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Abstract—In agricultural industries, autonomous robots
have adopted to reduce labor-intensive tasks. Agriculture
encompasses various activities such as soil cultivation, crop
production, and animal rearing which done manually. It plays
a crucial role in providing the world's food, textiles,
construction materials, and paper goods. Harvesting is carry
out manually using sharp tools like knives and scissors to cut
the chilies from the plant. This process requires individual
picking of each chili, consuming a significant amount of
energy and time. In traditional chili harvesting, the process
often requires a significant workforce especially for grading
due to human eyes being prone to errors. In addition,
characteristics of chili such as sizes, variations, texture and its
localization are significantly different with other type of
botanic vegetables. To address this, an investigation has
conducted using You Only Look Once (YOLO) version 5-
object detection to localize and classify chili variations.
Datasets of 300 images with resolution of 640x640 pixels has
utilized where 270 images used for training while 30 images
used in testing. The foundation of Convolutional Neural
Network (CNN) in YOLO, the proposed model successfully
classified chili into three categories; green chili, red chili and
rotten chili with detection accuracy above 93% in real-time
implementation.
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I. INTRODUCTION

GRICULTURE encompasses various activities such as

soil cultivation, crop production, and animal rearing.
It plays a vital role in supplying the world with food,
textiles, construction materials, and paper products. This
sector has been instrumental in advancing human
civilization to its current heights, transforming societies
from simple hunter-gatherer groups to more sophisticated
ones. Agriculture also serves as a market for industrial
goods, including agricultural machinery, equipment, and
fertilizers. Global population growth is driving increased
food demand, particularly across developing nations. This
highlights the importance of paying close attention to the
nutritional content and quality of the food produced.
Furthermore, agriculture generates numerous off-farm
operations, such as transportation and research programs
aimed at enhancing agricultural and livestock activities.
Over the course of human history, substantial technical
innovations have applied to boost agricultural productivity
despite limited resources [1].

Technology refers to the application of knowledge in a
specific and repeatable manner to achieve practical
objectives and becomes potential to assist the government in
addressing the nation's food security concerns while easing
the burden on available food supply [2]. It encompasses
tangible elements like machinery and tools, as well as
intangible components such as software. In the field of
agriculture, technology plays a vital role in increasing
output and labor productivity [3]. The advancement of
technologies such as the Internet of Things (loT) and
unmanned aerial wvehicles (UAVs) has significantly
transformed and integrated with traditional agricultural
practices. The integration of various wireless sensors and
10T devices has paved the way for numerous breakthroughs
in crop development. These emerging technologies are now
addressing various conventional agricultural challenges,
including disease control, efficient irrigation, cultural
practices, and responses to drought [4]. Semi-autonomous
systems lie between fully autonomous systems and
automated systems in terms of their level of self-
containment and independence. Compared to completely
autonomous systems, they are less distinct but nevertheless
more independent and adaptable than automated systems.
In a fully autonomous system, the human user is usually not
involved unless necessary, while in a semi-autonomous
system, there is shared control between the computer and
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the human user. However, it is important to note that even
fully autonomous systems must include some form of
monitoring and direct human control as a precautionary
measure in case of emergencies or if the system
malfunctions [5].

The primary goal of the science of Artificial Intelligence
(Al is to enable robots and computers to perform tasks that
would typically require human intellect. A computer has
considered intelligent if it can execute cognitive tasks at a
level comparable to a human. To achieve this, the computer
must collect, organize, and apply human expert knowledge
in a specific area to become intelligent. An effective data
labeling procedure is essential for creating a good Al
product. The performance of the model is highly influenced
by both the quality and quantity of the training data. Proper
and efficient data labeling is a crucial part of the training
process. Data collection and identification play a vital role
in training the model, with equal emphasis on the data
quality [6]. Furthermore, Al also enables estimation and
calculation of object distance using depth estimation. This
process involves determining the distance of objects in
images obtained from cameras, providing valuable
information about the subject's location and surroundings.

Although the agriculture sector in food production has
incorporated machines into many of its activities, certain
tasks still heavily rely on human labor. For instance, the
harvesting of bird's eye chili for production continues by
using traditional methods, involving handpicking. This is
because the unique characteristics of the fruit make it
challenging to machine to complete the task effectively.
Bird's eye chili plants produce small, tapered fruits,
typically two or three per node. These botanic vegetables
become green when unripe and turn red as they mature,
becoming tiny, thin, and pointed with a pungent odor.
Harvesting is carry out manually using sharp tools like
knives and scissors to cut the chilies from the plant. This
process necessitates choosing each chili by hand, which
takes a lot of time and effort. Additionally, after harvesting,
the chilies need to sort by human method to separate the
matured ones from the unripe ones. The grading process
might lead to inefficient using traditional approach due to
the human tends to make mistakes. However, by
implementing Al in the harvesting process, it is possible to
differentiate the chilies by their condition directly from the
plant through image labeling. This data can significantly
improve the harvesting process, making it more efficient
and accurate compared to traditional methods. The
incorporation of Al can pave the way for a fully
autonomous system, where machines handle the picking
and selection processes with precision and speed [7].
Although the harvesting robot can reduce the labor cost, it
does not have the ability to identify the grades as well as the
localization of the chili. Hence, the use of distance
information becomes a solution in this matter.

This article composing few contributions; YOLO version
5 is applied to recognize and localize the chili as well as
differentiating between green, red and rotten chili. The
model is also been tested to recognize the chili from

recorded video by differentiating the chili variations. To
assess the model's capability in real-world scenarios, the
trained model was also tested on real-time video for chili
detection. Section 2 presents the previous literature work,
section 3 explains the proposed material and methods for
experiments, section 4 discusses the analysis result and
discussions from the experiment conducted followed by the
last section end up for conclusion for the experiment.

Il. BACKGROUND STUDY

As a key cash crop in Asia and Africa, chili pepper
production generates substantial revenue for farmers,
ranging from smallholders to large agribusinesses.
However, chili producers often face challenges related to
pests and diseases, necessitating timely and informed
decisions for a successful harvest. The study introduces a
Decision Support Platform (DSP) tailored for chili
cultivation, leveraging real-time disease and nutrient deficit
detection to empower farmers with actionable insights for
prompt decision-making. The proposed system combines
10T, cloud computing, and data analytics. The paper
presents preliminary results on CNN-based chili
classification as well as the structure and design of the
suggested chili-DSP. The outcomes reveal that CNN
provides precise predictions and effectively learns from the
datasets. The authors suggest that their work can expands
to larger datasets for real-time chili illness categorization.
The chili-DSP aims to offer a comprehensive feature set
and support to chili producers, enabling them to enhance
production while reducing losses. The study focuses on two
illnesses, namely powdery mildew and leaf spot, utilizing a
datasets comprising 86 images, with 60% for training, 20%
validation, and 20% testing. After 23 epochs, an early halt
is implement, and the model achieves favorable
performance metrics, including an accuracy of 87%,
precision of 88%, recall of 92%, and an fl-score of 88%
[8].

To overcome the time-consuming and inefficient manual
grading process, an automatic grading system has
developed to identify and categorize crack chili after de-
stemming. The experiment utilized a CNN model to detect
fractures, and the actuator has employed to provide
appropriate control signals for classification. The system
utilized TensorFlow as the database structure, OpenCV for
image processing, and the Keras API for creating and
training neural network models. In both static and
operational scenarios, the system achieved high accuracy
rates, with 97% and 95.3%, respectively. Remarkably, even
after a 120-hour storage period, with the chili body
wrinkled due to drying, the system still achieved a success
rate of 93%. The results demonstrate the reliability and
effectiveness of the model in real-world applications [9].

The classification of chilies based on the intersection of
the calyx and the apex. The extracted chilies then further
divided into different ripeness degrees using a CNN model.
The program tracks the number of samples taken from the
farms and categorizes the quantity of images based on
various chili sizes. An analysis will conducted to evaluate
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how well the chili's size will classified after size
categorization. For this experiment, a CNN model with a
three-layer operation, including a standard layer, a max-
pooling layer, and a fully linked layer has utilized. The
images of the chilies will fed into the CNN model to
observe and learn the patterns of its categories, which
include immature, moderately mature, and mature
classifications. The preliminary experiment used a learning
rate of 0.0001 and ran for 200 epochs. The optimization
algorithm chosen was the Adam optimizer, which combines
stochastic gradient descent with adaptive learning rate
modification. In total, 240 photographs with equal-sized
images of 195 x 260 pixels has used in the investigation.
The findings indicate that the proposed model can reliably
classify chilies into three maturity stages: immature,
moderately developed, and mature [10].

In agriculture sector, automating processes that utilize
image-processing techniques to categorize chili crops based
on their color, shape, and texture is crucial. The authors
developed a portable sorting device that utilizes Artificial
Neural Networks (ANN) to separate chilies according to
their color. Plot disagreement has used to assess the model's
performance. Initially, the learning algorithm trained using
a sample of 10 images of green chilies and 10 images of red
chilies. Later, the algorithm's effectiveness has compared
with a larger datasets comprising 40 samples of chili
images. The design of the smart sorting machine was
versatile enough to be applied in the agricultural industry,
where a significant number of chili crops with various
distinctive qualities need to be processed simultaneously.
The results emphasize the importance of research in sorting
mechanisms, even though there might be some additional
cost involved [11].

The proposed system aims to establish fruit maturity
grading through object identification by training neural
network models. This will enable the system to differentiate
between ripe and unripe fruits, and subsequently, robotic
arms has utilized for harvesting. Traditionally, farming
decisions have relied heavily on human expertise. In the
article [12], the authors put forth a multi-layer perceptron
model with Keras to predict the location and motion of a
multi-axial robotic arm. The input to the neural network
consists of pixel coordinates of the center of the target crop
in the images after object recognition, while the output
represents the movements of the robotic arms. To achieve
object detection, a single-shot multi-box detector model has
combined with a MobileNet version 2 CNN, which serves
as the visual feature extraction model. The model then
trained to detect and categorize crops from gathered
images. Empirical data shows that the suggested model
achieved a mAP of 84%, surpassing the performance of
other models. Furthermore, the arm selection results
demonstrated a mAP of 89% [12].

Another work on chili localization has done by using
YOLOV5. In comparison with other versions of YOLO
model, YOLOv5 has known its ability to produce an
outstanding performance and recorded high efficiency in
detection. The author reported mAP above 80% achieved to

differentiate between red and green color chili. Even the
performance of single chili slightly low, combination of
various colors is still acceptable. Due to lighting condition
and reflection of an artificial fruits, the detection of green
chili is lower than red chili [13]. Another work has also
reported for recognition of chili using an object detection
algorithm. In this work, two different class of chili species,
cili-padi and ghost pepper has utilized. The performance of
detection is been compared by using two different
algorithms; YOLOv5 and Mask-RCNN. Two features used
including its shape and colors for differentiating the chili
categories between mature and immature. YOLOV5-I is able
to achieve 78% of precision, while YOLOv5-s and
YOLOvV5-m recorded 73% and 75% respectively. Mask-
RCNN is achieved an outstanding performance with above
95% of precision. Yet, the time taken to infer the testing
subset is definitely longer above 120000ms than YOLO
models [14].

I1l. MATERIALS AND METHODS

A. Deep Learning

Deep learning is a specialized category within the realm
of machine learning algorithms that builds upon the
foundational principles of machine learning, particularly
utilizing neural networks, to tackle highly intricate and
complex problems. While machine learning has
demonstrated its efficacy in solving relatively simple to
moderately complex tasks, it may struggle to deliver high-
performance results when dealing with exceptionally
intricate challenges. Deep learning has emerged as a
transformative solution, harnessing recent theoretical
breakthroughs and technological advancements to address
these longstanding limitations across diverse application
domains. For instance, it has found applications in cutting-
edge fields like self-driving cars, image recognition on
social media platforms, and language translation, where it
excels in handling intricate problems and generating
accurate outcomes. Deep learning is a specialized domain
within the field of machine learning that is dedicates to
developing algorithms capable of learning and
understanding both intricate and fundamental data
abstractions. These abstractions can be challenging or even
impossible for traditional machine learning algorithms to
grasp. Deep learning models draw inspiration from diverse
fields like neuroscience and game theory, often mirroring
the underlying organization of the human nervous system.
The future holds the promise of software becoming less
rigidly hard-coded, allowing for more comprehensive and
versatile solutions to various problems.

Deep learning algorithms possess the remarkable ability
to learn complex patterns, making them adept at prediction
and classification tasks. Deep learning models commonly
comprise layers of neurons, which are nonlinear units
utilized for processing input data. Each layer in these
models operates at different levels of abstraction. Deep
neural networks recognized by their substantial number of
hidden layers, as the inputs and outputs of these layers may
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not be straightforwardly comprehensible beyond their
relationship with the preceding layer. The distinctiveness of
an architecture determined by the inclusion of various
layers, and the functions within the neurons of these layers
dictate the diverse applications of a specific model. While
users can customize these layers, their core functions are
application-specific, offering superior flexibility compared
to traditional machine learning methods for regression and
classification tasks. The inclusion of multiple layers in the
model enables it to process inputs in a manner that
progresses from simple features to more intricate structures.
The ultimate aim of these models is to perform tasks with
reduced reliance on explicit guidance. This promise of
addressing both supervised and unsupervised learning
challenges is one of their significant advantages [16].

Deep learning has proven to be highly effective due to its
capacity to process large datasets. Hidden layer methods,
especially in pattern recognition, have become more
popular than classical techniques. One notable deep neural
network model is the Convolutional Neural Network (CNN)
[17-18]. CNNs excel at tasks such as recognizing
handwritten numbers, identifying cancer types, and facial
recognition. However, training deep learning models
requires extensive datasets and significant computational
power. CNNs is one of the deep neural network that
frequently used to analyze visual data. Numerous
applications has shown promising results including image
and video for recognition, segmentation, and classification
in medical fields as well as natural language processing. In
essence, CNNs are customized multilayer perceptrons
where is the network is a fully connected in which each
neuron in a layer links to all other neurons in a layer above
it [19]. A network input has formed by multiplying number
of heights with number of input, input channels and input
width then will fed into a CNN. Another fascinating
problem that computer vision faces is object recognition in
addition to conventional image classification.

Full names of authors are preferred in the author field,
but are not required. Put a space between authors’ initials.

B. Convolutional Neural Network

Unlike traditional machine learning algorithms that
operate linearly, deep learning algorithms such CNN are
organized in a hierarchy of increasing complexity and
abstraction. In the area of image recognition, deep neural
networks CNN has demonstrated to produce an outstanding
performance [20]. CNN consist of neurons that undergo a
learning process to optimize themselves. Each neuron
performs operations such as scalar products and nonlinear
functions to process information. A single perceptive score
function, which serves, as the weight from the input raw
image vectors to the final output of the class score to
represent the complete network. The last layer includes loss
functions related to the classes, and conventional
techniques created for standard ANN are still applicable.

The key distinction between CNN and traditional ANN
lies in the widespread use of CNN in the field of pattern

detection within images. This makes it possible to integrate
architecture made to manage particular image features,
improving the network's adaptability for image-focused
activities and minimizing the amount of parameters needed
to build the model. Traditional ANN models often face
challenges when dealing with the computational complexity
required for processing image data, which is considers one
of their major limitations. For standard machine learning
benchmarks involving handwritten digits with relatively
low image dimensional of just 28x28 pixels, ANN can be
effective. However, when dealing with extensive input, such
as 64x64 colored images, the number of weights in a single
neuron of the first hidden layer significantly increases to
12,288. This substantial growth in the number of weights
highlights the drawbacks of employing traditional ANN
models, as it would require much larger networks to handle
such input data effectively [21].

C. You Look Only Once

Individuals are extremely adept at quickly identifying
items in an image, knowing where they are, and
understanding their relationships with ease. Because of our
quick reactions and accurate eyesight, humans can perform
complicated activities like driving with little conscious
thought. Creating object identification algorithms that are
simultaneously fast and accurate could lead to a variety of
uses, including the development of responsive and all-
purpose robotic systems, assistive devices that can give
users real-time scene information, and computer-controlled
vehicles that do not need specialized sensors. In modern
object detection systems, various techniques employs to
identify and assess objects within an image. For instance,
classifiers uses to detect objects and evaluate them at
different sizes and locations within a test image. Before
applying a classifier to these proposed boxes, other methods
like as R-CNN generate possible bounding boxes for objects
in an image using region proposal algorithms. Following
classification, bounding boxes are refined, duplicate
detection are eliminated, and the boxes are given new
scores based on additional information in the scene during
post-processing.

You Only Look Once (YOLO) is a unique method that
reframes object detection as a single regression problem.
YOLO, which processes the entire image at once, instantly
predicts bounding box coordinates and class probabilities.
This results in faster and more efficient detection
performance, as it eliminates the need for region proposals
and allows for training on complete images. Compared to
conventional object detection techniques, YOLO models
offer several advantages. One of the key strengths of YOLO
is its speed and efficiency. It simplifies the detection
process by treating it as a prediction model. During testing,
YOLO only needs to run the neural network on a new
image to make predictions for detection. The base network
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Fig. 1. YOLOVS5 architecture

can achieve a speed of 45 frames per second on a Titan X
GPU without batch processing, while the fast version can
go even faster, reaching over 150 frames per second. This
remarkable speed allows YOLO to handle real-time live
streams with a latency of less than 25 milliseconds.
Moreover, YOLO achieves a mean average accuracy that is
more than double that of comparable real-time object
detection systems.

As shown in Fig. 1, the YOLOV5 network is composed of
three parts: the head, the neck, and the backbone [22].
YOLOV5 integrated a cross stage partial network (CSPNet)
to create CSPDarknet, which serves as the foundation of the
Darknet. An input is supply into CSPDarknet for feature
extraction then it will gives an input for PANet to fuse the
data. Finally, the detection results from the YOLO layer
pass through optimized convolutional layers that minimize
parameters and floating-point operations per second
(FLOPs) via gradient techniques. YOLOvV5 implements
CSPNet to efficiently handle gradient information flow in
its large-scale backbone network, eliminating gradient
redundancy while maintaining feature richness. This could
result in a smaller model size in addition to increasing
inference accuracy and speed. PANet served as a bottleneck
for YOLOVS5 in order to boost data throughput.

The proposed architecture integrates an enhanced
Feature Pyramid Network (FPN) with a bottom-up approach
into PANet to strengthen low-level feature propagation.
This modification simultaneously improves localization
signal extraction from lower layers and enhances object
positioning accuracy. For multi-scale prediction, the system
generates three distinct convolutional layers (18x18, 36x36,
and 72x72), enabling YOLOV5 to effectively detect objects
across varying scales (small, medium, and large) through
its specialized YOLO layer.

A key advantage of YOLO lies in its unified architecture
for end-to-end object detection. The system processes entire
images through a single neural network that concurrently
predicts bounding boxes and class probabilities, eliminating
the need for separate region proposal stages [23]. This

Meck: PANet

[
Cross Stage Partial Network Convolutional Layer
Concatenate Function

Head: YOLO Layer

holistic approach enables real-time performance by
analyzing the complete image context during both training
and inference, allowing YOLO to capture not just visual
features but also valuable contextual relationships between
objects. For instance, the fast R-CNN is a top detection
technique, but YOLO outperforms it by making fewer than
half as many background mistakes. By taking a global view
of the image, YOLO is able to achieve more accurate and
efficient object detection results. Furthermore, YOLO
excels at learning generalization representations of objects.
When evaluate in artistic photographs and trains in real-
world images, YOLO outperforms top detection techniques
such as DPM and R-CNN. Its ability to generalize well
across different contexts and handle unexpected inputs
makes it less likely to fail when used in unfamiliar
situations. This adaptability and robustness make YOLO a
highly effective and versatile object detection model [24].
YOLOV5 stands out as a simpler and more reliable deep
learning system compared to other alternatives. Notably, it
achieves significantly faster performance and demands
fewer processing resources while delivering equivalent
outcomes. YOLOV5's architecture builds on YOLOvV4,
employing CSPDarknet as its encoder, complemented by
the inclusion of Path Aggregation Network (PANet).
Additionally, YOLOV5 replaces the Leaky ReLU and Hard-
swish activation used in YOLOv4 with the SiLU activation
function. These improvements contribute to YOLOV5's
efficiency and effectiveness in object detection tasks [25].
The YOLOV5 architecture has chosen because of its
lightweight design, which enables users to train the model
with minimal processing resources and thereby reduces
costs. Additionally, its compact size enables its deployment
on mobile devices. However, there are both advantages and
disadvantages concerning the memory usage of YOLOV5. It
is 88% more compact and 180% faster than YOLOV4,
achieving an impressive frame rate of 140 Frames per
Second (FPS) compared to YOLOv4's 50 FPS. Despite
these improvements, the precision difference between
YOLOv4 and YOLOvV5 is minimal, around 0.003,
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rendering them almost identical in performance. YOLOvV5
is introduce with four different versions (s, m, I, and xlI),
where larger models offer more tunable parameters and
potentially better performance. However, it is essential to
consider that larger models with more parameters may lead
to longer training times. For real-time detection, smaller or
medium-sized models that are more suitable [26].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Collection

The goal of this work is to localize, recognize and
distinguish the green, red and rotten chili from the plant.
300 images from various categories of chili with various
angles of direction is collected from 2D mobile devices
camera. The image has divided into two different subsets;
training and testing. 270 images are used for training while
the rest 30 images will reserved for testing. A background
that is all white in order to exclude any possible outside
distractions and create a stark contrast. The chili has
rotated at various angles before the images has taken. The
datasets has also taken at various camera-to-subject
distances. These variants were included, making the
datasets more complete and addressing various conceivable
conditions found in real-world applications. Fig. 2 depict
the sample of image chili plant.

Fig. 2. Sample chili image

B. Image Labeling

After drawing the bounding outlines around the objects,
the appropriate class label as in Fig. 3 has assigned to each
of them. YOLO supports multiple classes, allowing objects
with designated with class names such as “green chili”,
“red chili” and “rotten chili”. Once the image annotation is
complete, the annotations must be save in the specific
format required by YOLO. Usually, YOLO utilizes a text
file for each image, where each line represents an object
annotation and contains information like the class
identifier, bounding box coordinates, and other relevant
details. The annotated images and their corresponding
annotation files has organized within a hierarchical
directory structure. Each image should have a separate
annotation file with the same name but different file
extensions, for instance, “imagel.jpg” and “imagel.txt”.

& A
Fig. 3. Sample labeling image

C. Model Training and Testing

YOLO architecture is widely regarded as the primary
choice for object detection, with several versions available,
such as YOLOv3, YOLOv4, and YOLOvV5. To use the
YOLO model, pre-trained weights and their corresponding
configuration file are required. The configuration file
specifies important details about the model's architecture,
such as the number of classes to detect dimensions of
anchor boxes, input size, and other parameters. By using
pre-trained weights, the YOLO model is initializes with
valuable features learned from a large datasets, making it a
form of transfer learning. During training, the YOLO
model adjusts its parameters to improve object detection
accuracy. The instruction procedure typically involves
adjusting hyper-parameters, such as learning rate, weight
decay, and sample size, to find a configuration that yields
better training results. Experimentation and model
performance monitoring on the validation set may be
necessary throughout this procedure. The model's
performance on the validation set is evaluates during
training. Metrics such as precision, recall, and mean mAP
used as indicators to assess the accuracy of the model's
object detection capabilities. By fine-tuning the model and
monitoring its performance, the YOLO model can achieve
excellent results in object detection tasks.

A portion of the annotated datasets is set aside
specifically for testing purposes. This testing datasets
contains images that unused during the training or
validation stages. This ensures that the custom YOLO
model is evaluate on completely unseen data, providing a
more accurate representation of its performance in real-
world scenarios. Once the custom YOLO model is train, its
weights are loaded, ensuring they match the model's
architecture and configuration used during training. The
model's configuration for inference is prepare by importing
the model architecture and adjusting parameters like input
size and class identifiers. During the testing phase, the
model iterates through the images in the testing datasets
and performs inference on each image. For each object
found in the images, the model predicts bounding boxes,
class labels, and confidence scores. Typically, a list of
bounding boxes, class labels, and confidence scores
generated along with these predictions. The predicted
bounding boxes, class labels, and confidence scores is
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Fig. 4. Training and validation performance for chili detection

impose on the example images to assess the model's
performance. This visualization helps in comprehending
how well the model is detecting objects. Testing a
customized YOLO model is crucial in assessing its
effectiveness in detecting objects in unseen data. By
evaluating its performance on a distinct testing datasets,
potential areas for improvement can be identify, and
informed deployment decisions can be made. In this
experiment, we label the green chili as 0, red chili as 1 and
rotten chili as 3.

The training and validation performance graphs as in
Fig. 4 for chili fruit detection model reveal both its
strengths and areas for optimization. The box loss curves
indicate effective bounding box regression, with both
training and validation losses converging near 0.02,
suggesting accurate localization with minimal overfitting.
Notably, the validation loss plateaus after epoch 50,
signaling diminishing gains from continued training.
Meanwhile, the classification loss trends towards zero,
indicating that the model effectively distinguishes between
different chili categories. However, intermittent fluctuations
in validation loss imply occasional misclassifications,
particularly in the rotten chili class. This is likely due to
limited and visually ambiguous samples, which reduce the
model’s discriminative power. Incorporating additional
rotten chili images with varied visual features could
significantly reduce this ambiguity and improve
classification accuracy. The reported performance metrics
support these observations. The model achieves high
precision (~0.95) and recall (~0.90), reflecting its ability to
minimize false positives and false negatives effectively.
However, the mAP@0.5:0.95 score plateaus at
approximately 0.05, indicating difficulty in maintaining
high precision under stricter loU thresholds.

Table | shows the performance of detection for all three
categories chili using YOLOV5 using testing subsets. These
results show that the model is highly effective at identifying
the correct chili class when it detects an object (high
precision), and even better at detecting most chili objects
present (very high recall). However, the relatively lower
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mAP@0.5:0.95 score reflects the model’s decreasing
localization accuracy at stricter loU thresholds, indicating a
need for bounding box refinement. For fair comparison, all
types of chili (green, red and rotten) applied with the same
numbers of testing sample with 30 images. As we can
observed, an average precision of green and red chili
achieves an outstanding performance above 95% of
accuracy. Green chili shows excellent detection and
classification performance with both precision and recall
above 95%, and the highest mMAP@0.5 value. This suggests
the model is very consistent in both identifying and
localizing green chilies. The mMAP@0.5:0.95 also indicates
strong robustness under stricter evaluation, likely due to
clear color contrast and sufficient sample representation.

Red chili detection maintains high accuracy, though
slightly lower than green chili, especially in recall. This
could be attributed to overlapping instances or less
distinguishable shapes, resulting in some missed detections.
Nevertheless, the model performs reliably in most test
cases, as evidenced by the strong mAP@0.5. Since we are
using the real chili plant for this experiment, it is
challenging to have a good sample of rotten chili due to the
chili conditions. Rotten chili exhibits the lowest precision
(76%) among the classes, meaning that some predictions
made as “rotten” are false positives. However, the high
recall (90%) indicates that the model was able to detect
most actual rotten chilies. This class also achieves a
respectable mAP@0.5 and mAP@0.5:0.95, despite being
underrepresented. This highlights potential overfitting or
confusion with similar visual features, and suggests the
need for more training samples and better augmentation for
this class. The chili needed to be harvest for few days before
it becomes rotten. About 76% of accuracy has obtained
where it considered the lowest performance from all three
classes. In average, 94% of mAP is recorded which is
considerably outstanding in differentiating various kind of
chili categories.
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TABLE |
ACCURACY OF DETECTION FOR VARIOUS CHILI CATEGORIES
Class Precision Recall mAP@0.5 mAP@0.5:095
Green 0.954 0.952 0.974 0.725
Red 0.919 0.868 0.938 0.663
Rotten 0.766 0.900 0.900 0.670
Average  0.880 0.906 0.937 0.686

The graph as in Fig. 5 illustrates the relationship
between model confidence scores and precision across the
three-chili classes (green, red, rotten) and their collective
performance. The X-axis shows the confidence threshold
(from 0 to 1), while the Y-axis shows precision, i.e., the
proportion of correct predictions out of all predictions made
at a given confidence level. The blue line represents the
average precision over all classes. It reaches 100%
precision at a confidence threshold of 0.976, indicating that
at high confidence, the model predictions are extremely
accurate. The green chili class maintains very high
precision (>95%) across most of the confidence range. This
indicates the model is very confident and accurate in
detecting green chilies. The curve flattens near the top,
meaning the model rarely misclassifies green chilies, even
at moderate confidence. Red chili also shows strong
precision performance, with values consistently above 90%
throughout the range. A slight dip at the end near 1.0
confidence suggests a few misclassifications at very high
confidence, possibly due to visual similarity with green
chilies or class imbalance. The rotten chili class has the
weakest precision performance across all confidence levels.
It starts low (=40-50%) and slowly increases, peaking
below 90%. This curve shows a more gradual slope and
higher variance, indicating that the model is less confident
and more error-prone when predicting this class. The likely
cause is insufficient training data or visual ambiguity (e.g.,
color similarity with leaves, partial rotting).

D. Experiments on Various Conditions

In order to ensure the model is able to detect the chili
from various conditions, different sources of input has
utilized. Fig. 6 shows the sample of detection using image
that has been captured beforehand.

Fig. 6. Detection of chili images

The model is capable to differentiate between green and
red chili in the plant with average above 90% of accuracy.
We also tested the model by measuring its ability to detect
the presence of chili from the recorded video. The model
demonstrates promising performance, even when the video
background is not a plain white background. This finding
suggests that the model is robust in handling diverse
background conditions and displays its effectiveness in
accurately detecting and classifying chili fruits. This
finding suggests that the model is robust in handling
diverse background conditions and displays its effectiveness
in accurately detecting and classifying chili fruits. On
average, the red chili records an accuracy above 90% due to
its distinct red color, making it easily distinguishable from
the leaves. However, some green chili instances do not yield
promising results. This is likely because the green chili's
color closely resembles that of the plant leaves, making it
challenging the model to differentiate between them
accurately. Fig. 7 displays the sample of experimental result
of chili detection from recorded video.

Fig. 7. Detection of chili images from real-time video

The last part of experiment is by utilizing the model on
real-time experimental conditions. In this part, we use low-
resolution camera using webcam to evaluate the model
performance for real-time situations. As we know, when it
comes to the real farming, there are few aspects need to be
tackle such as weather conditions, lighting, clutter, etc. The
live testing conditions and lower resolution of the webcam
can affect the model's performance to some extent, but it
still demonstrates the ability to distinguish chili from their
plants. Because of the camera's limitations and lower image
quality, the objects placed close to the webcam, leading to a
higher accuracy of detection for both chili categories, with
an average accuracy of above 96%. Fig. 8 shows the sample
of experimental result of chili detection for real-time
conditions.
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Fig. 8. Detection of chili images from recorded video

E. Experiments on Different Version YOLO

In addition, we also tested the chili datasets sourced from
Roboflow, providing a robust foundation with 4,376 pre-
labeled images. These images include a diverse range of
chili types, specifically red and green varieties, capturing
the variability of chili shapes, colors, and orientations. The
dataset underwent augmentation techniques to enhance its
diversity, which improves the model’s robustness by
exposing it to a broader set of visual conditions.

Additionally, 100 images of chili plants has captured
from various angles using the Intel RealSense Camera
D455 to test the model’s compatibility with RGB image
inputs from this specific camera. These 100 images
manually labeled using Roboflow's labeling tools to ensure
precision in the dataset and to assess the effectiveness of the
Intel RealSense Camera D455. Throughout the training
phase, several parameters, such as the number of epochs
and dataset size, were iteratively fine-tuned to optimize
model performance. Adjustments to these parameters
systematically applied to maximize the model’s detection
and localization capabilities for chili objects. Performance
metrics, including precision, recall, and mAP, tracked to
assess accuracy across different parameter configurations,
as presented in Table Il. This comparative analysis of
training metrics provides insight into the model’s behavior

and stability under varying conditions, guiding the
refinement process toward achieving optimal detection
accuracy.

TABLE Il
COMPARISON OF ROBOFLOW DATASET
YOLO .Total Epochs  Precision  Recall mAP Time
images (h)
YOLOV5 4476 100 0.926 0.866 0.932 1.047
YOLOvV7 4476 68 0.971 0.940 0.974 3.674

Comparative performance results show that the YOLOvV5
algorithm demonstrates high efficiency and accuracy under
different training conditions. With an expanded dataset of
4,476 images over 100 epochs, YOLOvV5 achieved an
improved precision of 92.6%, although this required a
longer training time of 1.047 hours. In comparison,
YOLOv7, trained with 4,476 images over 68 epochs,
reached the highest precision of 97.1% but necessitated a
substantially longer training duration of 3.674 hours.
Although YOLOvV7 demonstrated superior precision, its
extended training time highlights a trade-off between model
accuracy and computational efficiency. In this study,
YOLOV5 has selected as the preferred model for object
detection due to its balanced performance, achieving over
90% precision with a considerably shorter training time
than YOLOv7. YOLOvVS’s capability to deliver high
accuracy in less time is especially advantageous in
applications  where  computational  resources are
constrained, making it both cost-effective and efficient for
GPU-based processing [27-28]. Fig. 9 to 11 visually
illustrate the detection of YOLOV5 across different chili
categories, highlighting the model’s accuracy in detecting
and localizing chili fruits across diverse image types. These
figures provide a comprehensive visualization of YOLOvV5’s
performance, reinforcing its suitability for real-world object
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detection tasks by highlighting the precision and reliability
of its bounding box predictions in various detection
scenarios.

Despite the similar training time per epoch for these
lighter YOLO architectures, YOLOV7 required nearly twice
the total training duration to reach convergence and the

added computational depth in its architecture. This
extended training time, while providing higher model
accuracy, underscores the more intricate structure of
YOLOvV7 compared to YOLOvV5, which more streamlined
for efficient training. A notable observation is the
improvement in inference speed demonstrated by YOLOv7
over YOLOV5, consistent with expectations for lighter
YOLO models in real-time applications. YOLOvT7's
optimized architecture enables faster inference speeds
critical for real-time applications, though these performance
gains necessitate longer training periods compared to
previous versions. As the complexity of object detection
networks rises, so too does the time required for precise
identification, highlighting a necessary balance between
network sophistication and operational speed. The decision
to select an appropriate YOLO architecture becomes
essential for applications prioritizing real-time tracking and
high bounding-box accuracy. Selecting between YOLOvV5
and YOLOV7 requires an evaluation of application needs,
computational resources, and acceptable trade-offs between
processing efficiency and detection precision, underscoring
the importance of aligning network complexity with
specific project requirements to achieve optimal outcomes.

F. Distance Estimations

The evaluation of the model’s performance in distance
estimation reveals that the model performs with a high
degree of accuracy within a range of 40 cm to 90 cm.
Within this distance range, the model estimates closely
align with actual distances, indicating a strong ability to
interpret spatial parameters effectively and project

bounding boxes that closely match the true object size. This
minimal error range suggests that the model’s calibration
and algorithmic approach to distance measurement are
highly reliable within this specific field of operation. The
accuracy in this range likely stems from a combination of
well-tuned parameters and precise object recognition,
highlighting the model's suitability for applications
requiring detailed spatial estimations within short to
moderate distances. For distances less than 40 cm, however,
the model exhibits a tendency to underestimate the true
measurement, leading to a smaller bounding box projection
around the subject. This behavior may be due to the
increased parallax and perspective distortions typically
encountered at very close ranges, which can introduce
spatial ambiguities that challenge the model’s algorithms.
Additionally, sensors and camera limitations may
contribute to the underestimation at close distances, as finer
details become harder to capture accurately, affecting the
model's overall depth perception.

In contrast, when distances exceed 90 cm, the model
demonstrates a trend of overestimating the actual distance.
This overestimation results in the projection of a larger
bounding box than the actual object dimensions warrant.
Factors contributing to this overestimation might include
diminished resolution and decreased sensitivity in
distinguishing depth at greater distances, which can
influence the model's ability to capture the relative size of
objects. As distance increases, depth information becomes
less precise, and any minor error in estimation can become
magnified, leading to noticeable discrepancies. Fig. 12
visually captures an image taken during the distance
estimation testing, displaying the detection of a chili fruit
and the corresponding bounding box as projected by the
model. This figure provides a clear illustration of how the
model's estimations visually translate into spatial
representations. It also serves as a reference for
understanding the interaction between the bounding box
and the actual object when the model operates within
varying distances.

For further quantify the model’s performance, Table IlI
presents detailed comparisons between estimated distances
and actual measurements. The table highlights individual
data points, highlighting where the model's estimates align
or diverge from true values. Through these data points, the
error percentage has calculated, offering a concrete measure
of the model's accuracy across the entire distance range.
This error analysis allows for an objective assessment of the
model’s capacity to generalize its distance estimation and
provides insights into specific areas for improvement. The
observed variations in accuracy underscore the need for
adjustments or calibrations in scenarios requiring accurate
detection at distances outside the model’s optimal range.
Enhancing the model's algorithms to improve accuracy for
both closer and farther distances could involve integrating
additional calibration data or refining feature extraction
techniques. These adjustments help reduce detection errors
at close and far distances, expanding the model’s accurate
detection range.
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Fig. 12. Distance estimation of chili image

TABLE Il
DISTANCE ESTIMATION WITH ACTUAL DISTANCE

Actual (cm) Estimation (cm) Error (%)
30 34 13.33

35 375 7.14

40 415 3.75

45 47 4.44

50 52 4.00

55 57 351

60 64 6.67

70 72 2.86

80 83 3.75

90 88 2.22

100 114 14.00

V. CONCLUSION

Regarding chili recognition and localization, the
YOLOvV5 model demonstrated high effectiveness in
accurately detecting chili from their plants, achieving a
precision score above 90%. The model displays excellent
performance across various sources, including images,
videos and live webcam. The evaluation of green, red, and
rotten chili detection accuracy accomplishes by analyzing
the model's parameters after training. The objective has
successfully achieved with the model achieving a mAP
score almost 94% during the testing phase. High precision
at high confidence (especially >0.9) confirms the model’s
strong discriminative ability when it is certain. The green
and red chilies can be reliably detected even at lower
confidence levels, which is critical for real-time agricultural
use. The rotten chili reflects the need for data augmentation
and better labeling—this class introduces the greatest
uncertainty and should be prioritized for improvement. If
deployed in production (e.g., robotic picking or sorting

systems), the confidence threshold could be tuned to ~0.8—
0.9 to balance high precision with sufficient recall,
especially for green and red chili detection. In conclusion,
the investigation demonstrated the effectiveness of YOLO-
based algorithms in accomplishing the desired objectives.
Improved production, lower labor costs, and increased
efficiency in chili farming made possible by the effective
recognition, localization, and accuracy analysis of chili.
This work is a part of our invention in developing an
agricultural robot which is able to replace traditional
approach including detection, picking and grading.

The limitation is commonly observed in agricultural
datasets due to fruit overlap, occlusion, and irregular
shapes. Enhancing the input resolution or adopting more
advanced architectures, such as YOLOv8 with anchor-free
detection heads, may offer improvements in localization
precision across varying loU thresholds. For projection, we
will test the image with high resolution to ensure the
proposed model able to execute as what we have done in
laboratory conditions. However, when it involves bigger
sizes of images or videos, features selection might useful to
increase the effectiveness and efficiency of the model [29].
We also planning to expand our work to evaluate the
detection of fruits variations that not limited to chili with
the effect of light intensity distribution [30] and using RGB
color intensity [31]. The use of latest version of YOLO
models is necessary to expand this work using UAV images
[32]. Depth cameras use intensity analysis to calculate an
object's distance from a perspective while also giving details
on the object's shape, location, classification, and real-world
distance. Unlike standard cameras, depth cameras include
an additional pixel value that represents the object's
distance from the camera. This depth information displays
alongside the image. Various depth cameras are able to
produce pixels various aspects: red, green, blue, and depth;
this achieve by incorporating an RGB color space with a
depth system. Utilizing this additional information allows
for precise determination of the object's exact location and
its distance from the camera, which is particularly useful in
processes such as picking or sorting.
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