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Abstract—Alzheimer’s Disease (AD) is a progressive neurode-
generative disorder that demands the deployment of precise,
automated, and reproducible diagnostic methodologies for ef-
fective clinical management and therapeutic decision-making.
This study proposes and comparatively evaluates two computa-
tional frameworks for the detection of AD utilizing structural
Magnetic Resonance Imaging (MRI) data. The first framework
integrates overlay-based image segmentation techniques, em-
ploying intensity thresholding and pixel-wise differentiation,
followed by classification of the extracted regions using a
Convolutional Neural Network (CNN) architecture. The second
framework incorporates a U-Net-based semantic segmentation
model, coupled with ensemble classification schemes comprising
Random Forest (RF), Decision Tree (DT), and K-Nearest
Neighbors (KNN) algorithms. A comprehensive quantitative
analysis is performed to assess segmentation accuracy metrics
and classification performance indices, including precision, re-
call, Fl-score, and overall classification accuracy. Additionally,
the influence of optimization algorithms—specifically Adam
and RMSProp—on the convergence behavior and classification
efficacy of the CNN model is systematically investigated. The
proposed methodologies demonstrate classification accuracies
within the range of 70% to 89 %, providing comparative insights
into the efficacy of conventional and deep learning-based
segmentation-classification pipelines. The findings contribute
to the advancement of neuroimaging-based diagnostic systems
and offer critical guidance for researchers and clinicians in
the selection of optimal computational approaches for medical
image analysis applications.

Index Terms—Alzheimer’s disease, overlaying analysis,
thresholding, Brain MRI processing, Image Segmentation, U-
Net, CNN, Ensemble Classification.

I. INTRODUCTION

Lzheimer’s Disease (AD) is a progressive, debilitat-
ing neurodegenerative disorder that poses significant
challenges in its diagnosis, classification, and management
[1]. As reported by the World Health Organisation [2],
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approximately 57 million people are living with dementia
worldwide, over 60% of whom reside in low- and middle-
income countries. Each year, nearly 10 million new cases of
AD are diagnosed, accounting for 60-70% of dementia cases.
Dementia is currently the seventh leading cause of death
globally and one of the primary contributors to disability
and dependency among the elderly. In 2019, dementia-
related care cost economies approximately US $1.3 trillion,
with nearly 50% of this burden shouldered by informal
caregivers. As the global population ages, the prevalence of
AD continues to rise, making early and accurate detection
increasingly vital for effective treatment planning and patient
care.

However, traditional diagnostic approaches such as cog-
nitive assessments and neurological examinations remain
largely subjective, often resulting in inconsistent outcomes,
particularly in the early stages of the disease. Clinical misdi-
agnosis rates for AD remain alarmingly high, reaching up to
30% in early stages due to the subtlety of initial symptoms
and reliance on subjective clinical evaluations.

In contrast, advanced imaging techniques like Magnetic
Resonance Imaging (MRI) offer objective, quantifiable data
to support early detection and precise classification of AD. In
recent years, developments in medical imaging, particularly
MRI, have provided high-resolution insights into structural
brain changes, offering new avenues for enhancing diagnostic
accuracy. MRI biomarkers such as hippocampal atrophy and
cortical thinning are among the earliest indicators of AD and
are essential in differentiating between healthy and diseased
brain tissues.

To harness this imaging data effectively, image segmenta-
tion and classification algorithms, especially deep learning-
based methods, have become indispensable tools for ex-
tracting diagnostic features from neuroimaging data [3] [4].
Convolutional Neural Networks (CNNs) have demonstrated
outstanding performance in various medical image analysis
tasks, including AD classification. Additionally, ensemble
classification approaches that combine predictions from mul-
tiple classifiers have shown improved robustness, reliability,
and accuracy by mitigating individual model biases. This
study introduces a comparative analysis of segmentation and
classification methodologies for AD detection using MRI
data sourced from a publicly available dataset. Specifically,
it evaluates:

e A CNN-based classification framework incorporating

overlay segmentation with thresholding.

o A U-Net-based segmentation pipeline combined with

ensemble classifiers such as Random Forest (RF), De-
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cision Tree (DT), and K-Nearest Neighbors (KNN).
The primary objectives of this research are:

o To evaluate the performance of CNN-based classifica-
tion models with overlay segmentation in classifying
publicly available AD-related MRI scans.

o To implement and assess a U-Net-based segmentation
model integrated with ensemble classifiers (RF, DT,
KNN) for improved AD classification accuracy.

e To conduct a comparative analysis of both
segmentation-classification pipelines in terms of
precision, sensitivity, specificity, Fl-score, and overall
reliability.

o To identify the strengths and limitations of each ap-
proach for potential application in clinical AD diagnosis
workflows.

« To demonstrate the potential of ensemble classification
strategies in enhancing the robustness and generalizabil-
ity of AD detection models using open-source MRI data.

The findings of this comparative study have critical im-
plications for refining diagnostic workflows and facilitating
earlier, more accurate detection of AD, ultimately con-
tributing to improved patient outcomes and better resource
management [5] [6].

II. LITERATURE SURVEY

Hard and soft voting algorithms were used by Shah et al.
[7] to categorize and pinpoint the early AD period. There are
437 patients in the data collection, ranging in age from 60 to
96. These are divided into 64 demented and 72 non-demented
individuals. Of these, 70% are utilized to train the algorithm
and 30% to test it. Decision trees, soft voting classifiers,
and hard voting classifiers are classification algorithms. The
vote classifier algorithm achieves an accuracy of 84%.Lazli
et al. [8] created a technique that combines SVM-based
classification with MRI data for tissue segmentation. To
improve segmentation accuracy, their method uses fuzzy-
possibilistic segmentation, which combines possibilistic clus-
tering and fuzzy c-means clustering. A dataset of 60 MRI
scans, comprising 30 of those with AD and 30 healthy
controls, was used to test the approach. With a 93.33%
accuracy rate, 96.67% sensitivity, 90% specificity, and an
AUC of 0.983, the suggested procedure notably exceeded
earlier approaches. In the study’s conclusion, a CAD system
for AD diagnosis that uses fuzzy-possibilistic segmentation
and SVM classification is shown. The encouraging outcomes
demonstrate its potential as a useful instrument for AD early
diagnosis and detection. The use of unsupervised feature
learning, which involves two processes, was emphasized by
Razavi et al. [9]. The initial step is to take the raw data and
extract its features. Uncontrolled neural layer networks and
dispersed filtering are the techniques employed. Softmax is a
technique for classifying healthy and ill people that combines
regression with sparse filtering. To disseminate the gathered
data, a few unsupervised learning methods are employed,
including Boltzmann machines and scattered coding. ADNI
with cerebrospinal fluids served as the data set for this
methodology. There are 51 AD patients in total, and another
43 patients have only moderate AD symptoms. The 1.5T
scanners were used to collect the MRI data. 98.3% accuracy
is the best accuracy recorded while utilizing the softmax
regression.

This early study by Su et al. [10] discovered that
the gradiometer-based markers typically outperform their
magnetometer-based counterparts. It’s interesting to note
that, out of the 10 regions of interest, the left frontal lobe
performs roughly 8% better than the second-best region
(left temporal lobe) for AD/MCI/HC classification in terms
of mean recognition rate. Holilah et al. [3] presented a
methodology for AD detection that involves the analysis of
MRI brain images by employing watershed segmentation
& K-means clustering techniques. The proposed approach
follows three main stages. Initially, K-means clustering is
applied to segment brain tissue from MRI scans. Next,
the watershed segmentation technique is utilized to further
divide the segmented tissue into distinct regions. Lastly, these
segmented regions are analyzed to detect potential indicators
of AD. The effectiveness of this method was assessed using
an MRI dataset consisting of images from both AD patients
and healthy individuals. The results demonstrated a high
accuracy of 95.5% in identifying AD, outperforming existing
state-of-the-art techniques. Pan D et al. [11] developed a 2D
CNN model that processes inputs along sagittal, coronal, and
transverse axes. The final classification is achieved through
ensemble learning, incorporating a voting mechanism. The
model identifies early signs of the disease by analyzing
intersection points within the temporal lobe and other regions
of the limbic system. However, its performance in early-stage
detection was relatively lower. Similarly, Gupta Y et al. [12]
introduced a classification framework to differentiate AD into
three categories: AD, aAD (stable MCI), and mAD (MCI
progressing to AD within 36 months). Their method utilized
structural MRI scans to extract key features such as voxel-
based morphometry (VBM), hippocampal volume (HV), and
segmented cortical and subcortical regions.

Helaly, H. A et al. [13] conducted a comparative study
on two different methods for classifying medical images
and detecting AD. The first method employed a CNN for
classification between two stages of AD, while the second
method utilized a transfer learning approach. Beltrdn et
al. [14] proposed the use of Classification and Regression
Trees (CART) for the classification of MRI images, and to
address its limitations, a Random Forest classifier was also
employed. However, this approach did not consider many
imaging biomarkers. Liu et al. [15] conducted a study uti-
lizing hippocampus MRI data, proposing an early detection
model using deep learning techniques. The study utilized
MRI scans to extract relevant features and employed a CNN
to predict future clinical outcomes. By focusing on specific
brain regions, the research highlighted the potential of deep
learning for the early detection of AD.

To mitigate the challenge of limited data in machine
learning applications, M. Orouskhani et al. [16] introduced a
conditional deep Triplet network. Their approach integrated
both the best and worst triplets into the conditional triplet
loss function, facilitating AD diagnosis through a four-
class classification framework based on brain MRI scans.
Similarly, J. B. Bae et al. [17] developed a CNN-based model
for AD classification using MRI scans of patients and age-
and gender-matched healthy controls. The model was trained
on coronal slices of T1-weighted images, particularly those
encompassing the medial temporal lobe, and its performance
was assessed on validation sets from both the same and
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Fig. 1: Workflow of the proposed CNN-based classification model for AD detection, illustrating preprocessing, segmentation
(overlaying analysis), feature extraction, and classification modules

different populations.

MRI analysis is widely used in clinical research for AD
diagnosis; however, distinguishing between AD and healthy
aging MRI scans remains a challenge due to their similarities.
Islam et al. [18] proposed a network designed to aid in the
early detection of AD. Additionally, J. H. Cai et al. [19]
provided an overview of texture analysis techniques, dis-
cussing their applications in MR imaging for AD diagnosis
and summarizing the key factors contributing to AD-related
cognitive decline.

III. MATERIALS AND METHODS

This section outlines the dataset employed and the method-
ology adopted for implementation and comparative evalua-
tion of the segmentation-classification approaches explored
in this study.

A. Dataset

The dataset utilized in this study is a publicly available sec-
ondary dataset comprising 6,400 T1-weighted MRI images of
human brains. These images are systematically categorized
into four clinically significant classes: Mild Demented, Mod-
erate Demented, Non-Demented, and Very Mild Demented.
Each category corresponds to a specific stage of dementia
severity, ensuring a heterogeneous and comprehensive repre-
sentation of the AD progression spectrum.

The availability of labelled images from each class facil-
itates the development and evaluation of machine learning
models by providing a reliable ground truth for training
and validation. For the purpose of this study, a carefully
curated subset of 5,121 consistent images were selected from
the original dataset. This selection process was aimed at
maintaining uniformity across all four classes while elimi-
nating images with anomalies or inconsistent labelling. The
balanced and representative nature of the chosen images
contributes to the reliability and robustness of the proposed
segmentation and classification methodologies.

B. Image Segmentation Models

To facilitate a robust and comparative analysis, two distinct
image segmentation techniques are implemented:

o Opverlaying Analysis and Thresholding

« U-Net Segmentation
In the first method, a fixed thresholding value of 109, which
is determined empirically, is applied to distinguish the region
of interest within each image. This threshold value effectively
captures minute variations and subtle differences in brain
structure. In contrast, the second method employs U-Net
segmentation—a deep learning-based technique that utilizes
an encoder-decoder architecture with skip connections to
enable precise delineation of relevant anatomical regions
[20].

C. Overlaying Analysis and Thresholding

Prior to segmentation, a comprehensive preprocessing
pipeline is applied to the MRI dataset to enhance image
consistency, suppress noise artifacts, and improve segmen-
tation accuracy. Given the inherently high dimensionality
and varying signal intensities present in MRI acquisitions,
preprocessing is a critical step to standardize the data and op-
timize its suitability for subsequent computational analysis.
The overall workflow of the proposed CNN-based classifica-
tion framework is depicted in Fig. 1. To ensure homogeneity
in spatial resolution and maintain precise alignment during
overlay operations, all MRI images are uniformly rescaled to
a fixed resolution of 208 x 176 pixels, following established
conventions in neuroimaging-based machine learning studies
[21]. This rescaling operation minimizes geometric distor-
tions while preserving critical anatomical structures across
the image set. Additionally, images are converted from multi-
channel to single-channel grayscale intensity images, thereby
reducing computational complexity, memory overhead, and
data dimensionality without compromising salient structural
information required for AD detection [22].

A fixed-level thresholding technique is then applied to
the grayscale images as an essential preprocessing step for
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enhancing contrast between brain tissues and background re-
gions. Thresholding serves to binarize the image by partition-
ing pixel intensities based on empirically selected threshold
values. Specifically, a threshold value of 109 is applied for
Alzheimer’s-affected images and 75 for healthy brain scans,
determined via iterative analysis of pixel intensity histograms
and visual inspection of segmentation quality [23]. This
operation facilitates reliable foreground-background separa-
tion, making disease-affected regions more discernible by
suppressing non-informative background areas.

(b)

Fig. 2: (a) Original Axial T1-weighted MRI scan of an
Alzheimer’s-affected brain (b) Corresponding binary image
after thresholding and overlay-based difference analysis

(@)

Following thresholding, an overlaying difference analysis
is performed to identify morphologically significant alter-
ations between Alzheimer’s-affected and healthy brain scans
[24], [25]. This is achieved using the absdiff function, which
computes the per-pixel absolute difference between paired
thresholded images. The resultant difference images effec-
tively isolate structurally altered regions while suppressing
minor variations and imaging noise. As the images have
already been binarized, the difference maps yield a binary
mask where morphologically abnormal regions are high-
lighted in white (pixel value = 255), as illustrated in Fig.
2.

The processed images, along with their corresponding
difference masks, are subsequently organized into four dis-
tinct directories representing different clinical stages of AD
for downstream classification. This preprocessing pipeline,
comprising intensity normalization, spatial rescaling, fixed-
threshold binarization, and overlay-based difference analysis,
ensures enhanced segmentation quality, improved feature
discriminability, and increased interpretability of the mor-
phological patterns associated with AD pathology. It thus
establishes a technically rigorous foundation for subsequent
feature extraction and classification tasks within the proposed
CNN-based framework.

D. U-Net architecture for segmentation

For the implementation of the U-Net segmentation model,
a comprehensive preprocessing protocol is established to
ensure that the input data conforms to the architectural and
computational requirements of the network. This protocol
involves a systematic sequence of operations including im-
age resizing, grayscale conversion, intensity normalization,
dimensional expansion, labeling of ground truth masks, and
dataset shuffling. Collectively, these steps improve data uni-
formity, computational efficiency, and model generalization

TABLE I: Labels assigned to each class

Labels Class
1 Mild Demented
2 Moderate Demented
3 Non-Demented
4 Very Mild Demented

performance. The workflow of the proposed U-Net-based
segmentation model, incorporating these preprocessing pro-
cedures and model development phases, is depicted in Fig. 3.

Initially, all MRI images and their corresponding target
segmentation masks are resized to a consistent spatial reso-
lution. This resizing ensures dimensional alignment between
images and masks, which is critical for maintaining accurate
pixel-wise correspondence during training. Since the U-Net
architecture involves multiple downsampling and upsampling
operations through pooling and transposed convolution lay-
ers, ensuring consistent dimensions enables correct alignment
of feature maps and skip connections throughout the network
[26].

Following resizing, each image undergoes intensity nor-
malization, where pixel values are scaled to a continuous
range between 0 and 1. This step mitigates variations caused
by differences in MRI acquisition settings, protocols, and
equipment, thereby enhancing the stability and efficiency of
the model during training. Normalization ensures numerical
stability, accelerates convergence, and prevents issues such
as vanishing or exploding gradients, which could otherwise
hinder effective optimization [27].

Subsequently, each grayscale image is reshaped to include
an explicit channel dimension, converting the data structure
from a two-dimensional array of shape (height, width) to
a three-dimensional array of shape (height, width, 1). This
dimensional expansion ensures compatibility with the U-
Net’s convolutional layers, which expect input tensors with
a defined channel depth.

In supervised segmentation tasks, it is essential to associate
each image with an annotated ground truth mask containing
labeled pixel values corresponding to the respective seg-
mentation classes. In this study, the segmentation classes
considered are Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented. These categorical class
labels are mapped to numeric identifiers to enable efficient
loss calculation and performance evaluation during model
training. The mapping between numeric labels and class
categories is summarized in Table 1.

To further improve model generalization and minimize
overfitting to specific image sequences or class patterns,
the entire dataset is randomly shuffled prior to training.
This randomization ensures that the model encounters image
samples in varying sequences across epochs, promoting the
extraction of more generalized features and reducing any
potential learning bias related to sample ordering or class
distribution. The incorporation of dataset shuffling enhances
the robustness, reliability, and adaptability of the trained
model when deployed on unseen test datasets.

E. Defining U-Net Architecture

The U-Net architecture adopted in this study is a fully
convolutional, symmetric encoder-decoder network with skip
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Fig. 3: Workflow of the proposed U-Net-based segmentation model, including preprocessing, labeling, shuffling, and model

building steps.

connections, specifically designed for semantic segmentation
tasks in biomedical imaging applications. Its configuration
facilitates the simultaneous learning of local and global
contextual features by combining multi-scale feature maps
at corresponding encoder and decoder levels. The complete
structural overview of the proposed U-Net model is presented
in Fig. 4.

The encoder path of the network progressively reduces
the spatial resolution of the input images while extract-
ing hierarchical feature representations through a series of
convolutional layers followed by max pooling operations.
Each convolutional stage, denoted as conv1 to convS5, utilizes
the Rectified Linear Unit (ReLU) activation function to
introduce non-linearity and improve feature discrimination.
Max pooling layers perform spatial downsampling, effec-
tively reducing the dimensions of the feature maps by a
factor of two while preserving essential semantic information
necessary for reliable segmentation.

At the center of the U-Net lies the bottleneck layer,
which acts as a bridge connecting the encoder and decoder
pathways. This section consists of additional convolutional
operations designed to capture high-level, abstract features by
further compressing the spatial information. The abstracted
feature representations generated at this stage are critical for
distinguishing subtle structural differences in biomedical im-
ages, particularly for identifying pathological brain regions.

Following the bottleneck, the decoder path gradually re-
stores the original spatial resolution of the feature maps
through successive upsampling operations. At each stage,

the upsampled feature maps are concatenated with their
corresponding encoder outputs via skip connections. This
fusion mechanism ensures the preservation of high-resolution
spatial details that are typically lost during the downsampling
process. The concatenated feature maps then undergo further
convolutional operations, labeled conv6 to conv9, which
refine the restored spatial information and enable precise re-
construction of anatomical boundaries and abnormal regions.

The final output layer consists of a 1 x 1 convolutional
layer equipped with a sigmoid activation function, generating
a binary segmentation mask. Each pixel value in the output
mask represents the probability of the corresponding pixel
in the input image belonging to the target class. This facil-
itates accurate, pixel-wise classification and visualization of
affected brain regions.

The model is compiled using the Adam optimizer, selected
for its adaptive learning rate capabilities, in conjunction with
a mean squared error (MSE) loss function. This combination
ensures stable convergence and efficient optimization. Model
accuracy is used as the primary evaluation metric during
training to monitor segmentation performance across epochs.
The U-Net model is trained over 10 epochs with a batch size
of 16.

All computations, including both training and valida-
tion, are conducted on a system equipped with an In-
tel(R) Core(TM) 15-8265U CPU. The total training duration
recorded was 2629 seconds, averaging approximately 21
seconds per training step, while validation computations
required a total of 641 seconds, averaging 19 seconds per
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Fig. 4: Proposed U-Net architecture illustrating the symmetric encoder-decoder structure with skip connections, convolutional

layers, pooling, upsampling, and final segmentation output

step. A detailed timing analysis of the U-Net training and
validation processes is presented in Fig. 5.

F. Classification Models

This study utilizes two classification models: a CNN clas-
sifier applied to images segmented through overlay analysis
as shown in Fig. 1, and an ensemble classifier applied to
images segmented using U-Net segmentation as shown in
Fig. 3. The subsequent sections provide a detailed discussion
of these approaches.

1) CNN Classification on Image Dataset Segmented Using
Overlaying Analysis: Following overlay segmentation, a
CNN model is trained using two optimizers: Adam and
RMSProp. The input images are rescaled and augmented
using ImageDataGenerator. The CNN architecture comprises
stacked Conv2D and MaxPooling2D layers, followed by
dense layers and a softmax output. The model is trained
with a batch size of 32. Table II summarizes the architecture
parameters.

The performance of the proposed multi-class classification
model is evaluated using the Categorical Cross-Entropy
(CCE) loss function. CCE is widely adopted in multi-class
classification problems where the model outputs a probabil-
ity distribution over multiple mutually exclusive classes. It
measures the dissimilarity between the predicted probability
distribution and the actual distribution represented by the
one-hot encoded ground truth labels.

The categorical cross-entropy loss for a single observation
is defined as:

C
L==> y;log(ij) e
=1

TABLE II: CNN layers and parameters

LAYER
Conv2D Layer
MaxPooling2D Layer
Conv2D Layer
MaxPooling2D Layer
Conv2D Layer
MaxPooling2D Layer

PARAMETERS
32 filters, kernel size 3x3, ReLLU activation
2x2 pool size
64 filters, kernel size 3x3, ReLU activation

2x2 pool size
128 filters, kernel size 3x3, ReLU activation
2x2 pool size
Default
128 units, ReLLU activation

Flatten Layer

Dense Layer

Dense Layer num_classes units, softmax activation

where C represents the total number of classes, y; is the
true label (1 if the class is correct, otherwise 0), and y;
denotes the predicted probability for class 1.

For a batch of N training samples, the average categorical
cross-entropy loss is computed as:

yij log(yij) 2

C
=1

1
L:—Nz

j=14

where y;; indicates the ground truth label for sample j and
class 4, and §j;; is the corresponding predicted probability.

This loss function penalizes incorrect predictions by in-
creasing the loss value when the predicted probability for the
true class is low. It reaches its minimum when the predicted
probability distribution exactly matches the ground truth
labels. By minimizing the categorical cross-entropy loss, the
model improves its predictive accuracy and classification
reliability.
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Fig. 5: Timing analysis of U-Net segmentation model: total time taken per epoch and per step during training and validation

phases

2) Ensemble Classification on Images Segmented using U-
Net Segmentation: The U-Net model outputs are processed
for ensemble classification. The segmentation outputs are
reshaped to fit the input dimensions required by traditional
classifiers. Using the sklearn library, three classifiers—RF,
DT, and KNN are applied.

To improve classification reliability and reduce individ-
ual model biases, ensemble classification is performed by
combining predictions from these base classifiers through a
majority voting mechanism. In this approach, the class label
receiving the highest number of votes from the individual
classifiers is selected as the final predicted class. The majority
voting decision rule is mathematically expressed as:

M
§ = arg max Z Wym = ¢) 3)
ceC T

where C' denotes the set of possible classes, M represents
the total number of base classifiers, y,, is the predicted class
label by the m*" classifier, and I(-) is the indicator function
that returns 1 if the condition is true and O otherwise.

This ensemble classification strategy enhances robustness
by leveraging the complementary strengths of RF, DT, and
KNN classifiers. By combining their individual predictions,
the ensemble model improves overall generalization perfor-
mance in the context of multi-class AD diagnosis using
segmented MRI images.

IV. RESULTS AND DISCUSSION

We utilized an Intel(R) Core(TM) i5-8265U CPU running
at 1.80 GHz (boosting to 1.99 GHz) with 16 GB of RAM
to conduct all our experiments. The AD classification was
implemented using Jupyter Notebook with Python 3 on a
64-bit OS 10 operating system. This section presents a
comparative evaluation of two segmentation-classification

TABLE III: Accuracy progression of optimizers across
epochs

Epoch Adam(%) RMSProp(%)
1 37.81 36.87
4 45.62 40.00
8 65.62 55.62
12 77.50 65.93
16 89.06 80.31
20 92.81 83.12

pipelines: (i) Threshold-based overlay segmentation with
CNN classification, and (ii) U-Net segmentation followed by
ensemble classification using RF, DT, and KNN. The goal is
to assess the performance of each approach in the context of
AD classification from MRI scans.

In the first approach, segmentation was achieved using
pixel-wise thresholding and overlay analysis, followed by
classification through a CNN model. To optimize training
and mitigate overfitting, the model was trained for 16 epochs,
a value empirically determined to balance convergence and
generalization. Two optimization algorithms, RMSProp and
Adam, were employed to compare learning efficiency. Adam,
which adapts learning rates based on first and second mo-
ment estimates, consistently outperformed RMSProp in both
convergence rate and final accuracy.

Fig. 6 and Table III illustrate the accuracy progression of
both optimizers across epochs. At epoch 16, CNN with the
Adam optimiser achieved a classification accuracy of 89.06%
, compared to 80.31% with RMSProp. This makes Adam the
preferred optimizer for the proposed CNN configuration.

The accepted model over 16 epochs is Adam optimizer in
CNN classification of images segmented using overlay analy-
sis with 89.06% accuracy. Furthermore, a detailed evaluation
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Fig. 6: Graphical depiction of accuracy score of Adam and RMSProp optimizers over 20 Epochs for CNN classification

TABLE IV: Accuracy scores of Random Forest, Decision
Tree, and K-Nearest Neighbors along with Ensemble classi-
fication

Classifier Accuracy (%)
Random Forest 51
Decision Tree 67

K-Nearest Neighbours 75
Ensemble Classification 77

of various metrics reinforces this outcome. CNN with overlay
segmentation and Adam optimizer achieved an optimal pre-
cision of 89.0% with a Recall (Sensitivity) of 89.1% These
results confirm that CNN can effectively extract meaningful
spatial and hierarchical features from segmented brain MRI
regions, enabling accurate classification across AD severity
stages. In contrast, the second approach applied U-Net for
image segmentation, followed by classification using an
ensemble of traditional machine learning algorithms. The
individual classifiers, RF, DT, and KNN achieved accuracy
scores of 51%, 67%, and 75% respectively. When combined
using majority voting, the ensemble classifier achieved an
improved accuracy of 77%. Table IV summarizes these
outcomes.

Alongside accuracy, the ensemble classifier achieved a
precision of 76.0%, recall of 77.0%, specificity of 85.0%, and
an Fl-score of 76.5%. The G-Mean for this approach was
calculated to be 81.0%, reflecting reasonable performance
but clearly lower than that of the CNN-based method. The
Precision-Recall curve presented Fig. 7 clearly reflects the
performance differences among the evaluated models, and
these trends are consistent with the quantitative results sum-

marized in Table V.

The CNN model with Adam optimizer demonstrates the
best overall performance, maintaining consistently high pre-
cision values across a broad range of recall values in the
curve. This is supported by its superior metrics in Table IV,
achieving the highest precision (89%), sensitivity (89.1%),
specificity (93%), and Fl-score (89%). The CNN model
with RMSprop optimizer follows closely, with slightly lower
precision and recall values in the curve, which correspond
well to its reported precision (80%), sensitivity (80.3%), and
Fl-score (80.2%) in the table.

In contrast, the U-Net based models, especially those
combined with Random Forest and Decision Tree classifiers,
exhibit comparatively lower precision and recall throughout
the curve, indicating weaker performance. This observation is
reinforced by the table values, where U-Net + Random Forest
and U-Net + Decision Tree report lower precision (50% and
66%, respectively) and Fl-scores (50.5% and 66.5%). The
U-Net Ensemble Classification model shows intermediate
performance, with the curve depicting a gradual decline in
precision as recall increases. This trend aligns well with its
metrics in Table V, where it achieves a precision of 76%,
sensitivity of 77%, and F1-score of 76.5%. Overall, both the
graphical and tabular results consistently demonstrate that
the CNN model with Adam optimizer outperforms the other
models, followed by CNN with RMSprop, while the U-Net
based models, despite reasonable performance in ensemble
settings, generally lag behind the CNN configurations. The
confusion matrices in Fig. 8, 9, 10 illustrate the classification
performance of different models on the AD dataset. The
relatively stronger performance of the CNN model trained on
overlay-segmented images can be attributed to the efficacy of
thresholding and pixel-wise difference techniques in isolating

Volume 52, Issue 11, November 2025, Pages 4223-4234



TAENG International Journal of Computer Science

TABLE V: Performance comparison of different models on AD dataset

Model Description Precision (%)
CNN (Overlay Segmentation, RMSProp) 80.0
CNN (Overlay Segmentation, Adam) 89.0
U-Net + Random Forest 50.0
U-Net + Decision Tree 66.0
U-Net + KNN 74.0
U-Net + Ensemble Classification 76.0

Sensitivity (%) Specificity (%) F1-score (%)
80.3 89.0 80.2
89.1 93.0 89.0
51.0 75.0 50.5
67.0 80.0 66.5
75.0 84.0 74.5
77.0 85.0 76.5

1.0

0.9
0.8 1
c
2
-é 0.7 +
&
0.6
0.5 + :
—8— CNN (Adam) -
- CNN (RMSprop)
—&— U-Net Ensemble
0.4 T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Fig. 7: Precision-Recall curves for CNN (Adam, RMSprop) and U-Net Ensemble on the AD dataset.
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Fig. 8: Confusion Matrices for the proposed CNN models

AD relevant features. By highlighting structural deviations
in brain regions, this segmentation method provided the
CNN model with high-quality input, allowing the network to
effectively extract and interpret both low-level features (such
as edges and textures) and higher-level patterns (such as
shapes and anatomical structures). The CNN’s convolutional
layers, pooling mechanisms, and ReLU activations enabled a
multi-scale representation that proved particularly useful for
distinguishing between the four dementia classes.

Conversely, while U-Net is a well-regarded architecture for
biomedical segmentation, its effectiveness in this study may
have been limited by segmentation precision as observed in
Fig. 11. Any inconsistencies in delineating the regions of

interest could have propagated to the ensemble classifiers,
reducing their effectiveness. While ensemble classification
benefits from the combination of diverse models, its ultimate
accuracy is contingent on the quality of the segmented input
data. In conclusion, the CNN-based approach using overlay
segmentation visible in Fig. 9 and the Adam optimizer
demonstrated the most promising results in terms of clas-
sification accuracy and comprehensive performance metrics.
Fig. 12 and Fig. 13 demonstrate the performance of all the
compared models. The ensemble approach, while beneficial
in leveraging model diversity, was hindered by its reliance on
the quality of U-Net’s segmentation outputs. This highlights
the importance of both robust segmentation and effective
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Fig. 10: Confusion Matrices for the proposed U-Net models with RF and Ensemble classification
ORIGINAL ALZHEIMER SCAN
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Fig. 11: Image segmentation on AD scan using Overlay Thresholding and UNET Segmentation
classification architectures when developing diagnostic tools V. CONCLUSION AND FUTURE WORK

for neurodegenerative diseases such as AD.
This study presents a comparative framework for AD

detection using two segmentation-classification pipelines:
overlay-based segmentation integrated with CNN classifica-
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tion, and U-Net segmentation followed by ensemble classifi-
cation. The results demonstrate that the CNN model applied
to overlay-segmented images achieves superior performance,
with an accuracy of 89.06% using the Adam optimizer. In
contrast, the ensemble classifier comprising RF, DT, and
KNN achieved a peak accuracy of 77% when applied to
U-Net segmented images.

In addition to accuracy, the evaluation incorporated preci-
sion, recall, specificity, sensitivity, F1-score, and G-Mean to
offer a holistic view of model performance. The CNN model
achieved 89.0% precision, 89.1% recall, 93.0% specificity,
89.0% Fl-score, and a G-Mean of 91.0%. These results
underscore the model’s robustness in correctly identifying
both positive and negative cases, which is critical in medical
diagnostics where the cost of false negatives can be sub-
stantial. The proposed methods offer a scalable and effective
approach to brain MRI classification and can serve as a
valuable decision-support tool for radiologists. Furthermore,
the CNN-based pipeline significantly reduces computational
complexity and training time compared to more elaborate
segmentation-based classifiers, while maintaining high clas-

Volume 52, Issue 11, Nove

sification accuracy across all evaluated metrics. While the
current framework focuses on four-class classification based
solely on MRI scans, several enhancements can be explored
in future work. Incorporating advanced architectures such
as vision transformers or attention-based models may im-
prove feature learning and segmentation granularity. The
integration of multi-modal imaging data (e.g., PET and MRI)
could enrich spatial and functional understanding of disease
progression. Expanding the dataset size and applying transfer
learning from pre-trained models may improve generalization
to diverse patient cohorts. Additionally, the development of a
web-based interface for real-time inference and visualization
could increase the clinical applicability of the proposed
system. These future directions aim to create a more pre-
cise, reliable, and deployable tool for early AD detection,
contributing meaningfully to computer-aided diagnosis in
neurodegenerative disorders.
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