TAENG International Journal of Computer Science

Enhanced Wind Energy Forecasting using
CEEMDAN and Transformer-BiLSTM with
Frequency-based Analysis

Manisha Galphade, Nilkamal More, VB Nikam, Biplab Banerjee, Arvind W. Kiwelekar and Priyanka Sharma

Abstract—Renewable energy is sourced from continually
available natural resources. Accurate wind energy forecasting
is crucial for effective integration of renewable energy into
power grids. In addition, it is essential to ensure the safety of
wind turbines by anticipating extreme weather conditions and
implementing the necessary precautions. This paper presents a
novel approach that combines Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) decom-
position with a hybrid neural transformer-BiLSTM network
to make wind energy forecasis more accurate, The proposed
method first applies CEEMDAN to decompose the original wind
energy time series into several sub-series, then divide them into
high- and low-frequency components. A transformer model is
used to handle the complexity of the high-frequency data, while
a BiLSTM network is used for the simpler low-frequency sub-
series, Sample entropy is introduced as a criterion for feature
selection to ensure that the model focuses on the most infor-
mative components of the data. The results of the Transformer
and BiLSTM models are aggregated to produce the final wind
power prediction. Extensive experiments demonstrate that the
suggested methodology significantly overcomes the existing ap-
proaches to prediction accuracy and offers an efficient method
for wind energy sysiems to enhance efficiency and stability.
This research contributes to this topic by providing a robust
and scalable frequency-based wind energy forecasting analysis.

Index Terms—Decomposition, Renewable energy, BiLLSTM,
Transformer, Sample entropy.

I. INTRODUCTION

UMAN life comfort is tremendously changing because
of advancements in science and technology. However,
it generates energy crises and environmental risks [1], [2]
such as reducing energy resources and increasing environ-
mental pollutants, which threaten human life. Energy is an
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essential material basis for human economic development
and social progress that affects all aspects of social life [3].
Wind power is considered one of the fastest-growing sources
of electricity generation due to its cost-effective harmessing
of kinetic energy. Wind power [4], [5], [6] is a renewable
and environmentally friendly form of eleciricity. As a result,
several countries are focusing their efforts on wind power
generation [7]. Wind power electricity generation is very
volatile due to wind’s chaotic and intermittent nature. This
could potentially result in massive losses in the energy sector.
As a result, providers need to have accurate forecasting
skills for wind power [8]. The wind energy market requires
technical and economic advancement [9], [10]. For technical
advancement, the efforts are focused on how to use the
wind at a maximum level, and for economic issues [7], the
main objective is to reduce the penalty to gain maximum
profit from available resources. India is world’s third-largest
electricity producer in the 2016, as per the report on 29 Feb
2024 [11].

When wind power prediction often relies on estimating
wind speed using proper methodologies. Some literature has
emploved indirect approaches to estimate wind speed and
thus predict wind power [12]. The indirect technique of
wind power forecasting involves directly predicting wind
power output without first forecasting wind speed. Several
researchers have dedicated their efforts to advancing reliable
wind power forecasting models. Researchers employ several
models for their studies [13], [14] are mainly classified into
physical [15], statistical [16] and hybrid [17] classes. The
physical model such as, Navier-Stokes equations, Numerical
Weather Forecast (NWP) models are widely used, but they
also have certain drawbacks. Customers depend on weather
forecast service providers for weather services. Forecasts are
only accessible at particular intervals, and the offered time
frames are always fixed. It is quite difficult to provide accu-
rate forecasts using a physical model because the atmosphere
is so chaotic. Therefore, alternative methods like statistical
learning are used for short-term prediction. The Persistence
or Naive forecasting is a statistical method that uses the value
at a given instance to forecast for that same instance the
following day. This model assumes the next value will be
precisely the same as the last value seen. Therefore, Equation
(1) can be used to express the Naive method.

Yepi =Y (1

where
Yiy1 is predicted value, Y; is real value at time ¢+ 1 and ¢
respectively.
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Conventional statistical techniques for forecasting wind
speed or power utilize time series models, like moving
average (MA), autoregressive (AR), autoregressive moving
average (ARMA), and autoregressive integrated moving av-
erage (ARIMA), which are easy to create and offer timely
forecasts. Traditional statistical approaches are often used
as reference models. Deep learning approaches provide
the benefit of learning from data and generalizing, which
sets them apart from typical learning methods. Different
deep learning methods are emploved based on the type of
application, including convolutional neural network (CNN)
[18], recursive neural networks (RNN), and long short term
memory (LSTM) [19]. Based on our analysis of the literature
survey [20], [21], [22], we have discovered that recent studies
indicate that statistical methods are not suitable for non-
linear wind data, struggle with handling large datasets, and
are unable to predict long-term periods accurately. Therefore,
statistical methods should not be considered as the primary
recommended approach for prediction.

The hybrid models’ objective is to leverage each model’s
strengths to get the most effective predicted performance.
Hybrid techniques [14] combine different approaches, such
as short-term and medium-term models, combining physical
and statistical approaches, and so on. Hybrid approaches
may be broadly categorized into four categories [23]: hybrid
approaches based on weight, data post-processing, data pre-
processing, and parameter selection and optimization tech-
niques.

In our research, we propose a hybrid model based on data
preprocessing. Conventional techniques, such as removing
observations with missing values, replacing missing values
with the mean, filling in missing values using previous or
subsequent values, and using basic regression, are not able to
handle large amounts of data, making it challenging to handle
missing data in the big data era [24]. A data preprocessing
model is provided below to address the existing gap in the
literature. This approach utilizes Random Forest to identify
and fill missing values in multivariate data. These approaches
do not make any assumptions about the normal distribution or
require the development of parametric models [25]. In addi-
tion, it has the benefit of effectively managing nonlinearities.
Along with this, decomposition methods have emerged as
powerful tools for improving forecasting accuracy. It works
by breaking down complex time series data into simpler,
more manageable components, each of which can be ana-
lyzed and predicted separately. Most wind power forecasting
methods usvally employ data decomposition techniques for
processing, but often overlook the issue of high-frequency
components. For instance, the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) de-
composition approach produces a series with high frequency,
which is volatile and contains noise [26]. The series with
the high frequency is the most difficult to predict; because
of this, the accuracy of the prediction might be significantly
impacted [27]. Despite the significant advancements made
by integrating the decomposition approach with artificial in-
telligence, additional improvements are necessary to enhance
the accuracy of wind power forecasting further.

Over the last few years, numerous researchers have em-
ployed signal decomposition algorithms for ultra-ultra-short-
term wind speed forecasting in wind farms, introducing

a category of forecasting methods centered on decom-
position combinations [28]. In the literature, research on
decomposition-based models is often classified into two
classes: the direct approach [29] and the multi-component
approach [30].

Wind power forecasting based on decomposition is an
emerging approach that enhances predictions’ accuracy by
breaking down complex wind data into manageable com-
ponents. Research indicates that this method effectively
captures wind patterns’ non-linear and time-varying nature.
For instance, Hu et al. highlight the utilizations of empirical
mode decomposition (EMD) to separate wind speed sig-
nals into intrinsic mode functions (IMFs), which improves
forecasting precision by addressing noise and irregularities
in data [31]. Further, integrating decomposition techniques
with machine learning models demonstrates significant im-
provements in forecasting accuracy compared to traditional
methods [32]. Additionally, wavelet decomposition allows
for multi-resolution analysis, thus enhancing the model’s
ability to adapt to varying wind conditions [33]. However,
limitations such as computational complexity and extensive
historical data need to be addressed in implementing these
techniques effectively [34]. A novel wind power forecast-
ing method using improved variational mode decomposition
(IVMD), mixture correntropy, and LSTM is proposed and
optimized by particle swarm optimization [35]. Combining
IVMD and sample entropy for data preprocessing, the hybrid
IVMD-SE-PMC-LSTM model performs better with complex
wind farm data.

Given the concerms mentioned above, this research sug-
gests a hybrid CEEMDAN-SampEn model. The initial phase
decomposes the original wind power series into multiple
subseries using CEEMDAN. The next stage is to divide
these subseries into two distinet groups, namely low and
high frequency components. Due to the complexity and
predictive challenges posed by the high frequency subseries,
a Transformer model is employed, while the simpler low-
frequency subseries are addressed using a BiLLSTM model.
Finally, the generated predictions by the Transformer and
BilLSTM models are aggregated through summation. This
work’s key innovations and contributions to the existing state
of the art presented as: 1) This work introduces an innovative
wind energy prediction system that utilizes CEEMDAN
decomposition to effectively separate the wind energy data
into high and low frequency components to improve the
prediction accuracy. 2) By combining Transformer and Bil-
STM networks, the proposed method efficiently handles the
complexity of high frequency data with Transformer and
utilizes BiLSTM for simpler low-frequency data, providing a
robust solution for time series prediction. 3) The integration
of sample entropy as a feature selection technique enables a
refined analysis of frequency components. It ensures that the
model focuses on the most significant features, improving
predictive performance. 4) The paper contains a thorough
comparative analysis with existing methods, demonstrating
the superior accuracy and reliability of the suggested ap-
proach in real wind energy forecasting scenarios.

The subsequent sections of the paper are organized as
follows. The theoretical framework of the proposed work is
explained in Section 2. In section 3, the proposed model is
elaborated. Section 4 describes how the experimental analysis

Volume 52, Issue 11, November 2025, Pages 4093-4105



TAENG International Journal of Computer Science

is carried out. Section 5 concludes with a discussion of the
research that will be done in the future.

II. THEORETICAL BACKGROUND

This section thoroughly examines the theoretical founda-
tion of frameworks that support our approach.

1) CEEMDAN: The CEEMDAN is a signal processing
technique used for decomposing non-stationary and nonlinear
data into multiple IMFs [36]. It is an extension of the EMD
and EEMD algorithms. The computational complexity of an
algorithm serves as a critical performance metric. EMD and
EEMD may produce unnecessary IMFs, adversely affecting
their efficiency. Hence, minimizing the generation of such
redundant IMFs becomes essential to enhance the computa-
tional efficiency of these methods. The author, Colominas,
proposed an enhanced version of CEEMDAN [37]. These
algorithms aim to reduce the number of IMFs generated
while effectively separating distinct signal components. By
leveraging these approaches, the computational burden can
be reduced without compromising the accuracy of the de-
composition process. The CEEMDAN method adds adaptive
noise into the residual acquired from the previous step instead
of directly introducing noise to the original signal, as done
in EEMD. This adaptive noise is derived from the noise’s
mode corresponding to the iteration obtained with EMD.
By incorporating adaptive noise in this manner, CEEMDAN
aims to improve decomposition accuracy and mitigate mode
mixing issues commonly encountered in EMD and EEMD.
The key steps of the CEEMDAN algorithm involve itera-
tively decomposing the input signal into IMFs and a residual
component, adding adaptive noise to the residual at each
iteration, and repeating this process until convergence is
achieved. The resulting IMFs can then be analyzed or used
for further processing tasks such as signal denoising, feature
extraction, or time series forecasting. Figure 1 shows that the
original wind power sequence is separated into ten IMFs and
one residual component.

1) Ensemble Generation: Generate ensemble members
by adding original signal with white noise as in Equa-
tion (2):

zi(t) = 2(t) + e(t) 2

where z;(t) is the i'" ensemble member, z(t) is the

original signal, €;(¢) is white noise.

2) Apply EMD: Apply the EMD process independently
to each ensemble member to obtain IMFs and a
residual component. For each ensemble member z;(t),
decompose it into IMFs ¢; 1 (t) and a residual r;(t) as
in Equation (3).

N;
zi(t) = Y cinlt) +7ilt) 3)
k=1

3) Adaptive Noise Injection: Add adaptive noise to the
residual obtained from the previous iteration:

v (t) = rf () + e(t) 4)

where 17'(¢) is the residual at iteration n, and €;(t) is
the noise added to the residual.
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Fig. 1. IMF generated by CEEMDAN

4) IMF Averaging: Average the IMFs obtained from
all ensemble members to reduce noise and improve
stability:

1 M
Ci =57 2_Cix(® ®)
i=1

where Cz is the averaged IMF at iteration n, M is the
total number of ensemble members and C7', (¢) is the
k" IMF of the i'" ensemble member at iteration n.

5) Residual Calculation: Compute the residual compo-
nent by averaging the residuals from all ensemble
members:

, 1 &
MOES YO0 ©)
t=1

6) Iteration: Repeat steps 2-5 iteratively until a conver-

gence criterion is met.

2) Sample Entropy: This is a measure which helps to
assess the complexity and pattern of time series data [38]. It
calculates the likelihood of the patterns in the data that are
similar and will remain similar in the future. This metric
provides valuable information about the pattern of the time
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series, helping to understand its behavior over time.

Step 1: Given a time series of length N,
{ri, 2ip1,Tip2 - n ) vectors of length m (the embedding
dimension) are created as X; = {@;, x141, %40 -2n} for
i=1,23--- ,N—-m+ 1

Step 2: The distance between two vectors X; and
Xj as the maximum absolute difference between their

corresponding components as given in Equation (7):

d(Xi Xy) = _max @ik — @k )

L

Step 3: Define a tolerance level r. Two vectors X; and X
are considered similar if d(X;, X;) <r

Step 4: Count the number of vectors X; that are similar
to X, (excluding self-matches) and nermalize by the total
number of comparisons using Equation (8):

_ Number of X; such that d(X;, X;) < r
B N-—m

C(r)

T

)

Step 5: Compute the average of C*(r) for all 7 using
Equation (9).

1 N—-m+1
™ (r) i ——— ; Ci*(r) )

Step 6: Repeat the process for m + 1 to form X; vectors
of length m 41 and compute C™*+1({r) using Equation (10).

(10

N—im
1 KL
) = 5 2 )
=1

Step 7: Finally, sample entropy is calculated using Equation

(1L

m—+1
Sampln(m,r,N) = —in (C - (T)> {11)

Cm(r)

Sample entropy provides a robust way to quantify the
complexity of time-series data by measuring the likelihood
that identical patterns of observations remain similar as the
series progresses. This makes it a valuable tool in fields
like physiology, financial analysis, and other domains where
understanding the underlying dynamics of a time series is
crucial.

3) Transformer: The Transformer architecture [39], ini-
tially implemented for natural language processing, is also
gaining attention for its application in time series analysis.
The original Transformer architecture has six stacked en-
coder and decoder layers; the number can vary depending
on the application. Each layer comprises a multi-head self-
attention mechanism and a feedforward network as its sub-
layers. The architecture consists of three sub-layers in each
layer:

1) A masked multi-head self-attention mechanism

2) A multi-head attention mechanism operated on the

encoder’s output

3) a feed-forward network

The masked self-attention guarantees that the forecast for a
certain position is only determined by the known outputs

generated at the previous position. The Transformer archi-
tecture struggles to capture the sequence of input data. In
order to solve this issue, positional encoding is used to find
the position of each element in the input sequence. Every
individual input sequence value is associated with a feature
vector. At the start, it performs embedding operations on each
input, expanding the data from a one-dimensional matrix to a
two-dimensional matrix, as illustrated in Figure 3. Following
this, sine and cosine function is used to encode the input
sequerice using Equation (12} and Equation (13), resulting in
a fixed absolute position representation, known as position
encoding. Ultimately, the position encoding is combined with
the embedding sequence that was generated before.

i pos
PEos20) = sin( g0t/ (12)
pos
PE(pos,Qi-i—l) = Cos(m) (13)

where,

PEpq ; is the i*" dimension of the positional encoding vector
for position pos,

dpmoder 18 the dimensionality of the input embeddings.

The choice of sinusoidal functions ensures that the po-
sitional encoding vectors have a unique representation for
each position and have a smooth, continuous nature. The
frequencies and phases of the sinusoidal functions allow the
model to learmn meaningful positional representations, with
lower frequencies capturing global positional information
and higher frequencies capturing local positional informa-
tion.

The self-attention mechanism enables the model to assign
a weight to each element in the input sequence when making
predictions for a specific element, as shown in Figure 2.
It calculates the attention scores by considering pairwise
association between all samples in the input sequence. Let’s
consider input sequence as X = {xy,xs, -,z } where x;
represents the time series value at time step ¢. There are three
learnable vectors associated with each element x; as: ¢ in
the form of a query vector, K; as a key vector, and V; a
value vector as shown in Equation (14) to (16).

Qi=Wg -z (14)

where,

W is weight matrix,

Subscript K, Q, and V are learnable vectors.

The attention score a;; between each pair of elements is
computed by performing dot product of their query and key
vectors using Equation (17).

(17)

ay; = softmax <%>

Vg
where d;, is the key vectors dimensionality.
The attention scores are used to obtain the context vector C;
for each element x; as shown in Equation (18).

Cy=> ayV; (18)
j=1
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Fig. 2. Self-attention evalvate relationships within a sequence, helping the model capture dependencies between elements.
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Fig. 3. Position embeddings encode the order of sequence elements,

enabling the model to recognize positional information.

The context vector C; represents the aggregated information
from the entire input sequence. It is calculated as a weighted
sum of the value vectors of all elements in the sequence.
The attention score is used to determine the weights of these
elements. This allows the model to focus on the important
aspects of the input sequence while making predictions for
each element. In the subsequent stage of multi-head attention,
the self-attention mechanism is implemented many times
simultaneously, each with its own distinct set of trainable
parameters, as seen in Figure 4. This feature allows the model
to pay attention to many segments of the input sequence
concurrently, therefore capturing a wide range of patterns
and correlations. Mathematically, multi-head attention can be
defined using Equation (19). A final output is obtained by
concatenating and linearly transforming the context vectors
from all heads.

MultiHead(X) = Concat{(C}, C2, ..., CHW,

'l,

(19)

where,

H is the total number of heads,

Concat denotes concatenation,

W, is a learnable weight matrix for the output.

Multi-head attention helps concurrently record several ele-

ments of the input sequence, improving the ability to learn

correlations and complicated patterns effectively.
Feed-forward neural networks (FFNNs) play a crucial role

in the subsequent processing of the outputs generated by the

self-attention mechanism. Every layer in both the encoder
and decoder of a Transformer contains FFINN that enhances
the representations obtained from the attention layers. Once
the self-attention mechanism captures the relationship among
various tokens in a sequence, the resultant vectors are fed
into the FENN. This network has two linear transforma-
tions divided by a non-linear activation function, usually
Rel.U. The FENN applies these transformations to each
token independently, adding non-linearity and enabling the
model to understand complex patterns. Beginning with the
self-attention layer’s output, which is combined with the
original input by a residual link, the process advances to
layer normalization.

This normalized output is fed into the FENN, where the
first linear transformation is applied, followed by the Rel.U
activation. The resulting vectors then undergo a second linear
transformation. Finally, the output of the FFNN is merged
with the input through an additional residual link and nor-
malized, preparing it for the next layer. This process ensures
the model maintains stability and accelerates training by
preventing issues like vanishing or exploding gradients. The
FFNNs in Transformers significantly improve the model’s
capacity to collect and depict complex relationships within
the data, enhancing its efficacy in various applications like
language modeling and translation.

A, BILSTM

BIiLSTM is an RNN that improves the capacity to discover
relationships in sequential data by analyzing it in both the
forward and backward directions [40], [41] as shown in
Figure 5.

The outputs of these two LSTM layers are combined,
allowing the network to learn from both the future and past
context of each time step, improving its ability to understand
and predict sequential data. The output of each LSTM cell
can then be merged or combined to provide the overall output
of the bilLSTM as in Equation (20).

o = F(he, ha) (20)

where,
hy output of forward layer,

?1: output of backward layer

f is a function such as sum, mul, concat or avg.
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Fig. 4. Multi-head attention enables parallel focus on various sequence parts, enhancing contextual understanding.

Forward
Layer

Backward
Layer

Fig. 5. Architecture of a BILSTM network

III. DESIGN OF THE PROPOSED MODEL

A Hybrid wind power forecast model, now referred to
as CEEMDAN-SampEn-TRAN-BiLSTM, which integrates
CEEMDAN, sample entropy, Transformer, and BiLSTM, is
proposed in this work. In this hybrid model, two prediction
models were selected based on the properties of the
sequences. The Transformer model, which has an encoder-
decoder architecture, handles high-frequency sequences with
complex structures. This model can offer higher attention
to detail, effectively mining patterns and yielding more
accurate prediction results. Conversely, for low-frequency
sequences with stronger periodicity and lower complexity,
the BiLSTM model is chosen. Its relatively simple structure

~———

YVe+1

......

makes it well-suited for series prediction, as it reduces
training time and accelerates prediction speed—an overview
of the proposed model’s essential structure. The general
framework of the suggested model is depicted in Figure
6. The procedure is partitioned into six steps as outlined
below:

Step 1: The original wind power series is separated IMFs
and a residual component using CEEMDAN. These IMFs
represent various frequency components of the original
signal.

Step 2: The decomposed IMFs are analyzed for frequency
characteristics using Sample entropy. The IMFs are
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Fig. 6. Design of the Proposed Model

categorized into high and low frequency subseries, which
will help to distinguish between different patterns and
complexities in the data.

Step 3: The high and low frequency subseries are separately
normalized using a Min-Max Scalar. This normalization
scales the data to a specific range, which helps improve the
subsequent models’ performance.

Step 4: The normalized high-frequency sequences are
fed into a Transformer model, while the low-frequency
sequences are input into a BiLSTM model. These models
are chosen for their ability to record several data points.
Transformers effectively capture long-range dependencies,
and BiLSTMs are efficient for sequence prediction tasks.

Step 5: The outputs are de-normalized after the prediction
models (Transformer for high frequency and BilLSTM for
low frequency) generate their respective forecasts. This step
reverses the normalization process, returning the scaled
predictions to their original range.

Step 6: The de-normalized predictions from both models
are combined. The results are summed to generate a
comprehensive forecast of wind power. The overall forecast
is derived by combining the high and low frequency
predictions, providing a complete wind power prediction.

A. Hyperparameter Tuning

Figure 7 illustrates the RMSE values corresponding to
various lookback window sizes, ranging from 1 to 10. The
RMSE exhibits a U-shaped pattern, with values decreasing
initially and then increasing as the lookback size grows.
The minimum RMSE is observed at a lookback value of
5, suggesting that this is the optimal window size for this
dataset. Smaller lookback sizes, such as 1 or 2, may not
capture sufficient historical information, resulting in higher
errors. Conversely, larger lookback sizes beyond 5 lead to in-
creased RMSE, potentially due to overfitting or the inclusion
of redundant data. Therefore, a lookback value of 5 is rec-
ommended as it balances the trade-off between underfitting
and overfitting, providing the most accurate predictions for
this dataset. As presented in Figure 7, a look-back value of
5 demonstrates the best performance with the lowest RMSE,

indicating its suitability for capturing the temporal depen-
dencies in the dataset. Therefore, this value has been adopted
uniformly across all hybrid models that incorporate LSTM
for prediction tasks. This consistent selection ensures that the
models leverage the optimal look-back period for effective
feature extraction and accurate forecasting. By maintaining
this configuration, the comparative analysis across different
hybrid architectures remains valid, and the predictive perfor-
mance is enhanced due to the proven efficacy of this look-
back value in capturing sequential patterns. The remaining

126.6 - I
126.4 | |-
m 126.2 - ] -
72
=
M6t -
125.8 |- 5
[ T \ \ \,_|\ \ \ [ \
1 2 3 4 5 6 7 8 9
OoRMSE
Fig. 7. Impact of Lookback on LSTM performance

hyperparameters for the proposed model are detailed in Table
I, providing a comprehensive overview of the configurations
used. The dataset employed in this study was split into
training and testing sets following a 70-30 split ratio, where
70% of the data was used for training the model to learn
underlying patterns, and the remaining 30% was reserved
for testing to evaluate its predictive performance. This split
ensures a balanced approach, providing sufficient data for
both training and validation while minimizing the risk of
overfitting.

IV. EXPERIMENTAL RESULT

This experiment uses the Sotavento wind farm dataset,
located in Galicia, Spain. The wind farm has 24 onshore
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TABLE I
HYPERPARAMETERS CONFIGURATION OF PROPOSED MODELS.
Model Parameter Parameter description Value
CEEMDAN | Noise level Value of noise that is added adaptively to the signal during the decomposition process. 0.05
BiLSTM Hidden layer sizes | Refer to the number of neurons or nodes in each hidden layer of the neural network. 128
D — To demd_es whether a neuron should activate or not, helping the model Iearn complex RelU
patterns in data.
Splintizer To adjusts a model’s weights to make predictions more accurate by reducing the emror Adam
step by step.
Learning rate The step size at which a model’s weights are updated during optimization 0.001
The number of times a machine Iearning model goes through the entire training
Epets dataset to learn from it 100
b . The number of training examples processed together in a single forward and backward
atch_size 64
pass of a neural network.
Transformer | num_layers Number of encoder and decoder layers 6
num_heads Number of attention heads in multi-head attention 12
d_ff Dimensionality of the feed forward network 256
dropout_rate Probability of dropping neurons during training. 0.1
max_seq length Maximum sequence Iength supported. 28
batch_size Number of samples processed in one iteration 64
TABLE II
THE CHARACTERISTICS OF THE SOTAVENTO WIND FARM DATASET
Data Source Attribute Specifica- | Resolution Capacity No. of records
tions
Sotavento wind | Wind spead, wind | 10-minute, 1-hour, 1- | 17560kW 52568 records with 3
farm direction and wind | day, Data from 2014 attributes
power to till date

turbines and a total capacity of 17560 kW [42]. The charac-
teristics of the dataset include location, capacity, attributes,
record count and resolution, detailed in Table II

The proposed model takes the wind power sequence as
an input and applies CEEMDAN with a noise level of
0.05 to split it. The complexity of decomposed subseries
is determined using sample entropy as listed in Table IIL
Greater sample entropy value signifies increased nonlinearity,
complexity, and a more impact on the accuracy of prediction.
The entropy curve is depicted in Figure 8. As the frequencies
of the IMF and residual components fall, the entropy values
also decrease, suggesting a reduction in the complexity of
each component. IMF1 is having highest sample entropy
among the other components, indicating that the first IMF
exhibits the highest level of system complexity. We are

Sample Entropy of each subseries

03 T T T I
—=— Sample Entropy value ‘
2 02 -
2
&
2
o
5
o 01 p 3
0 | | | | )|
0 3 4 6 8 10
Series index
Fig. 8. Sample Entropy for each series

combining IMF1 to IMF5 into IMF1 partl and using it
as input for the first model, which is a Transformer. The
remaining IMFs are combined into IMF_Part2 and vsed as
input for the second model, which is a BiLSTM.

TABLE III
SAMPLE ENTROPY VALUE FOR EACH SUB-SERIES

IMF Number Sample Entropy
Value
IMF1 0.271
IME2 0.191
IME3 0.196
IME4 0.163
MF5 0.148
IMFE6 0.091
IMFE7 0.042
IMES 0.021
IMF9 0.006
Residual 0.001

Figure 9 shows a comparative analysis of different de-
composition methods applied to a signal. Each method
decomposes the original signal into several IMFs, and for
each IMF, two plots are displayed: the time-domain signal
(left column) and the frequency spectrum (right column)
through a Fourier Transform. In general, EMD, EEMD, and
CEEMDAN show similar trends in terms of IMF structure.
Lower-order IMFs contain higher-frequency oscillations,
while higher-order IMFs capture lower-frequency, trend-like
components. However, the decomposition quality varies sig-
nificantly across methods, particularly in terms of frequency
separation, noise handling, and IMF stability. EMD, the
simplest of the three methods, produces a series of IMFs
that are more prone to noise and mode mixing. Mode mixing
occurs when a single IMF contains oscillations of multiple
frequencies, which makes it challenging to interpret the
results. The frequency spectra of EMD’s IMFs show some
overlapping frequencies, especially in lower-order IMFs,
indicating that EMD struggles to isolate distinct frequency
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Fig. 9. Comparative analysis of different decomposition methods

components in noisy or complex signals. EEMD addresses
some limitations of EMD by adding white noise to the signal
and averaging the decompositions over multiple trials. This
approach reduces mode mixing, resulting in IMFs with more
stable frequency characteristics and less noise. The frequency
spectra of EEMD’s IMFs show clearer separation of fre-
quencies, indicating improved frequency isolation. EEMD
thus provides a more reliable decomposition, especially
for signals that contain overlapping frequency components.
CEEMDAN, an advanced extension of EEMD, offers even
greater robustness by further mitigating mode mixing and
enhancing frequency separation. The IMFs obtained through
CEEMDAN are smooth, with minimal noise interference,
and their frequency spectra exhibit clearly defined peaks
with distinct separation between modes. This suggests that

CEEMDAN is particularly effective at isolating different
frequency bands, making it the most accurate method for
decomposing complex signals among the three. In summary,
EMD is the least robust of the three methods, often resulting
in noisy and mixed IMFs. EEMD improves upon EMD
by stabilizing the decomposition and enhancing frequency
isolation, while CEEMDAN provides the most reliable and
clean decomposition, excelling at separating frequency com-
ponents with minimal noise. For applications where accurate
frequency isolation is crucial CEEMDAN would likely be the
preferred method due to its superior ability to handle noise
and avoid mode mixing.

The Figure 10 shows intermediate results from the decom-
position of a time series using CEEMDAN. In the top rows,
the IMFs represent high-frequency components with rapid
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Fig. 10. Actual vs predicted result of IMFs
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Fig. 11. Comparison of various model’s predictions
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Fig. 12.  Radar chart for ten models

oscillations, capturing short-term fluctuations in the data.
Here, the model closely follows the actual values but shows
minor discrepancies, particularly at peaks and troughs, which
is expected as high-frequency components are often noisy
and challenging to predict accurately. Moving down the rows,
the IMFs capture intermediate frequencies with smoother
oscillations and moderate trends. In these middle rows,
the model performs better, tracking the actual values with
greater precision, which suggests that it is adept at handling
medium-frequency components that represent key patterns
in the data. Overall, this decomposition reveals that the
model is well-suited to capturing both short-term and long-
term dynamics within the data. It performs effectively across
high, medium, and low-frequency IMFs, with the highest
accuracy observed in the low-frequency components, which
are crucial for understanding the general trend. Such a multi-
frequency analysis is valuable in fields like machinery fault
detection, wind turbine monitoring, and financial time series
forecasting, where it’s essential to differentiate between rapid
fluctuations and underlying trends. This detailed breakdown

fransformer

CEEMDAN_LSTM Model

CEEMDAN Propoged Model

Encoder-Décoderfransformer

Propeged Model

across IMFs provides insights into the model’s strengths and
potential areas for refinement, especially in handling noisy,
high-frequency components.

Table IV presents a comparative analysis of several pre-
dictive model, focusing on their RMSE and MAE. The SVR
model shows RMSE of 255.8 and MAE of 116.52, indicating
lower prediction accuracy and precision. The RF model has a
little superior performance, as indicated by RMSE of 253.64
and an MAE of 107.01, in comparison to the SVR model.
LSTM model demonstrates a slight enhancement in accuracy
and precision compared to SVR and RF, evidenced by its
RMSE of 282.87 and MAE of 97.16. The combination of
EMD with LSTM (EMD_LSTM) significantly reduces both
RMSE and MAE to 170.53 and 84.71, respectively, high-
lighting the advantage of signal decomposition before predic-
tion. Further improvement is seen with the EEMD combined
with LSTM (EEMD_LSTM), which achieves an RMSE of
127.52 and an MAE of 84.24. The CEEMDAN_LSTM
model, which incorporates CEEMDAN, performs even better
with RMSE of 123.02 and an MAE of 83.99. Adding EWT
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TABLE IV
COMPARISON OF PROPOSED MODEL WITH STATE- OF-ART APPROACHES

Sr.No. Model Train accuracy Test accuracy

RMSE | MAE R2 RMSE | MAE R2
1 SVRMaodel 255.8 11652 | 0.84 | 25334 | 11554 | 0.84
2 RFModel 253.64 | 107.01 | 0.83 | 25223 | 106.89 | 0.83
3 LSTM 28287 | 9716 0.84 | 28097 | 9694 | 0.84
4 EMD_LSTM 17053 | 84.71 0.85 169.09 | 8334 | 0.92
5 EEMD_LSTM 127.52 | 84.24 0.96 177.55 | 8647 | 0.95
6 CEEMDAN _ILSTM 123.02 | 8§3.99 0.97 150.5 79.09 | 097
7 CEEMDANEWT LSTM | 10826 | 53.03 0.97 10532 | 5202 | 0.97
8 Encoder-Decoder 25444 | 162.02 | 097 | 25589 | 162.02 | 0.97
9 Transformer 7832 4345 79.89 80,03 4543 | 0,99
10 ProposedModel 5745 18.01 0.99 5557 1903 | 0.99

to this model (CEEMDAN_EWT_LSTM) enhances perfor-
mance further, reducing RMSE to 108.26 and MAE to 53.03.
The Encoder-Decoder model, despite being advanced, shows
high error values with an RMSE of 254.44 and an MAE of
162.02, indicating it may not be as effective for this particular
prediction task. The Transformer model demonstrates greatly
enhanced performance, achieving a much reduced RMSE of
78.32 and a MAE of 43.45. The proposed hybrid model,
likely incorporating multiple advanced techniques, delivers
the best performance with the lowest RMSE of 57.45 and
MAE of 18.01, showcasing superior prediction accuracy and
precision compared to all other models. Figure 11 presents
a comparison of various models’ predictions for wind power
generation against the true values over a specified period. The
x and v axis represent time steps and generated wind power,
respectively. The main graph displays the actual versus
predicted values for each model over time. Models that have
prediction lines closely following the black line are con-
sidered more accurate. Notably, the proposed model (pink)
demonstrates a strong performance, closely tracking the
actual values. Other models like the Transformer (orange),
LSTM (blue), and CEEMDAN_EWT_LSTM (magenta) also
show commendable accuracy but with slight deviations in
certain intervals. Additionally, an inset graph zooms in on a
specific time range (from O to 5 on the x-axis), providing a
detailed view of the models’ predictions during that period.
This detailed comparison aids in examining the models’
performances more closely for a particular timeframe. In
summary, the diagram clearly illustrates the accuracy of each
predictive model, emphasizing the efficacy of the suggested
model in reliably predicting wind power generation.

Figure 12 displays three radar charts, each of which
compares the performance of different time series forecasting
models based on key metrics: RMSE, MAE and R2. The
top-left radar chart focuses on RMSE, which quantifies the
average magnitude of prediction errors, with lower values
indicating better performance. The top-right radar chart
shows the MAE values for each model, another measure
of prediction accuracy. The bottom radar chart presents R2
values, which indicate how well each model explains the
variability in the data, with values closer to one representing
better performance. Overall, these radar charts suggest that
the "Proposed Model” and CEEMDAN-based models outper-
form traditional models (such as LSTM and Transformer)
across RMSE, MAE, and R2? metrics, highlighting their
effectiveness in time series forecasting. The charts visually
reinforce the comparative advantages of these models in both

error minimization and explanatory power.

V. CONCLUSION

This work presents the advanced wind energy forecasting
model that integrates CEEMDAN decomposition with a
hybrid Transformer-BilLSTM neural network, enhanced by
the use of sample entropy for frequency-based analysis. The
approach effectively addresses the challenges posed by the
varving complexities of high and low frequency compo-
nents within wind power time series data. By leveraging
the Transformer model’s ability to capture intricate patterns
in high-frequency subseries and the BilL.STM's strength in
handling low-frequency data, the proposed method offers
a substantial improvement in forecasting accuracy. The re-
sults indicate that this hybrid model not only outperforms
traditional forecasting techniques but also provides a more
reliable and robust framework for predicting wind energy
output. This work contributes to the ongoing development
of more accurate and efficient forecasting tools, essential for
the incorporation of renewable energy sources into power
systems. Future research could explore further optimization
of model parameters and extend this approach to other forms
of renewable energy forecasting.
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