
  

Abstract—Despite the development of numerous sleep staging 

algorithms, their application in clinical environments remains 

limited. This is primarily due to significant differences in EEG 

signals between patients with sleep disorders and healthy 

individuals, caused by diverse pathological factors and 

substantial inter-individual variability. To address these 

challenges, we propose a U-shaped neural network with cross-

layer connections combined with a Bidirectional Long Short-

Term Memory (Bi-LSTM) model for automatic sleep staging. 

Specifically, we design a cross-layer connection module to 

integrate features from adjacent layers and incorporate them 

into the skip connections of the U-shaped architecture. 

Additionally, a Bi-LSTM module is embedded between specific 

feature extraction and fusion modules to enhance the continuity 

of global features and the representation of contextual 

information. To validate the effectiveness of our approach, we 

conducted experiments on 44 patients with various sleep 

disorder pathologies and evaluated the model on a public 

dataset. The results demonstrate that our model significantly 

improves sleep staging accuracy in clinical patient populations. 

 
Index Terms—EEG signal, Sleep Stage Classification, Bi-

LSTM, Deep Neural Networks 

 

I. INTRODUCTION 

LEEP is essential to human health, serving not only as a 

foundation for physical recovery but also playing critical 

roles in emotional regulation, immune function, and cognitive 

support. Studies have shown that sleep disorders can lead to 

physiological dysfunction and are important indicators for the 

early detection of various neurodegenerative diseases, such 

as Alzheimer’s disease and Parkinson’s disease [1]. Accurate 

classification of sleep stages is crucial for the diagnosis and 

treatment of sleep-related disorders. Sleep is a complex and 

dynamic process, and its precise staging aids in managing  
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conditions like insomnia and sleep apnea. Traditionally, sleep 

staging relies on polysomnography (PSG), which collects 

multiple physiological signals—such as electrocardiogram 

(ECG), electromyogram (EMG), electroencephalogram 

(EEG), and electrooculogram (EOG)—to monitor bodily 

functions during sleep [2]. 

According to the standards of the American Academy of 

Sleep Medicine (AASM), sleep is categorized into 

wakefulness (W), rapid eye movement (REM), and non-rapid 

eye movement (NREM). NREM is further divided into three 

stages: N1 (light sleep), N2 (intermediate sleep), and N3 

(deep sleep) [3]. As the gold standard, PSG typically 

segments an entire night of sleep into 30-second epochs, 

which are then manually annotated by experienced sleep 

experts. However, manual sleep staging is tedious, time-

consuming, and subjective, with a high probability of human 

error [4]. As a result, the development of automated sleep 

staging methods has garnered increasing interest in recent 

years. 

Traditional machine learning-based sleep staging 

approaches rely on handcrafted features and classifiers such 

as random forests [5] and hidden Markov models [6]. These 

methods suffer from subjectivity, limited scalability, and 

difficulty in handling high-dimensional EEG data, limiting 

their ability to extract rich features from such complex signals.  

With the rapid advancement of deep learning technologies, 

various neural network models have been proposed for 

automated sleep staging using physiological time-series data. 

These models automatically extract hierarchical features, 

significantly improving classification performance [7]. Early 

work using stacked sparse autoencoders (SAEs) laid the 

foundation for subsequent applications of recurrent neural 

networks (RNNs) [8]. Michielli et al. [9] proposed an RNN 

architecture based on dual long short-term memory (LSTM) 

blocks that, after dimensionality reduction of 55 time- and 

frequency-domain features, significantly improved 

performance, especially for the challenging N1 stage. Zhang 

et al.[10]transformed EEG signals into video-like 

representations, then applied a variant of convolutional neural 

networks (CNNs)—orthogonal CNN (OCNN)—to overcome 

limitations of conventional CNNs, achieving superior results. 

L-SeqSleepNet [11], a sequence-to-sequence model, 

enhanced sleep staging performance by capturing temporal 

dependencies more effectively. More recent models have 

incorporated attention mechanisms and Transformer-based 

architectures [12]–[16], which improve model interpretability 
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by highlighting key time steps or channels [17], thereby 

enhancing the model’s ability to capture salient features and 

contextual dependencies in sleep data.  

Despite these advancements, many existing methods still 

struggle to capture long-range dependencies in EEG signals. 

With continued progress in computing, deep learning has 

become the mainstream approach for sleep staging, 

improving accuracy and efficiency [18].  

Moreover, studies by the International Sleep Association 

have highlighted differences between healthy individuals and 

those with sleep disorders. While healthy subjects typically 

experience a cyclical progression through different sleep 

stages, patients with sleep disorders often display irregular 

stage transitions. For example, individuals with sleep apnea 

tend to have more frequent arousals and reduced proportions 

of deep sleep. Such irregularities can degrade the 

performance of sleep staging models and impact the 

assessment of sleep quality.  

In addition, many studies utilize multi-modal input signals 

to improve staging performance. However, acquiring data 

from multiple channels can disrupt the subject’s sleep, thus 

potentially affecting both the quality of the sleep itself and the 

accuracy of the staging results.  

 

II. RELATED WORK 

Automatic sleep staging has made significant progress in 

recent years, with classification algorithms generally falling 

into two categories: traditional machine learning models and 

deep learning methods. Traditional machine learning [19] 

relies on manually selecting features from EEG signals and 

then classifying them. Significant progress has been made in 

automatic sleep staging in recent years, with existing 

classification algorithms generally falling into two categories: 

traditional machine learning approaches and deep learning 

methods.  

Traditional machine learning methods [19] typically rely 

on manually extracting features from EEG signals, followed 

by classification using standard models such as support 

vector machines (SVMs) [20] and k-nearest neighbors (KNN) 

[21]. These models aim to learn the mapping between the 

extracted feature space and the corresponding sleep stages. 

The effectiveness of such methods heavily depends on the 

quality of the handcrafted features and the optimization of 

classifier parameters. However, the feature engineering 

process is often time-consuming and labor-intensive, which 

not only complicates the sleep staging process but also 

increases computational and human costs.  

With the remarkable success of deep learning in fields such 

as image recognition and natural language processing, 

researchers have increasingly explored its potential for 

processing physiological signals. For instance, SleepEEGNet 

[22] proposed a model for single-channel EEG sleep staging 

that extracts time-invariant and frequency-domain features 

from raw signals. By incorporating a novel loss function, the 

model reduces the adverse effects of class imbalance during 

training. DeepSleepNet [23] introduced a two-step training 

strategy that models the transition rules between sleep stages, 

improving training efficiency and model stability, while 

enhancing adaptability to diverse datasets. Building upon this, 

Akara and Yike [24] developed TinySleepNet, a lightweight 

CNN-based model designed for resource-constrained 

environments. By significantly reducing the number of 

parameters in the feature extraction layers, the model 

supports faster training and inference with minimal 

performance loss. XSleepNet [25] addresses the limitations 

of single-view learning by simultaneously processing both 

raw EEG signals and their time–frequency representations. 

By leveraging complementary information from multiple 

views, the model more effectively captures the underlying 

data distribution. SleepUTime [26] employs a fully 

feedforward deep neural network to segment physiological 

time series and map inputs of arbitrary length to sleep stage 

sequences across flexible time scales.  

While these models have demonstrated strong performance 

in automatic sleep staging, they often fall short when applied 

to clinical EEG data. Specifically, they struggle to capture 

significant waveform patterns and spatial relationships across 

EEG channels, which are crucial in pathological cases. 

Moreover, clinical patients often exhibit irregular sleep stage 

transitions, and current deep learning models are not well-

suited to accurately identify and model these irregularities.  

To address these challenges, Jia et al. [27] proposed 

GraphSleepNet, which leverages graph convolutional 

networks (GCNs) for improved brain connectivity and 

activity representation. By integrating spatial and temporal 

attention mechanisms, the model captures both inter-channel 

spatial relationships and temporal dynamics across adjacent 

time windows. More recently, SwinSleep [28], an adaptation 

of the Swin Transformer architecture, has been developed 

specifically for clinical PSG data. By effectively modeling 

spatiotemporal dependencies, SwinSleep enhances sleep 

staging performance in complex clinical scenarios. 

 

III. METHOD 

In this study, we propose a novel sleep staging algorithm 

named CrossLUSleepNet, which integrates an improved U-

Net architecture with a bidirectional long short-term memory 

network (Bi-LSTM) to address the limited generalization 

ability of existing sleep staging methods. The overall 

framework of the proposed method is illustrated in Fig. 01. 

The proposed architecture incorporates Bi-LSTM modules 

into an enhanced U-shaped network, enabling the capture of 

both fine-grained details and global contextual information in 

EEG signals through multi-level, continuous convolutional 

layers. This multi-scale feature extraction strategy enhances 

the model’s ability to identify sleep-specific waveforms 

across different stages. Furthermore, we introduce a 

crosslayer connection module designed to reinforce 

contextual information flow, allowing the model to better 

represent temporal continuity across sleep transitions. This 

design significantly improves the model’s robustness and 

accuracy, especially under varying signal-to-noise ratios, 

while maintaining the lightweight and generalizable 

characteristics of U-Net and Bi-LSTM architectures.  
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Fig. 1. The overall architecture of Cross-LUSleepNet. It consists of a U-shaped network structure and a cross-layer connection module. The U-shaped network 

structure consists of an encoder, a decoder, and a Bi-LSTM module. The cross-layer connection module extracts feature information and passes it to adjacent 

layers for multi-scale feature fusion. The U-shaped network structure abstractly represents multi-scale features through the encoder and decoder combined 

with the Bi-LSTM module to generate feature maps for different sleep stages. 

 

A. U-shaped network structure 

U-Net is a fully convolutional neural network [29] that 

uses a symmetrical encoder-decoder structure and can 

effectively capture multi-scale features. The encoder extracts 

high-level features of the input signal, and the decoder 

gradually restores the spatial resolution. This mechanism is 

very helpful for processing complex patterns in sleep EEG 

signals [30]. Secondly, the skip connection in U-Net allows 

high-resolution features to be passed directly from the 

encoder to the decoder, which can preserve more details. In 

addition, U-Net performs well in tasks such as image 

segmentation [31], and the sleep staging task can be 

analogized to the "segmentation" of time series, that is, 

dividing long-term sleep data into different stages, so the 

characteristics of U-Net are very suitable for this task. At the 

same time, the scalability of U-Net allows it to be combined 

with other models, such as Bi-LSTM [32], to further improve 

the ability to capture long-term dependencies, thereby 

enhancing the accuracy of sleep staging. 

The encoder utilized in this study comprises five 

convolutional blocks, each designed to preserve input 

dimensions through zero padding. Each block contains two 

consecutive convolutional operations with a 3×3 kernel, 

followed by batch normalization and a 2×2 max pooling 

operation with a stride of 2, facilitating downsampling. At 

each downsampling step, the number of feature channels 

doubles, for a total of five downsampling steps. This 

progressive downsampling decreases the input dimensions by 

a factor of 10 at the lowest level, significantly reducing 

computational and memory requirements. By downsampling 

features, the model learns abstract representations at deeper 

levels, while multi-scale stacked convolutions provide an 

expanded receptive field in the encoder’s final convolutional 

layer. Subsequently, the outputs from two LSTM layers are 

progressively aggregated through a Bi-LSTM layer with 1024 

units, followed by a Dropout layer to enhance generalization 

before entering the U-network's expansion path. 

The decoder is composed of five convolutional blocks. 

Each block in the decoder receives as input the upsampled 

output from the previous layer, along with the output from the 

cross-layer connection module. It then performs two 

convolution operations with a 3×3 kernel, followed by 

rectified linear unit (ReLU) activation and batch 

normalization. During decoding, the process reconstructs the 

original image details from the abstract feature map, 

connecting the generated feature map with both the 

corresponding feature map calculated by the encoder at the 

same scale and the feature map from adjacent layers. This 

allows the model to simultaneously capture local details and 

global contextual information, enhancing the integration of 

multi-scale features. Following five upsampling steps, the 

model includes a 1×1 convolution layer and a Dropout layer 

to map the final abstract feature to the filter, applying the 

Softmax function for final sleep stage classification. 

 

B. Bi-LSTM module 

EEG signal variations are influenced by both past and 

future brain states. Traditional unidirectional recurrent neural 

networks (RNNs) are inherently limited in their ability to 

capture bidirectional contextual information within EEG 

feature sequences. To overcome this limitation, our study 

employs a Bidirectional Long Short-Term Memory (Bi-

LSTM) network to model temporal dependencies in both 

directions. 

LSTM networks address the vanishing gradient problem in 

standard RNNs by introducing three gating mechanisms—
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input, forget, and output gates—which effectively manage 

long-term dependencies in sequential data. However, 

conventional LSTMs process data in a single temporal 

direction (typically forward in time), which restricts their 

ability to incorporate information from future states.  

In contrast, the Bi-LSTM architecture consists of two 

parallel LSTM layers: one processes the input sequence in the 

forward direction, while the other processes it in the reverse 

direction. By concatenating the outputs from both directions 

at each time step, Bi-LSTM captures richer temporal 

dependencies and provides a more comprehensive 

representation of EEG sequences. This bidirectional 

approach enhances the model's capacity to understand 

transitions between sleep stages, especially when such 

transitions exhibit subtle temporal cues from both preceding 

and succeeding intervals. An illustration of the Bi-LSTM 

processing flow is shown in Fig. 2. 

X1 X2 Xt

LSTM LSTM LSTM

LSTM LSTM LSTM

h1 h2 ht Output

BiLSTM

Input

EEG eigenvectors

Fig. 2. BiLSTM flow chart. 

 

The principle is as follows: 

Among them, ℎ⃗ 𝑡 represents the forward hidden layer state 

at the moment, ℎ⃖⃗𝑡represents the backward hidden layer state, 

𝑤𝑦 represents the weight matrix, and 𝑏𝑦 represents the bias 

term. 

 

C. Cross-layer connection module 

Neural networks extract hierarchical features from raw 

data by passing it through multiple convolutional and pooling 

layers, resulting in multilevel feature maps. In EEG signals, 

some critical features—such as subtle waveforms or transient 

events—occur at significantly smaller scales relative to the 

overall signal. Therefore, a model must effectively integrate 

information across layers to accurately classify EEG signals 

at various sleep stages.  

However, relying solely on simple upsampling operations 

in the decoder path can result in substantial information loss, 

especially for key signal points. To address this, modern deep 

learning architectures often incorporate mechanisms such as 

residual connections, dense connections, and attention 

modules to facilitate information flow and preserve feature 

integrity [33].  

In this study, we introduce a cross-layer connection module 

within the skip connections of the U-Net architecture to 

enhance information fusion across different feature 

hierarchies. As illustrated in Fig.1, the module comprises four 

layers and takes two inputs: The downsampled feature map 

from the previous encoder layer (after max pooling), and The 

output from the preceding layer of the context information 

storage module.  

Initially, the features output by the LSTM module undergo 

additional convolution-based feature extraction and are then 

upsampled using a deconvolution operation with a 2×2 kernel 

to match the spatial dimensions and channel sizes of the target 

layer. The resulting feature maps are fused through a 

combination of element-wise addition and channel-wise 

concatenation, effectively integrating semantic and 

contextual information from different network depths. 

Finally, these enriched cross-layer features are merged 

with the upsampled decoder outputs at the corresponding 

layer. This design facilitates direct information transfer 

between layers, enabling lower-level features to be 

propagated rapidly to deeper levels of the network. It 

compensates for the degradation of low-dimensional details 

during upsampling and enhances the network’s ability to 

preserve multi-scale and multi-level information.  

During training, the cross-layer connection module 

accelerates the learning of meaningful features, strengthens 

contextual representation, and improves both the 

convergence speed and segmentation accuracy of the network. 

 

D. Data augmentation training model  

Sleep stage data is usually highly unbalanced, with less 

data in deep sleep and more data in light sleep and 

wakefulness. Fig 3 shows clinical sleep data. Since samples 

on the boundary are often the most difficult to classify, 

especially when the characteristics of some sleep stages are 

similar to other stages (such as the boundary between REM 

and light sleep), N3 uses the borderline oversampling method 

of Borderline SMOTE to perform data enhancement 

processing on physiological signal data to overcome the 

imbalance of sample data. It can effectively help the model 

better identify different sleep stages and improve the 

accuracy of the model. 

The stages N3 and REM with less data are defined as minority 

classes, and the stage N2 with more data is defined as 

majority classes. The 1/2 boundary is used to distinguish safe 

samples from dangerous samples. If the samples occupy more 

than half of the k nearest neighbor samples, they are marked 

as safe samples. Such samples are far from the decision 

boundary and are easier to be correctly classified, so there is 

no need to synthesize new samples; the proportion of majority 

class samples in the k nearest neighbor samples is close to or 

slightly higher than that of minority class samples, which 

means that the sample is near the decision boundary. 

Dangerous samples are the focus of generating new samples, 

so samples with more than 1/2 belonging to the majority class 

are defined as dangerous samples. At the same time, all 

neighbors are majority class samples, indicating that the  

{

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡，ℎ⃗ 𝑡−1)

ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡，ℎ⃖⃗𝑡−1)

𝑦𝑡 = 𝜎(𝑤𝑦 ∙ |ℎ⃗ 𝑡 , ℎ⃖⃗𝑡| + 𝑏𝑦)

 (1) 
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Fig. 3. Clinical sleep staging chart 

 

sample is very likely to be a misclassified point, located in the 

decision area of the majority class, and is a noise sample, so 

the samples with all k nearest neighbor samples belonging to 

the majority class are defined as noise samples. Noise 

samples are very likely to be in the decision area of the 

majority class and need to be removed. 

The minority class sample M(i), the K nearest neighbor 

algorithm is used to calculate the k nearest neighbor samples 

from the entire data set. The distance calculation formula is: 

𝑑(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖 )
2

𝑛 

𝑖=1

 (2) 

Among them, 𝑥𝑖 and 𝑦𝑖  are two sample points in 

ndimensional space, and 𝑑(𝑋, 𝑌)  is the Euclidean distance 

between the two sample points. 

For each dangerous sample, several minority class samples 

are randomly selected from its neighborhood. New samples 

are synthesized by interpolation between these neighbor 

samples and dangerous samples, thereby expanding the 

number of minority class samples. Specifically, the formula 

for generating new samples is: 

𝑑𝑛𝑖 = 𝑑𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑑𝑚𝑖 − 𝑑𝑖) (3) 

Among them, 𝑑𝑖 is a dangerous sample, 𝑑𝑚𝑖  is a minority 

class sample in its neighborhood, and 𝑟𝑎𝑛𝑑(0,1) is a random 

number between 0 and 1. The new samples generated by 

random interpolation can enrich the minority class samples in 

the boundary area. The generated new samples are 

incorporated into the original dataset to form a balanced 

dataset, so that the model can more fully learn the 

characteristics of the minority class during training. 

 

IV. EXPERIMENTS  

A. Experimental Data 

This study adhered to the principles set forth in the 

Declaration of Helsinki and was approved by the Institutional 

Review Board of the First Hospital of Jilin University. Patient 

medical data were included in the study and used. The dataset 

contains full-night sleep records of 44 patients with sleep 

disorders, including 28 male patients and 16 female patients. 

The dataset contains 8-lead electroencephalogram (EEG) 

from E1-M2, E2-M1, F3-M2, F4-M1, C3-M2, C4-M1, O1-

M2, O2-M1 channels, 2-lead electrooculogram (EOG), 1-

lead mandibular electromyogram (EMG), and manual 

annotations of various sleep stages. The sampling frequency 

of EEG and EOG signals was 256Hz. At the same time, a 

public sleep dataset (Sleep-EDF-78) from Physionet was used 

for verification [34]. In our experiment, we used the Sleep 

Box (SC) dataset of sleep-EDF 2018, which contains 153 

full-night PSG records from 78 healthy people. Each 

recording includes two bipolar EEG channels (Fpz-Cz and 

Pz-Oz), an EOG signal, and a mandibular EMG signal, as 

well as manual annotations of sleep stages. The EEG and 

EOG signals were sampled at 100 Hz, and the EMG data was 

sampled at 1 Hz. The EEG channel signal of Fpz - Cz was 

used in this study. 

 

B. Data preprocessing 

PSG signals, which are closely associated with sleep, 

primarily consist of electroencephalogram (EEG), 

electrooculogram (EOG), and electromyography (EMG). 

Sleep specialists use these three types of signals to identify 

the characteristic waves of each sleep stage, enabling them to 

manually label the stages of sleep. For our sleep staging study, 

we therefore selected a combination of EEG and EOG signals. 

We use the same preprocessing steps for all datasets and 

models. Specifically, the EEG signals are bandpass filtered at 

0.5-45 Hz to remove high-frequency noise such as power 

frequency (50 Hz or 60 Hz), while reducing low-frequency 

interference such as electromyography. Since EEG signals 

are easily interfered by artifacts such as eye movements, 

muscle activity, and heartbeats, independent component 

TABLE I 

PATIENT DEMOGRAPHICS AND CHARACTERISTICS 

 Training Validation Testing 

Number of 

participants 

31 7 6 

Age 50 ± 7 52 ± 4 48 ± 6 

BMI (kg/m2) 24.8 ± 3.6 25.3 ± 3.4 26.0 ± 4.2 

AHI (events/h) 17 ± 3 19 ± 6 10 ± 3 

OSA 

(AHI≥15:<15) 

22:9 5:2 1:5 

Sleep stage 

(epoch) 

42917 4798 3355 

W (%) 10986 (25.6%) 830(17.3%) 439 (13.0%) 

N1 (%) 4849(11.3%) 604 (12.6%) 422 (12.5%) 

N2 (%) 16737(39.0%) 2097 (43.7%) 1609 (47.9%) 

N3 (%) 4206 (9.8%) 412 (8.6%) 218 (6.4%) 

R (%) 6137 (14.3%) 854 (17.8%) 667 (19.8%) 
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analysis (ICA) is used to separate and remove artifact 

components, and then the long EEG signals are divided into 

small segments of 30 seconds. Each segment of data is 

labeled with the corresponding sleep stage for classification 

by the model. Finally, the sampling frequency of all signals 

is unified to 100 Hz. 

 

C. Experimental parameter settings 

In the experiments of this study, the network model was 

built on Python 3.7 with Pytorch 1.12 as the backend deep 

learning library, trained using the Adam optimizer, 𝜂 =

1 × 10−4 ， 𝛽1 = 0.9， 𝛽2 = 0.999， 𝜀 = 1 × 10−8 , L2 

weight regularization with a factor of 1 × 10−6was used to 

prevent overfitting, the batch size was 64, 200 rounds of 

training were performed, and the model learning rate was 

0.001. A tester-independent 10-fold cross-validation was 

performed on the sleep patient database to fully evaluate the 

cross-subject performance of the network model. The 

network model was run on an NVIDIA GTX 3090 Ti GPU. 

 

D. Evaluation Metrics 

When evaluating the performance of neural network 

models in sleep staging tasks, indicators such as precision, 

recall, and F1 score are usually used to measure the 

classification effect of each sleep stage category: 

Precision: It indicates the proportion of samples predicted 

to be positive that are actually positive, defined as: 

presicion =
TP

TP + FP
 (4) 

Recall: It indicates the proportion of samples that are 

actually positive and that are correctly classified as positive 

by the model. It is defined as: 

recall =
TP

TP + FN
 (5) 

F1 Score: It is the harmonic average of precision and recall, 

which can balance the model performance between precision 

and recall, and is defined as: 

F1 =
2 ⋅ Pr⋅ Re  

Pr+Re  
 (6) 

Among them, TP (True Positive) is the number of samples 

correctly classified as this class, and FP (False Positive) is the 

number of samples misclassified as this class. FN (False 

Negative) is the number of samples that are actually positive 

but misclassified as other classes. 

In addition, in order to evaluate the overall performance on 

all categories, this paper also uses the following four 

indicators: 

Confusion Matrix: Provides detailed classification result 

statistics, showing the correct classification and 

misclassification between categories. 

Accuracy: Indicates the overall correct classification ratio 

of the model for all samples, calculated as: 

ACC =
TP+TN

TP+FN+TN+FP
  (7) 

Macro F1 (MF1): It represents the average of the F1 scores 

of each category, which is used to measure the balanced 

performance of the model on all categories. It is defined as 

follows: 

MF1 =
1

n
∑

2 ⋅ Pri⋅ Rei  

Pri +Rei  

n

i=1

 (8) 

 

Kappa Coefficient: It is used to measure the difference 

between the accuracy of the classification model and random 

classification. The higher the Kappa value, the better the 

classification effect. 

Among them, TN (True Negative) is the number of 

samples correctly classified as negative. P0 represents the 

actual observed accuracy, that is, the classification accuracy 

of the model. Pe represents the expected accuracy, that is, the 

prediction accuracy of the model under purely random 

conditions. 

 

E. Result and Discussion 

We initially evaluated the model using four unilateral EEG 

channels (O1-M2, C3-M2, F3-M2, E1-M2) without data 

augmentation. As shown in Fig. 4, the model achieved high 

accuracy in classifying Wake and N2 stages. However, 

performance on N1, N3, and REM stages was comparatively 

weaker due to their less distinct EEG features and the 

imbalanced class distribution. These results reflect the 

importance of spatial information in EEG-based sleep staging. 

For example, frontal channels (e.g., F3-M2) are more 

sensitive to transitions into light sleep, while occipital 

channels (e.g., O1-M2), despite reduced visual input during 

sleep, may contribute to REM detection due to their role in 

dream-related activity. 

To improve performance, we incorporated all eight EEG 

channels and applied Borderline-SMOTE to address class 

imbalance, particularly for N3 and REM stages. As shown in 

Fig. 5, the multi-channel augmented model demonstrated 

significant improvements across all sleep stages, especially 

for N1 and REM. This enhancement can be attributed to three 

key factors: the inclusion of more spatially diverse EEG data, 

allowing the model to capture a broader range of sleep-related 

brain activity, the cross-layer connection module, which 

preserved low-level features critical for fine-grained 

classification; and the targeted augmentation strategy, which 

increased the representation of difficult boundary samples 

and improved the model’s ability to generalize across sleep 

stage transitions. 

These results demonstrate that our proposed 

CrossLUSleepNet not only achieves high accuracy in 

standard scenarios but also maintains robustness and 

adaptability in challenging, imbalanced clinical data 

environments. 

 

 

Kappa =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒

 (9) 
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(b) 

 
(c) 

 
(d) 

Fig. 4.  Confusion matrix of unilateral EEG channels O1-M2, C3-M2, F3-

M2, and E1-M2 at different sleep stages under the model test in this paper, 
respectively a, b, c, and d. Each cell in the matrix represents the predicted 

percentage of each actual category, represented by the color depth in the 

matrix. The rows correspond to different sleep stages, including W, N1, N2, 
N3, and REM, while the columns represent the stages predicted by the model. 

The darker the color, the higher the consistency between the predicted results 

and the actual categories, and the diagonal indicates the accuracy of 
classification at each stage. The confusion matrix helps identify the 

advantages and disadvantages of the model at different stages. 

 
Fig. 5.  Confusion matrix of different sleep stages based on 8-channel signal 
model testing. 

 

We compared the proposed Cross-LUSleepNet with two 

representative sleep staging models DeepSleepNet and 

TransUSleepNet (which also employs a U-Net structure) on 

both clinical sleep patient datasets and public datasets. The 

results, presented in Table 2, illustrate the classification 

performance of each model across different datasets. 

To validate the effectiveness of each module in the 

proposed model, we designed two benchmark frameworks for 

comparison. Framework 1 employs only the U-Net 

architecture for sleep stage classification, while Framework 2 

integrates U-Net with a Bi-LSTM layer. To assess the impact 

of different model components on classification performance, 

we calculated the relative errors of key evaluation metrics 

between each framework and the full model. As shown in 

Table 3, Relative Error 1 denotes the discrepancy between 

Framework 1 and the proposed model, while Relative Error 2 

reflects the difference between Framework 2 and the 
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proposed model. 

As evidenced by Table 2, Cross-LUSleepNet achieves 

superior performance on clinical datasets, outperforming 

previous methods. Many existing models rely on public 

datasets consisting of healthy adults or patients with mild 

insomnia, which often fail to represent the complexity of real-

world clinical PSG data. In contrast, clinical recordings are 

prone to issues such as electrode detachment, motion artifacts, 

unstable baselines, and high electrode impedance, which can 

result in partial data loss and increased variability. 

Additionally, clinical sleep data is often affected by factors 

like sleep fragmentation and arousals, further complicating 

model training and evaluation.  

Unlike prior approaches, the proposed model directly 

learns from raw EEG and EOG signals, capturing multi-scale 

sleep transition patterns and enhancing feature representation 

through the combination of U-Net, Bi-LSTM, and a cross-

layer connection module. This design enables the model to 

extract critical temporal and spatial features for more accurate 

sleep stage classification. As a result, Cross-LUSleepNet 

demonstrates notable improvements, particularly in 

challenging stages such as N1 and REM. The N1 stage, which 

often has the fewest samples and is prone to misclassification 

due to similarity with REM, showed a significant increase in 

F1 score. Overall, the model achieved a staging accuracy of 

82.5% on raw clinical data, highlighting its strong 

generalization ability and robustness under real-world 

conditions. 

From Table 3, it is clear that the proposed model, which 

integrates Bi-LSTM modules and cross-layer connections, 

achieves higher accuracy and macro F1 scores compared to 

the benchmarks. Across the different sleep stages, all three 

models exhibit similar performance in classifying stage W, 

likely due to the distinct and dominant waveform features of 

this stage. However, more notable differences emerge in 

stage N1 classification: Framework 2 and the proposed model 

demonstrate comparable performance with F1 scores 

exceeding 55%, reflecting the benefit of Bi-LSTM modules 

in enhancing the global contextual representation of sleep 

stages. In contrast, Framework 1 attains a lower F1 score of 

52.7% for stage N1, indicating less effective modeling of 

temporal dependencies.  

Overall, the results suggest that the combined use of Bi-

LSTM and cross-layer connection modules significantly 

improves sleep staging accuracy compared to employing 

either module alone or using a simpler network design. As 

shown in Table 2, the sleep staging model developed in this 

study achieved an overall F1 score of 78.6%, representing a 

2% to 5% improvement, and an accuracy of 84.7%, 

increasing by 2% to 7%, relative to comparable models. The 

proposed model consistently outperforms existing methods of 

similar architecture, particularly excelling in challenging 

stages such as N1, N3, and REM. Furthermore, its F1 score 

during training surpasses those of baseline approaches, 

confirming its superior classification capability. 

 
 

TABLE Ⅱ 

PERFORMANCE OF DIFFERENT NETWORKS ON DIFFERENT DATASETS 

Model 
Sleep EDF  Clinical Data 

ACC MF1 Kappa 
 

 ACC MF1 Kappa 
 

Cross-LUSleepNet  87.65% 79.41% 0.79 
 

 82.66% 78.63% 0.79 
 

DeepSleepNet   82.01% 76.05% 0.76 
 

 76.00% 70.90% 0.72 
 

TransUSleepNet  89.83% 81.56% 0.85 
 

 78.54% 75.94% 0.77 
 

TABLE Ⅲ 

RELATIVE ERROR OF INDICATORS BETWEEN FRAMEWORK 1, FRAMEWORK 2 AND THE PRESET MODEL 

 
Frame-work 

1 

Frame- 

work 2 

Proposed 

Model 

Relative Error 

1 
Relative Error 2 

F1-W/% 86.2 88.2 89.4 3.2 1.2 

F1-N1/% 52.7 57.8 60.1 7.4 2.3 

F1-N2/% 82.5 84.2 85.8 3.3 1.6 

F1-N3/% 79.2 84.6 89.8 10.6 5.2 

F1-REM/% 80.5 84.2 87.6 7.1 3.4 

MF1/% 73.8 76.4 78.6 4.8 2.2 

ACC/% 76.2 79.8 82.6 6.4 2.8 
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V. CONCLUSIONS 

This paper presents a novel deep learning approach, Cross-

LUSleepNet, which integrates a U-shaped network 

architecture with bidirectional long short-term memory (Bi-

LSTM) modules to effectively learn long-range temporal 

features from EEG signals. The model incorporates a 

specially designed cross-layer connection module that 

enhances feature continuity extraction by integrating multi-

level features within the U-shaped structure. This module 

enables efficient information flow between adjacent layers 

and fuses features across different scales, thereby improving 

the global feature representation while retaining detailed local 

information. The embedded Bi-LSTM modules further 

capture long-term dependencies in temporal sequences, 

enhancing the model’s ability to represent contextual 

information and improving its understanding of stage 

transitions. By mitigating feature loss and reinforcing 

temporal continuity, the model is better equipped to recognize 

the dynamic patterns inherent in sleep stage progression. 

Compared to existing state-of-the-art methods employing U-

shaped architectures in sleep staging tasks, Cross-

LUSleepNet demonstrates superior performance in both 

quantitative metrics and qualitative evaluation. Additionally, 

the model exhibits strong generalization capability, making it 

well-suited for real-world clinical applications involving 

complex and variable EEG data. 
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