org/web/packages/LLIC/
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