TAENG International Journal of Computer Science

Secretary Bird Optimization Algorithm for the
Vehicle Routing Problem with Time Windows
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Abstract— The Vehicle Routing Problem with Time
Windows (VRPTW) is a commonly encountered problem in
logistics and transportation that involves combinatorial
optimization. In this study, we apply the Secretary Bird
Optimization Algorithm (SBOA) to solve instances of the
VRPTW by utilizing its hunting and evasion mechanisms to
improve solution quality. The proposed algorithm was
evaluated on Solomon's benchmark instances, which include
small-, medium-, and large-scale problem instances.
Experimental results confirmed the effectiveness of SBOA,
obtaining 27 optimal solutions for different instances with 25
customers, 26 optimal solutions for the datasets with 50
customers and 39 optimal solutions for the datasets with 100
customers. The results demonstrate the algorithm's exceptional
ability to reduce total travel distance and vehicle usage while
satisfying time  window  constraints. It demonstrated
competitive convergence behavior and a high success rate in
finding optimal solutions in compared to other existing
metaheuristic approaches. The results demonstrate that SBOA
is an effective optimization algorithm for large-scale VRPTW
under strict constraints.

Index Terms— Secretary Bird Algorithm, Vehicle Routing
Problem, Metaheuristic, Optimization, Time Constraints.

I. INTRODUCTION

he Vehicle Routing Problem with Time Windows

(VRPTW) has been widely studied in the area of
logistics and transportation. It generalizes the traditional
Vehicle Routing Problem (VRP) with time window
constraint, so that it becomes more suitable to the time
constraint in practical delivery [1], [2], and [3]. However,
solving the VRPTW is NP-hard, and exact methods become
infeasible for large-sized problems, which leads to the
application of metaheuristic algorithms such as Particle
Swarm Optimization (PSO), Ant Colony Optimization
(ACO), Genetic Algorithms (GA), Simulated Annealing
(SA), and Tabu Search (TS) [3], [4], [5], [6], [7], and [8]. In
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this context, SBOA is a new metaheuristic inspired by the
hunting behavior of the secretary bird, which forms the basis
of the algorithm design. SBOA was introduced by Huohuo
and mimics the secretary bird’s behavior to navigate
through a complex search space using its strategic hunting
techniques [9]. More encouraging results thus far include its
ability to solve a variety of global optimization problems
significantly better than existing approaches [10] and [11].

In recent years, there are many biologically based
algorithms have been proposed such as Whale Optimization
Algorithms (WOA), Salp Swarm Algorithm (SSA), and
Secretary Bird Optimization Algorithms (SBOA), the
excellent performance between exploration and exploitation
in complex search space has been obtained [7], [8], [9], and
[10]. Due to the requirement of efficient routing with strict
operational constraints, more and more attention has been
focused on adapting new metaheuristics to solve VRPTW
efficiently, such as SBOA [1], [2], [3], [9], and [11].

VRPTW solving at scale involves several challenges such
as scalability of the solution, sensitivity to constraint, and
convergence behavior [3], [8]. For large-scale cases, they
can generate the rising computational cost and traditional
metaheuristics are vulnerable to promote premature
convergence or inefficient in exploring the feasible regions
[11] and [12]. Besides, to keep solution feasible, the
balancing of demand within a rigid time window is also one
of key challenges, particularly when customers are
geographically dispersed over time [1], [2], and [3]. The
specific contributions of this paper are also to overcome
these weaknesses by improving the global search ability and
constraint-handling mechanisms of the SBOA algorithm.

The main aim of this paper is to investigate how the
effectiveness of SBOA can be measured based on different
sizes of VRPTW, the total travel distance and the vehicle
usage for VRPTW cases where time window constraints
must be considered.

In order to analyze the effectiveness of the proposed
SBOA, we test it on the Solomon’s benchmark instances
adopted in VRPTW literature, that are well-accepted sets of
instances, and that encompasses small-, medium-, and large-
scale instances [1]. This allows a thorough evaluation of the
scalability, effectiveness, and performance at providing
closest to the best or best solution under different conditions
of the algorithm while comparing it to existing well-
established metaheuristic methods.

This paper pertains to the area of combinatorial
optimization and presents an adapted SBOA for solving the
VRPTW. Key contributions consist in introducing an error
penalization scheme when constraint boundaries are
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exceeded, and in better local search strategies, together with
extensive testing on small, medium and large scale VRPTW
instances of Solomon’s benchmarks. Moreover, algorithm
achieves competitive results with existing metaheuristics and
shows good convergence rate and improves quality of
solution, mainly in terms of reducing travel distance and
vehicle count while maintaining feasibility.

The rest is organized as follows: Section 2 lays out the
related work, followed by Section 3 which explains the
approach we propose for the methodology, Section 4
presents results, Section 5 discussion of the result, and
finally section 6 concludes the paper with the future work.

Il. RELATED WORK

The VRPTW is a classic combinatorial optimization
problem that has received tremendous interest in the
logistics and transportation literature. The VRPTW adds a
dimension to the classical VRP: customers must be served
by vehicles within time intervals. These added constraints
increase the complexity of the problem, simulating more
realistic situations and localized deliveries that are time-
sensitive relative to customer experience and operational
efficiency [1]. Since then, many optimization techniques
have been proposed, for instance different exact algorithms
or heuristics and metaheuristics to solve the VRPTW.

Several optimization techniques for VRPTW (e.g.,
branch-and-bound and branch-and-cut), have been
developed and used to solve small-scale VRPTW instances.
While these approaches ensure an optimal solution, the high
computational intensity of MIP for large problems makes
them practically infeasible [6]. To solve this limitation,
researchers have gradually shifted towards heuristic and
metaheuristic methods which yield near-optimal solutions
fast. Some popular meta-heuristic algorithms are PSO, ACO,
GA, SA and TS. The VRPTW problem formulation has
shown strong performance using these methods for
balancing exploration and exploitation in the search space
of solutions [7]. These methods laid the foundation for
solving VRPTW but they face limitations in scalability,
constraint handling, and parameter sensitivity when applied
to large-scale or tightly constrained scenarios.

Over the past years, the bio inspired algorithms have
become popular in solving complex optimization problems
including the VRPTW. For example, natural phenomena,
such as swarm behavior and foraging strategies, have been
adapted to solve VRPTW by using an improved SSA [12] or
PSO [13]. Similarly, metaheuristic algorithms that perform
at a higher-level search space such as Grey Wolf Optimizer
(GWO) demonstrated promising results in minimizing total
travel distance and the number of vehicles while satisfying
time window constraints [14]. In the last years several
recursive non-hypolixelic improvements impelled to bio-
inspired algorithms have demonstrated promising solutions
to the VRPTW in different application contexts. Hybrid and
enhanced metaheuristic models have been investigated by
few researchers to solve VRPTW, for enhancing the solution
quality, convergence rate and tackling the constraints.

PSO was used by Gong et al. in [13] to VRPTW, with

remarkable performance in the minimization of total
traveling distance. However, the algorithm prematurely
converged while it was tested in complex cases, and its
performance was unsatisfactory for real problems.

In [14], GWO was proposed by Mirjalili et al. for solving
VRPTW, GWO showed more promising exploration over
PSO and GA, especially on medium dimensional problems.
It did not perform as well as for large freight as it did in the
constrained problem with freight of that size, and its
performance also has a slight downhill tendency under the
tight constraints in time windows, which means that
constraints handling in further research could be improved.

Yodgangjai and Malampong suggested an improved
WOA for VRPTW in [15]. The modified solution handled
the convergence speed of output facility better, but optimal
exploration-exploitation selection was still not reached,
especially in dynamic environments with fluctuation on
customer demands and time window.

An improved ACO algorithm that includes mutation and
local search operations was presented to optimize routing in
a recent study [16]. It was shown that this hybridization led
to considerable reductions in travel distance while still
maintaining feasibility movements under time pressure.
Besides, the parameter tuning was tedious to optimize the
performance and not easily used in practice.

Jung and Moon in [17] applied GA to solve VRPTW and
obtained competitive solutions on Solomon’s datasets—
mostly for small sized instances. Although GA was good at
producing solutions that were likely to be possible routes, it
suffered from slow convergence as the problem size grew,
rendering it less viable in real time scenarios.

A TS with Density Peak Clustering (DPC/TS) for
mitigating scalability problems of classic heuristics for
VRPTW was proposed by study [18]. By using DPC to
cluster customer locations, the original problem was divided
into smaller size sub-problems which were effectively solved
using TS. Numerical tests demonstrate that the new MLP
method performs much better in quality of solutions and
efficiency than the classical algorithms.

Another recent study in [19] introduced a SA method for
minimizing operational costs for the fuel, driver wage and
delivery time, where also time window and capacity were
considered. The method was able to solve large-scale
instances with up to 350 nodes, obtaining zero constraint
violations in less than ten minutes, and outperforming
current methods.

In [20], Ahmed et al. proposed the Modified Football
Game Algorithm (MFGA) which had good performance
with the benchmark example set of Solomon. MFGA
performed well in handling large time window constraints
and scalability. More experiments, however, are needed
under a variety of problem sets to ascertain the robustness
and generality of the method.

The hybrid Salp Swarm Algorithm (SFSSA) in [21]
performed better than many single metaheuristics in solution
quality and convergence speed. The implementation
complexity of SFSSA is high, and few practical logistics can
be applied to the real-time and large-scale scheme.

A more recent approach was developed in [22], by
combining the Large Neighborhood Search with a Modified
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Rat Swarm Optimization (MRSO) to solve the VRPTW with
the well-known benchmark Solomon instances. The existing
best-known solutions were improved by the MRSO by 5.1%
for the R2 category and by 8.8% for the RC2 category.
However, the strength of the algorithm depends largely on
having a good tradeoff between global exploration and local
exploitation.

Lastly, in [12], an enhanced SSA was proposed by Cai
and Chen. The advanced SSA had superior global search
properties, especially in the early stages. Yet, it did not
include efficient ways to deal with constraint violations, and
so its applicability for very tight CVRPD instances is
limited.

These new algorithms are more adaptable, possess better
global search performance and resist local convergence for
the traditional algorithms but their overall performance on
parameter tuning, constraint handling and dynamic response
have not been yet solved.

In view of the complexity and dynamic of VRPTW,
particularly ~ in  large-scale  problems, traditional
metaheuristics often fail to balance exploration and
exploitation well. Hence, bio-inspired techniques, which
escape the limitations of previously traditional methods by
emulating nature’s natural phenomena for organic search
space solutions, are even more desired. A good promising
nature inspired approach is the SBOA, which shows good
global search and adaptability. In the next section, we will
introduce SBOA and its possible use as a VRPTW solver.

New metaheuristic algorithms have trailed enhancing this
capability to solve difficult VRPTW cases. Hybrid methods
such as MISBOA and SFSSA achieve better convergence
and results. Yet, many methods require improvement in
terms of scalability, handling of the constraints and
sensitivity to the parameters. Although classical algorithms
such as Tabu Search and Genetic Algorithms formed the
building blocks, the more recent bio-inspired algorithms
such as GWO, WOA, and SBOA offer better exploration
ability. However, despite these advances there is a great
demand for adaptive constraint handling and dynamic
response strategies to deal with sudden changes in customer
demand or traffic conditions.

However, there remains a need for advanced algorithms
capable of solving large-scale VRPTW instances with tighter
time window constraints. The SBOA is a recently
introduced algorithm inspired by the predatory and
escapable behaviors of secretary birds. SBOA has shown
promise in addressing complex optimization challenges,
especially in cases where dynamic modifications and
adaptive strategies are necessary [9], [10], and [11].
Although it is a crucial optimization algorithms in practice,
few studies in the literature have applied it to VRPTW, so
this study makes a significant contribution to the existing
literature.

For performance evaluation of SBOA, this study uses
Solomon’s benchmark instances, which are known as the
benchmark instances for VRPTW algorithms. These
instances include a wide range of sizes and complexities,
allowing for an in-depth evaluation of the algorithm’s
performance [8]. By contrasting the performance of SBOA
with the state of the art in the field of metaheuristics, the

purpose of this work is to illustrate its capability to find
optimal or near-optimal solutions with low computational
costs.

The presented SBOA in this work extends these results by
adding a penalty function and new search rules, and it is
envisioned to overcome some of the weaknesses found in
other methods.

In brief, prior work demonstrates success of different
metaheuristics for VRPTW. Exact techniques are bounded
to small instances by computational complexity, and
classical metaheuristics usually fail to achieve a tradeoff
between exploration and exploitation. Bio-inspired
approaches have quickly become effective alternatives, with
increased flexibility and better global search abilities. But
this type of algorithms exists with little effective constraints
and have difficulty in dealing with large scale and highly
constraints.

It should be mentioned that although SBOA has been
successfully used to different combinatorial optimization
problems including function optimization, engineering
design, scheduling related problems. This work tries to fill
this gap by proposing an improved variant of SBOA
exclusively designed to solve VRPTW. The tuned algorithm
includes the penalty-type constraints management as well as
enhanced local search operations with respect to time
windows and vehicle routing characteristics.

I1l. METHOD

The SBOA is a new metaheuristic algorithm that is
inspired by the hunting and evasion behaviors of the
secretary bird. Huohuo introduces this algorithm aims to
ameliorate global optimization problems by incorporating
strategies derived from both natural predation and evasive
strategies of the birds. SBOA consists of three main
components that are described as follows: the initialization,
which generates initial solution population randomly, the
hunting strategy, which is an imitation of the chasing style of
secretary bird for prey and makes the algorithm good at
exploring solution space, and the evasion mechanism, which
simulates the escape behavior of the bird and can improve
the local exploitation. Moreover, a penalty scheme is
incorporated to treat constraint violations by penalizing the
infeasible solutions while searching [9]. In the initialization
phase, randomly generate an initial population of solutions,
which are the hiding spots of the birds. In the hunting phase,
the angle of movement in this stage of birds is updated using
strategies from the economy of a secretary bird concerning
the hunting of prey, which enables an efficient searching of
the search space. In the evasion phase, the birds apply evade
strategies based on the principle of their natural defenses,
which enhances the exploitation capability of the proposed
algorithm to find the best available solution [10].

The general pseudo-code of the SBOA is presented in Fig.
1, where the three main phases, namely initialization,
hunting strategy, and evasion mechanism, are described. A
detailed description of each phase and their integration to
solve the VRPTW are given in the next sections. For the
exact nature of the algorithm and the update mechanisms,
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the reader is referred to the original SBOA paper [9], [11].

To make the proposed SBOA more transparent and
reproducible, we present the mathematical equations of the
position update and the constraint penalty we consider in the
present study.

If the activity time is not satisfied at iteration t, then the
location of each secretary bird i is renewed at iteration t
using its present location and inspired search modes that are
motivated by hunting and avoidance behaviors. The update
equation during the hunting mechanism is given in Equation
1:

X=X +axrlx (Xl —X) (1)
t
Where "1 is the current position of bird i,
the best solution found so far, a is a scaling factor (set to 0.5
in our experiments), and rl is a random number uniformly
distributed in [0,1].
In evasion, birds move in response to opponents to avoid
local optima according to the diversity preservation
mechanism represented by Equation 2:

t
X best s
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t
Where X and is a randomly selected solution from the
population, S is an evasive step size coefficient (set to 0.3),
and r2, r3 are random numbers in [0,1].
In terms of constraint management, a time window
violation may be penalized using a dynamic penalty
function. Equation 3 describes the fitness function:

Fitness(S) = TotalDis(S) + 2x > max(0,Aj~Lj) ()

=t

Where S is a solution, Aj is the arrival time at customer j ,
Lj is the latest allowable service time, n is the total number
of customers, and 1 is a dynamically adjusted penalty
coefficient that increases with the number of violated
constraints. This ensures that infeasible solutions are
gradually pushed toward feasibility while maintaining search
diversity.

Fig. 1 presents the pseudo-code of the SBOA along with a
detailed description of its process. The SBOA is an
evolutionary algorithm, which creatively works to arrive at
the end, iteratively optimizing towards the solution of a
given task, which can be broken down into three stages -
initialization, optimization loop and termination.

As shown in Fig.1, in the initialization phase, a random
population of N secretary birds are spread throughout the
search space. Birds in this analogy in fact represent the
potential solutions of the optimization problem, where its
position is analogous to a candidate solution. Each bird's
fitness function is then evaluated to measure the quality of
its present position. The evaluation acts as a benchmark to
help gauge the effectiveness of the solution, and provides a
standard against which future improvements can be
measured.

Procedure Secretary Bird Optimization Algorithm

Initialize population of N secretary birds randomly within search
space
Evaluate fitness of each bird
Repeat
FOR each bird i in the population DO:
Update position using hunting strategy
Evaluate new position fitness
IF fitness improved THEN
Accept new position
ELSE
Apply evasion strategy to escape local optima
Evaluate new position fitness
IF fitness improved THEN
Accept new position
END IF
ENDIF
END FOR
Update the best solution found so far
Until the termination criteria is met
Return the best solution found;

Fig. 1. SBOA Optimization pseudo-code

The process of iteratively improving a population of
solutions is called the optimization loop, which constitutes
the core of the algorithm. This continues looping until a
defined termination condition is reached, for example, a
maximum number of iterations or an adequately optimal
solution. In each iteration, each bird modifies its location
based on the hunting strategy (finding others to hunt) and
the evasion strategy (finding ways to escape). The hunting
strategy is inspired by wild hunting behavior of secretaries,
which directs secretary birds towards likely regions in the
search space. This mechanism reinforces exploration by
allowing the algorithm to explore different areas and avoid
converging too early. Otherwise, the evasion strategy is used
when a bird does not gain fithess from hunting. This
approach provides a way to escape from local optima, which
ultimately improves the algorithm's search capability for
other states. The best solution found so far is updated
during the whole process to ensure that the global optimum
is tracked.

While the basic SBOA has been found to be effective for
solving difficult optimization problems, a number of
improved versions have been proposed to enhance its
efficiency and convergence property. There are a few other
modified versions of this algorithm as well, such as Multi-
Strategy Improvement Secretary Bird Optimization
Algorithm (MISBOA), which incorporates several other
advanced mechanisms such as the incremental PID feedback
control, golden sine based guidance during foraging,
collaborative camouflage, and cosmic similarity based
position updates during evasion. Simulation results on the
Congress on Evolutionary Computation (CEC2022)
benchmark problems have demonstrated that MISBOA
exhibits superior search performance compared to other
metaheuristic algorithms and is competitive particularly
when used for higher-dimensional optimization problems
[10]. One other approach that yielding promising results is
the Quantum-Based Secretary Bird Optimization Algorithm
(QSBOA) [11], where quantum-inspired search techniques
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are coupled with adaptive dynamic and hybrid swarm
intelligence properties. Some research has shown that
QSBOA converges more quickly and is more robust than
standard metaheuristic approaches, which makes it useful for
solving very complex optimization problems. [11].

Despite those improvements, the basic SBOA is still a
powerful and effective algorithm especially for real-world
problems such as the VRPTW. While improved versions
such as MISBOA and QSBOA exhibit better convergence
characteristics and accuracy, they tends to increase
algorithmic complexity, higher computational load, and

reliance on  parameter  dependence,  respectively.
Consequently, although the improved variants (e.g.,
MISBOA and QSBOA) potentially provide better

performance in terms of convergence speed and quality
convergence (which is expected), the original SBOA was
adopted in this study mainly because of the simplicity, the
ease of implementation, the good trade-off between the
exploration and the exploitation, the proved effectiveness on
large-scale VRPTW instances, and the lower computational
complexity than the crafter variants.

The VRPTW, based on Solomon’s benchmark, involves
finding the optimal routes for a fleet of vehicles under time
constraints. In this study, the existing SBOA is modified for
this problem with hunting based on distance and evasion
based on time window. Fig. 2 provides pseudo-code
designed specifically to solve the VRP with the SBOA
framework. This pseudo-code describes how the SBOA is
modified to solve VRP, a canonical combinatorial
optimization problem that consists of finding the best routes
for a fleet of vehicles to deliver to a set of customers. VRP-
specific constraints like vehicle capacity and route distance
constraints are inherently integrated into the design of the
algorithm. The algorithm iteratively polishes solutions,
mapping the secretary birds' positions to potential routes and
minimizing total travel costs while respecting operational
constraints. Problem specific fitness evaluations, trained on
problem specific data, allow the algorithm to efficiently
discover high-quality solutions for real-world logistics
problems. Through this adaptation, Fig. 2 takes advantage of
the flexibility of the SBOA to tackle complex optimization
approaches such as VRPTW with accuracy and efficiency.

Fig. 2 presents the pseudo-code of the SBOA for
VRPTW, along with a full description of the corresponding
procedural steps. In the case of VRPTW, each bird (agent)
in the algorithm denotes a potential solution comprised of a
set of vehicle routes. Such routes are conditioned by
operational constraints (e.g., time window limits, vehicle
capacity limits) and the need to minimize the total travel
distance. This representation allows the algorithm to both
stay within the confines of the problem and search for
optimal or sub-optimal solutions. The quality of each
solution is evaluated using a fitness function. Each of the
solutions is evaluated on 3 key criteria:

1) Total distance traveled, the algorithm tends to
minimize the overall distance traveled, and considering
that directly affects operational effectiveness.

2) Number of vehicles used, the solutions with a smaller
fleet are preferred; less fleet means smarter savings.

Procedure Secretary Bird Algorithm for VRPTW

Initialize a population of N secretary birds (each representing a set of vehicle
Foutes)
Evaluate the fitness of each solution based on:
- Total traveled distance
- Number of vehicles used
- Time window constraints Evaluate fimess of each bird
Repeat
FOR each bird i in the population DO:
# Hunting Strategy: Optimize route based on distance minimization
Select a leader bird (best solution so far)
Move towards leader using a guided perturbation mechanism
Repair route if time windows are violated
Evaluate new solution fitness
IF fimess improved THEN
Accept new route configuration
ELSE
# Evasion Strategy: Escape local optima by diversifving search
Apply time-window-based reordering of customer visits
Perform randomized customer swaps between routes
Evaluate new solution fitness
IF fitness improved THEN
Accept new configuration
END IF
ENDIF
END FOR
Update the best solution found so far
Until the rermination criteria is met
Return the best solution found;

Fig. 2. SBOA pseudo-code for VRPTW

3) Penalties for constraint violations, where the routes that
do not comply with the time window constraints, are
penalized to motivate meeting any customer-specific
requirements. The penalty mechanism promotes feasible
solutions and is very effective in guiding the search to
feasible and high-quality solutions.

While in the exploration step, each bird uses a controlled
perturbation mechanism that propels it towards the leader
(which is the best solution found so far). Such motion
emulates hunting techniques used by secretary birds that
allows the algorithm exploring the landscape of the/optimal
search space. Routes are then refined in a series of iterations
to minimize travel distance without affecting feasibility. A
repair mechanism is applied if the adjusted solution violates
any time window constraints to ensure the solution remains
valid.

If the exploration phase fails to show any improvements,
the algorithm shifts to the exploitation phase by diversifying
the search. That is done via two primary mechanisms:

1) Time-Window-Based Reordering: The order of
customer visits is changed to be more suitable for time
window constraints and to improve solution feasibility.

2) Randomizing Customers: We swap customers randomly
so that we can try out alternate configurations to
discover potentially better solutions. These mechanisms
allow the algorithm to escape from local optima and
stop when further improvements can no longer be made.

The behavior of metaheuristic solvers such as SBOA
depends to a great extent on the choice of hyperparameters.
The next procedure was to identify the important parameters
of SBOA parameters for solving VRPTW, which was
considered in this study.

e The number of individuals was defined as 50 after

experimenting with part of Solomon’s reference set (C101,
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R101, and RC101). This value resulted in a fine
compromise  between  exploration  ability and
computational cost.

¢ A dynamic adaptive approach was used, where searching
began with a greater emphasis on hunting (exploration),
then  progressively  shifts toward evasion-based
exploitation, where the algorithm improves promising
solutions to avoid premature convergence. This balance

was adjustable based on the number of iterations with a

factor and is formulated as an equation below.

To this effect the settings were checked on a subset of
small-scale and medium scale instances and then applied to
large problems. The fine-tuning of parameters is performed
to make the algorithm keep a tradeoff between exploration
and exploitation and computation efficiency.

During the optimization process, the algorithm keeps a
record of the best VRPTW solution that is found at that
moment. Such solutions are dynamically updated when a
better candidate is found, the algorithm always actually has
the best quality result.

The algorithm is executed until at least one of two criteria
is met achieving the maximum number of iterations, or there
are no improvements noticed over a previously defined
number of iterations. This allows the algorithm to function
correctly without introducing additional compute time from
poor hypotheses in the last few iterations. These termination
conditions support the algorithm to explore the solution
space comprehensively without causing computational
overload.

SBOA can be improved through a variety of advanced
strategies to better address the VRPTW to overcome the
limitations of the algorithm. The detailed features proposed
are:

o First, SBOA can be integrated with local search methods
to substantially enhance the quality of the routes
generated. Neighborhood structures specific to 2-opt, 3-
opt, or for example, TS can be included in the framework
to refine the solutions discovered and useful for getting rid
of local inefficiencies. Thus, hybridization is created, and
it acts as a powerful combination of global optimization
and local search that performs excellent results in creating
optimized modified routing plans.

Second, adaptive escape mechanisms based on the
diversity of solutions can be introduced to avoid premature
convergence. If it notices that the population of solutions
has become homogeneous, it can direct the search to
explore new areas of solution space, while if diversity is
too high, and it can exploit these well-performing solutions
by focusing on them. It makes sure that the Algorithm
continues to search over all the regions of the solution
space, thus limiting the chance of stopping on sub-optimal
solutions.

Finally, dynamic penalty adjustments for time window
violations help to balance exploration versus exploitation
of the algorithm. The algorithm reach a balance between
quality and feasibility by adaptively adjusting the penalty
weights attached to constraint violations during the
optimization process. When the solution is good enough,
the focus move toward feasibility than further

optimization. Such an adaptive strategy allows the

algorithm to adjust to the changing nature of the solution

landscape over time.

This results in a SBOA framework that is more efficient
and effective, allowing it to address the complexities of the
VRPTW with increased accuracy and reliability. With these
three techniques, the algorithm can perform better,
providing solutions that are able to run in practice and cost-
efficient.

To assess SBOA performance, we utilized Solomon's
benchmark instances, a well-established and widely accepted
evaluation methodology for the VRPTW [1]. These
instances comprise a wide range of problems from small, to
medium, to large, allowing for the evaluation of the
algorithm in terms of scalability and robustness. In each
instance, a set of key parameters are provided including the
number of customers, customer locations (X, y coordinates),
time windows (earliest time service can start, latest time
service can start), customer demands, vehicle maximum
capacities and depot locations. The dataset was represented
by C-type, R-type and RC-type customers. Using these
benchmark instances enables this study to provide a fair
comparison against existing metaheuristic approaches and
show SBOA’s capability in dealing with complex VRPTW
constraints effectively. The Fig. 3 depicts the classification
of Solomon’s benchmark instances for the Vehicle
VRPTW. The datasets are classified into three major types
(C-type, R-type, and RC-type) and several sub-types based
on distribution patterns and the level of complexity of
problems.

Dataset Number of AP Distribution
Type Sub-Type Instances Customer Distribution Characteristics
c1 9 Customers are prouped in | Homogeneous distribution
C-type -type specific regions within defined areas
(Clustered) C2-type s Customers are grouped in  ([Larger time windows and
P specific regions (higher vehicle capacity
Customers are randomly  |[No specific pattern in
Repe | 2 distributed distrbution
(Random) R2-4ype i Customers are randomly  ([Larger time windows and
P distributed thigher vehicle capacity
A mix of clustered and -
Relope |8 [mdonlyosbueg |
[RC-type customers
oo ix of clustered and
Clustered) A mix of clustere - —
RC2-type §  |randomly distributeg |- fime windows and
customers lhigher vehicle capacity

Fig. 3. Solomon’s benchmark for VRPTW

Fig. 3 shows the classification of Solomon’s test
instances for VRPTW. Three primary types exist in the
dataset: C-type (Clustered), R-type (Random), and RC-type
(Random-Clustered); each of which is further divided
according to spatial distribution characteristics and the
complexity of the problem. The following instances were
generated of different size 25 customers, 50 customers and
100 customers which is related to number of delivery points
or demand location considered for the instance. The 25-
customer and 50-customer instances represent small-scale
and medium-scale problems respectively, while the 100-
customer instances represent the large-scale of more
complex routing problems, respectively, providing an
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overall evaluation of the performance of the algorithms in
our testing over a variety of routes.

For the reproducibility and transparency of experimental
results, we present the following implementations and pre-
processing of our datasets:

o All experiments were performed with the same random
seed to guarantee reproducibility among different runs.
This permits a direct comparison between different trials
of the same plant extract and it guarantees an exact
reproducibility of results.
The Solomon instances used in this paper are in the
standard VRPTW instance format, which indicates x-y
coordinates, time window [earliest arrival, latest departure]
and the start node and end node of each customer. All
minor preprocessing was done and the raw input files are
parsed to arrays of structured data, which are input to the
algorithm. Note that customer location coordinates and
TWs were employed unchanged without transformation.
¢ Both vehicle capacity and customer demand were used in
their raw form without normalization or rescaling to retain
the real-world nature of the problem. During the search, all
constraint violations such as over capacity and out of the
time windows were penalized via a penalty term added in
to the fitness function in order to direct the search towards
feasible solutions only.

These are included to increase the clarity, reproducibility

and the scientific rigor of the method development.

IV. EXPERIMENTS

The SBOA was first tested on 56 Solomon’s benchmark
instances to solve the VRP with Time Windows (VRPTW)
in this study. These examples include 25, 50, and 100
customer problems, which are standard in the assessment of
routing algorithms [1]. To highlight its stability, the
algorithm was run 10 times for each dataset employed, with
stopping criteria fixed at 1,000, 10,000 and 30,000 iterations
for small, medium, and large problems, respectively. These
parameters are consistent with recommendations from the
literature and prior studies [15]. The experiments were
performed on a computer with i5-4570 CPU @ 3.20 GHz
and 8 GB RAM, while the algorithms were implemented and
executed using Python.

The results of the SBOA using the VRPTW datasets are
shown in Table I, Table II, and Table IlI. In particular,
Table | refers to the results of instances with 25 customers,
Table Il to those with 50 customers and Table 111 to those
with 100 customers. The Best Known solution (BKS) in all
tables are also provided with respective references. The best
results obtained by the SBOA algorithm are marked in
boldface showing results that are either equal or closer to
the optimal or BKS solutions. The reason for this
arrangement is to make a simple and direct comparison
between the SBOA results and the benchmark solutions
possible without too much effort on your part to determine
the efficacy of the algorithm.

The computational results of the SBOA applying it to the
VRPTW for instances with 25 customers are shown in Table
I. The table reports the solutions of the SBOA algorithm

against BKS in the literature. Results of the SBOA algorithm
that are either equal to or very close to the BKS are in
boldface. Currently, of the 56 results in Table I, the SBOA
algorithm equal or outperformed the BKS 27 times (around
48.2% of the cases). That is, the SBOA algorithm is capable
of providing high-quality solutions for small-scale problems,
as able to generate the high quality competitive solutions
compared with the BKS results in the literature.

TABLE |
COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK
FOR 25 CUSTOMERS

instances SBOA BKS

C101 191.3 191.3 [M1]
C102 190.3 190.3 [M1]
C103 190.3 190.3 [M1]
C104 187.45 186.9 [M1]
C105 191.3 191.3 [M1]
C106 191.3 191.3 [M1]
C107 191.3 191.3 [M1]
C108 191.3 191.3 [M1]
C109 191.3 191.3 [M1]
C201 214.7 214.7 [M2, M6]
C202 214.7 214.7 [M2, M6]
C203 214.7 214.7 [M2, M6]
C204 213.1 213.1 [M2, M3]
C205 214.7 214.7 [M2, M6]
C206 214.7 214.7 [M2, M6]
C207 214.5 214.5 [M2, M6]
C208 2145 214.5 [M2, M6]
R101 618.33 617.1 [M1]
R102 548.11 547.1 [M1]
R103 464.83 454.6 [M1]
R104 416.9 416.9 [M1]
R105 530.5 530.5 [M1]
R106 467.85 465.4 [M1]
R107 424.3 424.3 [M1]
R108 398.29 397.3 [M1]
R109 450.26 441.3 [M1]
R110 444.1 444.1 [M1]
R111 431.12 428.8 [M1]
R112 393 393 [M1]

R201 405.48 404.6 [M2, M3]
R202 352.80 350.9 [M3]
R203 476.96 461.1 [M1]
R204 401.79 351.8 [M1]
R205 332.8 332.8 [M1]
R206 307.14 306.6 [M1]
R207 418.52 411.3 [M1]
R208 347.31 345.5 [M1]
R209 298.95 298.3 [M1]
R210 294.99 294.5 [M1]
R211 360.2 360.2 [M2, M6]
RC101 338.82 338.0 [M2, M3]
RC102 327.69 326.9 [M4, M5]
RC103 300.23 299.7 [M5]
RC104 338.0 338.0 [M3, M5]
RC105 325.10 324.0 [M3]
RC106 298.95 298.3 [M3]
RC107 269.57 269.1 [M5]
RC108 598.1 598.1 [M1]
RC201 684.8 684.8 [M2, M5]
RC202 622.84 613.6 [M4, M5]
RC203 635.42 555.3 [M4, M5]
RC204 444.2 444.2 [MT7]
RC205 683.79 630.2 [M4, M5]
RC206 612.65 610.0 [M4, M5]
RC207 570.54 558.6 [M5]
RC208 496.95 -

Note: 2-path cuts algorithm [23] is denoted as M1, A parallel cutting-
plane algorithm [24] is M2, Lagrangean duality applied method [25] is M3,
The shortest-path problem with resource constraints and k-cycle
elimination method [26] is M4, shortest path based column generation [27]
is M5, Parallelization of the vehicle routing problem [28] is M6, and
Accelerating branch-and-price with local search [29] is M7.
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TABLE Il
COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK
FOR 50 CUSTOMERS

TABLE I
COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK
FOR 100 CUSTOMERS

instances SBOA BKS instances SBOA BKS

C101 362.4 362.4 [M1] C101 828.94 828.94 [R1]
C102 361.4 361.4 [M1] C102 828.94 828.94 [R1]
C103 361.4 361.4 [M1] C103 828.06 828.06 [R1]
C104 358.0 358.0 [M1] C104 824.78 824.78 [R1]
C105 362.4 362.4 [M1] C105 828.94 828.94 [R1]
C106 362.4 362.4 [M1] C106 828.94 828.94 [R1]
C107 362.4 362.4 [M1] C107 828.94 828.94 [R1]
C108 362.4 362.4 [M1] C108 828.94 828.94 [R1]
C109 362.4 362.4 [M1] C109 828.94 828.94 [R1]
c201 360.2 360.2 [M2, M6] C201 591.56 591.56 [R1]
C202 360.2 360.2 [M2, M3] C202 591.56 591.56 [R1]
C203 359.8 359.8 [M2, M3] C203 591.17 591.17 [R1]
C204 350.1 350.1 [M3] C204 590.60 590.60 [R1]
C205 359.8 359.8 [M2, M3] C205 588.88 588.88 [R1]
C206 359.8 359.8 [M2, M3] C206 588.49 588.49 [R1]
c207 359.4 359.4 [M2, M3] Cc207 588.29 588.29 [R1]
C208 350.5 350.5 [M2, M3] C208 588.32 588.32 [R1]
R101 1054.88 1044.0 [M1] R101 1642.88 1584 [R2]
R102 946.67 909.0 [M1] R102 1472.62 1374.2 [R2]
R103 813.94 772.9 [M1] R103 1213.62 1158.9 [R2]
R104 625.4 625.4 [M1] R104 976.61 976.61 [R1]
R105 943.95 899.3 [M1] R105 1360.78 1355.3 [R2]
R106 848.63 793 [M1] R106 1240.47 1212.1 [R2]
R107 763.97 711.1 [M1] R107 1073.34 1073.34 [R4]
R108 665.13 617.7 [M2, M3] R108 958.66 947.55 [R4]
R109 821.64 786.8 [M1] R109 1151.84 1151.84 [R4]
R110 697.0 697.0 [M1] R110 1072.41 1072.41 [R1]
R111 756.21 707.2 [M2, M3] R111 1159.32 1053.50 [R1]
R112 677.33 630.2 [M2, M3] R112 953.63 953.63 [R1]
R201 823.38 791.9 [M2, 27] R201 1149.68 1147.80 [R5]
R202 739.86 698.5 [M2, M3] R202 1034.35 1034.35 [R1]
R203 645.19 605.3 [M4, M5] R203 874.87 874.87 [R1]
R204 506.4 506.4 [M4] R204 736.52 735.80 [R5]
R205 690.1 690.1 [M4, M5] R205 955.82 954.16 [R5]
R206 673.14 632.4 [M4, M5] R206 879.89 879.89 [R1]
R207 621.07 Not reported R207 799.86 799.86 [R4]
R208 509.70 Not reported R208 705.45 705.45 [R6]
R209 631.76 600.6 [M4, M5] R209 859.39 859.39 [R1]
R210 680.59 645.4 [M4, M5] R210 910.70 910.70 [R6]
R211 566.69 535.3 [M2, M7] R211 755.96 755.96 [R4]
RC101 966.12 944 [M1] RC101 1643.41 1595.9 [R2]
RC102 893.56 822.5 [M1] RC102 1461.23 1460.9 [R2]
RC103 766.70 710.9 [M1] RC103 1277.54 1261.67 [R7]
RC104 545.8 545.8 [M1] RC104 1136.81 1135 [R2]
RC105 855.3 855.3 [M1] RC105 1518.58 1510.1 [R2]
RC106 820.47 723.2 [M1] RC106 1381.23 1367.2 [R2]
RC107 738.68 642.7 [M1] RC107 1212.83 1212.83 [R4]
RC108 598.1 598.1 [M1] RC108 1197.13 1117.53 [R3]
RC201 684.8 684.8 [M2, M5] RC201 1265.56 1265.56 [R1]
RC202 622.84 613.6 [M4, M5] RC202 1095.64 1095.64 [R1]
RC203 635.42 555.3 [M4, M5] RC203 928.51 928.51 [R4]
RC204 444.2 444.2 [M7] RC204 786.38 786.38 [R5]
RC205 683.79 630.2 [M4, M5] RC205 1157.55 1157.55 [R5]
RC206 612.65 610.0 [M4, M5] RC206 1054.61 1054.61 [R1]
RC207 570.54 558.6 [M5] RC207 966.08 966.08 [R1]
RC208 496.95 Not reported RC208 779.31 779.31 [R4]

Note: 2-path cuts algorithm [23] is denoted as M1, A parallel cutting-
plane algorithm [24] is M2, Lagrangean duality applied method [25] is M3,
The shortest-path problem with resource constraints and k-cycle
elimination method [26] is M4, shortest path based column generation [27]
is M5, Parallelization of the vehicle routing problem [28] is M6, and
Accelerating branch-and-price with local search [29] is M7.

As in Table I, the results are compared with the BKS and
those achieved with the SBOA are emphasized in boldface.
Among the 56 cases listed in Table Il, the outcomes of the
SBOA algorithm were equal or even similar to the BKS in
26 cases (about 46.4% of the cases). This demonstrates that
the SBOA algorithm achieves consistent performance on
medium-scale problems, with approximately 46.4% optimal
or near-optimal solutions.

Note: A hybrid genetic algorithm [17] is denoted as R1, A modified
football game algorithm [20] is R2, A genetic and set partitioning two-
phase approach [30] is R3, A hybrid genetic algorithm [31] is R4, A hybrid
search method [32] is R5, Time-window relaxations [33] is R6, and Using
constraint programming and local search methods [34] is R7.

The computational results of SBOA for cases with 100
customers are displayed in Table Ill. The results are
compared to the BKS., and the best results obtained by the
SBOA algorithm are shown in bold characters. From a total
of 56 cases in Table Ill, the SBOA algorithm produced the
same results or better compared to the BKS in 39 cases
(about 69.6% of the cases). The results demonstrated that the
SBOA algorithm is scalable, as it is able to achieve
competitive solutions for larger scale problems compared to
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the BKS results in the literature.

To further investigate the performance of the SBOA the
experimental values of results, Table 1V show the results
obtained by SBOA using solomon’s benchmark for 100
customers.

TABLE IV
THE RESULTS OBTAINED BY SBOA USING SOLOMON’S BENCHMARK FOR
100 CUSTOMERS

instances SBOA Average  Std Gap CVar
C101 828.94 828.94 0.00 0 0
C102 828.94 828.94 0.00 0 0
C103 828.06 828.06 0.00 0 0
C104 824.78 824.78 0.00 0 0
C105 828.94 828.94 0.00 0 0
C106 828.94 828.94 0.00 0 0
c1o07 828.94 828.94 0.00 0 0
C108 828.94 828.94 0.00 0 0
C109 828.94 828.94 0.00 0 0
C201 591.56 591.56 0.00 0 0
C202 591.56 591.56 0.00 0 0
C203 591.17 591.17 0.00 0 0
C204 590.60 612.11 8.01 0 131
C205 588.88 588.88 0.00 0 0
C206 588.49 588.49 0.00 0 0
c207 588.29 588.29 0.00 0 0
C208 588.32 588.32 0.00 0 0
R101 1642.88 164353  3.45 3.72 0.21
R102 1472.62 1479.19 7.29 7.17 0.5
R103 1213.62 122229 579 4.73 0.48
R104 976.61 1001.44  7.87 0 0.79
R105 1360.78 1365.70  3.21 0.41 0.24
R106 1240.47 1242.44 2,52 2.35 0.21
R107 1073.34 1083.10 5.45 0 0.51
R108 958.66 968.45 4.24 1.18 0.44
R109 1151.84 1157.27 351 0 0.31
R110 1072.41 1082.72  4.52 0 0.42
R111 1159.32 1066.80 8.84 10.05 0.83
R112 953.63 971.89 5.56 0 0.58
R201 1149.68 1153.04 2.69 0.17 0.24
R202 1034.35 1038.40 4.14 0 0.4
R203 874.87 875.87 1.54 0 0.18
R204 736.52 741.41 6.36 0.1 0.86
R205 955.82 964.69 6.06 0.18 0.63
R206 879.89 892.55 6.36 0 0.72
R207 799.86 814.05 6.3 0 0.78
R208 705.45 714.37 5.86 0 0.83
R209 859.39 867.52 5.99 0 0.7
R210 910.70 918.37 12.17 0 1.33
R211 755.96 765.64 3.45 0 0.46
RC101 1643.41 1658.34  6.52 2.98 0.4
RC102 1461.23 1480.82 6.34 0.03 0.43
RC103 1277.54 1313.73 8.5 1.26 0.65
RC104 1136.81 1155.47  10.57 0.16 0.92
RC105 1518.58 1526.80 10.25 0.57 0.68
RC106 1381.23 1397.45 12.25 1.03 0.88
RC107 1212.83 121790 3.65 0 0.3
RC108 1197.13 122229 7.34 7.13 0.61
RC201 1265.56 1269.94 4.86 0 0.39
RC202 1095.64 1101.03  5.99 0 0.55
RC203 928.51 943.81 12.19 0 1.3
RC204 786.38 799.19 13.04 0 1.64
RC205 1157.55 1164.43 35 0 0.31
RC206 1054.61 1067.49 11.25 0 1.06
RC207 966.08 975.24 9.35 0 0.96
RC208 779.31 791.35 18.74 0 2.37

As shown in Table 1V, the table is organized as follows:
the first column provides the name of the instances, the
second column gives the best solution obtained by SBOA for
100 customers, the third column is the average solution
(Average), the fourth column is the standard deviation (Std),
the fifth column reports the percentage deviation (Gap)

between the SBOA solution and the BKS obtained by using
Equation 4, and the sixth column shows the coefficient of
variation (CVar), calculated using Equation 5, which gives
the relative variability of the solutions as a percentage to the
mean. Here, the best solutions obtained by the SBOA and
BKS for each instance are denoted by S1 and S2,
respectively.

Gap =31752 100 (4)
CVar = _Sd %100 (5)
Average

The results of SBOA that are presented in Table IV,
shows that, Average gives the average solution value
obtained in 10 independent runs, and shows the algorithm’s
stability. A standard deviation (Std) of zero (as in C101-
C109) means perfect reproducibility, and a higher Std (e.g.,
8.01 for C204) indicates variability in the quality of the
solution across runs. Gap is calculated as percentage of
SBOA’s best solution compared to BKS, and zero gap (e.g.,
C101-C109) is the optimistic situation and positive gap
(e.g., 10.05% for R111) shows the compromise inaccuracy,
where a high gap values in R111 and RC108 (10.05% and
7.13%) indicate that SBOA struggles with tightly clustered
and time-constrained instances. This suggests a need for
enhanced local search in such scenarios. Lastly, the CVar
measures the stability of the solution: a lower value (e.g., 0%
for C101) implies a high stability, whilst a higher value (e.g.,
2.37% for RC208) indicates high spreading. It is interesting
to observe that the SBOA achieves optimality (0 Gap) for 29
instances out of 56, and thus illustrate robustness, while
variation in Std and CVar for some instances (e.g., RC
series) indicates sensitivity to the complexity of the instance.

As the recent study focuses on more customers (which is
100 customers’ datasets in this case), Fig. 4 shows a
comparison between the performances of the SBOA and
other algorithms: PSO [13], WOA [15], MFGA [20],
SFSSA [21], and MRSO [22] and Table V shows a
comparison between SBOA results and other algorithms
results.

Comparison between SBOA and other

approaches against the BKS for 100 customers
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Fig. 4. Comparison between SBOA and other approaches against the BKS
for 100 customers

Volume 52, Issue 11, November 2025, Pages 4127-4139



TAENG International Journal of Computer Science

As shown in Fig. 4, SBOA algorithm finds 39 of 56 BKS
solutions for 100 customers, WOA managed to get 12 BKS
results, MFGA managed to get 27 BKS results, PSO also
managed to get 9 BKS results, SFSSA got 8 BKS results,
and MRSO got 16 BKS results.

TABLEV
A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS RESULTS FOR
100 CUSTOMERS

instances SBOA PSSO WOA MFGA SFSSA  MRSO
C101 828.94  828.94 82894 828.94 96751 828.94
C102 828.94  829.72 82894 82894 94959 828.94
C103 828.06 851.38 844.94 828.06 887.47 828.06
C104 824.78  868.53 842.16 824.78 902.52 847.15
C105 828.94 82894 828.94 828.94 983.1 828.94
C106 828.94 828.94 828.94 828.94 878.29 828.94
C107 828.94  828.94 82894 82894 94417 828.94
C108 828.94  828.94 828.94 828.94 92294 828.94
C109 828.94  828.94 82894 82894 985.08 828.94
C201 591.56 591.56 591.56 591.56 591.56 591.56
C202 59156 59156 609.21 59156 591.56 591.56
C203 591.17 591.18 628.08 591.17 591.17 591.17
C204 590.60 61543 603.4 590.6  590.6 590.6
C205 588.88 588.88 588.88 588.88 588.88 588.88
C206 588.49 588.88 588.49 58849 588.49 588.49
C207 588.29 591.35 58829 588.29 58829 588.29
C208 588.32  588.5 588.32 588.32 588.32 588.32
R101 1642.88 1652.01 1678.92 1584 1650.79 1659.34
R102 1472.62 1500.81 1552.26 1374.2 1485.85 1476.5
R103 1213.62 1242.65 1315.28 1158.9 1231.34 1240.97
R104 976.61  1042.22 1051.54 996.95 1005.17 1033.52
R105 1360.78 1385.09 14755 1355.3 137594 1405.18
R106 1240.47 1294.87 134253 12121 1241.27 1270.87
R107 1073.34 1123.99 1168.01 10755 10819 1122.96
R108 958.66  1011.69 1041.27 959.88 965.58 986.2
R109 1151.84 1211.63 1245.09 1155.8 1166.95 1207.18
R110 1072.41 1190.37 1153.24 1092.4 1120.88 1128.21
R111 1159.32 1102.99 1159.32 1059.2 1079.61 1062.26
R112 953.63  1029.13 1034.34 979.05 991.76 984.84
R201 1149.68 127497 1230.86 1168.7 1223.38 1183.9
R202 1034.35 1247.04 1134.82 10424 1086.86 1044.45
R203 874.87  1052.72 94829 893.97 92286 900.2
R204 736.52  844.17 807.6 744.02 77584 775.59
R205 955.82 1061.46 1036.18 969.42 1016.54 962.02
R206 879.89  1016.35 944.13 880.6  902.11 916.3
R207 799.86  946.78 869.62 822.84 84793 832.16
R208 705.45 83473 763.69 736.55 729.81 721.04
R209 859.39  1003.19 930.16 905.11 909.7 875.95
R210 910.70  1040.55 957.24 937.06 935.68 925.47
R211 75596 861.33 815.74 815.09 806.04 783.68
RC101 1643.41 1641.21 17323 15959 1654.84 1663.36
RC102 1461.23 1510.96 1598.21 1460.9 1503.05 1498.21
RC103 1277.54 1294.74 1395.83 1292.6 1273.11 1346
RC104 1136.81 1190.55 1239.84 1135 1189.84 1186.5
RC105 1518.58 1603.71 1651.24 1510.1 1578.78 1596.7
RC106 1381.23 1410.94 1479.76 1367.2 1374.38 1408.83
RC107 1212.83 1249.8 1297.24 12159 1226.79 1335.05
RC108 1197.13 1181.87 1239.92 1120.1 1169.84 1227.24
RC201 1265.56 1423.52 1326.28 1274.8 1483.96 1285.08
RC202 1095.64 1193.6 1184.17 11157 1130.01 1106.84
RC203 92851 112342 993.68 9459  987.15 931.45
RC204 786.38 894.12 830.08 803.91 84555 824.79
RC205 1157.55 1321.43 1258.78 1209.5 1291.2 1180.12
RC206 1054.61 1307.9 1146.5 1098 11245 1072.29
RC207 966.08  1130.37 1060.55 1010.4 1039.11 977.06
RC208 779.31 958.24 818.93 810.04 84458 805.21

For more understanding on the results of Table V, Fig. 5
breaks down the results of the SBOA algorithm and other
algorithms performance for VRPTW across the large (100
customers) VRPTW datasets. In this figure, green color
means better, dark red means worse and light blue means
similar.
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Fig. 5. Comparison between SBOA and other approaches better, similar
and worse results for 100 customers

According to the results in Fig. 5, the proposed SBOA
was superior to PSO, WOA and SFSSA in most test
functions. More specifically, the SBOA variant
outperformed WOA on 13 from 56 datasets, achieved a tie
on 43, and fared worse in 0. SBOA was superior to MFGA
in 27, equivalent in 17 and inferior in 12. These results
suggest that although MFGA is relatively a bit more
competitive, SBOA is still very effective and robust for all
problems, in particular for C-type and R-type problems.
SBOA had better results than PSO, WOA, and MFGA
SFSSA, as well as MRSO algorithms in some data sets
according to BKS solutions, regardless of dimensions.

For further explanation of SBOA against PSO, WOA,
MFGA SFSSA, MRSO, and BKS for VRPTW C-type
datasets 100 customers, Fig. 6 illustrates the results for C-
type datasets for 100 customers, Fig. 7 show the R-type
datasets 100 customers, and Fig. 8 for RC-type datasets 100
customers. In all the figures, the horizontal coordinates are
the data corresponding to 100 customers while the vertical
coordinates are the performance data.

Algorithms Performances against BKS for VRPTW C-
type datasets of 100 customers
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Fig. 6. Comparison between algorithms performance in terms of BKS for
C-type datasets of 100 customers

Algorithms Performances against BKS for
VRPTW R-type datasets of 100 customers
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Fig. 7. Comparison between algorithms performance in terms of the BKS
for R-type datasets of 100 customers
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Algorithms Performances against BKS for
VRPTW RC-type datasets of 100 customers
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Fig. 8. Comparison between algorithms performance in terms of the BKS
for RC-type datasets of 100 customers

In Fig. 6, Fig. 7 and Fig. 8, the BKS results is shown as
green line and each algorithm results indicated by the
column referring to the color in the horizontal legend. For
instance, RC107 dataset in Fig. 8, the column with light blue
color shows that the proposed algorithm (the SBOA) is
closer to the BKS (the green line).

Despite the competitive performance of the SBOA on
multiple classes of VRPTW instances, there are some
limitations worth noting:

o While the SBOA avoids trapping in local optima after
using evasion strategies, premature convergence may still
occur, especially in the extensive or tightly constrained
instances of the VRPTW where feasible areas are scarce.
SBOA exhibit high sensitivity on algorithmic parameters
(population size, perturbation range, hunting/evasion
balance). It can result in sub-optimal results if not been
well calibrated, as there are no self-adaptive mechanisms.

¢ Although SBOA vyielded excellent results for instances
with up to 100 customers, its time complexity and space
complexity for particularly large instances (e.g., 500+
customers) have not yet been investigated and may become
performance bottlenecks.

As it stands, the implementation is quite appropriate for
static problem settings. It cannot accommodate dynamic
changes, such as last-minute customer requests or real-time
traffic delays, as frequently encountered in practical
VRPTW applications.

o While it outperformed some of the common metaheuristics

(PSO, WOA and SFSSA), it was not compared to more

advanced or hybrid metaheuristics such as Large
Neighborhood Search (LNS), Adaptive Large
Neighborhood Search (ALNS), or Reinforcement

Learning-based methods, which have been tested in similar
scenarios and had much better performance.

o Although penalty-based approaches were our methods of
choice to deal with time window violations, these
techniques do not always direct the search in a helpful

way. Further refinement needed, for example, by adding
advanced repair strategies or operators that preserve
constraints, would enhance feasibility and convergence.
The following Table VI shows a comparison between
SBOA results and other algorithms results using Gap metric,
and Table VII presents a comparison of the performance of
various algorithms applied to three types of datasets: C-type,
R-type, and RC-type, each involving 100 customers. The
evaluation metric used is the results for each datasets type
and the Average gap. This comparison aims to highlight the
effectiveness of each algorithm across different dataset

types.

TABLE VI
A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS GAP FOR 100

CUSTOMERS
instances SBOA PSO WOA MFGA SFSSA MRSO
C101 0 0 0 0 16.72 0
C102 0 0.1 0 0 14.56 0
C103 0 2.82 2.04 0 7.18 0
C104 0 5.31 211 0 9.43 2.72
C105 0 0 0 0 18.6 0
C106 0 0 0 0 5.96 0
Cc107 0 0 0 0 13.91 0
C108 0 0 0 0 11.34 0
C109 0 0 0 0 18.84 0
C201 0 0 0 0 0 0
C202 0 0 2.99 0 0 0
C203 0 0.01 6.25 0 0 0
C204 0 421 217 0 0 0
C205 0 0 0 0 0 0
C206 0 0.07 0 0 0 0
C207 0 0.53 0 0 0 0
C208 0 0.04 0 0 0 0
R101 3.72 4.3 6 0 4.22 4.76
R102 7.17 9.22 12.96 0 8.13 7.45
R103 4,73 7.23 135 0 6.26 7.09
R104 0 6.72 7.68 2.09 2.93 5.83
R105 0.41 2.2 8.87 0 1.53 3.69
R106 2.35 6.83 10.77 0 2.41 4.85
R107 0 4.72 8.83 0.21 0.8 4.63
R108 1.18 6.77 9.9 1.31 1.91 4.08
R109 0 5.2 8.1 0.35 1.32 4.81
R110 0 11 7.54 1.87 4,52 5.21
R111 10.05 4.7 10.05 0.55 2.48 0.84
R112 0 7.92 8.47 2.67 4 3.28
R201 0.17 11.08 7.24 1.83 6.59 3.15
R202 0 20.57 9.72 0.78 5.08 0.98
R203 0 20.33 8.4 2.19 5.49 29
R204 0.1 14.73 9.76 1.12 5.45 5.41
R205 0.18 11.25 8.6 1.6 6.54 0.83
R206 0 15.51 7.31 0.09 2.53 4.14
R207 0 18.37 8.73 2.88 6.01 4.04
R208 0 18.33 8.26 4.41 3.46 2.21
R209 0 16.74 8.24 5.33 5.86 1.93
R210 0 14.26 5.12 2.9 2.75 1.63
R211 0 13.94 7.91 7.83 6.63 3.67
RC101 2.98 2.84 8.55 0 3.7 4.23
RC102 0.03 3.43 9.4 0 2.89 2.56
RC103 1.26 2.63 10.64 2.46 0.91 6.69
RC104 0.16 4.9 9.24 0 4.84 4,54
RC105 0.57 6.2 9.35 0 4,55 5.74
RC106 1.03 3.2 8.24 0 0.53 3.05
RC107 0 3.05 6.96 0.26 1.16 10.08
RC108 7.13 5.76 10.96 0.23 4.69 9.82
RC201 0 12.49 4.8 0.74 17.26 1.55
RC202 0 8.95 8.09 1.84 3.14 1.03
RC203 0 21 7.02 1.88 6.32 0.32
RC204 0 13.71 5.56 2.23 7.53 4.89
RC205 0 14.16 8.75 4.49 11.55 1.95
RC206 0 24.02 8.72 4.12 6.63 1.68
RC207 0 17.01 9.78 4,59 7.56 1.14
RC208 0 22.97 5.09 3.95 8.38 3.33
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TABLE VII
A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS PERFORMANCE
APPLIED TO THREE TYPES OF DATASETS FOR 100 CUSTOMERS

Algorithms ~ C-type R-type RC-type  Average gap
SBOA 17 13 9 0.771786
PSO 9 0 0 7.702321
WOA 12 0 0 6.22625
MFGA 17 5 5 1.192857
SFSSA 8 0 0 5.447857
MRSO 16 0 0 2.727321

As shown in Table VII, the Average gap for SBOA
outperformed all compared algorithms (PSO, WOA, MFGA,
SFSSA, and MRSO). For instance, SBOA Average gap
(0.771786) outperformed MFGA Average gap (1.192857).

V. CONCLUSION

The VRPTW is a NP-hard combinatorial optimization
problem close to logistics and transportation tasks. This
paper focuses on applying the SBOA to VRPTW instances,
emphasizing its unique hunting and evasion strategies to
improve solution quality. The algorithm was evaluated using
Solomon benchmark instances, which include small-,
medium-, and large-scale problems. The experimental results
demonstrate the effectiveness of SBOA with BKS solution
found for different instances. That is, in 27 (48.2%) of the
cases with 25 customers, 26 (46.4%) of the cases with 50
customers and 39 (69.6%) of the cases with 100 customers,
the results generated by the SBOA algorithm are equal or
close to the BKS. These results demonstrate the algorithm's
effectiveness in minimizing the total travel distance and
vehicle usage while adhering to time window constraints.
SBOA performed competitively regarding convergence
behavior and succeeded in locating the optimal solutions
when compared to state-of-the-art metaheuristics. The
experimental results confirm the effectiveness and efficiency
of the approach, indicating that SBOA is a promising
optimization algorithm for large-scale and strict constrained
VRPTW problems.

While this study sheds light on the promise of the SBOA
algorithm for tackling VRPTW challenges, several potential
directions for expansion, including but not limited to the
incorporation of SBOA with additional heuristic methods,
such as GA or SA algorithms, to enhance both exploitation
exploration ability; extending the algorithm to accommodate
dynamic VRPTW problems, where customer requests and
temporal constraints fluctuate in real-time, would enhance its
practical significance; and customizing SBOA to investigate
multi-objective VRPTW problems, factoring in elements
like fuel utilization, driver workload, and ecological effect,
would diversify its applicability.

REFERENCES

[1] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Oper. Res., vol. 35, no. 2,
pp. 254265, 1987. https://doi.org/10.1287/opre.35.2.254

[2] E. Boumpa, V. Tsoukas, V. Chioktour, M. Kalafati, G. Spathoulas,
A. Kakarountas, P. Trivellas, P. Reklitis, and G. Malindretos, “A
review of the vehicle routing problem and the current routing services

[4]

[5]

[6]

[71

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

in smart cities,” Analytics, vol. 2, no. 1, pp. 1-16, 2023.
https://doi.org/10.3390/analytics2010001

X. Liu, Y. L. Chen, L. Y. Por, and C. S. Ku, “A systematic literature
review of vehicle routing problems with time windows,”
Sustainability, ~vol. 15, no. 15, p. 12004, 2023.
https://doi.org/10.3390/su151512004

Y. Hou, L. Dang, H. Ma, and C. Zhang, “A selection hyper-heuristic
for the multi-compartment vehicle routing problem considering
carbon emission,” Eng. Lett., vol. 32, no. 10, pp. 2002-2011, 2024.
C. Truden, K. Maier, and P. Armbrust, “Decomposition of the vehicle
routing problem with time windows on the time dimension,” Transp.
Res. Procedia, vol. 62, pp. 131-138, 2022.
https://doi.org/10.1016/j.trpr0.2022.02.017

J. C. Chu, C. S. Shui, and Y. T. Chuang, “Vehicle routing problem
with en-route delivery,” Transportmetrica B: Transp. Dyn., vol. 13,
no. 1, 2025. https://doi.org/10.1080/21680566.2025.2490509

H. Ma, Y. Hou, and H. Xu, “An iterated local search algorithm for
the heterogeneous fixed multi-compartment vehicle routing problem,”
IAENG Int. J. Appl. Math., vol. 55, no. 5, pp. 1084-1091, 2025.

F. Amold, M. Gendreau, and K. Sorensen, “Efficiently solving very
large-scale routing problems,” Comput. Oper. Res., vol. 107, pp. 32—
40, 2019. https://doi.org/10.1016/j.cor.2019.03.006

Huohuo, Secretary Bird Optimization Algorithm (SBOA), MATLAB
Central File Exchange, Apr. 25, 2024.

C. Wang, H. Ma, D. Zhu, and Y. Hou, “A hybrid genetic algorithm
for multi-compartment open vehicle routing problem with time
window in fresh products distribution,” Eng. Lett., vol. 32, no. 6, pp.
1201-1209, 2024.

Y. Fu, D. Liu, J. Chen, and L. He, “Secretary bird optimization
algorithm: A new metaheuristic for solving global optimization
problems,” Artif. Intell. Rev., vol. 57, no. 123, 2024.
https://doi.org/10.1007/s10462-024-10729-y

Y. Cai and H. Chen, “An improved salp swarm algorithm for
permutation flow shop vehicle routing problem,” Sci. Rep., vol. 15, p.
6704, 2025. https://doi.org/10.1038/s41598-025-86054-3

Y. J. Gong, J. Zhang, O. Liu, R. Z. Huang, H. S. H. Chung, and Y. H.
Shi, “Optimizing the vehicle routing problem with time windows: A
discrete particle swarm optimization approach,” IEEE Trans. Syst.
Man Cybern. C Appl. Rev., vol. 42, no. 2, pp. 254-267, 2011.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Adv. Eng.  Softw., vol. 69, pp. 46-61, 2014.
https://doi.org/10.1016/j.advengsoft.2013.12.007

S. Yodwangjai and K. Malampong, “An improved whale
optimization algorithm for vehicle routing problem with time
windows,” J. Ind. Technol., vol. 18, no. 1, pp. 1-12, 2022.
https://doi.org/10.14416/j.ind.tech.2022.04.001

M. F. Ibrahim, M. 1. Mustofa, P. Meilanitasari, and S. U. Wijaya, “An
improved ant colony optimization algorithm for the vehicle routing
problem with time windows,” J. Tek. Ind., vol. 23, no. 2, pp. 105—
120, 2022. https://doi.org/10.22219/JTIUMM.V0I23.N02.105-120

S. Jung and B. R. Moon, “A hybrid genetic algorithm for the vehicle
routing problem with time windows,” in Proc. 4th Annu. Conf.
Genetic and Evolutionary Computation (GECCO), 2002, pp. 1309-
1316.

Z. Zhang, Y. Dou, W. Cheng, X. Xu, J. Jiang, and Y. Tan, “A tabu
search algorithm based on density peak clustering to solve VRPTW,”
in Proc. 8th Int. Conf. Big Data Inf. Anal., 2022, pp. 472-478.
https://doi.org/10.1109/BigDIA56350.2022.9874007 .

M. Mohammadi, N. Mahmoodian, and H. Mohammadi, “A simulated
annealing approach to vehicle routing problem with time windows,”
in Proc. 8th Int. Conf. Control Instrum. Autom., 2022, pp. 1-6.
https://doi.org/10.1109/ICCIA54998.2022.9737187

Z. H. Ahmed, F. Maleki, M. Yousefikhoshbakht, and H. Haron,
“Solving the vehicle routing problem with time windows using
modified football game algorithm,” Egypt. Inform. J., vol. 24, no. 4,
p. 100403, Dec. 2023. https://doi.org/10.1016/j.eij.2023.100403

Z. Liu et al, “A new hybrid algorithm for vehicle routing
optimization,” Sustainability, vol. 15, no. 14, p. 10982, 2023.
https://doi.org/10.3390/su151410982

X. Wei, Z. Xiao, and Y. Wang, “Solving the vehicle routing problem
with time windows using modified rat swarm optimization algorithm
based on large neighborhood search,” Mathematics, vol. 12, no. 11,
p. 1702, 2024. https://doi.org/10.3390/math12111702

N. Kohl, J. Desrosiers, O. B. Madsen, M. M. Solomon, and F.
Soumis, “2-path cuts for the vehicle routing problem with time
windows,” Transp. Sci., vol. 33, no. 1, pp. 101-116, 1999.
https://doi.org/10.1287/trsc.33.1.101

Volume 52, Issue 11, November 2025, Pages 4127-4139


https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.3390/analytics2010001
https://doi.org/10.3390/su151512004
https://doi.org/10.1016/j.trpro.2022.02.017
https://doi.org/10.1080/21680566.2025.2490509
https://doi.org/10.1016/j.cor.2019.03.006
https://doi.org/10.1007/s10462-024-10729-y
https://doi.org/10.1038/s41598-025-86054-3
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.14416/j.ind.tech.2022.04.001
https://doi.org/10.22219/JTIUMM.Vol23.No2.105-120
https://doi.org/10.1109/BigDIA56350.2022.9874007
https://doi.org/10.1109/ICCIA54998.2022.9737187
https://doi.org/10.1016/j.eij.2023.100403
https://doi.org/10.3390/su151410982
https://doi.org/10.3390/math12111702
https://doi.org/10.1287/trsc.33.1.101

TAENG International Journal of Computer Science

[24] W. Cook and J. L. Rich, “A parallel cutting-plane algorithm for the
vehicle routing problem with time windows,” Dept. Comput. Appl.
Math., Rice Univ., Tech. Rep. TR99-04, 1999.

[25] B. Kallehauge, J. Larsen, and O. B. Madsen, “Lagrangean duality
applied on vehicle routing with time windows: Experimental results,”
Internal Rep. IMM-REP-2000-8, Tech. Univ. of Denmark, 2001.

[26] S. Irnich and D. Villeneuve, “The shortest-path problem with
resource constraints and k-cycle elimination for k > 3,” INFORMS J.
Comput., wvol. 18, no. 3, pp. 391-406, 2006.
https://doi.org/10.1287/ijoc.1040.0124

[27] A. Chabrier, “Vehicle routing problem with elementary shortest path
based column generation,” Comput. Oper. Res., vol. 33, no. 10, pp.
2972-2990, 2006. https://doi.org/10.1016/j.cor.2005.01.018

[28] J. Larsen, “Parallelization of the vehicle routing problem with time
windows,” M.S. thesis, Tech. Univ. of Denmark, 1999.

[29] E. Danna and C. L. Pape, “Branch-and-Price Heuristics: A Case
Study on the Vehicle Routing Problem with Time Windows,” in
Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column
Generation, Springer, Boston, MA, 2005, pp. 87-112.
https://doi.org/10.1007/0-387-25486-2_4

[30] G. B. Alvarenga, G. R. Mateus, and G. D. Tomi, “A genetic and set
partitioning two-phase approach for the vehicle routing problem with
time windows,” Comput. Oper. Res., vol. 34, no. 6, pp. 1561-1584,
2007. https://doi.org/10.1016/j.cor.2005.07.027

[31] J. Berger, M. Salois, and R. Begin, “A hybrid genetic algorithm for
the vehicle routing problem with time windows,” in Mercer, R.E.,
Neufeld, E. (eds) Advances in Artificial Intelligence. Canadian Al
1998. Lecture Notes in Computer Science, vol. 1418, Springer,
Berlin, Heidelberg, 1998, pp. 114-125. https://doi.org/10.1007/3-
540-64575-6_44

[32] H. C. B. de Oliveira and G. C. Vasconcelos, “A hybrid search method
for the vehicle routing problem with time windows,” Ann. Oper. Res.,
vol. 180, no. 1, pp. 125-144, 2010. https://doi.org/10.1007/s10479-
008-0481-4

[33] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “Time-window
relaxations in vehicle routing heuristics,” J. Heuristics, vol. 21, no. 3,
pp. 329-358, 2015. https://doi.org/10.1007/s10732-014-9273-y

[34] P. Shaw, “Using constraint programming and local search methods to
solve vehicle routing problems,” in Maher, M., Puget, J.F. (eds)
Principles and Practice of Constraint Programming — CP98. Lecture
Notes in Computer Science, vol. 1520, Springer, Berlin, Heidelberg,
1998, pp. 417-431. https://doi.org/10.1007/3-540-49481-2_30

Volume 52, Issue 11, November 2025, Pages 4127-4139


https://doi.org/10.1287/ijoc.1040.0124
https://doi.org/10.1287/ijoc.1040.0124
https://doi.org/10.1016/j.cor.2005.01.018
https://doi.org/10.1007/0-387-25486-2_4
https://doi.org/10.1007/0-387-25486-2_4
https://doi.org/10.1016/j.cor.2005.07.027
https://doi.org/10.1016/j.cor.2005.07.027
https://doi.org/10.1007/3-540-64575-6_44
https://doi.org/10.1007/3-540-64575-6_44
https://doi.org/10.1007/3-540-64575-6_44
https://doi.org/10.1007/s10479-008-0481-4
https://doi.org/10.1007/s10479-008-0481-4
https://doi.org/10.1007/s10732-014-9273-y
https://doi.org/10.1007/3-540-49481-2_30



