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Abstract—  Effective treatment relies on accurately
diagnosing brain tumors, which are characterized by abnormal
cell proliferation. Artificial Intelligence (AI) offers a promising
alternative to traditional diagnostic methods, which are
frequently error-prone. This study aims to enhance the
precision of brain tumor image classification using a Transfer
Learning (TL) approach with Convolutional Neural Networks
(CNNs). A dataset of 7,020 images were categorized into four
categories: glioma, meningioma, pituitary tumor, and no
tumor. This dataset was used to test several pre-trained
models, including DenseNet121, InceptionResNetV2,
MobileNetV2, NasNetMobile, and ResNet50V2. Performance
was measured using accuracy, precision, sensitivity, and
specificity metrics. The most effective of these was
ResNet50V2, which achieved an accuracy of 97.70% and a loss
of 0.066. A confusion matrix analysis of the results highlighted
the model's exceptional performance, with sensitivity (97.70%),
specificity (99.30%), and precision (97.80%). This research
significantly contributes to medical image analysis, improving
diagnostic accuracy using Al technology. The application of TL
enhances early detection reduces and reduces the misdiagnosis
by lowering the need for large datasets and minimizing errors.
Furthermore, the model's efficiency in analyzing large
numbers of MRI images significantly offers time-saving
advantages for healthcare professionals, allowing them to
prioritize more complex cases. This study advances the role of
Al in medical diagnostics, particularly in brain tumor
classification, with the potential to revolutionize -early
diagnosis, treatment strategies, and expand access to quality
healthcare in underserved areas. By improving diagnostic
accuracy, this model could contribute to reducing treatment
delays, ultimately saving more lives.
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I. INTRODUCTION

Brain tumors present a significant medical challenge
requiring accurate and timely detection to ensure the

most optimal and possible treatment. These tumors are
typically divided into two categories: primary and
secondary. Primary brain tumors originate within the brain,
whereas secondary brain tumors generally metastasize from
other body regions. Tumors are further classified as
malignant, which is cancerous, or benign, which is non-
cancerous. Unlike benign brain tumors, malignant brain
tumors exhibit a high proliferation rate and have the
potential to invade multiple areas of the brain. Gliomas,
meningiomas, and pituitary tumors are among the most
prevalent types of brain tumors [1, 2].

Computer Vision, Artificial Intelligence (AI), and
Machine Learning (ML) play an essential role in the early
detection of cancer through advanced medical imaging
techniques specifically Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI). Among these, MRI is
particularly distinguished by its exceptional capability to
depict various cerebral conditions comprehensively. This
includes the detection of potential primary brain tumors,
precise brain tumors location, and evaluation of related
conditions  particularly oedema, hemorrhage, and
hydrocephalus [3]. Leveraging Al, ML, and computer vision
technologies allows for the enhanced processing of MRI
images, offering radiologists supplementary analytical
insights and alternative perspectives [4, 5].

Vimala et al. [6] assert that Deep Learning (DL) has
significantly advanced computer vision, particularly in
medical image processing. Convolutional Neural Networks
(CNNs) are frequently used and are highly effective in this
field. CNN offers the ability to automatically extract critical
features from images, thereby eliminating the need for
manual feature engineering, which is typically required by
traditional ML methodologies. However, CNNs require
substantial data and computational resources to perform
optimally. To mitigate this limitation, Transfer Learning
(TL) can be employed by CNNs, which allows for the use of
fewer training samples and shorter training times.

The TL is an advanced technique in ML and DL in which
a model, initially trained on one dataset, is adapted for use
on different datasets or tasks [7-9]. This strategy enables the
model to leverage insights gained from the training data,
enhancing its learning capabilities and applicability to novel
or similar scenarios [10]. Numerous TL models have been
developed using CNNss, including notable architectures such
as Google Perception Net, ResNet, VGG, Xception,
AlexNet, Inception, and DenseNet [11-17].
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This paper compares various TL models, specifically
DenseNetl121, InceptionResNetV2, MobileNetV2,
NasNetMobile, and ResNet50V2.

II. RELATED WORK

Narin et al. [18] suggest the application of five pre-trained
CNN architectures—ResNet50, ResNet101, ResNetl52,
InceptionV3, and Inception-ResNetV2—for diagnosing
coronavirus pneumonia through the analysis of chest X-ray
images. The patients were categorized into four groups:
normal, COVID-19, viral pneumonia, and bacterial
pneumonia. The efficacy of the models was validated using
k-fold cross-validation. Results indicated that the ResNet50
model demonstrates superior accuracy across three separate
datasets, achieving accuracy rates of 96.1% for Dataset-1,
99.5% for Dataset-2, and 99.7% for Dataset-3. Hu et al. [19]
evaluated the MobileNet and RseSK models against other
advanced networks, specifically MobileNetV3 and Ghost,
using the HAM10000 dataset. Their approach enhanced skin
disease classification accuracy by 1.7% compared to
existing methods, with the MobileNet and RseSK models
attaining an accuracy of 85% on the test set, outperforming
MobileNetV3.

Triyadi et al. [20] conducted a cataract classification
study utilizing various features, including blood vessels and
optical discs visible in retinal fundus images. With a
primary focus on enabling early detection, they set out to
create a software application that could reliably classify
cataracts into two distinct classes: normal and cataracts. The
classification was performed using VGG-19, ResNet50, and
ResNet101 models, yielding accuracies of 91.06%, 93.50%,
and 93.50%, respectively. In a separate study, Alruwaili and
Gouda [21] developed a system leveraging TL to improve
the classification of mammography images from the
Mammographic Image Analysis Society (MIAS) dataset.
The accuracy of their model achieved an accuracy of 89.5%
evaluated by the ResNet50 architecture, while the NasNet-
Mobile network attained 70% accuracy. With limited
training datasets the results showed that the TL model offers
considerable improvements in efficacy and efficiency.

Saputra et al. [22] demonstrated the DenseNet
architecture to predict rice leaf diseases, employing three

specific ~ variants: DenseNetl21, DenseNetl69, and
DenseNet201. The study’s findings revealed that
DenseNetl121 achieved a precision rate of 91.67%,

DenseNet169 attained a precision rate of 90%, and
DenseNet201 reached a precision rate of 88.33%. Notably,
the training time for these models was remarkably brief,
requiring 24 seconds, highlighting the efficiency of the
training process. Similarly, Hou et al. [23] developed a
highly accurate and efficient image recognition model based
on DenseNet architecture. Their performance evaluations
showed that the model not only enhanced the efficiency of
the model parameters but also maintained high levels of
accuracy in image recognition tasks. Specifically,
DenseNet200 achieved an accuracy of 97.2%, DenseNet100
reached 95.4%, and DenseNet50 obtained 92.3%. The
findings indicate that augmenting the depth of the DenseNet
model improves both the accuracy of pattern identification
and the rate at which the model reaches convergence.

III. MATERIALS AND METHOD

The study followed a multi-phase approach outlined as
follows: It utilized a dataset of 7,020 MRI brain images
from Kaggle, categorized into four types of brain cancer.
The data were pre-processed through grayscale conversion,
noise reduction, and morphological operations. This dataset
was divided into training, testing, and validation sets. Data
augmentation was applied using the Image Data Generator.
A CNN model was developed, with hyperparameter tuning
performed on the DenseNet121, the InceptionResNetV2, the
MobileNetV2, the NasNetMobile, and the ResNet50V2
architectures, with and without the TL. The model’s efficacy
was evaluated based on accuracy, precision, sensitivity, and
specificity, providing a comparative analysis with previous
research.

A. Brain Tumor Dataset

The dataset used in this study is from Kaggle and
contains 7,020 MRI brain scans, categorized into four
classes: meningioma, glioma, pituitary, and non-tumor. The
data, which also includes contributions from Figshare,
SARTAJ, and Br35H, were organized by disease type into
separate directories, with each image having a resolution of
512 x 512 pixels and a 24-bit color depth in JPG format.
Table 1 presents the distribution of images across these
categories.

Each MRI image has a resolution of 512 x 512 pixels
and is in JPG format with 24-bit colour depth. The images
were organized by disease type, with each category stored in
separate  directories named after the corresponding
condition. Fig. 1 illustrates the images included in the
dataset.

TABLE I
QUANTITY OF BRAIN TUMOR IMAGES.
Classification of Brain Total Proportional

Glioma 1620 23,08%
Meningioma 1644 23,42%
Pituitary 1756 25,02%
No tumour 2000 28,48%

Total 7020 100%

(a) Glioma (b) Meningioma

(c) Pituitary

(d) No tumor

Fig. 1. Sample images representing each category.
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B. Pre-processing

Pre-processing medical images is essential for
improving their quality and interpretability, which affect
diagnostic accuracy and treatment planning effectiveness
[24]. This study harnessed several pre-processing
techniques, including grayscale conversion, gaussian blur
filter application, binary thresholding, erosion and dilation,
contour extraction, image cropping, bone color map
application, and image resizing.

The process began with grayscale conversion to simplify
the image and focus on brightness intensity. The gaussian
blur filter then reduces noise by generating new pixel values
based on gaussian distribution [25]. The image was then
converted to binary format using binary thresholding to
distinguish the object from the background [26]. Erosion
removes minor details and reduces image size, while
dilation bridges pixel gaps, removes slight noise, fills gaps,
and improves the object’s shape [27]. Contouring, cropping,
and bone color map techniques enhance bone structure
visualization in MRI images. Finally, resizing optimizes the
DL model’s performance. Fig. 2 illustrates the outcomes
after these pre-processing steps, showing noise reduction
and object contour enhancement improvements.

(g) Cropping (h) Bone colour mapping

Fig. 2. Pre-processing steps.

C. Data Splitting

After the pre-processing process, the data were divided
into two main components: modeling and testing. Based on
prior research that suggests this ratio is ideal for
performance, the data were separated with a 90% allocation
for training and 10% for testing [28]. The training dataset
was subdivided into two segments, maintaining a 90%
training and 10% validation ratio. An illustrative
representation of the dataset partitioning is shown in Fig. 3.

In ML, a 90/10 split is commonly used for training and
testing, with a similar split for validation. This division is
essential for developing effective models. Initially, the
training data helps the model learn patterns related to brain
tumors. The validation set then assesses the model’s
performance on unseen data, allowing hyperparameter
tuning and preventing overfitting. Finally, the test data
comprehensively evaluates the model’s performance.

Proper dataset segmentation ensures the model can
accurately classify brain tumor images, enhancing its
robustness and relevance when faced with new data.
Therefore, data partitioning is essential for training ML
models in brain tumor research.

Validation
Test

8.99%
9.99% 631
701

Train

Fig. 3. Splitting dataset for MRI images.

D. Data Augmentation

Data augmentation involves generating synthetic data
samples to expand the training dataset, especially for image
datasets with limited samples [29]. This technique enhances
dataset size, improves model performance and
generalization, and reduces overfitting [30, 31]. This study
employs data augmentation to enhance the model’s ability to
detect and classify brain tumor images. Various
augmentation techniques are applied using the Image Data
Generator from the Keras library, with specific parameters
detailed in Table 2.

E. Classification Modeling

The study adopted a TL strategy during classification
by using CNN architecture pre-trained on large datasets.
This approach allows the model to leverage the existing
knowledge from these datasets, thus reducing the time and
resources needed to train a model from scratch. The research
covers several pre-trained CNN models, detailed in sections
3.5.1 to 3.5.6, and includes a hyperparameter optimization
process for fine-tuning the chosen model’s parameters.
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TABLE I
STAGES OF AUGMENTATION AND PARAMETER VALUES EMPLOYED
Technique Parameter value Description
Rescale 1/255 Normalizes the pixel values of an image from the range of 0 to 255 to a range of 0 to 1

Rotation Range 10

Applies a random rotation to the image within a predefined range of angles

Width Shift 0,002 Displaces the image horizontally within a defined fractional range relative to the image’s width
Height Shift 0,002 Modifies the image’s vertical position within a designated fractional range of the image’s total height
Shear 12,5 Implement a sliding transformation on the image across a defined range of angles.
Horizontal Flip True Perform horizontal flipping of images in a randomized manner
Fill Mode Nearest Details the method for addressing gaps left by image transformation. The term’ nearest’ refers to the
technique of populating these empty pixels with the value of the closest neighbouring pixel.
1. Basic CNN on over a million images from the ImageNet database and

The CNN model is a sophisticated deep learning
algorithm designed to extract relevant data features
autonomously. CNNs consist of sequential layers: a
convolutional layer that identifies features specifically edges
and textures, a pooling layer that reduces resolution and
parameters, and a fully connected layer that generates
classification outputs. They are widely used in various
fields, including computer vision, speech processing, and
facial recognition. The effectiveness of CNNs in interpreting
image data has led to their integration into applications like
object detection, image segmentation, and autonomous
driving. A sample illustration of a basic CNN architecture
used in image classification can be found in [32] by
Alzubaidi et al.

2. Mobile Network v2 (MobileNetV2)

The MobileNetV2 model is designed for optimal
performance on resource-constrained devices, utilizing
depth wise separable convolutions to enhance efficiency. Its
streamlined structure enables the development of highly
efficient models, ideal for mobile applications. Key
advantages include improved memory efficiency during
processing and broad compatibility, as it integrates
seamlessly with all neural network frameworks. A
representative example of the MobileNetV2 architecture is
available in [33].

3. Densely Connected Convolutional Networks 121
(DenseNet121)

DenseNetl21 is a variant of the DenseNet architecture
proposed by Huang et al. [34] and consists of 121 layers.
This model includes three principal classes: Bottleneck,
Transition, and DenseNet. The Bottleneck class refers to the
bottleneck layers within the DenseNet framework, while the
Transition class refers to transition layers designed to reduce
the spatial dimensions of the feature maps. The DenseNet
class encompasses the complete DenseNet architecture [35].
Details of the DenseNetl121 architecture can be found in
[36].

4. Inception Residual Network v2 (InceptionResNetV2)

The InceptionResNet model integrates residual
connections with the Inception architecture to enhance
computational accuracy and efficiency. The
InceptionResNetV2 variant, featuring 164 layers, is trained

can classify images into 1000 distinct object categories.
Further information on the InceptionResNetV2 architecture
illustration can be found in [37].

5. Residual Network 50 v2 (ResNet50V2)

The ResNet architecture emphasizes the residual
function—representing the difference between the input and
output—over direct input-output mapping. This approach
addresses performance degradation typically seen in deep
neural networks [38]. ResNet50V2, an advanced version of
ResNet50, excels in image classification, object detection,
and image segmentation tasks. An example of the
ResNet50V2 architecture is available in [39].

6. Neural Architecture Search Network Mobile
(NasNetMobile)

The NasNetMobile model is a cutting-edge neural network
developed using the Neural Architecture Search (NAS)
methodology, a leading technique in ML for discovering
optimal network structures. NAS consists of three main
elements: the search space, which explores different
configurations like convolutional and pooling layers; the
search strategy, which uses random search and
reinforcement learning to pinpoint effective architectures;
and synergy estimation, which assesses these architectures
based on resource usage and time efficiency. A
representation of the NasNetMobile model’s architecture is
provided in [40].

F. Hyperparameter Tuning

Hyperparameters, particularly the learning rate, batch
size, and neuron count in neural networks, are required to be
carefully tuned before training an ML model [41]. This
study focused on optimizing two key hyperparameters: the
dropout rate, which controls how often neurons are
randomly excluded during training, and the dense unit,
which determines the number of neurons in the fully
connected layer. A grid search strategy was implemented to
identify the best combination of these hyperparameters to
enhance model performance and minimize overfitting.
Initial parameters, namely the learning rate and batch size
were set using standard values to ensure a robust foundation
for training and evaluation. Table 3 provides a detailed
summary of the hyperparameter configurations used in this
process.
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TABLE III
HYPERPARAMETER SETTINGS
Hyperparameter Value
Learning Rate 0,0001

Activation Function ReLu, Softmax
Epochs 15

No tuping Loss Function Categorical cross-entropy
Required .
Batch Size 128
Steps Per Epoch 49
Validation Step 4
Requires Dropout Rate {0,15; 0,2}
tuning Dense Units {64; 128}

G. Fitting Models with the Best Hyperparameters

After completing hyperparameter tuning, the next step in

model development is to fit the model using the identified
optimal hyperparameter configuration. The results of this
tuning process are presented in Table 4.

TABLE IV
BEST PARAMETER COMBINATION

Hyperparameters after tuning

Model Dropout rate Dense units
Basic CNN 0,15 64
DenseNet121 0,20 128
InceptionResNetV2 0,20 128
MobileNetV2 0,15 128
NasNetMobile 0,20 128
ResNet50V2 0,15 64

H. Model Evaluation

Confusion matrix is a tool to evaluate the performance of

classification models’ applicable to binary and multi-class
contexts. It visually compares predicted outcomes against
actual values with dimensions of NxN, where N represents
the number of classes. The matrix comprises four key
elements: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). These elements
are integral in calculating accuracy, precision, sensitivity,
and specificity metrics. For multi-class classification, these
metrics are averaged across all classes [42, 43].

a.

Accuracy: Measures the proportion of correct
predictions (both positive and negative) relative to the
total dataset. It is widely used due to its simplicity and is
calculated as the average accuracy across all classes. The
average accuracy for each class in multi-class
classification is calculated using Equation (1).

L TP
acc,, =Y : M
« " ZTP 1 FP+FN,+1N,

Precision: Indicates the ratio of TP to the total positive
predictions, aiming to reduce FP. In multi-class
classification, precision is averaged across all classes and
can be calculated using Equation (2).

__ TR
Pe TPy FP
!
Z Pc,
P = )

Sensitivity: Also known as the true positive rate, it
measures the proportion of correctly identified
positives (TP) out of all actual positives, focusing on
minimizing FN. The mean sensitivity value can be
derived using Equation (3).

TF,
Te =
TP + FN,

== G

Specificity: Ratio of TN to the total number of
genuinely negative instances, focusing on minimizing
FP. The mean specificity is calculated using Equation

4.

TN,
SC» =
"IN +FP
/
z SC‘
_ =l
savg - / (4)

IV.RESULT AND ANALYSIS
A.  Testing Without TL

The CNN model was initially evaluated without
employing TL, utilizing a custom-designed
architecture explicitly tailored for brain tumor
classification. The model’s performance was depicted
through a loss graph, illustrating the progression of
loss and accuracy throughout the training phase, as
presented in Figs. 4 and 5.

As depicted in Figs. 4 and 5, the accuracy and loss
graphs reveal initial signs of overfitting emerging
between epochs 11 and 12. This situation was
characterized by stagnation in the reduction of training
loss and a simultaneous increase in validation loss,
indicating a decline in the model’s learning efficiency.
Classification metrics, as previously outlined, were
employed to assess the model’s performance. The
evaluation results were further illustrated through a
confusion matrix and accuracy-loss visualizations. The
confusion matrix for the CNN model without TL is
presented in Fig. 6.

Fig. 6 highlights the performance variability of the
model in classifying four tumor classes. For the no-
tumor class, the model accurately classified 191 out of
200 images, resulting in a classification error rate of
4.5%. In the pituitary tumor class, the model correctly
classified for 158 out of 175 images, corresponding to
an error rate of 9.71%. However, the model
encountered notable challenges with the glioma class,
correctly identifying only 127 out of 162 images,
yielding a higher error rate of 21.60%. The
meningioma class posed the greatest difficulty, with
the model successfully classifying only 108 out of 164
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images, leading to a substantial error rate of 34.15%.
Overall, the CNN model demonstrated an average
accuracy of 83.30%, along with an average precision
of 83.05%, an average sensitivity of 82.49%, and an
average specificity of 92.71% (as summarized in Table
5).

The findings indicate that while the CNN model
demonstrates a reasonable level of accuracy in
detecting brain tumors, there is still potential for
enhancement, particularly in sensitivity, which slightly
lags behind accuracy and specificity. The application
of TL is anticipated to further elevate model
performance by harnessing knowledge from larger,
more varied datasets, enabling the identification of
more intricate patterns and improving classification,
particularly for more challenging classes. These results
also offer an initial assessment of a basic CNN model’s
ability to classify brain tumor images without TL. Such
insights will provide a benchmark for comparing
performance with models incorporating TL, helping to
assess the potential for improved accuracy through the
broader utilization of knowledge from extensive pre-
existing datasets.

Model Accuracy

.-a—"‘“"‘-/_H

= Train
0.8 Validation

e
-

Accuracy
o
o

0s{ |

044 |

0 2 4 6 B 10 12 14
Epoch

Fig. 4. CNN model accuracy graph.

Model Loss
— Train
12 Validation
1.0
»
2
Sos
0.6 h N
0.4

0 2 4 6 8 10 12 14
Epoch

Fig. 5. CNN model loss graph.

TABLE V
CNN MODEL PERFORMANCE
Category Precision  Sensitivity Specificity
Glioma 76.50 78.40 92.76
Meningioma 84.37 65.85 96.27
No-Tumor 92.71 95.50 97.00
Pituitary 78.60 90.28 91.82

Confusion Matrix

(]
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Fig. 6. CNN confusion matrix.

B. Testing with TL

Further evaluation was conducted by implementing TL
with several pre-trained models, including DenseNet121,
InceptionResNetV2, MobileNetV2, NasNetMobile, and
ResNet50V2.

1. DenseNet121 Model

This study employed a TL methodology using the
DenseNet121 pre-trained model. Initially, the model was
loaded with weights derived from training on the
ImageNet dataset, which were then fine-tuned for the
classification of brain tumor diseases. The training process
visualization, as depicted in Figs. 7 and 8, demonstrates a
positive trend with increasing accuracy and decreasing
losses during the early epochs. However, signs of
overfitting became apparent between epochs 13 and 14,
where the validation accuracy declined while the training
losses continued to decrease, indicating that the model was
starting to lose its convergence.

After conducting the training process, the model’s
performance is assessed using evaluation metrics for each
class category, with the results visualized in the form of a
confusion matrix, as illustrated in Fig. 9.

In the classification of the no-tumor category, the model
demonstrated perfect performance by correctly identifying
all 200 images without any errors. For the glioma
category, the model accurately classified 156 out of 162
images, yielding an error rate of 3.70%. In the pituitary
category, it achieved a success rate of 172 out of 175
images, resulting in an error rate of 1.71%. In the
meningioma category, the model correctly identified 153
out of 164 images, corresponding to an error rate of
6.71%. Overall, DenseNetl12]1 excels in accurately
classifying the no-tumor class with no errors and exhibits a
low error rate for glioma and pituitary classifications.

Furthermore, the performance results of the model,
evaluated through precision, recall, and specificity metrics,
are provided in Table 6, indicating consistently high
performance across all categories.
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Fig. 7. DenseNet121 model accuracy graph.
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8. DenseNet121 model loss graph.
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Fig. 9. DenseNet121 confusion matrix.

TABLE VI
DENSENET121 MODEL PERFORMANCE

Category Precision Sensitivity Specificity
Glioma 95.70 96,30 98,70
Meningioma 96.80 93,30 99,10
No-Tumor 98,50 100 99,40
Pituitary 97,20 98,30 99,00

2. InceptionResNetV2 Model

The process of testing with TL on the
InceptionResNetV2 model involves several stages,
beginning with the initialization of the model using pre-
trained weights derived from the large ImageNet dataset.
Subsequently, the model is fine-tuned for the brain
tumor classification task. By leveraging the pre-trained
weights from ImageNet, the model is able to build upon
previously acquired knowledge, enabling it to capture
the unique features of brain tumors better. This approach
aims to enhance classification accuracy by utilizing
insights gained during the initial training phase.

The model’s performance evaluation was conducted
through an analysis of accuracy and loss graphs, as well
as the confusion matrix. The visualizations depicting the
accuracy and loss trends throughout the training process
are presented in Figs. 10 and 11, which illustrate the
evolution of these metrics across the epochs. From these
figures, it is evident that the model converged around the
15th epoch, showing signs of halting further learning as
its performance began to stabilize. That suggests that the
training process had reached an optimal state, with no
substantial improvements observed after that.

The confusion matrix shown in Fig. 12 outlines the
model’s classification performance across four
categories: glioma, meningioma, no tumor, and pituitary.
The model exhibits notable accuracy, especially in
identifying glioma, no-tumor, and pituitary images.
Specifically, in the glioma class, it accurately classified
157 out of 162 images, resulting in an error rate of
approximately 3.09%. The performance in the
meningioma class was marginally lower, with 21 out of
164 images misclassified, leading to an error rate of
around 12.80%. In the no-tumor category, the model
demonstrated excellent accuracy by correctly classifying
198 out of 200 images, achieving a minimal error rate of
approximately 1%. Lastly, in the pituitary class, the
model maintained strong performance, with an error rate
of 1.14%, having correctly classified 173 out of 175
images.

A comprehensive analysis of the performance metrics,
including precision, recall, and specificity, is provided in
Table 7. For instance, in the glioma category, the model
demonstrated a precision of 92.30%, a recall of 96.90%,
and a specificity of 97.60%. These results underscore the
model’s accuracy and reliability in the classification of
brain tumors.

Model Accuracy

—— Train
- Validation

0 2 4 [ 8 10 12 14
Epoch

Fig. 10. InceptionResNetV2 model accuracy graph.
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Fig. 11. InceptionResNetV2 model loss graph.
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Fig. 12. InceptionResNetV2 confusion matrix.

TABLE VII
INCEPTIONRESNETV2 MODEL PERFORMANCE

Category Precision Sensitivity Specificity
Glioma 92,30 96,90 97,60
Meningioma 94,10 87,20 98,30
No-Tumor 99,00 99,00 99,60
Pituitary 96,70 98,90 98,90

3. MobileNetV2 Model

The subsequent experiment employed TL with the
MobileNetV2 model. This process began with initializing
the pre-trained model and weights from the ImageNet
dataset. The model is then fine-tuned to a specialized
dataset focused on brain tumor diseases, with the objective
of enhancing classification accuracy across four
categories: glioma, meningioma, no-tumor, and pituitary.

Figs. 13 and 14 present the performance graphs of the
model, which illustrate accuracy and loss throughout the
training process. These graphs demonstrate that the model
converges around the ninth epoch. The growing disparity
between training and validation accuracy after the tenth
epoch suggests a potential overfitting issue. Exploring
regularization methods or implementing early stopping

can effectively mitigate this issue, ensuring the model
achieves optimal performance while maintaining its
generalization capabilities.

The classification performance is visualized through a
confusion matrix, which illustrates the prediction accuracy
for each class, as demonstrated in Fig. 15.

Based on the results presented in Fig. 15, the
MobileNetV2 model exhibits varying classification
performance across different tumor classes. In the glioma
class, the model accurately identified 148 out of 162
images, yielding an error rate of approximately 8.64%. In
contrast, for the meningioma class, the model
demonstrated higher accuracy, correctly classifying 154
out of 164 images with an error rate of 6.10%. For the no-
tumor class, the model showed exceptional performance,
classifying 199 out of 200 images with only a single
misclassification, resulting in a low error rate of 0.50%.
Finally, in the pituitary class, the model achieved perfect
classification, correctly identifying all 175 images without
any errors, highlighting its flawless detection capability
for pituitary tumors.

The performance is summarized in Table 8, which
presents the precision, recall, and specificity metrics for
each category. For instance, in the no-tumor class, both
precision and specificity achieved a perfect score of 100%,
while the pituitary class demonstrated a flawless recall of
100%, highlighting exceptional detection capabilities
without overlooking any target images.

Model Accuracy

1.00

0.95

— Train
- Validation

0.75

0 2 4 6 8 0 12 14
Epoch

Fig. 13. MobileNetV2 model accuracy graph.

Model Loss
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- Validation

Epoch

Fig. 14. MobileNetV2 model loss graph.
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Fig. 15. MobileNetV2 confusion matrix.

TABLE VIII
MOBILENETV2 MODEL PERFORMANCE
Category Precision Sensitivity Specificity
Glioma 98,00 91,40 99,40
Meningioma 95,60 93,90 98,70
No-Tumor 100 99,50 100
Pituitary 92,10 100 97,20

4. NasNetMobile Model

This study employed a TL approach utilizing the
NasNetMobile model, which was initially trained on the
ImageNet dataset. The pre-trained model is subsequently
fine-tuned for the detection of brain tumors across
several categories, including glioma, meningioma,
pituitary tumors, and tumor-free classes. During the
evaluation phase, the performance of the NasNetMobile
classifier is assessed through accuracy and loss curves
generated throughout the training process, as illustrated
in Figs. 16 and 17.

Analyzing these two graphs reveal that the model
exhibits unstable convergence on the validation data,
with a significant reduction in loss values observed
during each epoch, particularly between epochs 10 and
15. The findings indicate that although the model
achieves high accuracy in certain classes, it faces
considerable  challenges in  attaining  optimal
convergence.

The performance of this model was further illustrated
using a confusion matrix, as shown in Fig. 18. Analysis
of the confusion matrix reveals that the model
demonstrates a high degree of accuracy in categorizing
different types of tumors.

In the glioma class, the model accurately identified 146
out of 162 images, yielding an error rate of
approximately 9.88%. For the meningioma class, the
model recognized 158 out of 164 images, achieving a
lower error rate of 3.66%. In the tumor-free class, the
model demonstrated exceptional performance, correctly
classifying 197 out of 200 images with an error rate of
just 1.50%. For the pituitary class, the model correctly
identified 173 out of 175 images, resulting in an error

rate of 1.14%. These findings indicate that the
NasNetMobile model exhibits strong classification
capabilities, particularly in the meningioma, tumor-free,
and pituitary classes.

Table 9 presents the detailed performance of the
model, including the precision, recall, and sensitivity
values for each class. The model achieved exceptional
precision in the tumor-free class (99.50%), outstanding
recall in the pituitary class (98.90%), and the highest
specificity in the tumor-free class (99.80%).

Model Accuracy

—— Train
0.951 —— validation

Accuracy

0.80
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Fig. 16. NasNetMobile model accuracy graph.

Model Loss
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Fig. 17. NasNetMobile model loss graph.
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Fig. 18. NasNetMobile confusion matrix.
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TABLE IX
NASNETMOBILE MODEL PERFORMANCE
Category Precision Sensitivity Specificity
Glioma 96,70 90,10 99,10
Meningioma 90,30 95,80 96,80
No-Tumor 99,50 98,50 99,80
Pituitary 97,10 98,90 99,00

5. ResNet50V2 Model

The ResNet50V2 pre-trained model utilized weights
obtained from training on the ImageNet dataset and was
subsequently fine-tuned to classify brain tumor datasets.
Graphical representations of accuracy and loss, along with
the confusion matrix, were employed to evaluate the
model’s performance. Figs. 19 and 20 illustrate the accuracy
and loss progression during training, indicating that the
model converged at the 13th epoch, where loss reduction
became negligible. These findings imply that the model
achieved stability at this stage.

In the glioma class, the model accurately classified 153
out of 162 images, yielding an error rate of 6.17%. For the
meningioma class, it successfully identified 162 out of 164
images, with an error rate of 1.22%. The model also
demonstrated strong performance in the tumor-free class,
classifying 198 out of 200 images, corresponding to an error
rate of 1%. In the pituitary class, it correctly identified 173
out of 175 images, resulting in an error rate of 1.14%. These
findings indicate that ResNet50v2 exhibited excellent
accuracy across all classes, with exceptionally minimal
classification errors in the meningioma, tumor-free, and
pituitary classes.

Furthermore, the confusion matrix presented in Fig. 21
demonstrates the model’s exceptional classification
performance, particularly in accurately distinguishing the
four primary categories: glioma, meningioma, tumor-free,
and pituitary.

The performance metrics of the model were summarized
in Table 10, which provides precision, recall (sensitivity),
and specificity values for each class. For the glioma class,
the model achieved a precision of 98.70%, a recall of
94.40%, and a specificity of 99.60%. The meningioma class
demonstrated a precision of 93.10%, a recall of 98.70%, and
a specificity of 97.80%. In the tumor-free class, the model
reached a precision and specificity of 100%, alongside a
recall of 99.00%. Lastly, for the pituitary class, the model
reported a precision of 99.40%, a recall of 98.90%, and a
specificity of 99.80%.

Model Accuracy

0.80

0.754 —— Train
- Validation
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Epoch

Fig. 19. ResNet50V2 model accuracy graph.

Model Loss
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Fig. 20. ResNet50V2 model loss graph.
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Fig. 21. ResNet50V2 confusion matrix.

TABLE X
RESNET50V2 MODEL PERFORMANCE
Category Precision Sensitivity ~ Specificity
Glioma 98,70 94,40 99,60
Meningioma 93,10 98,70 97,80
No-Tumor 100 99,00 100
Pituitary 99,40 98,90 99,80

C. Model Performance Comparative Analysis

The evaluation of the brain tumor classification results
appeared in this section. The study thoroughly assessed the
performance of each model and compares them to identify
the most effective model for tumor classification. The
comparative analysis used a range of critical metrics,
including mean accuracy, mean precision, mean sensitivity,
and mean specificity, with comprehensive findings detailed
in Fig. 22. The analysis presented in Fig. 22 demonstrates
that the ResNet50V2 model outperforms all other models in
accurately classifying brain tumors, achieving an impressive
mean accuracy of 97.70%. Its precision stands at 97.80%,
with sensitivity and specificity rates of 97.70% and 99.30%,
respectively, underscoring its exceptional performance in
tumor classification. These metrics reflect the model’s high
reliability in detecting positive cases and its ability to
differentiate between tumor types with minimal errors.
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Fig. 22. Model performance comparison.

However, to fully validate the performance of the
ResNet50V2 model, it is essential to conduct comprehensive
evaluation of each model’s loss graph. As illustrated in Fig.
19, such an analysis will offer deeper insights into the
model’s capability to recognize and categorize various brain
tumor types accurately.

Fig. 20 illustrates that the ResNetS0V2 model achieved
optimal  performance, effectively preventing both
underfitting and overfitting. The loss curve indicates an
apparent convergence between the training and validation
losses, with the blue and orange lines converging at a
particular point without substantial fluctuations leading up
to it. Underfitting, which arises when a model is overly
simplistic and unable to capture the underlying patterns in
the data, was characterized by consistently high loss values
in both the training and validation sets. Conversely,
overfitting occurs when a model is excessively complex,
capturing noise and irrelevant details in the training data,
leading to excellent training performance but poor validation
results. A noticeable gap between the loss reduction in the
training data and the stagnation or increase of the loss in the
validation data typically evidences this.

The ResNet50V2 model demonstrates a balanced trade-
off between complexity and generalization, as evidenced by
the intersection of the blue and orange curves, which
highlights its capacity to both learn from training data and
make accurate predictions on unseen data. Furthermore, this
study contrasts the performance of a basic CNN model with
that of a TL-based CNN model, evaluating the effectiveness
of the optimal model in relation to previous research
findings. A comprehensive performance comparison is
presented in Fig. 23, offering a detailed assessment of the
model’s effectiveness in the context of prior studies.

Based on the data presented in Fig. 23, the proposed
ResNet50V2 model demonstrates superior performance
relative to previous TL-based CNN models, with the
exception of the study by Narin et al. (2021). Narin et al.
(2021) focused on binary classification, which involved only
two classes, whereas this study addresses multi-class
classification, encompassing more than two classes, thus
presenting a greater level of technical complexity.

The ResNet50V2 model demonstrated comparable and, in
some cases, superior performance across several metrics
relative to previous studies. It achieved an accuracy of
97.70%, precision of 97.80%, sensitivity of 97.70%, and
specificity of 99.30%. When compared to the ResNet50
model evaluated on Data-1 by Narin et al. (2021), the
proposed model outperforms it in precision and specificity
despite showing slightly lower accuracy and sensitivity.
Moreover, in the studies by Narin et al. on Data-2 and Data-
3, which report exceptionally high accuracy, the
ResNet50V2 model remained highly competitive. When
compared to MobileNetV3 by Hu et al. (2022) and other
models like VGG-19 and various ResNet variants from the
study by Triyadi et al. (2022), the ResNet50V2 model
consistently  outperforms all  evaluation  metrics.
Furthermore, DenseNet models, as presented by Saputra et
al. (2023) and Hou et al. (2024), demonstrate performance
that is either comparable to or slightly lower than that of the
proposed model. These findings collectively underscore the
superior and consistent performance of the ResNet50V2
model, which is on par with or exceeds previous research,
particularly in the domain of more complex multi-class
classification.
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Fig. 23. Performance comparison of classification models against prior studies.
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This model’s performance not only surpass previous
transfer learning-based approaches but also have a tangible
impact on medical practice. With its high accuracy and
precision, it can detect tumors at earlier stages and reduce
diagnostic errors, such as false positives and negatives,
thereby expediting patient care. Additionally, its ability to
analyze thousands of MRI images in a short amount of time
helps alleviate the workload of radiologists and reduces the
risk of human error, enabling healthcare professionals to
focus on more complex cases. The model's precise multi-
class classification also facilitates more specific diagnoses,
allowing treatments to be tailored to the tumor type, thereby
enhancing therapeutic effectiveness.

The model also ensures the application in healthcare
facilities with limited resources. Transfer learning
techniques do not require large datasets for training, making
it suitable for use in remote areas or developing countries
with limited access to high-quality medical data. Its capacity
to avoid overfitting and adapt to new data ensures reliable
results across diverse patient conditions. Thus, ResNet5S0V2
not only enhances diagnostic efficiency in large hospitals
but also broadens access to quality healthcare in
underserved regions. Its implementation in clinical decision
support systems could revolutionize brain tumor diagnosis,
reduce treatment delays, and ultimately save more lives.
However, this study has certain limitations that warrant
consideration. The dataset used is confined to MRI images
from a single source, potentially lacking the variability of
data from different hospitals or MRI machines. Some
models, such as MobileNetV2 and NasNetMobile, also
exhibit signs of overfitting, meaning that while they perform
well on training data, their accuracy diminishes on new data.
Future research could expand by utilizing a more diverse
dataset, as well as enhancing model performance through
fine-tuning hyperparameters or improving preprocessing
methods.

V. CONCLUSION

This study aims to develop and evaluate a CNN
employing TL for the classification of brain tumor images.
The critical stages of the approach included pre-processing,
data augmentation, and hyperparameter optimization, all of
which played essential roles in achieving accurate
classification of brain MRI scans. The performance of the
model was assessed using metrics specifically accuracy,
precision, sensitivity, and specificity, with the results
analyzed via a confusion matrix for each respective test
class.

Among the models tested, ResNet50v2 achieved the
highest performance, with an average accuracy of 97.7%
and exceptional mean accuracy, sensitivity, and specificity
of 97.80%, 97.70%, and 99.30%, respectively. The
ResNet50v2 model’s performance surpassed previous
studies, confirming its effectiveness.

Future work should explore additional pre-trained models
to further understand performance variations and address
gaps in accuracy and loss chart depiction. Furthermore,
further investigation is possible to be conducted into the
model's real-world applicability, including the deployment
in clinical settings with limited resources or varied
equipment. Enhancements can be achieved by refining
hyperparameters or improving pre-processing methods to

address challenges related to diverse data sources. This
study contributes significantly to brain tumor image
classification and aims to advance TL applications in this
field, with the potential to drive innovations in early
diagnosis and treatment optimization.
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