
 

 

Abstract— Effective treatment relies on accurately 

diagnosing brain tumors, which are characterized by abnormal 

cell proliferation. Artificial Intelligence (AI) offers a promising 

alternative to traditional diagnostic methods, which are 

frequently error-prone. This study aims to enhance the 

precision of brain tumor image classification using a Transfer 

Learning (TL) approach with Convolutional Neural Networks 

(CNNs). A dataset of 7,020 images were categorized into four 

categories: glioma, meningioma, pituitary tumor, and no 

tumor. This dataset was used to test several pre-trained 

models, including DenseNet121, InceptionResNetV2, 

MobileNetV2, NasNetMobile, and ResNet50V2. Performance 

was measured using accuracy, precision, sensitivity, and 

specificity metrics. The most effective of these was 

ResNet50V2, which achieved an accuracy of 97.70% and a loss 

of 0.066. A confusion matrix analysis of the results highlighted 

the model's exceptional performance, with sensitivity (97.70%), 

specificity (99.30%), and precision (97.80%). This research 

significantly contributes to medical image analysis, improving 

diagnostic accuracy using AI technology. The application of TL 

enhances early detection reduces and reduces the misdiagnosis 

by lowering the need for large datasets and minimizing errors. 

Furthermore, the model's efficiency in analyzing large 

numbers of MRI images significantly offers time-saving 

advantages for healthcare professionals, allowing them to 

prioritize more complex cases. This study advances the role of 

AI in medical diagnostics, particularly in brain tumor 

classification, with the potential to revolutionize early 

diagnosis, treatment strategies, and expand access to quality 

healthcare in underserved areas. By improving diagnostic 

accuracy, this model could contribute to reducing treatment 

delays, ultimately saving more lives. 

 
Index Terms—Classification, Transfer learning, Brain 

tumor, Convolutional Neural Network 
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I. INTRODUCTION 

rain tumors present a significant medical challenge 

requiring accurate and timely detection to ensure the 

most optimal and possible treatment. These tumors are 

typically divided into two categories: primary and 

secondary. Primary brain tumors originate within the brain, 

whereas secondary brain tumors generally metastasize from 

other body regions. Tumors are further classified as 

malignant, which is cancerous, or benign, which is non-

cancerous. Unlike benign brain tumors, malignant brain 

tumors exhibit a high proliferation rate and have the 

potential to invade multiple areas of the brain. Gliomas, 

meningiomas, and pituitary tumors are among the most 

prevalent types of brain tumors [1, 2].  

Computer Vision, Artificial Intelligence (AI), and 

Machine Learning (ML) play an essential role in the early 

detection of cancer through advanced medical imaging 

techniques specifically Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI). Among these, MRI is 

particularly distinguished by its exceptional capability to 

depict various cerebral conditions comprehensively. This 

includes the detection of potential primary brain tumors, 

precise brain tumors location, and evaluation of related 

conditions particularly oedema, hemorrhage, and 

hydrocephalus [3]. Leveraging AI, ML, and computer vision 

technologies allows for the enhanced processing of MRI 

images, offering radiologists supplementary analytical 

insights and alternative perspectives [4, 5]. 

Vimala et al. [6] assert that Deep Learning (DL) has 

significantly advanced computer vision, particularly in 

medical image processing. Convolutional Neural Networks 

(CNNs) are frequently used and are highly effective in this 

field. CNN offers the ability to automatically extract critical 

features from images, thereby eliminating the need for 

manual feature engineering, which is typically required by 

traditional ML methodologies. However, CNNs require 

substantial data and computational resources to perform 

optimally. To mitigate this limitation, Transfer Learning 

(TL) can be employed by CNNs, which allows for the use of 

fewer training samples and shorter training times.  

The TL is an advanced technique in ML and DL in which 

a model, initially trained on one dataset, is adapted for use 

on different datasets or tasks [7–9]. This strategy enables the 

model to leverage insights gained from the training data, 

enhancing its learning capabilities and applicability to novel 

or similar scenarios [10]. Numerous TL models have been 

developed using CNNs, including notable architectures such 

as Google Perception Net, ResNet, VGG, Xception, 

AlexNet, Inception, and DenseNet [11–17].  
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This paper compares various TL models, specifically 

DenseNet121, InceptionResNetV2, MobileNetV2, 

NasNetMobile, and ResNet50V2. 

II. RELATED WORK 

Narin et al. [18] suggest the application of five pre-trained 

CNN architectures—ResNet50, ResNet101, ResNet152, 

InceptionV3, and Inception-ResNetV2—for diagnosing 

coronavirus pneumonia through the analysis of chest X-ray 

images. The patients were categorized into four groups: 

normal, COVID-19, viral pneumonia, and bacterial 

pneumonia. The efficacy of the models was validated using 

k-fold cross-validation. Results indicated that the ResNet50 

model demonstrates superior accuracy across three separate 

datasets, achieving accuracy rates of 96.1% for Dataset-1, 

99.5% for Dataset-2, and 99.7% for Dataset-3. Hu et al. [19] 

evaluated the MobileNet and RseSK models against other 

advanced networks, specifically MobileNetV3 and Ghost, 

using the HAM10000 dataset. Their approach enhanced skin 

disease classification accuracy by 1.7% compared to 

existing methods, with the MobileNet and RseSK models 

attaining an accuracy of 85% on the test set, outperforming 

MobileNetV3. 

Triyadi et al. [20] conducted a cataract classification 

study utilizing various features, including blood vessels and 

optical discs visible in retinal fundus images. With a 

primary focus on enabling early detection, they set out to 

create a software application that could reliably classify 

cataracts into two distinct classes: normal and cataracts. The 

classification was performed using VGG-19, ResNet50, and 

ResNet101 models, yielding accuracies of 91.06%, 93.50%, 

and 93.50%, respectively. In a separate study, Alruwaili and 

Gouda [21] developed a system leveraging TL to improve 

the classification of mammography images from the 

Mammographic Image Analysis Society (MIAS) dataset. 

The accuracy of their model achieved an accuracy of 89.5% 

evaluated by the ResNet50 architecture, while the NasNet-

Mobile network attained 70% accuracy. With limited 

training datasets the results showed that the TL model offers 

considerable improvements in efficacy and efficiency. 

Saputra et al. [22] demonstrated the DenseNet 

architecture to predict rice leaf diseases, employing three 

specific variants: DenseNet121, DenseNet169, and 

DenseNet201. The study’s findings revealed that 

DenseNet121 achieved a precision rate of 91.67%, 

DenseNet169 attained a precision rate of 90%, and 

DenseNet201 reached a precision rate of 88.33%. Notably, 

the training time for these models was remarkably brief, 

requiring 24 seconds, highlighting the efficiency of the 

training process. Similarly, Hou et al. [23] developed a 

highly accurate and efficient image recognition model based 

on DenseNet architecture. Their performance evaluations 

showed that the model not only enhanced the efficiency of 

the model parameters but also maintained high levels of 

accuracy in image recognition tasks. Specifically, 

DenseNet200 achieved an accuracy of 97.2%, DenseNet100 

reached 95.4%, and DenseNet50 obtained 92.3%. The 

findings indicate that augmenting the depth of the DenseNet 

model improves both the accuracy of pattern identification 

and the rate at which the model reaches convergence. 

III. MATERIALS AND METHOD 

The study followed a multi-phase approach outlined as 

follows: It utilized a dataset of 7,020 MRI brain images 

from Kaggle, categorized into four types of brain cancer. 

The data were pre-processed through grayscale conversion, 

noise reduction, and morphological operations. This dataset 

was divided into training, testing, and validation sets. Data 

augmentation was applied using the Image Data Generator. 

A CNN model was developed, with hyperparameter tuning 

performed on the DenseNet121, the InceptionResNetV2, the 

MobileNetV2, the NasNetMobile, and the ResNet50V2 

architectures, with and without the TL. The model’s efficacy 

was evaluated based on accuracy, precision, sensitivity, and 

specificity, providing a comparative analysis with previous 

research. 

A. Brain Tumor Dataset 

The dataset used in this study is from Kaggle and 

contains 7,020 MRI brain scans, categorized into four 

classes: meningioma, glioma, pituitary, and non-tumor. The 

data, which also includes contributions from Figshare, 

SARTAJ, and Br35H, were organized by disease type into 

separate directories, with each image having a resolution of 

512 x 512 pixels and a 24-bit color depth in JPG format. 

Table 1 presents the distribution of images across these 

categories. 

Each MRI image has a resolution of 512 x 512 pixels 

and is in JPG format with 24-bit colour depth. The images 

were organized by disease type, with each category stored in 

separate directories named after the corresponding 

condition. Fig. 1 illustrates the images included in the 

dataset. 

 
TABLE I 

QUANTITY OF BRAIN TUMOR IMAGES. 

 

 

Classification of Brain 

Tumors 
Total Proportional 

Distribution Glioma 1620 23,08% 

Meningioma 1644 23,42% 

Pituitary 1756 25,02% 

No tumour 2000 28,48%  

Total 7020 100% 

            
          

          (a) Glioma                               (b) Meningioma 

 

              
 

         (c)  Pituitary                              (d) No tumor 

Fig. 1. Sample images representing each category. 
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B. Pre-processing 

  Pre-processing medical images is essential for 

improving their quality and interpretability, which affect 

diagnostic accuracy and treatment planning effectiveness 

[24]. This study harnessed several pre-processing 

techniques, including grayscale conversion, gaussian blur 

filter application, binary thresholding, erosion and dilation, 

contour extraction, image cropping, bone color map 

application, and image resizing. 

The process began with grayscale conversion to simplify 

the image and focus on brightness intensity. The gaussian 

blur filter then reduces noise by generating new pixel values 

based on gaussian distribution [25]. The image was then 

converted to binary format using binary thresholding to 

distinguish the object from the background [26]. Erosion 

removes minor details and reduces image size, while 

dilation bridges pixel gaps, removes slight noise, fills gaps, 

and improves the object’s shape [27]. Contouring, cropping, 

and bone color map techniques enhance bone structure 

visualization in MRI images. Finally, resizing optimizes the 

DL model’s performance. Fig. 2 illustrates the outcomes 

after these pre-processing steps, showing noise reduction 

and object contour enhancement improvements. 

C. Data Splitting 

After the pre-processing process, the data were divided 

into two main components: modeling and testing. Based on 

prior research that suggests this ratio is ideal for 

performance, the data were separated with a 90% allocation 

for training and 10% for testing [28]. The training dataset 

was subdivided into two segments, maintaining a 90% 

training and 10% validation ratio. An illustrative 

representation of the dataset partitioning is shown in Fig. 3. 

In ML, a 90/10 split is commonly used for training and 

testing, with a similar split for validation. This division is 

essential for developing effective models. Initially, the 

training data helps the model learn patterns related to brain 

tumors. The validation set then assesses the model’s 

performance on unseen data, allowing hyperparameter 

tuning and preventing overfitting. Finally, the test data 

comprehensively evaluates the model’s performance. 

Proper dataset segmentation ensures the model can 

accurately classify brain tumor images, enhancing its 

robustness and relevance when faced with new data. 

Therefore, data partitioning is essential for training ML 

models in brain tumor research. 

D. Data Augmentation 

Data augmentation involves generating synthetic data 

samples to expand the training dataset, especially for image 

datasets with limited samples [29]. This technique enhances 

dataset size, improves model performance and 

generalization, and reduces overfitting [30, 31]. This study 

employs data augmentation to enhance the model’s ability to 

detect and classify brain tumor images. Various 

augmentation techniques are applied using the Image Data 

Generator from the Keras library, with specific parameters 

detailed in Table 2. 

E. Classification Modeling 

The study adopted a TL strategy during classification 

by using CNN architecture pre-trained on large datasets. 

This approach allows the model to leverage the existing 

knowledge from these datasets, thus reducing the time and 

resources needed to train a model from scratch. The research 

covers several pre-trained CNN models, detailed in sections 

3.5.1 to 3.5.6, and includes a hyperparameter optimization 

process for fine-tuning the chosen model’s parameters. 

              
         (a) Grayscale conversion           (b) Gaussian blur filtering                  

         

                
        (c) Binary thresholding                         (d) Erosion 

 

               
                 (e) Dilation                          (f) Contour detection 

  

              
                (g) Cropping                       (h) Bone colour mapping 

 
Fig. 2. Pre-processing steps. 

 

 
  Fig. 3. Splitting dataset for MRI images. 
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TABLE II 

STAGES OF AUGMENTATION AND PARAMETER VALUES EMPLOYED 

Technique Parameter value Description 

Rescale 1/255 Normalizes the pixel values of an image from the range of 0 to 255 to a range of 0 to 1 

Rotation Range 10 Applies a random rotation to the image within a predefined range of angles 

Width Shift 0,002 Displaces the image horizontally within a defined fractional range relative to the image’s width 

Height Shift 0,002 Modifies the image’s vertical position within a designated fractional range of the image’s total height 

Shear  12,5 Implement a sliding transformation on the image across a defined range of angles. 

Horizontal Flip True Perform horizontal flipping of images in a randomized manner 

Fill Mode Nearest Details the method for addressing gaps left by image transformation. The term’ nearest’ refers to the 

technique of populating these empty pixels with the value of the closest neighbouring pixel. 

 

1. Basic CNN 

The CNN model is a sophisticated deep learning 

algorithm designed to extract relevant data features 

autonomously. CNNs consist of sequential layers: a 

convolutional layer that identifies features specifically edges 

and textures, a pooling layer that reduces resolution and 

parameters, and a fully connected layer that generates 

classification outputs. They are widely used in various 

fields, including computer vision, speech processing, and 

facial recognition. The effectiveness of CNNs in interpreting 

image data has led to their integration into applications like 

object detection, image segmentation, and autonomous 

driving. A sample illustration of a basic CNN architecture 

used in image classification can be found in [32] by 

Alzubaidi et al. 

  

2. Mobile Network v2 (MobileNetV2) 

The MobileNetV2 model is designed for optimal 

performance on resource-constrained devices, utilizing 

depth wise separable convolutions to enhance efficiency. Its 

streamlined structure enables the development of highly 

efficient models, ideal for mobile applications. Key 

advantages include improved memory efficiency during 

processing and broad compatibility, as it integrates 

seamlessly with all neural network frameworks. A 

representative example of the MobileNetV2 architecture is 

available in [33]. 

 

3. Densely Connected Convolutional Networks 121 

(DenseNet121) 

DenseNet121 is a variant of the DenseNet architecture 

proposed by Huang et al. [34] and consists of 121 layers. 

This model includes three principal classes: Bottleneck, 

Transition, and DenseNet. The Bottleneck class refers to the 

bottleneck layers within the DenseNet framework, while the 

Transition class refers to transition layers designed to reduce 

the spatial dimensions of the feature maps. The DenseNet 

class encompasses the complete DenseNet architecture [35]. 

Details of the DenseNet121 architecture can be found in 

[36]. 

 

4. Inception Residual Network v2 (InceptionResNetV2) 

The InceptionResNet model integrates residual 

connections with the Inception architecture to enhance 

computational accuracy and efficiency. The 

InceptionResNetV2 variant, featuring 164 layers, is trained 

on over a million images from the ImageNet database and 

can classify images into 1000 distinct object categories. 

Further information on the InceptionResNetV2 architecture 

illustration can be found in [37]. 

 

5. Residual Network 50 v2 (ResNet50V2) 

The ResNet architecture emphasizes the residual 

function—representing the difference between the input and 

output—over direct input-output mapping. This approach 

addresses performance degradation typically seen in deep 

neural networks [38]. ResNet50V2, an advanced version of 

ResNet50, excels in image classification, object detection, 

and image segmentation tasks. An example of the 

ResNet50V2 architecture is available in [39]. 

 

6. Neural Architecture Search Network Mobile 

(NasNetMobile) 

The NasNetMobile model is a cutting-edge neural network 

developed using the Neural Architecture Search (NAS) 

methodology, a leading technique in ML for discovering 

optimal network structures. NAS consists of three main 

elements: the search space, which explores different 

configurations like convolutional and pooling layers; the 

search strategy, which uses random search and 

reinforcement learning to pinpoint effective architectures; 

and synergy estimation, which assesses these architectures 

based on resource usage and time efficiency. A 

representation of the NasNetMobile model’s architecture is 

provided in [40]. 

 

F.  Hyperparameter Tuning 

Hyperparameters, particularly the learning rate, batch 

size, and neuron count in neural networks, are required to be 

carefully tuned before training an ML model [41]. This 

study focused on optimizing two key hyperparameters: the 

dropout rate, which controls how often neurons are 

randomly excluded during training, and the dense unit, 

which determines the number of neurons in the fully 

connected layer. A grid search strategy was implemented to 

identify the best combination of these hyperparameters to 

enhance model performance and minimize overfitting. 

Initial parameters, namely the learning rate and batch size 

were set using standard values to ensure a robust foundation 

for training and evaluation. Table 3 provides a detailed 

summary of the hyperparameter configurations used in this 

process. 
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TABLE III 
HYPERPARAMETER SETTINGS 

 

 

G. Fitting Models with the Best Hyperparameters 

After completing hyperparameter tuning, the next step in 

model development is to fit the model using the identified 

optimal hyperparameter configuration. The results of this 

tuning process are presented in Table 4. 

 
TABLE IV 

BEST PARAMETER COMBINATION 

Model 
Hyperparameters after tuning 

Dropout rate Dense units 

Basic CNN  

 

0,15 

 

64 

 DenseNet121 

 

0,20 

 

128 

 InceptionResNetV2 

 

0,20 

 

128 

 MobileNetV2 

 

0,15 

 

128 

 NasNetMobile 

 

0,20 

 

128 

 ResNet50V2 0,15 64 

 

H. Model Evaluation 

Confusion matrix is a tool to evaluate the performance of 

classification models’ applicable to binary and multi-class 

contexts. It visually compares predicted outcomes against 

actual values with dimensions of N×N, where N represents 

the number of classes. The matrix comprises four key 

elements: True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). These elements 

are integral in calculating accuracy, precision, sensitivity, 

and specificity metrics. For multi-class classification, these 

metrics are averaged across all classes [42, 43].  

a.   Accuracy: Measures the proportion of correct 

predictions (both positive and negative) relative to the 

total dataset. It is widely used due to its simplicity and is 

calculated as the average accuracy across all classes. The 

average accuracy for each class in multi-class 

classification is calculated using Equation (1). 
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           (1)  

b.   Precision: Indicates the ratio of TP to the total positive 

predictions, aiming to reduce FP. In multi-class 

classification, precision is averaged across all classes and 

can be calculated using Equation (2).  
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c.    Sensitivity: Also known as the true positive rate, it 

measures the proportion of correctly identified 

positives (TP) out of all actual positives, focusing on 

minimizing FN. The mean sensitivity value can be 

derived using Equation (3). 
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d.    Specificity: Ratio of TN to the total number of 

genuinely negative instances, focusing on minimizing 

FP. The mean specificity is calculated using Equation 

(4).  
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IV. RESULT AND ANALYSIS 

A.  Testing Without TL 

   The CNN model was initially evaluated without 

employing TL, utilizing a custom-designed 

architecture explicitly tailored for brain tumor 

classification. The model’s performance was depicted 

through a loss graph, illustrating the progression of 

loss and accuracy throughout the training phase, as 

presented in Figs. 4 and 5. 

As depicted in Figs. 4 and 5, the accuracy and loss 

graphs reveal initial signs of overfitting emerging 

between epochs 11 and 12. This situation was 

characterized by stagnation in the reduction of training 

loss and a simultaneous increase in validation loss, 

indicating a decline in the model’s learning efficiency. 

Classification metrics, as previously outlined, were 

employed to assess the model’s performance. The 

evaluation results were further illustrated through a 

confusion matrix and accuracy-loss visualizations. The 

confusion matrix for the CNN model without TL is 

presented in Fig. 6. 

Fig. 6 highlights the performance variability of the 

model in classifying four tumor classes. For the no-

tumor class, the model accurately classified 191 out of 

200 images, resulting in a classification error rate of 

4.5%. In the pituitary tumor class, the model correctly 

classified for 158 out of 175 images, corresponding to 

an error rate of 9.71%. However, the model 

encountered notable challenges with the glioma class, 

correctly identifying only 127 out of 162 images, 

yielding a higher error rate of 21.60%. The 

meningioma class posed the greatest difficulty, with 

the model successfully classifying only 108 out of 164 

 Hyperparameter Value 

No tuning  

Required 

Learning Rate 

 

0,0001 

 Activation Function 

 

ReLu, Softmax 

 Epochs 

 

15 

 Loss Function 

 

Categorical cross-entropy 

 Batch Size 

 

128 

 Steps Per Epoch 

 

49 

 Validation Step 4 

Requires  

tuning 

Dropout Rate 

 

{0,15; 0,2} 

 Dense Units {64; 128} 

IAENG International Journal of Computer Science

Volume 52, Issue 11, November 2025, Pages 4150-4163

 
______________________________________________________________________________________ 



 

images, leading to a substantial error rate of 34.15%.   

Overall, the CNN model demonstrated an average 

accuracy of 83.30%, along with an average precision 

of 83.05%, an average sensitivity of 82.49%, and an 

average specificity of 92.71% (as summarized in Table 

5). 

The findings indicate that while the CNN model 

demonstrates a reasonable level of accuracy in 

detecting brain tumors, there is still potential for 

enhancement, particularly in sensitivity, which slightly 

lags behind accuracy and specificity. The application 

of TL is anticipated to further elevate model 

performance by harnessing knowledge from larger, 

more varied datasets, enabling the identification of 

more intricate patterns and improving classification, 

particularly for more challenging classes. These results 

also offer an initial assessment of a basic CNN model’s 

ability to classify brain tumor images without TL. Such 

insights will provide a benchmark for comparing 

performance with models incorporating TL, helping to 

assess the potential for improved accuracy through the 

broader utilization of knowledge from extensive pre-

existing datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE V 

 CNN MODEL PERFORMANCE 

B. Testing with TL 

Further evaluation was conducted by implementing TL 

with several pre-trained models, including DenseNet121, 

InceptionResNetV2, MobileNetV2, NasNetMobile, and 

ResNet50V2.   

1.  DenseNet121 Model 

  This study employed a TL methodology using the 

DenseNet121 pre-trained model. Initially, the model was 

loaded with weights derived from training on the 

ImageNet dataset, which were then fine-tuned for the 

classification of brain tumor diseases. The training process 

visualization, as depicted in Figs. 7 and 8, demonstrates a 

positive trend with increasing accuracy and decreasing 

losses during the early epochs. However, signs of 

overfitting became apparent between epochs 13 and 14, 

where the validation accuracy declined while the training 

losses continued to decrease, indicating that the model was 

starting to lose its convergence. 

After conducting the training process, the model’s 

performance is assessed using evaluation metrics for each 

class category, with the results visualized in the form of a 

confusion matrix, as illustrated in Fig. 9. 

In the classification of the no-tumor category, the model 

demonstrated perfect performance by correctly identifying 

all 200 images without any errors. For the glioma 

category, the model accurately classified 156 out of 162 

images, yielding an error rate of 3.70%. In the pituitary 

category, it achieved a success rate of 172 out of 175 

images, resulting in an error rate of 1.71%. In the 

meningioma category, the model correctly identified 153 

out of 164 images, corresponding to an error rate of 

6.71%. Overall, DenseNet121 excels in accurately 

classifying the no-tumor class with no errors and exhibits a 

low error rate for glioma and pituitary classifications. 

Furthermore, the performance results of the model, 

evaluated through precision, recall, and specificity metrics, 

are provided in Table 6, indicating consistently high 

performance across all categories.  

 

Category Precision Sensitivity  Specificity 

Glioma 76.50 78.40 92.76 

Meningioma 84.37 65.85 96.27 

No-Tumor 92.71 95.50 97.00 

Pituitary 78.60 90.28 91.82 

 
 

   Fig. 6. CNN confusion matrix. 

 
 

    Fig. 4. CNN model accuracy graph. 

   
 

      Fig. 5. CNN model loss graph. 
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TABLE VI 

 DENSENET121 MODEL PERFORMANCE 

 

2. InceptionResNetV2 Model 

  The process of testing with TL on the 

InceptionResNetV2 model involves several stages, 

beginning with the initialization of the model using pre-

trained weights derived from the large ImageNet dataset. 

Subsequently, the model is fine-tuned for the brain 

tumor classification task. By leveraging the pre-trained 

weights from ImageNet, the model is able to build upon 

previously acquired knowledge, enabling it to capture 

the unique features of brain tumors better. This approach 

aims to enhance classification accuracy by utilizing 

insights gained during the initial training phase. 

The model’s performance evaluation was conducted 

through an analysis of accuracy and loss graphs, as well 

as the confusion matrix. The visualizations depicting the 

accuracy and loss trends throughout the training process 

are presented in Figs. 10 and 11, which illustrate the 

evolution of these metrics across the epochs. From these 

figures, it is evident that the model converged around the 

15th epoch, showing signs of halting further learning as 

its performance began to stabilize. That suggests that the 

training process had reached an optimal state, with no 

substantial improvements observed after that. 

The confusion matrix shown in Fig. 12 outlines the 

model’s classification performance across four 

categories: glioma, meningioma, no tumor, and pituitary. 

The model exhibits notable accuracy, especially in 

identifying glioma, no-tumor, and pituitary images. 

Specifically, in the glioma class, it accurately classified 

157 out of 162 images, resulting in an error rate of 

approximately 3.09%. The performance in the 

meningioma class was marginally lower, with 21 out of 

164 images misclassified, leading to an error rate of 

around 12.80%. In the no-tumor category, the model 

demonstrated excellent accuracy by correctly classifying 

198 out of 200 images, achieving a minimal error rate of 

approximately 1%. Lastly, in the pituitary class, the 

model maintained strong performance, with an error rate 

of 1.14%, having correctly classified 173 out of 175 

images. 

A comprehensive analysis of the performance metrics, 

including precision, recall, and specificity, is provided in 

Table 7. For instance, in the glioma category, the model 

demonstrated a precision of 92.30%, a recall of 96.90%, 

and a specificity of 97.60%. These results underscore the 

model’s accuracy and reliability in the classification of 

brain tumors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Precision Sensitivity  Specificity 

Glioma 95.70 96,30 98,70 

Meningioma 96.80 93,30 99,10 

No-Tumor 98,50 100 99,40 

Pituitary 97,20 98,30 99,00 

   
 

     Fig. 7. DenseNet121 model accuracy graph. 

   
 
      Fig. 8. DenseNet121 model loss graph. 

   
 

          Fig. 10. InceptionResNetV2 model accuracy graph. 

 

 

 
 

  Fig. 9. DenseNet121 confusion matrix. 
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TABLE VII 

INCEPTIONRESNETV2 MODEL PERFORMANCE 

 

3. MobileNetV2 Model 

The subsequent experiment employed TL with the 

MobileNetV2 model. This process began with initializing 

the pre-trained model and weights from the ImageNet 

dataset. The model is then fine-tuned to a specialized 

dataset focused on brain tumor diseases, with the objective 

of enhancing classification accuracy across four 

categories: glioma, meningioma, no-tumor, and pituitary. 

Figs. 13 and 14 present the performance graphs of the 

model, which illustrate accuracy and loss throughout the 

training process. These graphs demonstrate that the model 

converges around the ninth epoch. The growing disparity 

between training and validation accuracy after the tenth 

epoch suggests a potential overfitting issue. Exploring 

regularization methods or implementing early stopping 

can effectively mitigate this issue, ensuring the model 

achieves optimal performance while maintaining its 

generalization capabilities. 

The classification performance is visualized through a 

confusion matrix, which illustrates the prediction accuracy 

for each class, as demonstrated in Fig. 15. 

Based on the results presented in Fig. 15, the 

MobileNetV2 model exhibits varying classification 

performance across different tumor classes. In the glioma 

class, the model accurately identified 148 out of 162 

images, yielding an error rate of approximately 8.64%. In 

contrast, for the meningioma class, the model 

demonstrated higher accuracy, correctly classifying 154 

out of 164 images with an error rate of 6.10%. For the no-

tumor class, the model showed exceptional performance, 

classifying 199 out of 200 images with only a single 

misclassification, resulting in a low error rate of 0.50%. 

Finally, in the pituitary class, the model achieved perfect 

classification, correctly identifying all 175 images without 

any errors, highlighting its flawless detection capability 

for pituitary tumors. 

The performance is summarized in Table 8, which 

presents the precision, recall, and specificity metrics for 

each category. For instance, in the no-tumor class, both 

precision and specificity achieved a perfect score of 100%, 

while the pituitary class demonstrated a flawless recall of 

100%, highlighting exceptional detection capabilities 

without overlooking any target images. 

 

 

Category Precision Sensitivity  Specificity 

Glioma 92,30 96,90 97,60 

Meningioma 94,10 87,20 98,30 

No-Tumor 99,00 99,00 99,60 

Pituitary 96,70 98,90 98,90 

   
 

    Fig. 11. InceptionResNetV2 model loss graph. 

 

   
 

    Fig. 13. MobileNetV2 model accuracy graph. 

 

 
 

     Fig. 12. InceptionResNetV2 confusion matrix. 

      
 

         Fig. 14. MobileNetV2 model loss graph. 

 

IAENG International Journal of Computer Science

Volume 52, Issue 11, November 2025, Pages 4150-4163

 
______________________________________________________________________________________ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE VIII 

MOBILENETV2 MODEL PERFORMANCE 

 

4. NasNetMobile Model 

This study employed a TL approach utilizing the 

NasNetMobile model, which was initially trained on the 

ImageNet dataset. The pre-trained model is subsequently 

fine-tuned for the detection of brain tumors across 

several categories, including glioma, meningioma, 

pituitary tumors, and tumor-free classes. During the 

evaluation phase, the performance of the NasNetMobile 

classifier is assessed through accuracy and loss curves 

generated throughout the training process, as illustrated 

in Figs. 16 and 17.  

Analyzing these two graphs reveal that the model 

exhibits unstable convergence on the validation data, 

with a significant reduction in loss values observed 

during each epoch, particularly between epochs 10 and 

15. The findings indicate that although the model 

achieves high accuracy in certain classes, it faces 

considerable challenges in attaining optimal 

convergence.  

The performance of this model was further illustrated 

using a confusion matrix, as shown in Fig. 18. Analysis 

of the confusion matrix reveals that the model 

demonstrates a high degree of accuracy in categorizing 

different types of tumors. 

In the glioma class, the model accurately identified 146 

out of 162 images, yielding an error rate of 

approximately 9.88%. For the meningioma class, the 

model recognized 158 out of 164 images, achieving a 

lower error rate of 3.66%. In the tumor-free class, the 

model demonstrated exceptional performance, correctly 

classifying 197 out of 200 images with an error rate of 

just 1.50%. For the pituitary class, the model correctly 

identified 173 out of 175 images, resulting in an error 

rate of 1.14%. These findings indicate that the 

NasNetMobile model exhibits strong classification 

capabilities, particularly in the meningioma, tumor-free, 

and pituitary classes. 

Table 9 presents the detailed performance of the 

model, including the precision, recall, and sensitivity 

values for each class. The model achieved exceptional 

precision in the tumor-free class (99.50%), outstanding 

recall in the pituitary class (98.90%), and the highest 

specificity in the tumor-free class (99.80%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Precision Sensitivity  Specificity 

Glioma 98,00 91,40 99,40 

Meningioma 95,60 93,90 98,70 

No-Tumor 100 99,50 100 

Pituitary 92,10 100 97,20 

 

  Fig. 15. MobileNetV2 confusion matrix. 

   
 

     Fig. 16. NasNetMobile model accuracy graph. 

 

 

   
 

     Fig. 17. NasNetMobile model loss graph. 

 

 

 

 
 

  Fig. 18. NasNetMobile confusion matrix. 
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TABLE IX 

NASNETMOBILE MODEL PERFORMANCE 

 

5. ResNet50V2 Model 

 The ResNet50V2 pre-trained model utilized weights 

obtained from training on the ImageNet dataset and was 

subsequently fine-tuned to classify brain tumor datasets. 

Graphical representations of accuracy and loss, along with 

the confusion matrix, were employed to evaluate the 

model’s performance. Figs. 19 and 20 illustrate the accuracy 

and loss progression during training, indicating that the 

model converged at the 13th epoch, where loss reduction 

became negligible. These findings imply that the model 

achieved stability at this stage. 

In the glioma class, the model accurately classified 153 

out of 162 images, yielding an error rate of 6.17%. For the 

meningioma class, it successfully identified 162 out of 164 

images, with an error rate of 1.22%. The model also 

demonstrated strong performance in the tumor-free class, 

classifying 198 out of 200 images, corresponding to an error 

rate of 1%. In the pituitary class, it correctly identified 173 

out of 175 images, resulting in an error rate of 1.14%. These 

findings indicate that ResNet50v2 exhibited excellent 

accuracy across all classes, with exceptionally minimal 

classification errors in the meningioma, tumor-free, and 

pituitary classes. 

Furthermore, the confusion matrix presented in Fig. 21 

demonstrates the model’s exceptional classification 

performance, particularly in accurately distinguishing the 

four primary categories: glioma, meningioma, tumor-free, 

and pituitary.  

The performance metrics of the model were summarized 

in Table 10, which provides precision, recall (sensitivity), 

and specificity values for each class. For the glioma class, 

the model achieved a precision of 98.70%, a recall of 

94.40%, and a specificity of 99.60%. The meningioma class 

demonstrated a precision of 93.10%, a recall of 98.70%, and 

a specificity of 97.80%. In the tumor-free class, the model 

reached a precision and specificity of 100%, alongside a 

recall of 99.00%. Lastly, for the pituitary class, the model 

reported a precision of 99.40%, a recall of 98.90%, and a 

specificity of 99.80%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE X 

RESNET50V2  MODEL PERFORMANCE 

 

C.  Model Performance Comparative Analysis 

   The evaluation of the brain tumor classification results 

appeared in this section. The study thoroughly assessed the 

performance of each model and compares them to identify 

the most effective model for tumor classification. The 

comparative analysis used a range of critical metrics, 

including mean accuracy, mean precision, mean sensitivity, 

and mean specificity, with comprehensive findings detailed 

in Fig. 22. The analysis presented in Fig. 22 demonstrates 

that the ResNet50V2 model outperforms all other models in 

accurately classifying brain tumors, achieving an impressive 

mean accuracy of 97.70%. Its precision stands at 97.80%, 

with sensitivity and specificity rates of 97.70% and 99.30%, 

respectively, underscoring its exceptional performance in 

tumor classification. These metrics reflect the model’s high 

reliability in detecting positive cases and its ability to 

differentiate between tumor types with minimal errors. 

Category Precision Sensitivity  Specificity 

Glioma 96,70 90,10 99,10 

Meningioma 90,30 95,80 96,80 

No-Tumor 99,50 98,50 99,80 

Pituitary 97,10 98,90 99,00 

Category Precision Sensitivity  Specificity 

Glioma 98,70 94,40 99,60 

Meningioma 93,10 98,70 97,80 

No-Tumor 100 99,00 100 

Pituitary 99,40 98,90 99,80 

 
 

Fig. 21. ResNet50V2 confusion matrix. 

    
 

     Fig. 19. ResNet50V2 model accuracy graph. 

 

      
   

        Fig. 20. ResNet50V2 model loss graph. 
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However, to fully validate the performance of the 

ResNet50V2 model, it is essential to conduct comprehensive 

evaluation of each model’s loss graph. As illustrated in Fig. 

19, such an analysis will offer deeper insights into the 

model’s capability to recognize and categorize various brain 

tumor types accurately. 

Fig. 20 illustrates that the ResNet50V2 model achieved 

optimal performance, effectively preventing both 

underfitting and overfitting. The loss curve indicates an 

apparent convergence between the training and validation 

losses, with the blue and orange lines converging at a 

particular point without substantial fluctuations leading up 

to it. Underfitting, which arises when a model is overly 

simplistic and unable to capture the underlying patterns in 

the data, was characterized by consistently high loss values 

in both the training and validation sets. Conversely, 

overfitting occurs when a model is excessively complex, 

capturing noise and irrelevant details in the training data, 

leading to excellent training performance but poor validation 

results. A noticeable gap between the loss reduction in the 

training data and the stagnation or increase of the loss in the 

validation data typically evidences this.  

The ResNet50V2 model demonstrates a balanced trade-

off between complexity and generalization, as evidenced by 

the intersection of the blue and orange curves, which 

highlights its capacity to both learn from training data and 

make accurate predictions on unseen data. Furthermore, this 

study contrasts the performance of a basic CNN model with 

that of a TL-based CNN model, evaluating the effectiveness 

of the optimal model in relation to previous research 

findings. A comprehensive performance comparison is 

presented in Fig. 23, offering a detailed assessment of the 

model’s effectiveness in the context of prior studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the data presented in Fig. 23, the proposed 

ResNet50V2 model demonstrates superior performance 

relative to previous TL-based CNN models, with the 

exception of the study by Narin et al. (2021). Narin et al. 

(2021) focused on binary classification, which involved only 

two classes, whereas this study addresses multi-class 

classification, encompassing more than two classes, thus 

presenting a greater level of technical complexity. 

The ResNet50V2 model demonstrated comparable and, in 

some cases, superior performance across several metrics 

relative to previous studies. It achieved an accuracy of 

97.70%, precision of 97.80%, sensitivity of 97.70%, and 

specificity of 99.30%. When compared to the ResNet50 

model evaluated on Data-1 by Narin et al. (2021), the 

proposed model outperforms it in precision and specificity 

despite showing slightly lower accuracy and sensitivity. 

Moreover, in the studies by Narin et al. on Data-2 and Data-

3, which report exceptionally high accuracy, the 

ResNet50V2 model remained highly competitive. When 

compared to MobileNetV3 by Hu et al. (2022) and other 

models like VGG-19 and various ResNet variants from the 

study by Triyadi et al. (2022), the ResNet50V2 model 

consistently outperforms all evaluation metrics. 

Furthermore, DenseNet models, as presented by Saputra et 

al. (2023) and Hou et al. (2024), demonstrate performance 

that is either comparable to or slightly lower than that of the 

proposed model. These findings collectively underscore the 

superior and consistent performance of the ResNet50V2 

model, which is on par with or exceeds previous research, 

particularly in the domain of more complex multi-class 

classification. 

 

 
 

Fig. 22. Model performance comparison. 
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Fig. 23. Performance comparison of classification models against prior studies. 
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This model’s performance not only surpass previous 

transfer learning-based approaches but also have a tangible 

impact on medical practice. With its high accuracy and 

precision, it can detect tumors at earlier stages and reduce 

diagnostic errors, such as false positives and negatives, 

thereby expediting patient care. Additionally, its ability to 

analyze thousands of MRI images in a short amount of time 

helps alleviate the workload of radiologists and reduces the 

risk of human error, enabling healthcare professionals to 

focus on more complex cases. The model's precise multi-

class classification also facilitates more specific diagnoses, 

allowing treatments to be tailored to the tumor type, thereby 

enhancing therapeutic effectiveness. 

The model also ensures the application in healthcare 

facilities with limited resources. Transfer learning 

techniques do not require large datasets for training, making 

it suitable for use in remote areas or developing countries 

with limited access to high-quality medical data. Its capacity 

to avoid overfitting and adapt to new data ensures reliable 

results across diverse patient conditions. Thus, ResNet50V2 

not only enhances diagnostic efficiency in large hospitals 

but also broadens access to quality healthcare in 

underserved regions. Its implementation in clinical decision 

support systems could revolutionize brain tumor diagnosis, 

reduce treatment delays, and ultimately save more lives. 

However, this study has certain limitations that warrant 

consideration. The dataset used is confined to MRI images 

from a single source, potentially lacking the variability of 

data from different hospitals or MRI machines. Some 

models, such as MobileNetV2 and NasNetMobile, also 

exhibit signs of overfitting, meaning that while they perform 

well on training data, their accuracy diminishes on new data. 

Future research could expand by utilizing a more diverse 

dataset, as well as enhancing model performance through 

fine-tuning hyperparameters or improving preprocessing 

methods. 

 

V. CONCLUSION 

This study aims to develop and evaluate a CNN 

employing TL for the classification of brain tumor images. 

The critical stages of the approach included pre-processing, 

data augmentation, and hyperparameter optimization, all of 

which played essential roles in achieving accurate 

classification of brain MRI scans. The performance of the 

model was assessed using metrics specifically accuracy, 

precision, sensitivity, and specificity, with the results 

analyzed via a confusion matrix for each respective test 

class. 

Among the models tested, ResNet50v2 achieved the 

highest performance, with an average accuracy of 97.7% 

and exceptional mean accuracy, sensitivity, and specificity 

of 97.80%, 97.70%, and 99.30%, respectively. The 

ResNet50v2 model’s performance surpassed previous 

studies, confirming its effectiveness. 

Future work should explore additional pre-trained models 

to further understand performance variations and address 

gaps in accuracy and loss chart depiction. Furthermore, 

further investigation is possible to be conducted into the 

model's real-world applicability, including the deployment 

in clinical settings with limited resources or varied 

equipment. Enhancements can be achieved by refining 

hyperparameters or improving pre-processing methods to 

address challenges related to diverse data sources. This 

study contributes significantly to brain tumor image 

classification and aims to advance TL applications in this 

field, with the potential to drive innovations in early 

diagnosis and treatment optimization. 
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