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Cross-LUSleepNet: A U-shaped Sleep Staging
Method Based on Cross-Layer Connection
Modules and B1-LSTM

Yulin Gong, Jinrui Zhang, Yudan Lv, Chang Liu and Xiaojuan Chen

Abstract—Despite the development of numerous sleep staging
algorithms, their application in clinical environments remains
limited. This is primarily due to significant differences in EEG
signals between patients with sleep disorders and healthy
individuals, caused by diverse pathological factors and
substantial inter-individual variability. To address these
challenges, we propose a U-shaped neural network with cross-
layer connections combined with a Bidirectional Long Short-
Term Memory (Bi-LSTM) model for automatic sleep staging.
Specifically, we design a cross-layer connection module to
integrate features from adjacent layers and incorporate them
into the skip connections of the U-shaped architecture.
Additionally, a Bi-LSTM module is embedded between specific
feature extraction and fusion modules to enhance the continuity
of global features and the representation of contextual
information. To validate the effectiveness of our approach, we
conducted experiments on 44 patients with various sleep
disorder pathologies and evaluated the model on a public
dataset. The results demonstrate that our model significantly
improves sleep staging accuracy in clinical patient populations.

Index Terms—EEG signal, Sleep Stage Classification, Bi-
LSTM, Deep Neural Networks

I. INTRODUCTION

LEEP is essential to human health, serving not only as a

foundation for physical recovery but also playing critical
roles in emotional regulation, immune function, and cognitive
support. Studies have shown that sleep disorders can lead to
physiological dysfunction and are important indicators for the
early detection of various neurodegenerative diseases, such
as Alzheimer’s disease and Parkinson’s disease [1]. Accurate
classification of sleep stages is crucial for the diagnosis and
treatment of sleep-related disorders. Sleep is a complex and
dynamic process, and its precise staging aids in managing
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conditions like insomnia and sleep apnea. Traditionally, sleep
staging relies on polysomnography (PSG), which collects
multiple physiological signals—such as electrocardiogram
(ECG), electromyogram (EMG), electroencephalogram
(EEG), and electrooculogram (EOG)—to monitor bodily
functions during sleep [2].

According to the standards of the American Academy of
Sleep Medicine (AASM), sleep is categorized into
wakefulness (W), rapid eye movement (REM), and non-rapid
eye movement (NREM). NREM is further divided into three
stages: N1 (light sleep), N2 (intermediate sleep), and N3
(deep sleep) [3]. As the gold standard, PSG typically
segments an entire night of sleep into 30-second epochs,
which are then manually annotated by experienced sleep
experts. However, manual sleep staging is tedious, time-
consuming, and subjective, with a high probability of human
error [4]. As a result, the development of automated sleep
staging methods has garnered increasing interest in recent
years.

Traditional machine learning-based sleep staging
approaches rely on handcrafted features and classifiers such
as random forests [5] and hidden Markov models [6]. These
methods suffer from subjectivity, limited scalability, and
difficulty in handling high-dimensional EEG data, limiting
their ability to extract rich features from such complex signals.

With the rapid advancement of deep learning technologies,
various neural network models have been proposed for
automated sleep staging using physiological time-series data.
These models automatically extract hierarchical features,
significantly improving classification performance [7]. Early
work using stacked sparse autoencoders (SAEs) laid the
foundation for subsequent applications of recurrent neural
networks (RNNSs) [8]. Michielli et al. [9] proposed an RNN
architecture based on dual long short-term memory (LSTM)
blocks that, after dimensionality reduction of 55 time- and
frequency-domain  features,  significantly ~ improved
performance, especially for the challenging N1 stage. Zhang
et al.[10]transformed EEG signals into video-like
representations, then applied a variant of convolutional neural
networks (CNNs)—orthogonal CNN (OCNN)—to overcome
limitations of conventional CNNSs, achieving superior results.
L-SeqgSleepNet [11], a sequence-to-sequence model,
enhanced sleep staging performance by capturing temporal
dependencies more effectively. More recent models have
incorporated attention mechanisms and Transformer-based
architectures [12]-[16], which improve model interpretability
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by highlighting key time steps or channels [17], thereby
enhancing the model’s ability to capture salient features and
contextual dependencies in sleep data.

Despite these advancements, many existing methods still
struggle to capture long-range dependencies in EEG signals.
With continued progress in computing, deep learning has
become the mainstream approach for sleep staging,
improving accuracy and efficiency [18].

Moreover, studies by the International Sleep Association
have highlighted differences between healthy individuals and
those with sleep disorders. While healthy subjects typically
experience a cyclical progression through different sleep
stages, patients with sleep disorders often display irregular
stage transitions. For example, individuals with sleep apnea
tend to have more frequent arousals and reduced proportions
of deep sleep. Such irregularities can degrade the
performance of sleep staging models and impact the
assessment of sleep quality.

In addition, many studies utilize multi-modal input signals
to improve staging performance. However, acquiring data
from multiple channels can disrupt the subject’s sleep, thus
potentially affecting both the quality of the sleep itself and the
accuracy of the staging results.

II.RELATED WORK

Automatic sleep staging has made significant progress in
recent years, with classification algorithms generally falling
into two categories: traditional machine learning models and
deep learning methods. Traditional machine learning [19]
relies on manually selecting features from EEG signals and
then classifying them. Significant progress has been made in
automatic sleep staging in recent years, with existing

classification algorithms generally falling into two categories:

traditional machine learning approaches and deep learning
methods.

Traditional machine learning methods [19] typically rely
on manually extracting features from EEG signals, followed
by classification using standard models such as support
vector machines (SVMs) [20] and k-nearest neighbors (KNN)
[21]. These models aim to learn the mapping between the
extracted feature space and the corresponding sleep stages.
The effectiveness of such methods heavily depends on the
quality of the handcrafted features and the optimization of
classifier parameters. However, the feature engineering
process is often time-consuming and labor-intensive, which
not only complicates the sleep staging process but also
increases computational and human costs.

With the remarkable success of deep learning in fields such
as image recognition and natural language processing,
researchers have increasingly explored its potential for
processing physiological signals. For instance, SleepEEGNet
[22] proposed a model for single-channel EEG sleep staging
that extracts time-invariant and frequency-domain features
from raw signals. By incorporating a novel loss function, the
model reduces the adverse effects of class imbalance during
training. DeepSleepNet [23] introduced a two-step training
strategy that models the transition rules between sleep stages,

improving training efficiency and model stability, while
enhancing adaptability to diverse datasets. Building upon this,
Akara and Yike [24] developed TinySleepNet, a lightweight
CNN-based model designed for resource-constrained
environments. By significantly reducing the number of
parameters in the feature extraction layers, the model
supports faster training and inference with minimal
performance loss. XSleepNet [25] addresses the limitations
of single-view learning by simultaneously processing both
raw EEG signals and their time—frequency representations.
By leveraging complementary information from multiple
views, the model more effectively captures the underlying
data distribution. SleepUTime [26] employs a fully
feedforward deep neural network to segment physiological
time series and map inputs of arbitrary length to sleep stage
sequences across flexible time scales.

While these models have demonstrated strong performance
in automatic sleep staging, they often fall short when applied
to clinical EEG data. Specifically, they struggle to capture
significant waveform patterns and spatial relationships across
EEG channels, which are crucial in pathological cases.
Moreover, clinical patients often exhibit irregular sleep stage
transitions, and current deep learning models are not well-
suited to accurately identify and model these irregularities.

To address these challenges, Jia et al. [27] proposed
GraphSleepNet, which leverages graph convolutional
networks (GCNs) for improved brain connectivity and
activity representation. By integrating spatial and temporal
attention mechanisms, the model captures both inter-channel
spatial relationships and temporal dynamics across adjacent
time windows. More recently, SwinSleep [28], an adaptation
of the Swin Transformer architecture, has been developed
specifically for clinical PSG data. By effectively modeling
spatiotemporal dependencies, SwinSleep enhances sleep
staging performance in complex clinical scenarios.

I1l. METHOD

In this study, we propose a novel sleep staging algorithm
named CrossLUSIleepNet, which integrates an improved U-
Net architecture with a bidirectional long short-term memory
network (Bi-LSTM) to address the limited generalization
ability of existing sleep staging methods. The overall
framework of the proposed method is illustrated in Fig. 01.

The proposed architecture incorporates Bi-LSTM modules
into an enhanced U-shaped network, enabling the capture of
both fine-grained details and global contextual information in
EEG signals through multi-level, continuous convolutional
layers. This multi-scale feature extraction strategy enhances
the model’s ability to identify sleep-specific waveforms
across different stages. Furthermore, we introduce a
crosslayer connection module designed to reinforce
contextual information flow, allowing the model to better
represent temporal continuity across sleep transitions. This
design significantly improves the model’s robustness and
accuracy, especially under varying signal-to-noise ratios,
while maintaining the lightweight and generalizable
characteristics of U-Net and Bi-LSTM architectures.
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Fig. 1. The overall architecture of Cross-LUSleepNet. It consists of a U-shaped network structure and a cross-layer connection module. The U-shaped network
structure consists of an encoder, a decoder, and a Bi-LSTM module. The cross-layer connection module extracts feature information and passes it to adjacent
layers for multi-scale feature fusion. The U-shaped network structure abstractly represents multi-scale features through the encoder and decoder combined
with the Bi-LSTM module to generate feature maps for different sleep stages.

A. U-shaped network structure

U-Net is a fully convolutional neural network [29] that
uses a symmetrical encoder-decoder structure and can
effectively capture multi-scale features. The encoder extracts
high-level features of the input signal, and the decoder
gradually restores the spatial resolution. This mechanism is
very helpful for processing complex patterns in sleep EEG
signals [30]. Secondly, the skip connection in U-Net allows
high-resolution features to be passed directly from the
encoder to the decoder, which can preserve more details. In
addition, U-Net performs well in tasks such as image
segmentation [31], and the sleep staging task can be
analogized to the "segmentation™ of time series, that is,
dividing long-term sleep data into different stages, so the
characteristics of U-Net are very suitable for this task. At the
same time, the scalability of U-Net allows it to be combined
with other models, such as Bi-LSTM [32], to further improve
the ability to capture long-term dependencies, thereby
enhancing the accuracy of sleep staging.

The encoder utilized in this study comprises five
convolutional blocks, each designed to preserve input
dimensions through zero padding. Each block contains two
consecutive convolutional operations with a 3>3 kernel,
followed by batch normalization and a 2>2 max pooling
operation with a stride of 2, facilitating downsampling. At
each downsampling step, the number of feature channels
doubles, for a total of five downsampling steps. This
progressive downsampling decreases the input dimensions by
a factor of 10 at the lowest level, significantly reducing
computational and memory requirements. By downsampling
features, the model learns abstract representations at deeper
levels, while multi-scale stacked convolutions provide an
expanded receptive field in the encoder’s final convolutional

layer. Subsequently, the outputs from two LSTM layers are
progressively aggregated through a Bi-LSTM layer with 1024
units, followed by a Dropout layer to enhance generalization
before entering the U-network's expansion path.

The decoder is composed of five convolutional blocks.
Each block in the decoder receives as input the upsampled
output from the previous layer, along with the output from the
cross-layer connection module. It then performs two
convolution operations with a 3>3 kernel, followed by
rectified linear unit (ReLU) activation and batch
normalization. During decoding, the process reconstructs the
original image details from the abstract feature map,
connecting the generated feature map with both the
corresponding feature map calculated by the encoder at the
same scale and the feature map from adjacent layers. This
allows the model to simultaneously capture local details and
global contextual information, enhancing the integration of
multi-scale features. Following five upsampling steps, the
model includes a 11 convolution layer and a Dropout layer
to map the final abstract feature to the filter, applying the
Softmax function for final sleep stage classification.

B.Bi-LSTM module

EEG signal variations are influenced by both past and
future brain states. Traditional unidirectional recurrent neural
networks (RNNSs) are inherently limited in their ability to
capture bidirectional contextual information within EEG
feature sequences. To overcome this limitation, our study
employs a Bidirectional Long Short-Term Memory (Bi-
LSTM) network to model temporal dependencies in both
directions.

LSTM networks address the vanishing gradient problem in
standard RNNs by introducing three gating mechanisms—
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input, forget, and output gates—which effectively manage
long-term dependencies in sequential data. However,
conventional LSTMs process data in a single temporal
direction (typically forward in time), which restricts their
ability to incorporate information from future states.

In contrast, the Bi-LSTM architecture consists of two
parallel LSTM layers: one processes the input sequence in the
forward direction, while the other processes it in the reverse
direction. By concatenating the outputs from both directions
at each time step, Bi-LSTM captures richer temporal
dependencies and provides a more comprehensive
representation of EEG sequences. This bidirectional
approach enhances the model's capacity to understand
transitions between sleep stages, especially when such
transitions exhibit subtle temporal cues from both preceding
and succeeding intervals. An illustration of the Bi-LSTM
processing flow is shown in Fig. 2.
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Fig. 2. BiLSTM flow chart.

The principle is as follows:
Among them, ﬁt represents the forward hidden layer state

at the moment, ﬁtrepresents the backward hidden layer state,
w,, represents the weight matrix, and b,, represents the bias
term.

}_{t = LSTM(xt,v Et—l)
he = LSTM (x> hy_y) 1)
Ve = G(Wv ' |Et' Etl + bv)

C.Cross-layer connection module

Neural networks extract hierarchical features from raw
data by passing it through multiple convolutional and pooling
layers, resulting in multilevel feature maps. In EEG signals,
some critical features—such as subtle waveforms or transient
events—occur at significantly smaller scales relative to the
overall signal. Therefore, a model must effectively integrate
information across layers to accurately classify EEG signals
at various sleep stages.

However, relying solely on simple upsampling operations
in the decoder path can result in substantial information loss,
especially for key signal points. To address this, modern deep
learning architectures often incorporate mechanisms such as
residual connections, dense connections, and attention

modules to facilitate information flow and preserve feature
integrity [33].

In this study, we introduce a cross-layer connection module
within the skip connections of the U-Net architecture to
enhance information fusion across different feature
hierarchies. As illustrated in Fig.1, the module comprises four
layers and takes two inputs: The downsampled feature map
from the previous encoder layer (after max pooling), and The
output from the preceding layer of the context information
storage module.

Initially, the features output by the LSTM module undergo
additional convolution-based feature extraction and are then
upsampled using a deconvolution operation with a 2>2 kernel
to match the spatial dimensions and channel sizes of the target
layer. The resulting feature maps are fused through a
combination of element-wise addition and channel-wise
concatenation,  effectively integrating semantic and
contextual information from different network depths.

Finally, these enriched cross-layer features are merged
with the upsampled decoder outputs at the corresponding
layer. This design facilitates direct information transfer
between layers, enabling lower-level features to be
propagated rapidly to deeper levels of the network. It
compensates for the degradation of low-dimensional details
during upsampling and enhances the network’s ability to
preserve multi-scale and multi-level information.

During training, the cross-layer connection module
accelerates the learning of meaningful features, strengthens
contextual representation, and improves both the
convergence speed and segmentation accuracy of the network.

D.Data augmentation training model

Sleep stage data is usually highly unbalanced, with less

data in deep sleep and more data in light sleep and
wakefulness. Fig 3 shows clinical sleep data. Since samples
on the boundary are often the most difficult to classify,
especially when the characteristics of some sleep stages are
similar to other stages (such as the boundary between REM
and light sleep), N3 uses the borderline oversampling method
of Borderline SMOTE to perform data enhancement
processing on physiological signal data to overcome the
imbalance of sample data. It can effectively help the model
better identify different sleep stages and improve the
accuracy of the model.
The stages N3 and REM with less data are defined as minority
classes, and the stage N2 with more data is defined as
majority classes. The 1/2 boundary is used to distinguish safe
samples from dangerous samples. If the samples occupy more
than half of the k nearest neighbor samples, they are marked
as safe samples. Such samples are far from the decision
boundary and are easier to be correctly classified, so there is
no need to synthesize new samples; the proportion of majority
class samples in the k nearest neighbor samples is close to or
slightly higher than that of minority class samples, which
means that the sample is near the decision boundary.
Dangerous samples are the focus of generating new samples,
so samples with more than 1/2 belonging to the majority class
are defined as dangerous samples. At the same time, all
neighbors are majority class samples, indicating that the
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sample is very likely to be a misclassified point, located in the
decision area of the majority class, and is a noise sample, so
the samples with all k nearest neighbor samples belonging to
the majority class are defined as noise samples. Noise
samples are very likely to be in the decision area of the
majority class and need to be removed.

The minority class sample M(i), the K nearest neighbor
algorithm is used to calculate the k nearest neighbor samples
from the entire data set. The distance calculation formula is:

dX,Y) = (2)

Among them, x; and y; are two sample points in
ndimensional space, and d(X,Y) is the Euclidean distance
between the two sample points.

For each dangerous sample, several minority class samples
are randomly selected from its neighborhood. New samples
are synthesized by interpolation between these neighbor
samples and dangerous samples, thereby expanding the
number of minority class samples. Specifically, the formula
for generating new samples is:

dni = di + Tand(O,l) X (dml - dl) (3)

Among them, d; is a dangerous sample, d,,,; is a minority
class sample in its neighborhood, and rand(0,1) is a random
number between 0 and 1. The new samples generated by
random interpolation can enrich the minority class samples in
the boundary area. The generated new samples are
incorporated into the original dataset to form a balanced
dataset, so that the model can more fully learn the
characteristics of the minority class during training.

IV. EXPERIMENTS

A. Experimental Data

This study adhered to the principles set forth in the
Declaration of Helsinki and was approved by the Institutional
Review Board of the First Hospital of Jilin University. Patient
medical data were included in the study and used. The dataset
contains full-night sleep records of 44 patients with sleep
disorders, including 28 male patients and 16 female patients.
The dataset contains 8-lead electroencephalogram (EEG)
from E1-M2, E2-M1, F3-M2, F4-M1, C3-M2, C4-M1, O1-
M2, O2-M1 channels, 2-lead electrooculogram (EOG), 1-
lead mandibular electromyogram (EMG), and manual
annotations of various sleep stages. The sampling frequency
of EEG and EOG signals was 256Hz. At the same time, a
public sleep dataset (Sleep-EDF-78) from Physionet was used
for verification [34]. In our experiment, we used the Sleep
Box (SC) dataset of sleep-EDF 2018, which contains 153

600 800

full-night PSG records from 78 healthy people. Each
recording includes two bipolar EEG channels (Fpz-Cz and
Pz-0z), an EOG signal, and a mandibular EMG signal, as
well as manual annotations of sleep stages. The EEG and
EOG signals were sampled at 100 Hz, and the EMG data was
sampled at 1 Hz. The EEG channel signal of Fpz - Cz was
used in this study.

TABLE |
PATIENT DEMOGRAPHICS AND CHARACTERISTICS

Training Validation Testing
Number of 31 7 6
participants
Age 50 +7 52 +4 48 +6
BMI (kg/m2) 24.8 +3.6 25.3+34 26.0 +4.2
AHI (events/h) 17 +3 19 +6 10 +3
OSA 229 5:2 1.5
(AHI>15:<15)
Sleep stage 42917 4798 3355
(epoch)
W (%) 10986 (25.6%) 830(17.3%) 439 (13.0%)
N1 (%) 4849(11.3%) 604 (12.6%) 422 (12.5%)
N2 (%) 16737(39.0%) 2097 (43.7%) 1609 (47.9%)
N3 (%) 4206 (9.8%) 412 (8.6%) 218 (6.4%)
R (%) 6137 (14.3%) 854 (17.8%) 667 (19.8%)

B. Data preprocessing

PSG signals, which are closely associated with sleep,
primarily  consist of electroencephalogram (EEG),
electrooculogram (EOG), and electromyography (EMG).
Sleep specialists use these three types of signals to identify
the characteristic waves of each sleep stage, enabling them to
manually label the stages of sleep. For our sleep staging study,
we therefore selected a combination of EEG and EOG signals.

We use the same preprocessing steps for all datasets and
models. Specifically, the EEG signals are bandpass filtered at
0.5-45 Hz to remove high-frequency noise such as power
frequency (50 Hz or 60 Hz), while reducing low-frequency
interference such as electromyography. Since EEG signals
are easily interfered by artifacts such as eye movements,
muscle activity, and heartbeats, independent component
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analysis (ICA) is used to separate and remove artifact
components, and then the long EEG signals are divided into
small segments of 30 seconds. Each segment of data is
labeled with the corresponding sleep stage for classification
by the model. Finally, the sampling frequency of all signals
is unified to 100 Hz.

C.Experimental parameter settings

In the experiments of this study, the network model was
built on Python 3.7 with Pytorch 1.12 as the backend deep
learning library, trained using the Adam optimizer, n =
1x10™*, B, =09, B,=0999, ¢=1x10"%, L2
weight regularization with a factor of 1 x 10~®was used to
prevent overfitting, the batch size was 64, 200 rounds of
training were performed, and the model learning rate was
0.001. A tester-independent 10-fold cross-validation was
performed on the sleep patient database to fully evaluate the
cross-subject performance of the network model. The
network model was run on an NVIDIA GTX 3090 Ti GPU.

D.Evaluation Metrics

When evaluating the performance of neural network
models in sleep staging tasks, indicators such as precision,
recall, and F1 score are usually used to measure the
classification effect of each sleep stage category:

Precision: It indicates the proportion of samples predicted
to be positive that are actually positive, defined as:

TP 4
TP + FP @

Recall: It indicates the proportion of samples that are
actually positive and that are correctly classified as positive
by the model. It is defined as:

presicion =

1= v 5
e T TP EN ®)

F1 Score: It is the harmonic average of precision and recall,
which can balance the model performance between precision

and recall, and is defined as:
_ 2 - Pr-Re 6
" Pr+Re ©)

Among them, TP (True Positive) is the number of samples
correctly classified as this class, and FP (False Positive) is the
number of samples misclassified as this class. FN (False
Negative) is the number of samples that are actually positive
but misclassified as other classes.

In addition, in order to evaluate the overall performance on
all categories, this paper also uses the following four
indicators:

Confusion Matrix: Provides detailed classification result
statistics, showing the correct classification and
misclassification between categories.

Accuracy: Indicates the overall correct classification ratio
of the model for all samples, calculated as:

TP+TN
ACC = TP+FN+TN+FP )

Macro F1 (MF1): It represents the average of the F1 scores
of each category, which is used to measure the balanced

performance of the model on all categories. It is defined as
follows:

i - L =2 - Pr;-Re; ;
" ne 4 Pr; + Re; ®)
i=

Kappa Coefficient: It is used to measure the difference
between the accuracy of the classification model and random
classification. The higher the Kappa value, the better the
classification effect.

PO - Pe
1-P, ®

Among them, TN (True Negative) is the number of
samples correctly classified as negative. Po represents the
actual observed accuracy, that is, the classification accuracy
of the model. P. represents the expected accuracy, that is, the
prediction accuracy of the model under purely random
conditions.

Kappa =

E. Result and Discussion

We initially evaluated the model using four unilateral EEG
channels (01-M2, C3-M2, F3-M2, E1-M2) without data
augmentation. As shown in Fig. 4, the model achieved high
accuracy in classifying Wake and N2 stages. However,
performance on N1, N3, and REM stages was comparatively
weaker due to their less distinct EEG features and the
imbalanced class distribution. These results reflect the
importance of spatial information in EEG-based sleep staging.
For example, frontal channels (e.g., F3-M2) are more
sensitive to transitions into light sleep, while occipital
channels (e.g., O1-M2), despite reduced visual input during
sleep, may contribute to REM detection due to their role in
dream-related activity.

To improve performance, we incorporated all eight EEG
channels and applied Borderline-SMOTE to address class
imbalance, particularly for N3 and REM stages. As shown in
Fig. 5, the multi-channel augmented model demonstrated
significant improvements across all sleep stages, especially
for N1 and REM. This enhancement can be attributed to three
key factors: the inclusion of more spatially diverse EEG data,
allowing the model to capture a broader range of sleep-related
brain activity, the cross-layer connection module, which
preserved low-level features critical for fine-grained
classification; and the targeted augmentation strategy, which
increased the representation of difficult boundary samples
and improved the model’s ability to generalize across sleep
stage transitions.

These results demonstrate that our proposed
CrossLUSIleepNet not only achieves high accuracy in
standard scenarios but also maintains robustness and
adaptability in challenging, imbalanced clinical data
environments.
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Fig. 4. Confusion matrix of unilateral EEG channels O1-M2, C3-M2, F3-
M2, and E1-M2 at different sleep stages under the model test in this paper,
respectively a, b, ¢, and d. Each cell in the matrix represents the predicted
percentage of each actual category, represented by the color depth in the
matrix. The rows correspond to different sleep stages, including W, N1, N2,
N3, and REM, while the columns represent the stages predicted by the model.
The darker the color, the higher the consistency between the predicted results
and the actual categories, and the diagonal indicates the accuracy of
classification at each stage. The confusion matrix helps identify the
advantages and disadvantages of the model at different stages.
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Fig. 5. Confusion matrix of different sleep stages based on 8-channel signal
model testing.

We compared the proposed Cross-LUSIleepNet with two
representative sleep staging models DeepSleepNet and
TransUSleepNet (which also employs a U-Net structure) on
both clinical sleep patient datasets and public datasets. The
results, presented in Table 2, illustrate the classification
performance of each model across different datasets.

To validate the effectiveness of each module in the
proposed model, we designed two benchmark frameworks for
comparison. Framework 1 employs only the U-Net
architecture for sleep stage classification, while Framework 2
integrates U-Net with a Bi-LSTM layer. To assess the impact
of different model components on classification performance,
we calculated the relative errors of key evaluation metrics
between each framework and the full model. As shown in
Table 3, Relative Error 1 denotes the discrepancy between
Framework 1 and the proposed model, while Relative Error 2
reflects the difference between Framework 2 and the
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proposed model.

As evidenced by Table 2, Cross-LUSleepNet achieves
superior performance on clinical datasets, outperforming
previous methods. Many existing models rely on public
datasets consisting of healthy adults or patients with mild
insomnia, which often fail to represent the complexity of real-
world clinical PSG data. In contrast, clinical recordings are
prone to issues such as electrode detachment, motion artifacts,
unstable baselines, and high electrode impedance, which can
result in partial data loss and increased variability.
Additionally, clinical sleep data is often affected by factors
like sleep fragmentation and arousals, further complicating
model training and evaluation.

Unlike prior approaches, the proposed model directly
learns from raw EEG and EOG signals, capturing multi-scale
sleep transition patterns and enhancing feature representation
through the combination of U-Net, Bi-LSTM, and a cross-
layer connection module. This design enables the model to
extract critical temporal and spatial features for more accurate
sleep stage classification. As a result, Cross-LUSleepNet
demonstrates notable improvements, particularly in
challenging stages such as N1 and REM. The N1 stage, which
often has the fewest samples and is prone to misclassification
due to similarity with REM, showed a significant increase in
F1 score. Overall, the model achieved a staging accuracy of

82.5% on raw clinical data, highlighting its strong
generalization ability and robustness under real-world
conditions.

From Table 3, it is clear that the proposed model, which
integrates Bi-LSTM modules and cross-layer connections,
achieves higher accuracy and macro F1 scores compared to
the benchmarks. Across the different sleep stages, all three
models exhibit similar performance in classifying stage W,
likely due to the distinct and dominant waveform features of
this stage. However, more notable differences emerge in
stage N1 classification: Framework 2 and the proposed model
demonstrate comparable performance with F1 scores
exceeding 55%, reflecting the benefit of Bi-LSTM modules
in enhancing the global contextual representation of sleep
stages. In contrast, Framework 1 attains a lower F1 score of
52.7% for stage N1, indicating less effective modeling of
temporal dependencies.

Overall, the results suggest that the combined use of Bi-
LSTM and cross-layer connection modules significantly
improves sleep staging accuracy compared to employing
either module alone or using a simpler network design. As
shown in Table 2, the sleep staging model developed in this
study achieved an overall F1 score of 78.6%, representing a
2% to 5% improvement, and an accuracy of 84.7%,
increasing by 2% to 7%, relative to comparable models. The
proposed model consistently outperforms existing methods of
similar architecture, particularly excelling in challenging
stages such as N1, N3, and REM. Furthermore, its F1 score
during training surpasses those of baseline approaches,
confirming its superior classification capability.

TABLEII
PERFORMANCE OF DIFFERENT NETWORKS ON DIFFERENT DATASETS

Sleep EDF Clinical Data
Model
ACC MF1 Kappa ACC MF1 Kappa
Cross-LUSleepNet 87.65% 79.41% 0.79 82.66% 78.63% 0.79
DeepSleepNet 82.01% 76.05% 0.76 76.00% 70.90% 0.72
TransUSleepNet 89.83% 81.56% 0.85 78.54% 75.94% 0.77
TABLEIII

RELATIVE ERROR OF INDICATORS BETWEEN FRAMEWORK 1, FRAMEWORK 2 AND THE PRESET MODEL

Frame-work Frame- Proposed Relative Error Relative Error 2
1 work 2 Model 1

F1-W/% 86.2 88.2 89.4 3.2 1.2
F1-N1/% 52.7 57.8 60.1 74 2.3
F1-N2/% 82.5 84.2 85.8 3.3 1.6
F1-N3/% 79.2 84.6 89.8 10.6 5.2
F1-REM/% 80.5 84.2 87.6 7.1 3.4
MF1/% 73.8 76.4 78.6 4.8 22
ACC/% 76.2 79.8 82.6 6.4 2.8
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V.CONCLUSIONS

This paper presents a novel deep learning approach, Cross-
LUSIleepNet, which integrates a U-shaped network
architecture with bidirectional long short-term memory (Bi-
LSTM) modules to effectively learn long-range temporal
features from EEG signals. The model incorporates a
specially designed cross-layer connection module that
enhances feature continuity extraction by integrating multi-
level features within the U-shaped structure. This module
enables efficient information flow between adjacent layers
and fuses features across different scales, thereby improving
the global feature representation while retaining detailed local
information. The embedded Bi-LSTM modules further
capture long-term dependencies in temporal sequences,
enhancing the model’s ability to represent contextual
information and improving its understanding of stage
transitions. By mitigating feature loss and reinforcing
temporal continuity, the model is better equipped to recognize
the dynamic patterns inherent in sleep stage progression.
Compared to existing state-of-the-art methods employing U-
shaped architectures in sleep staging tasks, Cross-
LUSIleepNet demonstrates superior performance in both
quantitative metrics and qualitative evaluation. Additionally,
the model exhibits strong generalization capability, making it
well-suited for real-world clinical applications involving
complex and variable EEG data.
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