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Abstract— The Vehicle Routing Problem with Time 

Windows (VRPTW) is a commonly encountered problem in 

logistics and transportation that involves combinatorial 

optimization. In this study, we apply the Secretary Bird 

Optimization Algorithm (SBOA) to solve instances of the 

VRPTW by utilizing its hunting and evasion mechanisms to 

improve solution quality. The proposed algorithm was 

evaluated on Solomon's benchmark instances, which include 

small-, medium-, and large-scale problem instances. 

Experimental results confirmed the effectiveness of SBOA, 

obtaining 27 optimal solutions for different instances with 25 

customers, 26 optimal solutions for the datasets with 50 

customers and 39 optimal solutions for the datasets with 100 

customers. The results demonstrate the algorithm's exceptional 

ability to reduce total travel distance and vehicle usage while 

satisfying time window constraints. It demonstrated 

competitive convergence behavior and a high success rate in 

finding optimal solutions in compared to other existing 

metaheuristic approaches. The results demonstrate that SBOA 

is an effective optimization algorithm for large-scale VRPTW 

under strict constraints. 

 
Index Terms— Secretary Bird Algorithm, Vehicle Routing 

Problem, Metaheuristic, Optimization, Time Constraints. 

 

I. INTRODUCTION 

he Vehicle Routing Problem with Time Windows 

(VRPTW) has been widely studied in the area of 

logistics and transportation. It generalizes the traditional 

Vehicle Routing Problem (VRP) with time window 

constraint, so that it becomes more suitable to the time 

constraint in practical delivery [1], [2], and [3]. However, 

solving the VRPTW is NP-hard, and exact methods become 

infeasible for large-sized problems, which leads to the 

application of metaheuristic algorithms such as Particle 

Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), Genetic Algorithms (GA), Simulated Annealing 

(SA), and Tabu Search (TS) [3], [4], [5], [6], [7], and [8]. In 
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this context, SBOA is a new metaheuristic inspired by the 

hunting behavior of the secretary bird, which forms the basis 

of the algorithm design. SBOA was introduced by Huohuo 

and mimics the secretary bird’s behavior to navigate 

through a complex search space using its strategic hunting 

techniques [9]. More encouraging results thus far include its 

ability to solve a variety of global optimization problems 

significantly better than existing approaches [10] and [11]. 

In recent years, there are many biologically based 

algorithms have been proposed such as Whale Optimization 

Algorithms (WOA), Salp Swarm Algorithm (SSA), and 

Secretary Bird Optimization Algorithms (SBOA), the 

excellent performance between exploration and exploitation 

in complex search space has been obtained [7], [8], [9], and 

[10]. Due to the requirement of efficient routing with strict 

operational constraints, more and more attention has been 

focused on adapting new metaheuristics to solve VRPTW 

efficiently, such as SBOA [1], [2], [3], [9], and [11]. 

VRPTW solving at scale involves several challenges such 

as scalability of the solution, sensitivity to constraint, and 

convergence behavior [3], [8]. For large-scale cases, they 

can generate the rising computational cost and traditional 

metaheuristics are vulnerable to promote premature 

convergence or inefficient in exploring the feasible regions 

[11] and [12]. Besides, to keep solution feasible, the 

balancing of demand within a rigid time window is also one 

of key challenges, particularly when customers are 

geographically dispersed over time [1], [2], and [3]. The 

specific contributions of this paper are also to overcome 

these weaknesses by improving the global search ability and 

constraint-handling mechanisms of the SBOA algorithm. 

The main aim of this paper is to investigate how the 

effectiveness of SBOA can be measured based on different 

sizes of VRPTW, the total travel distance and the vehicle 

usage for VRPTW cases where time window constraints 

must be considered. 

In order to analyze the effectiveness of the proposed 

SBOA, we test it on the Solomon’s benchmark instances 

adopted in VRPTW literature, that are well-accepted sets of 

instances, and that encompasses small-, medium-, and large-

scale instances [1]. This allows a thorough evaluation of the 

scalability, effectiveness, and performance at providing 

closest to the best or best solution under different conditions 

of the algorithm while comparing it to existing well-

established metaheuristic methods. 

This paper pertains to the area of combinatorial 

optimization and presents an adapted SBOA for solving the 

VRPTW. Key contributions consist in introducing an error 

penalization scheme when constraint boundaries are 
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exceeded, and in better local search strategies, together with 

extensive testing on small, medium and large scale VRPTW 

instances of Solomon’s benchmarks. Moreover, algorithm 

achieves competitive results with existing metaheuristics and 

shows good convergence rate and improves quality of 

solution, mainly in terms of reducing travel distance and 

vehicle count while maintaining feasibility. 

The rest is organized as follows: Section 2 lays out the 

related work, followed by Section 3 which explains the 

approach we propose for the methodology, Section 4 

presents results, Section 5 discussion of the result, and 

finally section 6 concludes the paper with the future work. 

 

II. RELATED WORK 

The VRPTW is a classic combinatorial optimization 

problem that has received tremendous interest in the 

logistics and transportation literature. The VRPTW adds a 

dimension to the classical VRP: customers must be served 

by vehicles within time intervals. These added constraints 

increase the complexity of the problem, simulating more 

realistic situations and localized deliveries that are time-

sensitive relative to customer experience and operational 

efficiency [1]. Since then, many optimization techniques 

have been proposed, for instance different exact algorithms 

or heuristics and metaheuristics to solve the VRPTW. 

Several optimization techniques for VRPTW (e.g., 

branch-and-bound and branch-and-cut), have been 

developed and used to solve small-scale VRPTW instances. 

While these approaches ensure an optimal solution, the high 

computational intensity of MIP for large problems makes 

them practically infeasible [6]. To solve this limitation, 

researchers have gradually shifted towards heuristic and 

metaheuristic methods which yield near-optimal solutions 

fast. Some popular meta-heuristic algorithms are PSO, ACO, 

GA, SA and TS. The VRPTW problem formulation has 

shown strong performance using these methods for 

balancing exploration and exploitation in the search space 

of solutions [7]. These methods laid the foundation for 

solving VRPTW but they face limitations in scalability, 

constraint handling, and parameter sensitivity when applied 

to large-scale or tightly constrained scenarios. 

Over the past years, the bio inspired algorithms have 

become popular in solving complex optimization problems 

including the VRPTW. For example, natural phenomena, 

such as swarm behavior and foraging strategies, have been 

adapted to solve VRPTW by using an improved SSA [12] or 

PSO [13]. Similarly, metaheuristic algorithms that perform 

at a higher-level search space such as Grey Wolf Optimizer 

(GWO) demonstrated promising results in minimizing total 

travel distance and the number of vehicles while satisfying 

time window constraints [14]. In the last years several 

recursive non-hypolixelic improvements impelled to bio-

inspired algorithms have demonstrated promising solutions 

to the VRPTW in different application contexts. Hybrid and 

enhanced metaheuristic models have been investigated by 

few researchers to solve VRPTW, for enhancing the solution 

quality, convergence rate and tackling the constraints. 

PSO was used by Gong et al. in [13] to VRPTW, with 

remarkable performance in the minimization of total 

traveling distance. However, the algorithm prematurely 

converged while it was tested in complex cases, and its 

performance was unsatisfactory for real problems. 

In [14], GWO was proposed by Mirjalili et al. for solving 

VRPTW, GWO showed more promising exploration over 

PSO and GA, especially on medium dimensional problems. 

It did not perform as well as for large freight as it did in the 

constrained problem with freight of that size, and its 

performance also has a slight downhill tendency under the 

tight constraints in time windows, which means that 

constraints handling in further research could be improved. 

Yodgangjai and Malampong suggested an improved 

WOA for VRPTW in [15]. The modified solution handled 

the convergence speed of output facility better, but optimal 

exploration-exploitation selection was still not reached, 

especially in dynamic environments with fluctuation on 

customer demands and time window. 

An improved ACO algorithm that includes mutation and 

local search operations was presented to optimize routing in 

a recent study [16]. It was shown that this hybridization led 

to considerable reductions in travel distance while still 

maintaining feasibility movements under time pressure. 

Besides, the parameter tuning was tedious to optimize the 

performance and not easily used in practice. 

Jung and Moon in [17] applied GA to solve VRPTW and 

obtained competitive solutions on Solomon’s datasets—

mostly for small sized instances. Although GA was good at 

producing solutions that were likely to be possible routes, it 

suffered from slow convergence as the problem size grew, 

rendering it less viable in real time scenarios. 

A TS with Density Peak Clustering (DPC/TS) for 

mitigating scalability problems of classic heuristics for 

VRPTW was proposed by study [18]. By using DPC to 

cluster customer locations, the original problem was divided 

into smaller size sub-problems which were effectively solved 

using TS. Numerical tests demonstrate that the new MLP 

method performs much better in quality of solutions and 

efficiency than the classical algorithms. 

Another recent study in [19] introduced a SA method for 

minimizing operational costs for the fuel, driver wage and 

delivery time, where also time window and capacity were 

considered. The method was able to solve large-scale 

instances with up to 350 nodes, obtaining zero constraint 

violations in less than ten minutes, and outperforming 

current methods. 

In [20], Ahmed et al. proposed the Modified Football 

Game Algorithm (MFGA) which had good performance 

with the benchmark example set of Solomon. MFGA 

performed well in handling large time window constraints 

and scalability. More experiments, however, are needed 

under a variety of problem sets to ascertain the robustness 

and generality of the method. 

The hybrid Salp Swarm Algorithm (SFSSA) in [21] 

performed better than many single metaheuristics in solution 

quality and convergence speed. The implementation 

complexity of SFSSA is high, and few practical logistics can 

be applied to the real-time and large-scale scheme. 

A more recent approach was developed in [22], by 

combining the Large Neighborhood Search with a Modified 
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Rat Swarm Optimization (MRSO) to solve the VRPTW with 

the well-known benchmark Solomon instances. The existing 

best-known solutions were improved by the MRSO by 5.1% 

for the R2 category and by 8.8% for the RC2 category. 

However, the strength of the algorithm depends largely on 

having a good tradeoff between global exploration and local 

exploitation. 

Lastly, in [12], an enhanced SSA was proposed by Cai 

and Chen. The advanced SSA had superior global search 

properties, especially in the early stages. Yet, it did not 

include efficient ways to deal with constraint violations, and 

so its applicability for very tight CVRPD instances is 

limited. 

These new algorithms are more adaptable, possess better 

global search performance and resist local convergence for 

the traditional algorithms but their overall performance on 

parameter tuning, constraint handling and dynamic response 

have not been yet solved. 

In view of the complexity and dynamic of VRPTW, 

particularly in large-scale problems, traditional 

metaheuristics often fail to balance exploration and 

exploitation well. Hence, bio-inspired techniques, which 

escape the limitations of previously traditional methods by 

emulating nature’s natural phenomena for organic search 

space solutions, are even more desired. A good promising 

nature inspired approach is the SBOA, which shows good 

global search and adaptability. In the next section, we will 

introduce SBOA and its possible use as a VRPTW solver. 

New metaheuristic algorithms have trailed enhancing this 

capability to solve difficult VRPTW cases. Hybrid methods 

such as MISBOA and SFSSA achieve better convergence 

and results. Yet, many methods require improvement in 

terms of scalability, handling of the constraints and 

sensitivity to the parameters. Although classical algorithms 

such as Tabu Search and Genetic Algorithms formed the 

building blocks, the more recent bio-inspired algorithms 

such as GWO, WOA, and SBOA offer better exploration 

ability. However, despite these advances there is a great 

demand for adaptive constraint handling and dynamic 

response strategies to deal with sudden changes in customer 

demand or traffic conditions. 

However, there remains a need for advanced algorithms 

capable of solving large-scale VRPTW instances with tighter 

time window constraints. The SBOA is a recently 

introduced algorithm inspired by the predatory and 

escapable behaviors of secretary birds. SBOA has shown 

promise in addressing complex optimization challenges, 

especially in cases where dynamic modifications and 

adaptive strategies are necessary [9], [10], and [11]. 

Although it is a crucial optimization algorithms in practice, 

few studies in the literature have applied it to VRPTW, so 

this study makes a significant contribution to the existing 

literature. 

For performance evaluation of SBOA, this study uses 

Solomon’s benchmark instances, which are known as the 

benchmark instances for VRPTW algorithms. These 

instances include a wide range of sizes and complexities, 

allowing for an in-depth evaluation of the algorithm’s 

performance [8]. By contrasting the performance of SBOA 

with the state of the art in the field of metaheuristics, the 

purpose of this work is to illustrate its capability to find 

optimal or near-optimal solutions with low computational 

costs. 

The presented SBOA in this work extends these results by 

adding a penalty function and new search rules, and it is 

envisioned to overcome some of the weaknesses found in 

other methods. 

In brief, prior work demonstrates success of different 

metaheuristics for VRPTW. Exact techniques are bounded 

to small instances by computational complexity, and 

classical metaheuristics usually fail to achieve a tradeoff 

between exploration and exploitation. Bio-inspired 

approaches have quickly become effective alternatives, with 

increased flexibility and better global search abilities. But 

this type of algorithms exists with little effective constraints 

and have difficulty in dealing with large scale and highly 

constraints. 

It should be mentioned that although SBOA has been 

successfully used to different combinatorial optimization 

problems including function optimization, engineering 

design, scheduling related problems. This work tries to fill 

this gap by proposing an improved variant of SBOA 

exclusively designed to solve VRPTW. The tuned algorithm 

includes the penalty-type constraints management as well as 

enhanced local search operations with respect to time 

windows and vehicle routing characteristics. 

 

III. METHOD 

The SBOA is a new metaheuristic algorithm that is 

inspired by the hunting and evasion behaviors of the 

secretary bird. Huohuo introduces this algorithm aims to 

ameliorate global optimization problems by incorporating 

strategies derived from both natural predation and evasive 

strategies of the birds. SBOA consists of three main 

components that are described as follows: the initialization, 

which generates initial solution population randomly, the 

hunting strategy, which is an imitation of the chasing style of 

secretary bird for prey and makes the algorithm good at 

exploring solution space, and the evasion mechanism, which 

simulates the escape behavior of the bird and can improve 

the local exploitation. Moreover, a penalty scheme is 

incorporated to treat constraint violations by penalizing the 

infeasible solutions while searching [9]. In the initialization 

phase, randomly generate an initial population of solutions, 

which are the hiding spots of the birds. In the hunting phase, 

the angle of movement in this stage of birds is updated using 

strategies from the economy of a secretary bird concerning 

the hunting of prey, which enables an efficient searching of 

the search space. In the evasion phase, the birds apply evade 

strategies based on the principle of their natural defenses, 

which enhances the exploitation capability of the proposed 

algorithm to find the best available solution [10].  

The general pseudo-code of the SBOA is presented in Fig. 

1, where the three main phases, namely initialization, 

hunting strategy, and evasion mechanism, are described. A 

detailed description of each phase and their integration to 

solve the VRPTW are given in the next sections. For the 

exact nature of the algorithm and the update mechanisms, 
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the reader is referred to the original SBOA paper [9], [11].  

To make the proposed SBOA more transparent and 

reproducible, we present the mathematical equations of the 

position update and the constraint penalty we consider in the 

present study. 

If the activity time is not satisfied at iteration t, then the 

location of each secretary bird i is renewed at iteration t 

using its present location and inspired search modes that are 

motivated by hunting and avoidance behaviors. The update 

equation during the hunting mechanism is given in Equation 

1: 

 

)(11 t
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i XXrXX    (1) 

 

 Where 
t

iX
 is the current position of bird i , 

t

bestX
 is 

the best solution found so far, α is a scaling factor (set to 0.5 

in our experiments), and r1 is a random number uniformly 

distributed in [0,1]. 

In evasion, birds move in response to opponents to avoid 

local optima according to the diversity preservation 

mechanism represented by Equation 2: 
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Where 
t

randX
 is a randomly selected solution from the 

population, β is an evasive step size coefficient (set to 0.3), 

and r2, r3 are random numbers in [0,1]. 

In terms of constraint management, a time window 

violation may be penalized using a dynamic penalty 

function. Equation 3 describes the fitness function: 
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Where S is a solution, Aj is the arrival time at customer j , 

Lj is the latest allowable service time, n is the total number 

of customers, and λ is a dynamically adjusted penalty 

coefficient that increases with the number of violated 

constraints. This ensures that infeasible solutions are 

gradually pushed toward feasibility while maintaining search 

diversity. 

Fig. 1 presents the pseudo-code of the SBOA along with a 

detailed description of its process. The SBOA is an 

evolutionary algorithm, which creatively works to arrive at 

the end, iteratively optimizing towards the solution of a 

given task, which can be broken down into three stages - 

initialization, optimization loop and termination. 

As shown in Fig.1, in the initialization phase, a random 

population of N secretary birds are spread throughout the 

search space. Birds in this analogy in fact represent the 

potential solutions of the optimization problem, where its 

position is analogous to a candidate solution. Each bird's 

fitness function is then evaluated to measure the quality of 

its present position. The evaluation acts as a benchmark to 

help gauge the effectiveness of the solution, and provides a 

standard against which future improvements can be 

measured. 

 

 
Fig. 1.  SBOA Optimization pseudo-code 

 

The process of iteratively improving a population of 

solutions is called the optimization loop, which constitutes 

the core of the algorithm. This continues looping until a 

defined termination condition is reached, for example, a 

maximum number of iterations or an adequately optimal 

solution. In each iteration, each bird modifies its location 

based on the hunting strategy (finding others to hunt) and 

the evasion strategy (finding ways to escape). The hunting 

strategy is inspired by wild hunting behavior of secretaries, 

which directs secretary birds towards likely regions in the 

search space. This mechanism reinforces exploration by 

allowing the algorithm to explore different areas and avoid 

converging too early. Otherwise, the evasion strategy is used 

when a bird does not gain fitness from hunting. This 

approach provides a way to escape from local optima, which 

ultimately improves the algorithm's search capability for 

other states. The best solution found so far is updated 

during the whole process to ensure that the global optimum 

is tracked. 

While the basic SBOA has been found to be effective for 

solving difficult optimization problems, a number of 

improved versions have been proposed to enhance its 

efficiency and convergence property. There are a few other 

modified versions of this algorithm as well, such as Multi-

Strategy Improvement Secretary Bird Optimization 

Algorithm (MISBOA), which incorporates several other 

advanced mechanisms such as the incremental PID feedback 

control, golden sine based guidance during foraging, 

collaborative camouflage, and cosmic similarity based 

position updates during evasion. Simulation results on the 

Congress on Evolutionary Computation (CEC2022) 

benchmark problems have demonstrated that MISBOA 

exhibits superior search performance compared to other 

metaheuristic algorithms and is competitive particularly 

when used for higher-dimensional optimization problems 

[10]. One other approach that yielding promising results is 

the Quantum-Based Secretary Bird Optimization Algorithm 

(QSBOA) [11], where quantum-inspired search techniques 
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are coupled with adaptive dynamic and hybrid swarm 

intelligence properties. Some research has shown that 

QSBOA converges more quickly and is more robust than 

standard metaheuristic approaches, which makes it useful for 

solving very complex optimization problems. [11]. 

Despite those improvements, the basic SBOA is still a 

powerful and effective algorithm especially for real-world 

problems such as the VRPTW. While improved versions 

such as MISBOA and QSBOA exhibit better convergence 

characteristics and accuracy, they tends to increase 

algorithmic complexity, higher computational load, and 

reliance on parameter dependence, respectively. 

Consequently, although the improved variants (e.g., 

MISBOA and QSBOA) potentially provide better 

performance in terms of convergence speed and quality 

convergence (which is expected), the original SBOA was 

adopted in this study mainly because of the simplicity, the 

ease of implementation, the good trade-off between the 

exploration and the exploitation, the proved effectiveness on 

large-scale VRPTW instances, and the lower computational 

complexity than the crafter variants. 

The VRPTW, based on Solomon’s benchmark, involves 

finding the optimal routes for a fleet of vehicles under time 

constraints. In this study, the existing SBOA is modified for 

this problem with hunting based on distance and evasion 

based on time window. Fig. 2 provides pseudo-code 

designed specifically to solve the VRP with the SBOA 

framework. This pseudo-code describes how the SBOA is 

modified to solve VRP, a canonical combinatorial 

optimization problem that consists of finding the best routes 

for a fleet of vehicles to deliver to a set of customers. VRP-

specific constraints like vehicle capacity and route distance 

constraints are inherently integrated into the design of the 

algorithm. The algorithm iteratively polishes solutions, 

mapping the secretary birds' positions to potential routes and 

minimizing total travel costs while respecting operational 

constraints. Problem specific fitness evaluations, trained on 

problem specific data, allow the algorithm to efficiently 

discover high-quality solutions for real-world logistics 

problems. Through this adaptation, Fig. 2 takes advantage of 

the flexibility of the SBOA to tackle complex optimization 

approaches such as VRPTW with accuracy and efficiency. 

Fig. 2 presents the pseudo-code of the SBOA for 

VRPTW, along with a full description of the corresponding 

procedural steps. In the case of VRPTW, each bird (agent) 

in the algorithm denotes a potential solution comprised of a 

set of vehicle routes. Such routes are conditioned by 

operational constraints (e.g., time window limits, vehicle 

capacity limits) and the need to minimize the total travel 

distance. This representation allows the algorithm to both 

stay within the confines of the problem and search for 

optimal or sub-optimal solutions. The quality of each 

solution is evaluated using a fitness function. Each of the 

solutions is evaluated on 3 key criteria: 

1)  Total distance traveled, the algorithm tends to 

minimize the overall distance traveled, and considering 

that directly affects operational effectiveness. 

2) Number of vehicles used, the solutions with a smaller 

fleet are preferred; less fleet means smarter savings. 

 
Fig. 2.  SBOA pseudo-code for VRPTW 

 

3) Penalties for constraint violations, where the routes that 

do not comply with the time window constraints, are 

penalized to motivate meeting any customer-specific 

requirements. The penalty mechanism promotes feasible 

solutions and is very effective in guiding the search to 

feasible and high-quality solutions. 

While in the exploration step, each bird uses a controlled 

perturbation mechanism that propels it towards the leader 

(which is the best solution found so far). Such motion 

emulates hunting techniques used by secretary birds that 

allows the algorithm exploring the landscape of the/optimal 

search space. Routes are then refined in a series of iterations 

to minimize travel distance without affecting feasibility. A 

repair mechanism is applied if the adjusted solution violates 

any time window constraints to ensure the solution remains 

valid. 

If the exploration phase fails to show any improvements, 

the algorithm shifts to the exploitation phase by diversifying 

the search. That is done via two primary mechanisms: 

1) Time-Window-Based Reordering: The order of 

customer visits is changed to be more suitable for time 

window constraints and to improve solution feasibility. 

2)  Randomizing Customers: We swap customers randomly 

so that we can try out alternate configurations to 

discover potentially better solutions. These mechanisms 

allow the algorithm to escape from local optima and 

stop when further improvements can no longer be made. 

The behavior of metaheuristic solvers such as SBOA 

depends to a great extent on the choice of hyperparameters. 

The next procedure was to identify the important parameters 

of SBOA parameters for solving VRPTW, which was 

considered in this study. 

 The number of individuals was defined as 50 after 

experimenting with part of Solomon’s reference set (C101, 
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R101, and RC101). This value resulted in a fine 

compromise between exploration ability and 

computational cost. 

 A dynamic adaptive approach was used, where searching 

began with a greater emphasis on hunting (exploration), 

then progressively shifts toward evasion-based 

exploitation, where the algorithm improves promising 

solutions to avoid premature convergence. This balance 

was adjustable based on the number of iterations with a 

factor and is formulated as an equation below. 

To this effect the settings were checked on a subset of 

small-scale and medium scale instances and then applied to 

large problems. The fine-tuning of parameters is performed 

to make the algorithm keep a tradeoff between exploration 

and exploitation and computation efficiency. 

During the optimization process, the algorithm keeps a 

record of the best VRPTW solution that is found at that 

moment. Such solutions are dynamically updated when a 

better candidate is found, the algorithm always actually has 

the best quality result. 

The algorithm is executed until at least one of two criteria 

is met achieving the maximum number of iterations, or there 

are no improvements noticed over a previously defined 

number of iterations. This allows the algorithm to function 

correctly without introducing additional compute time from 

poor hypotheses in the last few iterations. These termination 

conditions support the algorithm to explore the solution 

space comprehensively without causing computational 

overload. 

SBOA can be improved through a variety of advanced 

strategies to better address the VRPTW to overcome the 

limitations of the algorithm. The detailed features proposed 

are: 

 First, SBOA can be integrated with local search methods 

to substantially enhance the quality of the routes 

generated. Neighborhood structures specific to 2-opt, 3-

opt, or for example, TS can be included in the framework 

to refine the solutions discovered and useful for getting rid 

of local inefficiencies. Thus, hybridization is created, and 

it acts as a powerful combination of global optimization 

and local search that performs excellent results in creating 

optimized modified routing plans. 

 Second, adaptive escape mechanisms based on the 

diversity of solutions can be introduced to avoid premature 

convergence. If it notices that the population of solutions 

has become homogeneous, it can direct the search to 

explore new areas of solution space, while if diversity is 

too high, and it can exploit these well-performing solutions 

by focusing on them. It makes sure that the Algorithm 

continues to search over all the regions of the solution 

space, thus limiting the chance of stopping on sub-optimal 

solutions. 

 Finally, dynamic penalty adjustments for time window 

violations help to balance exploration versus exploitation 

of the algorithm. The algorithm reach a balance between 

quality and feasibility by adaptively adjusting the penalty 

weights attached to constraint violations during the 

optimization process. When the solution is good enough, 

the focus move toward feasibility than further 

optimization. Such an adaptive strategy allows the 

algorithm to adjust to the changing nature of the solution 

landscape over time. 

This results in a SBOA framework that is more efficient 

and effective, allowing it to address the complexities of the 

VRPTW with increased accuracy and reliability. With these 

three techniques, the algorithm can perform better, 

providing solutions that are able to run in practice and cost-

efficient. 

To assess SBOA performance, we utilized Solomon's 

benchmark instances, a well-established and widely accepted 

evaluation methodology for the VRPTW [1]. These 

instances comprise a wide range of problems from small, to 

medium, to large, allowing for the evaluation of the 

algorithm in terms of scalability and robustness. In each 

instance, a set of key parameters are provided including the 

number of customers, customer locations (x, y coordinates), 

time windows (earliest time service can start, latest time 

service can start), customer demands, vehicle maximum 

capacities and depot locations. The dataset was represented 

by C-type, R-type and RC-type customers. Using these 

benchmark instances enables this study to provide a fair 

comparison against existing metaheuristic approaches and 

show SBOA’s capability in dealing with complex VRPTW 

constraints effectively. The Fig. 3 depicts the classification 

of Solomon’s benchmark instances for the Vehicle 

VRPTW. The datasets are classified into three major types 

(C-type, R-type, and RC-type) and several sub-types based 

on distribution patterns and the level of complexity of 

problems. 

 

 
Fig. 3.  Solomon’s benchmark for VRPTW 

 

Fig. 3 shows the classification of Solomon’s test 

instances for VRPTW. Three primary types exist in the 

dataset: C-type (Clustered), R-type (Random), and RC-type 

(Random-Clustered); each of which is further divided 

according to spatial distribution characteristics and the 

complexity of the problem. The following instances were 

generated of different size 25 customers, 50 customers and 

100 customers which is related to number of delivery points 

or demand location considered for the instance. The 25-

customer and 50-customer instances represent small-scale 

and medium-scale problems respectively, while the 100-

customer instances represent the large-scale of more 

complex routing problems, respectively, providing an 

IAENG International Journal of Computer Science

Volume 52, Issue 11, November 2025, Pages 4127-4139

 
______________________________________________________________________________________ 



 

overall evaluation of the performance of the algorithms in 

our testing over a variety of routes. 

For the reproducibility and transparency of experimental 

results, we present the following implementations and pre-

processing of our datasets: 

 All experiments were performed with the same random 

seed to guarantee reproducibility among different runs. 

This permits a direct comparison between different trials 

of the same plant extract and it guarantees an exact 

reproducibility of results. 

 The Solomon instances used in this paper are in the 

standard VRPTW instance format, which indicates x-y 

coordinates, time window [earliest arrival, latest departure] 

and the start node and end node of each customer. All 

minor preprocessing was done and the raw input files are 

parsed to arrays of structured data, which are input to the 

algorithm. Note that customer location coordinates and 

TWs were employed unchanged without transformation. 

 Both vehicle capacity and customer demand were used in 

their raw form without normalization or rescaling to retain 

the real-world nature of the problem. During the search, all 

constraint violations such as over capacity and out of the 

time windows were penalized via a penalty term added in 

to the fitness function in order to direct the search towards 

feasible solutions only. 

These are included to increase the clarity, reproducibility 

and the scientific rigor of the method development. 

 

IV. EXPERIMENTS 

The SBOA was first tested on 56 Solomon’s benchmark 

instances to solve the VRP with Time Windows (VRPTW) 

in this study. These examples include 25, 50, and 100 

customer problems, which are standard in the assessment of 

routing algorithms [1]. To highlight its stability, the 

algorithm was run 10 times for each dataset employed, with 

stopping criteria fixed at 1,000, 10,000 and 30,000 iterations 

for small, medium, and large problems, respectively. These 

parameters are consistent with recommendations from the 

literature and prior studies [15]. The experiments were 

performed on a computer with i5-4570 CPU @ 3.20 GHz 

and 8 GB RAM, while the algorithms were implemented and 

executed using Python. 

The results of the SBOA using the VRPTW datasets are 

shown in Table I, Table II, and Table III. In particular, 

Table I refers to the results of instances with 25 customers, 

Table II to those with 50 customers and Table III to those 

with 100 customers. The Best Known solution (BKS) in all 

tables are also provided with respective references. The best 

results obtained by the SBOA algorithm are marked in 

boldface showing results that are either equal or closer to 

the optimal or BKS solutions. The reason for this 

arrangement is to make a simple and direct comparison 

between the SBOA results and the benchmark solutions 

possible without too much effort on your part to determine 

the efficacy of the algorithm.  

The computational results of the SBOA applying it to the 

VRPTW for instances with 25 customers are shown in Table 

I. The table reports the solutions of the SBOA algorithm 

against BKS in the literature. Results of the SBOA algorithm 

that are either equal to or very close to the BKS are in 

boldface. Currently, of the 56 results in Table I, the SBOA 

algorithm equal or outperformed the BKS 27 times (around 

48.2% of the cases). That is, the SBOA algorithm is capable 

of providing high-quality solutions for small-scale problems, 

as able to generate the high quality competitive solutions 

compared with the BKS results in the literature. 

 
TABLE I 

COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK 

FOR 25 CUSTOMERS 

instances SBOA BKS 

C101 191.3  191.3 [M1] 

C102 190.3 190.3 [M1] 

C103 190.3 190.3 [M1] 

C104 187.45 186.9 [M1] 

C105 191.3  191.3 [M1] 

C106 191.3  191.3 [M1] 

C107 191.3  191.3 [M1] 

C108 191.3  191.3 [M1] 

C109 191.3  191.3 [M1] 

C201 214.7  214.7 [M2, M6] 

C202 214.7  214.7 [M2, M6] 

C203 214.7  214.7 [M2, M6] 

C204 213.1  213.1 [M2, M3] 

C205 214.7  214.7 [M2, M6] 

C206 214.7  214.7 [M2, M6] 

C207 214.5  214.5 [M2, M6] 

C208 214.5  214.5 [M2, M6] 

R101 618.33 617.1 [M1] 

R102 548.11 547.1 [M1] 

R103 464.83 454.6 [M1] 

R104 416.9 416.9 [M1] 

R105 530.5 530.5 [M1] 

R106 467.85 465.4 [M1] 

R107 424.3 424.3 [M1] 

R108 398.29 397.3 [M1] 

R109 450.26 441.3 [M1] 

R110 444.1 444.1 [M1] 

R111 431.12 428.8 [M1] 

R112 393 393 [M1] 

R201 405.48 404.6 [M2, M3] 

R202 352.80 350.9 [M3] 

R203 476.96 461.1 [M1] 

R204 401.79 351.8 [M1] 

R205 332.8 332.8 [M1] 

R206 307.14 306.6 [M1] 

R207 418.52 411.3 [M1] 

R208 347.31 345.5 [M1] 

R209 298.95 298.3 [M1] 

R210 294.99 294.5 [M1] 

R211 360.2 360.2 [M2, M6] 

RC101 338.82 338.0 [M2, M3] 

RC102 327.69 326.9 [M4, M5] 

RC103 300.23 299.7 [M5] 

RC104 338.0 338.0 [M3, M5] 

RC105 325.10 324.0 [M3] 

RC106 298.95 298.3 [M3] 

RC107 269.57 269.1 [M5] 

RC108 598.1  598.1 [M1] 

RC201 684.8 684.8 [M2, M5] 

RC202 622.84 613.6 [M4, M5] 

RC203 635.42 555.3 [M4, M5] 

RC204 444.2  444.2 [M7] 

RC205 683.79 630.2 [M4, M5] 

RC206 612.65 610.0 [M4, M5] 

RC207 570.54 558.6 [M5] 

RC208 496.95 - 

Note: 2-path cuts algorithm [23] is denoted as M1, A parallel cutting-

plane algorithm [24] is M2, Lagrangean duality applied method [25] is M3, 

The shortest-path problem with resource constraints and k-cycle 

elimination method [26] is M4, shortest path based column generation [27] 

is M5, Parallelization of the vehicle routing problem [28] is M6, and 

Accelerating branch-and-price with local search [29] is M7. 
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TABLE II 

COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK 

FOR 50 CUSTOMERS 

instances SBOA BKS 

C101 362.4  362.4 [M1] 

C102 361.4  361.4 [M1] 

C103 361.4  361.4 [M1] 

C104 358.0  358.0 [M1] 

C105 362.4  362.4 [M1] 

C106 362.4  362.4 [M1] 

C107 362.4  362.4 [M1] 

C108 362.4  362.4 [M1] 

C109 362.4  362.4 [M1] 

C201 360.2  360.2 [M2, M6] 

C202 360.2  360.2 [M2, M3] 

C203 359.8  359.8 [M2, M3] 

C204 350.1  350.1 [M3] 

C205 359.8  359.8 [M2, M3] 

C206 359.8  359.8 [M2, M3] 

C207 359.4  359.4 [M2, M3] 

C208 350.5  350.5 [M2, M3] 

R101 1054.88 1044.0 [M1] 

R102 946.67 909.0 [M1] 

R103 813.94 772.9 [M1] 

R104 625.4 625.4 [M1] 

R105 943.95 899.3 [M1] 

R106 848.63 793 [M1] 

R107 763.97 711.1 [M1] 

R108 665.13 617.7 [M2, M3] 

R109 821.64 786.8 [M1] 

R110 697.0 697.0 [M1] 

R111 756.21 707.2 [M2, M3] 

R112 677.33 630.2 [M2, M3] 

R201 823.38 791.9 [M2, 27] 

R202 739.86 698.5 [M2, M3] 

R203 645.19 605.3 [M4, M5] 

R204 506.4  506.4 [M4] 

R205 690.1 690.1 [M4, M5] 

R206 673.14 632.4 [M4, M5] 

R207 621.07 Not reported 

R208 509.70 Not reported 

R209 631.76 600.6 [M4, M5] 

R210 680.59 645.4 [M4, M5] 

R211 566.69 535.3 [M2, M7] 

RC101 966.12 944 [M1] 

RC102 893.56 822.5 [M1] 

RC103 766.70 710.9 [M1] 

RC104 545.8 545.8 [M1] 

RC105 855.3 855.3 [M1] 

RC106 820.47 723.2 [M1] 

RC107 738.68 642.7 [M1] 

RC108 598.1  598.1 [M1] 

RC201 684.8 684.8 [M2, M5] 

RC202 622.84 613.6 [M4, M5] 

RC203 635.42 555.3 [M4, M5] 

RC204 444.2  444.2 [M7] 

RC205 683.79 630.2 [M4, M5] 

RC206 612.65 610.0 [M4, M5] 

RC207 570.54 558.6 [M5] 

RC208 496.95 Not reported 

Note: 2-path cuts algorithm [23] is denoted as M1, A parallel cutting-

plane algorithm [24] is M2, Lagrangean duality applied method [25] is M3, 

The shortest-path problem with resource constraints and k-cycle 

elimination method [26] is M4, shortest path based column generation [27] 

is M5, Parallelization of the vehicle routing problem [28] is M6, and 

Accelerating branch-and-price with local search [29] is M7. 

 

As in Table I, the results are compared with the BKS and 

those achieved with the SBOA are emphasized in boldface. 

Among the 56 cases listed in Table II, the outcomes of the 

SBOA algorithm were equal or even similar to the BKS in 

26 cases (about 46.4% of the cases). This demonstrates that 

the SBOA algorithm achieves consistent performance on 

medium-scale problems, with approximately 46.4% optimal 

or near-optimal solutions. 

TABLE III 

COMPUTATIONAL RESULT OF THE SBOA USING SOLOMON’S BENCHMARK 

FOR 100 CUSTOMERS 

instances SBOA BKS 

C101 828.94  828.94 [R1] 

C102 828.94  828.94 [R1] 

C103 828.06  828.06 [R1] 

C104 824.78  824.78 [R1] 

C105 828.94  828.94 [R1] 

C106 828.94  828.94 [R1] 

C107 828.94  828.94 [R1] 

C108 828.94  828.94 [R1] 

C109 828.94  828.94 [R1] 

C201 591.56  591.56 [R1] 

C202 591.56  591.56 [R1] 

C203 591.17  591.17 [R1] 

C204 590.60  590.60 [R1] 

C205 588.88  588.88 [R1] 

C206 588.49  588.49 [R1] 

C207 588.29  588.29 [R1] 

C208 588.32  588.32 [R1] 

R101 1642.88  1584 [R2] 

R102 1472.62  1374.2 [R2] 

R103 1213.62  1158.9 [R2] 

R104 976.61  976.61 [R1] 

R105 1360.78  1355.3 [R2] 

R106 1240.47  1212.1 [R2] 

R107 1073.34  1073.34 [R4] 

R108 958.66 947.55 [R4] 

R109 1151.84  1151.84 [R4] 

R110 1072.41 1072.41 [R1] 

R111 1159.32 1053.50 [R1] 

R112 953.63 953.63 [R1] 

R201 1149.68 1147.80 [R5] 

R202 1034.35 1034.35 [R1] 

R203 874.87 874.87 [R1] 

R204 736.52 735.80 [R5] 

R205 955.82 954.16 [R5] 

R206 879.89 879.89 [R1] 

R207 799.86 799.86 [R4] 

R208 705.45 705.45 [R6] 

R209 859.39 859.39 [R1] 

R210 910.70 910.70 [R6] 

R211 755.96 755.96 [R4] 

RC101 1643.41 1595.9 [R2] 

RC102 1461.23 1460.9 [R2] 

RC103 1277.54 1261.67 [R7] 

RC104 1136.81 1135 [R2] 

RC105 1518.58 1510.1 [R2] 

RC106 1381.23 1367.2 [R2] 

RC107 1212.83  1212.83 [R4] 

RC108 1197.13 1117.53 [R3] 

RC201 1265.56 1265.56 [R1] 

RC202 1095.64 1095.64 [R1] 

RC203 928.51 928.51 [R4] 

RC204 786.38 786.38 [R5] 

RC205 1157.55 1157.55 [R5] 

RC206 1054.61 1054.61 [R1] 

RC207 966.08 966.08 [R1] 

RC208 779.31 779.31 [R4] 

Note: A hybrid genetic algorithm [17] is denoted as R1, A modified 

football game algorithm [20] is R2, A genetic and set partitioning two-

phase approach [30] is R3, A hybrid genetic algorithm [31] is R4, A hybrid 

search method [32] is R5, Time-window relaxations [33] is R6, and Using 

constraint programming and local search methods [34] is R7. 

 

The computational results of SBOA for cases with 100 

customers are displayed in Table III. The results are 

compared to the BKS., and the best results obtained by the 

SBOA algorithm are shown in bold characters. From a total 

of 56 cases in Table III, the SBOA algorithm produced the 

same results or better compared to the BKS in 39 cases 

(about 69.6% of the cases). The results demonstrated that the 

SBOA algorithm is scalable, as it is able to achieve 

competitive solutions for larger scale problems compared to 
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the BKS results in the literature. 

To further investigate the performance of the SBOA the 

experimental values of results, Table IV show the results 

obtained by SBOA using solomon’s benchmark for 100 

customers.  

 
TABLE IV 

THE RESULTS OBTAINED BY SBOA USING SOLOMON’S BENCHMARK FOR 

100 CUSTOMERS 

instances SBOA Average Std Gap CVar 

C101 828.94  828.94  0.00 0 0 

C102 828.94  828.94  0.00 0 0 

C103 828.06  828.06  0.00 0 0 

C104 824.78  824.78  0.00 0 0 

C105 828.94  828.94  0.00 0 0 

C106 828.94  828.94  0.00 0 0 

C107 828.94  828.94  0.00 0 0 

C108 828.94  828.94  0.00 0 0 

C109 828.94  828.94  0.00 0 0 

C201 591.56  591.56 0.00 0 0 

C202 591.56  591.56 0.00 0 0 

C203 591.17  591.17 0.00 0 0 

C204 590.60  612.11 8.01 0 1.31 

C205 588.88  588.88 0.00 0 0 

C206 588.49  588.49 0.00 0 0 

C207 588.29  588.29 0.00 0 0 

C208 588.32  588.32 0.00 0 0 

R101 1642.88  1643.53 3.45 3.72 0.21 

R102 1472.62  1479.19 7.29 7.17 0.5 

R103 1213.62  1222.29 5.79 4.73 0.48 

R104 976.61  1001.44 7.87 0 0.79 

R105 1360.78  1365.70 3.21 0.41 0.24 

R106 1240.47  1242.44 2.52 2.35 0.21 

R107 1073.34  1083.10 5.45 0 0.51 

R108 958.66 968.45 4.24 1.18 0.44 

R109 1151.84  1157.27 3.51 0 0.31 

R110 1072.41 1082.72 4.52 0 0.42 

R111 1159.32 1066.80 8.84 10.05 0.83 

R112 953.63 971.89 5.56 0 0.58 

R201 1149.68 1153.04 2.69 0.17 0.24 

R202 1034.35 1038.40 4.14 0 0.4 

R203 874.87 875.87 1.54 0 0.18 

R204 736.52 741.41 6.36 0.1 0.86 

R205 955.82 964.69 6.06 0.18 0.63 

R206 879.89 892.55 6.36 0 0.72 

R207 799.86 814.05 6.3 0 0.78 

R208 705.45 714.37 5.86 0 0.83 

R209 859.39 867.52 5.99 0 0.7 

R210 910.70 918.37 12.17 0 1.33 

R211 755.96 765.64 3.45 0 0.46 

RC101 1643.41 1658.34 6.62 2.98 0.4 

RC102 1461.23 1480.82 6.34 0.03 0.43 

RC103 1277.54 1313.73 8.45 1.26 0.65 

RC104 1136.81 1155.47 10.57 0.16 0.92 

RC105 1518.58 1526.80 10.25 0.57 0.68 

RC106 1381.23 1397.45 12.25 1.03 0.88 

RC107 1212.83  1217.90 3.65 0 0.3 

RC108 1197.13 1222.29 7.34 7.13 0.61 

RC201 1265.56 1269.94 4.86 0 0.39 

RC202 1095.64 1101.03 5.99 0 0.55 

RC203 928.51 943.81 12.19 0 1.3 

RC204 786.38 799.19 13.04 0 1.64 

RC205 1157.55 1164.43 3.5 0 0.31 

RC206 1054.61 1067.49 11.25 0 1.06 

RC207 966.08 975.24 9.35 0 0.96 

RC208 779.31 791.35 18.74 0 2.37 

 

As shown in Table IV, the table is organized as follows: 

the first column provides the name of the instances, the 

second column gives the best solution obtained by SBOA for 

100 customers, the third column is the average solution 

(Average), the fourth column is the standard deviation (Std), 

the fifth column reports the percentage deviation (Gap) 

between the SBOA solution and the BKS obtained by using 

Equation 4, and the sixth column shows the coefficient of 

variation (CVar), calculated using Equation 5, which gives 

the relative variability of the solutions as a percentage to the 

mean. Here, the best solutions obtained by the SBOA and 

BKS for each instance are denoted by S1 and S2, 

respectively. 
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The results of SBOA that are presented in Table IV, 

shows that, Average gives the average solution value 

obtained in 10 independent runs, and shows the algorithm’s 

stability. A standard deviation (Std) of zero (as in C101–

C109) means perfect reproducibility, and a higher Std (e.g., 

8.01 for C204) indicates variability in the quality of the 

solution across runs. Gap is calculated as percentage of 

SBOA’s best solution compared to BKS, and zero gap (e.g., 

C101–C109) is the optimistic situation and positive gap 

(e.g., 10.05% for R111) shows the compromise inaccuracy, 

where a high gap values in R111 and RC108 (10.05% and 

7.13%) indicate that SBOA struggles with tightly clustered 

and time-constrained instances. This suggests a need for 

enhanced local search in such scenarios. Lastly, the CVar 

measures the stability of the solution: a lower value (e.g., 0% 

for C101) implies a high stability, whilst a higher value (e.g., 

2.37% for RC208) indicates high spreading. It is interesting 

to observe that the SBOA achieves optimality (0 Gap) for 29 

instances out of 56, and thus illustrate robustness, while 

variation in Std and CVar for some instances (e.g., RC 

series) indicates sensitivity to the complexity of the instance.  

As the recent study focuses on more customers (which is 

100 customers’ datasets in this case), Fig. 4 shows a 

comparison between the performances of the SBOA and 

other algorithms: PSO [13], WOA [15], MFGA [20], 

SFSSA [21], and MRSO [22] and Table V shows a 

comparison between SBOA results and other algorithms 

results. 

 

 
Fig. 4. Comparison between SBOA and other approaches against the BKS 

for 100 customers 
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As shown in Fig. 4, SBOA algorithm finds 39 of 56 BKS 

solutions for 100 customers, WOA managed to get 12 BKS 

results, MFGA managed to get 27 BKS results, PSO also 

managed to get 9 BKS results, SFSSA got 8 BKS results, 

and MRSO got 16 BKS results.  
 

TABLE V 

A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS RESULTS FOR 

100 CUSTOMERS 

instances SBOA PSO WOA MFGA SFSSA MRSO 

C101 828.94  828.94 828.94 828.94 967.51 828.94 

C102 828.94  829.72 828.94 828.94 949.59 828.94 

C103 828.06  851.38 844.94 828.06 887.47 828.06 

C104 824.78  868.53 842.16 824.78 902.52 847.15 

C105 828.94  828.94 828.94 828.94 983.1 828.94 

C106 828.94  828.94 828.94 828.94 878.29 828.94 

C107 828.94  828.94 828.94 828.94 944.17 828.94 

C108 828.94  828.94 828.94 828.94 922.94 828.94 

C109 828.94  828.94 828.94 828.94 985.08 828.94 

C201 591.56  591.56 591.56 591.56 591.56 591.56 

C202 591.56  591.56 609.21 591.56 591.56 591.56 

C203 591.17  591.18 628.08 591.17 591.17 591.17 

C204 590.60  615.43 603.4 590.6 590.6 590.6 

C205 588.88  588.88 588.88 588.88 588.88 588.88 

C206 588.49  588.88 588.49 588.49 588.49 588.49 

C207 588.29  591.35 588.29 588.29 588.29 588.29 

C208 588.32  588.5 588.32 588.32 588.32 588.32 

R101 1642.88  1652.01 1678.92 1584 1650.79 1659.34 

R102 1472.62  1500.81 1552.26 1374.2 1485.85 1476.5 

R103 1213.62  1242.65 1315.28 1158.9 1231.34 1240.97 

R104 976.61  1042.22 1051.54 996.95 1005.17 1033.52 

R105 1360.78  1385.09 1475.5 1355.3 1375.94 1405.18 

R106 1240.47  1294.87 1342.53 1212.1 1241.27 1270.87 

R107 1073.34  1123.99 1168.01 1075.5 1081.9 1122.96 

R108 958.66 1011.69 1041.27 959.88 965.58 986.2 

R109 1151.84  1211.63 1245.09 1155.8 1166.95 1207.18 

R110 1072.41 1190.37 1153.24 1092.4 1120.88 1128.21 

R111 1159.32 1102.99 1159.32 1059.2 1079.61 1062.26 

R112 953.63 1029.13 1034.34 979.05 991.76 984.84 

R201 1149.68 1274.97 1230.86 1168.7 1223.38 1183.9 

R202 1034.35 1247.04 1134.82 1042.4 1086.86 1044.45 

R203 874.87 1052.72 948.29 893.97 922.86 900.2 

R204 736.52 844.17 807.6 744.02 775.84 775.59 

R205 955.82 1061.46 1036.18 969.42 1016.54 962.02 

R206 879.89 1016.35 944.13 880.6 902.11 916.3 

R207 799.86 946.78 869.62 822.84 847.93 832.16 

R208 705.45 834.73 763.69 736.55 729.81 721.04 

R209 859.39 1003.19 930.16 905.11 909.7 875.95 

R210 910.70 1040.55 957.24 937.06 935.68 925.47 

R211 755.96 861.33 815.74 815.09 806.04 783.68 

RC101 1643.41 1641.21 1732.3 1595.9 1654.84 1663.36 

RC102 1461.23 1510.96 1598.21 1460.9 1503.05 1498.21 

RC103 1277.54 1294.74 1395.83 1292.6 1273.11 1346 

RC104 1136.81 1190.55 1239.84 1135 1189.84 1186.5 

RC105 1518.58 1603.71 1651.24 1510.1 1578.78 1596.7 

RC106 1381.23 1410.94 1479.76 1367.2 1374.38 1408.83 

RC107 1212.83  1249.8 1297.24 1215.9 1226.79 1335.05 

RC108 1197.13 1181.87 1239.92 1120.1 1169.84 1227.24 

RC201 1265.56 1423.52 1326.28 1274.8 1483.96 1285.08 

RC202 1095.64 1193.6 1184.17 1115.7 1130.01 1106.84 

RC203 928.51 1123.42 993.68 945.9 987.15 931.45 

RC204 786.38 894.12 830.08 803.91 845.55 824.79 

RC205 1157.55 1321.43 1258.78 1209.5 1291.2 1180.12 

RC206 1054.61 1307.9 1146.5 1098 1124.5 1072.29 

RC207 966.08 1130.37 1060.55 1010.4 1039.11 977.06 

RC208 779.31 958.24 818.93 810.04 844.58 805.21 

 

For more understanding on the results of Table V, Fig. 5 

breaks down the results of the SBOA algorithm and other 

algorithms performance for VRPTW across the large (100 

customers) VRPTW datasets. In this figure, green color 

means better, dark red means worse and light blue means 

similar. 

 
Fig. 5.  Comparison between SBOA and other approaches better, similar 

and worse results for 100 customers 

 

According to the results in Fig. 5, the proposed SBOA 

was superior to PSO, WOA and SFSSA in most test 

functions. More specifically, the SBOA variant 

outperformed WOA on 13 from 56 datasets, achieved a tie 

on 43, and fared worse in 0. SBOA was superior to MFGA 

in 27, equivalent in 17 and inferior in 12. These results 

suggest that although MFGA is relatively a bit more 

competitive, SBOA is still very effective and robust for all 

problems, in particular for C-type and R-type problems. 

SBOA had better results than PSO, WOA, and MFGA 

SFSSA, as well as MRSO algorithms in some data sets 

according to BKS solutions, regardless of dimensions.  

For further explanation of SBOA against PSO, WOA, 

MFGA SFSSA, MRSO, and BKS for VRPTW C-type 

datasets 100 customers, Fig. 6 illustrates the results for C-

type datasets for 100 customers, Fig. 7 show the R-type 

datasets 100 customers, and Fig. 8 for RC-type datasets 100 

customers. In all the figures, the horizontal coordinates are 

the data corresponding to 100 customers while the vertical 

coordinates are the performance data. 

 

 
Fig. 6.  Comparison between algorithms performance in terms of BKS for 

C-type datasets of 100 customers 

 

 
Fig. 7.  Comparison between algorithms performance in terms of the BKS 

for R-type datasets of 100 customers 
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Fig. 8.  Comparison between algorithms performance in terms of the BKS 

for RC-type datasets of 100 customers 

 

In Fig. 6, Fig. 7 and Fig. 8, the BKS results is shown as 

green line and each algorithm results indicated by the 

column referring to the color in the horizontal legend. For 

instance, RC107 dataset in Fig. 8, the column with light blue 

color shows that the proposed algorithm (the SBOA) is 

closer to the BKS (the green line). 

Despite the competitive performance of the SBOA on 

multiple classes of VRPTW instances, there are some 

limitations worth noting: 

 While the SBOA avoids trapping in local optima after 

using evasion strategies, premature convergence may still 

occur, especially in the extensive or tightly constrained 

instances of the VRPTW where feasible areas are scarce. 

 SBOA exhibit high sensitivity on algorithmic parameters 

(population size, perturbation range, hunting/evasion 

balance). It can result in sub-optimal results if not been 

well calibrated, as there are no self-adaptive mechanisms. 

 Although SBOA yielded excellent results for instances 

with up to 100 customers, its time complexity and space 

complexity for particularly large instances (e.g., 500+ 

customers) have not yet been investigated and may become 

performance bottlenecks. 

 As it stands, the implementation is quite appropriate for 

static problem settings. It cannot accommodate dynamic 

changes, such as last-minute customer requests or real-time 

traffic delays, as frequently encountered in practical 

VRPTW applications. 

 While it outperformed some of the common metaheuristics 

(PSO, WOA and SFSSA), it was not compared to more 

advanced or hybrid metaheuristics such as Large 

Neighborhood Search (LNS), Adaptive Large 

Neighborhood Search (ALNS), or Reinforcement 

Learning-based methods, which have been tested in similar 

scenarios and had much better performance. 

 Although penalty-based approaches were our methods of 

choice to deal with time window violations, these 

techniques do not always direct the search in a helpful 

way. Further refinement needed, for example, by adding 

advanced repair strategies or operators that preserve 

constraints, would enhance feasibility and convergence. 

The following Table VI shows a comparison between 

SBOA results and other algorithms results using Gap metric, 

and Table VII presents a comparison of the performance of 

various algorithms applied to three types of datasets: C-type, 

R-type, and RC-type, each involving 100 customers. The 

evaluation metric used is the results for each datasets type 

and the Average gap. This comparison aims to highlight the 

effectiveness of each algorithm across different dataset 

types. 

 
TABLE VI 

A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS GAP FOR 100 

CUSTOMERS 

instances SBOA PSO WOA MFGA SFSSA MRSO 

C101 0 0 0 0 16.72 0 

C102 0 0.1 0 0 14.56 0 

C103 0 2.82 2.04 0 7.18 0 

C104 0 5.31 2.11 0 9.43 2.72 

C105 0 0 0 0 18.6 0 

C106 0 0 0 0 5.96 0 

C107 0 0 0 0 13.91 0 

C108 0 0 0 0 11.34 0 

C109 0 0 0 0 18.84 0 

C201 0 0 0 0 0 0 

C202 0 0 2.99 0 0 0 

C203 0 0.01 6.25 0 0 0 

C204 0 4.21 2.17 0 0 0 

C205 0 0 0 0 0 0 

C206 0 0.07 0 0 0 0 

C207 0 0.53 0 0 0 0 

C208 0 0.04 0 0 0 0 

R101 3.72 4.3 6 0 4.22 4.76 

R102 7.17 9.22 12.96 0 8.13 7.45 

R103 4.73 7.23 13.5 0 6.26 7.09 

R104 0 6.72 7.68 2.09 2.93 5.83 

R105 0.41 2.2 8.87 0 1.53 3.69 

R106 2.35 6.83 10.77 0 2.41 4.85 

R107 0 4.72 8.83 0.21 0.8 4.63 

R108 1.18 6.77 9.9 1.31 1.91 4.08 

R109 0 5.2 8.1 0.35 1.32 4.81 

R110 0 11 7.54 1.87 4.52 5.21 

R111 10.05 4.7 10.05 0.55 2.48 0.84 

R112 0 7.92 8.47 2.67 4 3.28 

R201 0.17 11.08 7.24 1.83 6.59 3.15 

R202 0 20.57 9.72 0.78 5.08 0.98 

R203 0 20.33 8.4 2.19 5.49 2.9 

R204 0.1 14.73 9.76 1.12 5.45 5.41 

R205 0.18 11.25 8.6 1.6 6.54 0.83 

R206 0 15.51 7.31 0.09 2.53 4.14 

R207 0 18.37 8.73 2.88 6.01 4.04 

R208 0 18.33 8.26 4.41 3.46 2.21 

R209 0 16.74 8.24 5.33 5.86 1.93 

R210 0 14.26 5.12 2.9 2.75 1.63 

R211 0 13.94 7.91 7.83 6.63 3.67 

RC101 2.98 2.84 8.55 0 3.7 4.23 

RC102 0.03 3.43 9.4 0 2.89 2.56 

RC103 1.26 2.63 10.64 2.46 0.91 6.69 

RC104 0.16 4.9 9.24 0 4.84 4.54 

RC105 0.57 6.2 9.35 0 4.55 5.74 

RC106 1.03 3.2 8.24 0 0.53 3.05 

RC107 0 3.05 6.96 0.26 1.16 10.08 

RC108 7.13 5.76 10.96 0.23 4.69 9.82 

RC201 0 12.49 4.8 0.74 17.26 1.55 

RC202 0 8.95 8.09 1.84 3.14 1.03 

RC203 0 21 7.02 1.88 6.32 0.32 

RC204 0 13.71 5.56 2.23 7.53 4.89 

RC205 0 14.16 8.75 4.49 11.55 1.95 

RC206 0 24.02 8.72 4.12 6.63 1.68 

RC207 0 17.01 9.78 4.59 7.56 1.14 

RC208 0 22.97 5.09 3.95 8.38 3.33 
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TABLE VII 

A COMPARISON BETWEEN SBOA AND OTHER ALGORITHMS PERFORMANCE 

APPLIED TO THREE TYPES OF DATASETS FOR 100 CUSTOMERS 

Algorithms C-type R-type RC-type Average gap 

SBOA 17 13 9 0.771786 

PSO 9 0 0 7.702321 

WOA 12 0 0 6.22625 

MFGA 17 5 5 1.192857 

SFSSA 8 0 0 5.447857 

MRSO 16 0 0 2.727321 

 

As shown in Table VII, the Average gap for SBOA 

outperformed all compared algorithms (PSO, WOA, MFGA, 

SFSSA, and MRSO). For instance, SBOA Average gap 

(0.771786) outperformed MFGA Average gap (1.192857). 

 

V. CONCLUSION 

The VRPTW is a NP-hard combinatorial optimization 

problem close to logistics and transportation tasks. This 

paper focuses on applying the SBOA to VRPTW instances, 

emphasizing its unique hunting and evasion strategies to 

improve solution quality. The algorithm was evaluated using 

Solomon benchmark instances, which include small-, 

medium-, and large-scale problems. The experimental results 

demonstrate the effectiveness of SBOA with BKS solution 

found for different instances. That is, in 27 (48.2%) of the 

cases with 25 customers, 26 (46.4%) of the cases with 50 

customers and 39 (69.6%) of the cases with 100 customers, 

the results generated by the SBOA algorithm are equal or 

close to the BKS. These results demonstrate the algorithm's 

effectiveness in minimizing the total travel distance and 

vehicle usage while adhering to time window constraints. 

SBOA performed competitively regarding convergence 

behavior and succeeded in locating the optimal solutions 

when compared to state-of-the-art metaheuristics. The 

experimental results confirm the effectiveness and efficiency 

of the approach, indicating that SBOA is a promising 

optimization algorithm for large-scale and strict constrained 

VRPTW problems. 

While this study sheds light on the promise of the SBOA 

algorithm for tackling VRPTW challenges, several potential 

directions for expansion, including but not limited to the 

incorporation of SBOA with additional heuristic methods, 

such as GA or SA algorithms, to enhance both exploitation  

exploration ability; extending the algorithm to accommodate 

dynamic VRPTW problems, where customer requests and 

temporal constraints fluctuate in real-time, would enhance its 

practical significance; and customizing SBOA to investigate 

multi-objective VRPTW problems, factoring in elements 

like fuel utilization, driver workload, and ecological effect, 

would diversify its applicability. 
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