
Abstract—In agricultural industries, autonomous robots 

have adopted to reduce labor-intensive tasks. Agriculture 

encompasses various activities such as soil cultivation, crop 

production, and animal rearing which done manually. It plays 

a crucial role in providing the world's food, textiles, 

construction materials, and paper goods. Harvesting is carry 

out manually using sharp tools like knives and scissors to cut 

the chilies from the plant. This process requires individual 

picking of each chili, consuming a significant amount of 

energy and time. In traditional chili harvesting, the process 

often requires a significant workforce especially for grading 

due to human eyes being prone to errors. In addition, 

characteristics of chili such as sizes, variations, texture and its 

localization are significantly different with other type of 

botanic vegetables. To address this, an investigation has 

conducted using You Only Look Once (YOLO) version 5-

object detection to localize and classify chili variations. 

Datasets of 300 images with resolution of 640x640 pixels has 

utilized where 270 images used for training while 30 images 

used in testing. The foundation of Convolutional Neural 

Network (CNN) in YOLO, the proposed model successfully 

classified chili into three categories; green chili, red chili and 

rotten chili with detection accuracy above 93% in real-time 

implementation. 

Index Terms—Agricultural, YOLO, Object detection, 

CNN, Localization, Chili 
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I. INTRODUCTION

GRICULTURE encompasses various activities such as

soil cultivation, crop production, and animal rearing. 

It plays a vital role in supplying the world with food, 

textiles, construction materials, and paper products. This 

sector has been instrumental in advancing human 

civilization to its current heights, transforming societies 

from simple hunter-gatherer groups to more sophisticated 

ones. Agriculture also serves as a market for industrial 

goods, including agricultural machinery, equipment, and 

fertilizers. Global population growth is driving increased 

food demand, particularly across developing nations. This 

highlights the importance of paying close attention to the 

nutritional content and quality of the food produced. 

Furthermore, agriculture generates numerous off-farm 

operations, such as transportation and research programs 

aimed at enhancing agricultural and livestock activities. 

Over the course of human history, substantial technical 

innovations have applied to boost agricultural productivity 

despite limited resources [1]. 

Technology refers to the application of knowledge in a 

specific and repeatable manner to achieve practical 

objectives and becomes potential to assist the government in 

addressing the nation's food security concerns while easing 

the burden on available food supply [2]. It encompasses 

tangible elements like machinery and tools, as well as 

intangible components such as software. In the field of 

agriculture, technology plays a vital role in increasing 

output and labor productivity [3]. The advancement of 

technologies such as the Internet of Things (IoT) and 

unmanned aerial vehicles (UAVs) has significantly 

transformed and integrated with traditional agricultural 

practices. The integration of various wireless sensors and 

IoT devices has paved the way for numerous breakthroughs 

in crop development. These emerging technologies are now 

addressing various conventional agricultural challenges, 

including disease control, efficient irrigation, cultural 

practices, and responses to drought [4]. Semi-autonomous 

systems lie between fully autonomous systems and 

automated systems in terms of their level of self-

containment and independence. Compared to completely 

autonomous systems, they are less distinct but nevertheless 

more independent and adaptable than automated systems. 

In a fully autonomous system, the human user is usually not 

involved unless necessary, while in a semi-autonomous 

system, there is shared control between the computer and 
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the human user. However, it is important to note that even 

fully autonomous systems must include some form of 

monitoring and direct human control as a precautionary 

measure in case of emergencies or if the system 

malfunctions [5]. 

The primary goal of the science of Artificial Intelligence 

(AI) is to enable robots and computers to perform tasks that 

would typically require human intellect. A computer has 

considered intelligent if it can execute cognitive tasks at a 

level comparable to a human. To achieve this, the computer 

must collect, organize, and apply human expert knowledge 

in a specific area to become intelligent. An effective data 

labeling procedure is essential for creating a good AI 

product. The performance of the model is highly influenced 

by both the quality and quantity of the training data. Proper 

and efficient data labeling is a crucial part of the training 

process. Data collection and identification play a vital role 

in training the model, with equal emphasis on the data 

quality [6]. Furthermore, AI also enables estimation and 

calculation of object distance using depth estimation. This 

process involves determining the distance of objects in 

images obtained from cameras, providing valuable 

information about the subject's location and surroundings. 

Although the agriculture sector in food production has 

incorporated machines into many of its activities, certain 

tasks still heavily rely on human labor. For instance, the 

harvesting of bird's eye chili for production continues by 

using traditional methods, involving handpicking. This is 

because the unique characteristics of the fruit make it 

challenging to machine to complete the task effectively. 

Bird's eye chili plants produce small, tapered fruits, 

typically two or three per node. These botanic vegetables 

become green when unripe and turn red as they mature, 

becoming tiny, thin, and pointed with a pungent odor. 

Harvesting is carry out manually using sharp tools like 

knives and scissors to cut the chilies from the plant. This 

process necessitates choosing each chili by hand, which 

takes a lot of time and effort. Additionally, after harvesting, 

the chilies need to sort by human method to separate the 

matured ones from the unripe ones. The grading process 

might lead to inefficient using traditional approach due to 

the human tends to make mistakes. However, by 

implementing AI in the harvesting process, it is possible to 

differentiate the chilies by their condition directly from the 

plant through image labeling. This data can significantly 

improve the harvesting process, making it more efficient 

and accurate compared to traditional methods. The 

incorporation of AI can pave the way for a fully 

autonomous system, where machines handle the picking 

and selection processes with precision and speed [7]. 

Although the harvesting robot can reduce the labor cost, it 

does not have the ability to identify the grades as well as the 

localization of the chili. Hence, the use of distance 

information becomes a solution in this matter. 

This article composing few contributions; YOLO version 

5 is applied to recognize and localize the chili as well as 

differentiating between green, red and rotten chili. The 

model is also been tested to recognize the chili from 

recorded video by differentiating the chili variations. To 

assess the model's capability in real-world scenarios, the 

trained model was also tested on real-time video for chili 

detection. Section 2 presents the previous literature work, 

section 3 explains the proposed material and methods for 

experiments, section 4 discusses the analysis result and 

discussions from the experiment conducted followed by the 

last section end up for conclusion for the experiment. 

II. BACKGROUND STUDY

As a key cash crop in Asia and Africa, chili pepper 

production generates substantial revenue for farmers, 

ranging from smallholders to large agribusinesses. 

However, chili producers often face challenges related to 

pests and diseases, necessitating timely and informed 

decisions for a successful harvest. The study introduces a 

Decision Support Platform (DSP) tailored for chili 

cultivation, leveraging real-time disease and nutrient deficit 

detection to empower farmers with actionable insights for 

prompt decision-making. The proposed system combines 

IoT, cloud computing, and data analytics. The paper 

presents preliminary results on CNN-based chili 

classification as well as the structure and design of the 

suggested chili-DSP. The outcomes reveal that CNN 

provides precise predictions and effectively learns from the 

datasets. The authors suggest that their work can expands 

to larger datasets for real-time chili illness categorization. 

The chili-DSP aims to offer a comprehensive feature set 

and support to chili producers, enabling them to enhance 

production while reducing losses. The study focuses on two 

illnesses, namely powdery mildew and leaf spot, utilizing a 

datasets comprising 86 images, with 60% for training, 20% 

validation, and 20% testing. After 23 epochs, an early halt 

is implement, and the model achieves favorable 

performance metrics, including an accuracy of 87%, 

precision of 88%, recall of 92%, and an f1-score of 88% 

[8].  

To overcome the time-consuming and inefficient manual 

grading process, an automatic grading system has 

developed to identify and categorize crack chili after de-

stemming. The experiment utilized a CNN model to detect 

fractures, and the actuator has employed to provide 

appropriate control signals for classification. The system 

utilized TensorFlow as the database structure, OpenCV for 

image processing, and the Keras API for creating and 

training neural network models. In both static and 

operational scenarios, the system achieved high accuracy 

rates, with 97% and 95.3%, respectively. Remarkably, even 

after a 120-hour storage period, with the chili body 

wrinkled due to drying, the system still achieved a success 

rate of 93%. The results demonstrate the reliability and 

effectiveness of the model in real-world applications [9].  

The classification of chilies based on the intersection of 

the calyx and the apex. The extracted chilies then further 

divided into different ripeness degrees using a CNN model. 

The program tracks the number of samples taken from the 

farms and categorizes the quantity of images based on 

various chili sizes. An analysis will conducted to evaluate 
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how well the chili's size will classified after size 

categorization. For this experiment, a CNN model with a 

three-layer operation, including a standard layer, a max-

pooling layer, and a fully linked layer has utilized. The 

images of the chilies will fed into the CNN model to 

observe and learn the patterns of its categories, which 

include immature, moderately mature, and mature 

classifications. The preliminary experiment used a learning 

rate of 0.0001 and ran for 200 epochs. The optimization 

algorithm chosen was the Adam optimizer, which combines 

stochastic gradient descent with adaptive learning rate 

modification. In total, 240 photographs with equal-sized 

images of 195 × 260 pixels has used in the investigation. 

The findings indicate that the proposed model can reliably 

classify chilies into three maturity stages: immature, 

moderately developed, and mature [10].  

In agriculture sector, automating processes that utilize 

image-processing techniques to categorize chili crops based 

on their color, shape, and texture is crucial. The authors 

developed a portable sorting device that utilizes Artificial 

Neural Networks (ANN) to separate chilies according to 

their color. Plot disagreement has used to assess the model's 

performance. Initially, the learning algorithm trained using 

a sample of 10 images of green chilies and 10 images of red 

chilies. Later, the algorithm's effectiveness has compared 

with a larger datasets comprising 40 samples of chili 

images. The design of the smart sorting machine was 

versatile enough to be applied in the agricultural industry, 

where a significant number of chili crops with various 

distinctive qualities need to be processed simultaneously. 

The results emphasize the importance of research in sorting 

mechanisms, even though there might be some additional 

cost involved [11].  

The proposed system aims to establish fruit maturity 

grading through object identification by training neural 

network models. This will enable the system to differentiate 

between ripe and unripe fruits, and subsequently, robotic 

arms has utilized for harvesting. Traditionally, farming 

decisions have relied heavily on human expertise. In the 

article [12], the authors put forth a multi-layer perceptron 

model with Keras to predict the location and motion of a 

multi-axial robotic arm. The input to the neural network 

consists of pixel coordinates of the center of the target crop 

in the images after object recognition, while the output 

represents the movements of the robotic arms. To achieve 

object detection, a single-shot multi-box detector model has 

combined with a MobileNet version 2 CNN, which serves 

as the visual feature extraction model. The model then 

trained to detect and categorize crops from gathered 

images. Empirical data shows that the suggested model 

achieved a mAP of 84%, surpassing the performance of 

other models. Furthermore, the arm selection results 

demonstrated a mAP of 89% [12].  

Another work on chili localization has done by using 

YOLOv5. In comparison with other versions of YOLO 

model, YOLOv5 has known its ability to produce an 

outstanding performance and recorded high efficiency in 

detection. The author reported mAP above 80% achieved to 

differentiate between red and green color chili. Even the 

performance of single chili slightly low, combination of 

various colors is still acceptable. Due to lighting condition 

and reflection of an artificial fruits, the detection of green 

chili is lower than red chili [13]. Another work has also 

reported for recognition of chili using an object detection 

algorithm. In this work, two different class of chili species, 

cili-padi and ghost pepper has utilized. The performance of 

detection is been compared by using two different 

algorithms; YOLOv5 and Mask-RCNN. Two features used 

including its shape and colors for differentiating the chili 

categories between mature and immature. YOLOv5-l is able 

to achieve 78% of precision, while YOLOv5-s and 

YOLOv5-m recorded 73% and 75% respectively. Mask-

RCNN is achieved an outstanding performance with above 

95% of precision. Yet, the time taken to infer the testing 

subset is definitely longer above 120000ms than YOLO 

models [14]. 

III. MATERIALS AND METHODS

A. Deep Learning

Deep learning is a specialized category within the realm

of machine learning algorithms that builds upon the 

foundational principles of machine learning, particularly 

utilizing neural networks, to tackle highly intricate and 

complex problems. While machine learning has 

demonstrated its efficacy in solving relatively simple to 

moderately complex tasks, it may struggle to deliver high-

performance results when dealing with exceptionally 

intricate challenges. Deep learning has emerged as a 

transformative solution, harnessing recent theoretical 

breakthroughs and technological advancements to address 

these longstanding limitations across diverse application 

domains. For instance, it has found applications in cutting-

edge fields like self-driving cars, image recognition on 

social media platforms, and language translation, where it 

excels in handling intricate problems and generating 

accurate outcomes. Deep learning is a specialized domain 

within the field of machine learning that is dedicates to 

developing algorithms capable of learning and 

understanding both intricate and fundamental data 

abstractions. These abstractions can be challenging or even 

impossible for traditional machine learning algorithms to 

grasp. Deep learning models draw inspiration from diverse 

fields like neuroscience and game theory, often mirroring 

the underlying organization of the human nervous system. 

The future holds the promise of software becoming less 

rigidly hard-coded, allowing for more comprehensive and 

versatile solutions to various problems.  

Deep learning algorithms possess the remarkable ability 

to learn complex patterns, making them adept at prediction 

and classification tasks. Deep learning models commonly 

comprise layers of neurons, which are nonlinear units 

utilized for processing input data. Each layer in these 

models operates at different levels of abstraction. Deep 

neural networks recognized by their substantial number of 

hidden layers, as the inputs and outputs of these layers may 
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not be straightforwardly comprehensible beyond their 

relationship with the preceding layer. The distinctiveness of 

an architecture determined by the inclusion of various 

layers, and the functions within the neurons of these layers 

dictate the diverse applications of a specific model. While 

users can customize these layers, their core functions are 

application-specific, offering superior flexibility compared 

to traditional machine learning methods for regression and 

classification tasks. The inclusion of multiple layers in the 

model enables it to process inputs in a manner that 

progresses from simple features to more intricate structures. 

The ultimate aim of these models is to perform tasks with 

reduced reliance on explicit guidance. This promise of 

addressing both supervised and unsupervised learning 

challenges is one of their significant advantages [16]. 

Deep learning has proven to be highly effective due to its 

capacity to process large datasets. Hidden layer methods, 

especially in pattern recognition, have become more 

popular than classical techniques. One notable deep neural 

network model is the Convolutional Neural Network (CNN) 

[17-18]. CNNs excel at tasks such as recognizing 

handwritten numbers, identifying cancer types, and facial 

recognition. However, training deep learning models 

requires extensive datasets and significant computational 

power. CNNs is one of the deep neural network that 

frequently used to analyze visual data. Numerous 

applications has shown promising results including image 

and video for recognition, segmentation, and classification 

in medical fields as well as natural language processing.  In 

essence, CNNs are customized multilayer perceptrons 

where is the network is a fully connected in which each 

neuron in a layer links to all other neurons in a layer above 

it [19]. A network input has formed by multiplying number 

of heights with number of input, input channels and input 

width then will fed into a CNN. Another fascinating 

problem that computer vision faces is object recognition in 

addition to conventional image classification. 

Full names of authors are preferred in the author field, 

but are not required. Put a space between authors’ initials. 

B. Convolutional Neural Network

Unlike traditional machine learning algorithms that

operate linearly, deep learning algorithms such CNN are 

organized in a hierarchy of increasing complexity and 

abstraction. In the area of image recognition, deep neural 

networks CNN has demonstrated to produce an outstanding 

performance [20]. CNN consist of neurons that undergo a 

learning process to optimize themselves. Each neuron 

performs operations such as scalar products and nonlinear 

functions to process information. A single perceptive score 

function, which serves, as the weight from the input raw 

image vectors to the final output of the class score to 

represent the complete network. The last layer includes loss 

functions related to the classes, and conventional 

techniques created for standard ANN are still applicable.  

The key distinction between CNN and traditional ANN 

lies in the widespread use of CNN in the field of pattern 

detection within images. This makes it possible to integrate 

architecture made to manage particular image features, 

improving the network's adaptability for image-focused 

activities and minimizing the amount of parameters needed 

to build the model. Traditional ANN models often face 

challenges when dealing with the computational complexity 

required for processing image data, which is considers one 

of their major limitations. For standard machine learning 

benchmarks involving handwritten digits with relatively 

low image dimensional of just 28x28 pixels, ANN can be 

effective. However, when dealing with extensive input, such 

as 64x64 colored images, the number of weights in a single 

neuron of the first hidden layer significantly increases to 

12,288. This substantial growth in the number of weights 

highlights the drawbacks of employing traditional ANN 

models, as it would require much larger networks to handle 

such input data effectively [21]. 

C. You Look Only Once

Individuals are extremely adept at quickly identifying

items in an image, knowing where they are, and 

understanding their relationships with ease. Because of our 

quick reactions and accurate eyesight, humans can perform 

complicated activities like driving with little conscious 

thought. Creating object identification algorithms that are 

simultaneously fast and accurate could lead to a variety of 

uses, including the development of responsive and all-

purpose robotic systems, assistive devices that can give 

users real-time scene information, and computer-controlled 

vehicles that do not need specialized sensors. In modern 

object detection systems, various techniques employs to 

identify and assess objects within an image. For instance, 

classifiers uses to detect objects and evaluate them at 

different sizes and locations within a test image. Before 

applying a classifier to these proposed boxes, other methods 

like as R-CNN generate possible bounding boxes for objects 

in an image using region proposal algorithms. Following 

classification, bounding boxes are refined, duplicate 

detection are eliminated, and the boxes are given new 

scores based on additional information in the scene during 

post-processing. 

You Only Look Once (YOLO) is a unique method that 

reframes object detection as a single regression problem. 

YOLO, which processes the entire image at once, instantly 

predicts bounding box coordinates and class probabilities. 

This results in faster and more efficient detection 

performance, as it eliminates the need for region proposals 

and allows for training on complete images. Compared to 

conventional object detection techniques, YOLO models 

offer several advantages. One of the key strengths of YOLO 

is its speed and efficiency. It simplifies the detection 

process by treating it as a prediction model. During testing, 

YOLO only needs to run the neural network on a new 

image to make predictions for detection. The base network  
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Fig. 1.  YOLOv5 architecture 

can achieve a speed of 45 frames per second on a Titan X 

GPU without batch processing, while the fast version can 

go even faster, reaching over 150 frames per second. This 

remarkable speed allows YOLO to handle real-time live 

streams with a latency of less than 25 milliseconds. 

Moreover, YOLO achieves a mean average accuracy that is 

more than double that of comparable real-time object 

detection systems. 

As shown in Fig. 1, the YOLOv5 network is composed of 

three parts: the head, the neck, and the backbone [22]. 

YOLOv5 integrated a cross stage partial network (CSPNet) 

to create CSPDarknet, which serves as the foundation of the 

Darknet. An input is supply into CSPDarknet for feature 

extraction then it will gives an input for PANet to fuse the 

data. Finally, the detection results from the YOLO layer 

pass through optimized convolutional layers that minimize 

parameters and floating-point operations per second 

(FLOPs) via gradient techniques. YOLOv5 implements 

CSPNet to efficiently handle gradient information flow in 

its large-scale backbone network, eliminating gradient 

redundancy while maintaining feature richness. This could 

result in a smaller model size in addition to increasing 

inference accuracy and speed. PANet served as a bottleneck 

for YOLOv5 in order to boost data throughput.  

The proposed architecture integrates an enhanced 

Feature Pyramid Network (FPN) with a bottom-up approach 

into PANet to strengthen low-level feature propagation. 

This modification simultaneously improves localization 

signal extraction from lower layers and enhances object 

positioning accuracy. For multi-scale prediction, the system 

generates three distinct convolutional layers (18×18, 36×36, 

and 72×72), enabling YOLOv5 to effectively detect objects 

across varying scales (small, medium, and large) through 

its specialized YOLO layer.  

A key advantage of YOLO lies in its unified architecture 

for end-to-end object detection. The system processes entire 

images through a single neural network that concurrently 

predicts bounding boxes and class probabilities, eliminating 

the need for separate region proposal stages [23]. This 

holistic approach enables real-time performance by 

analyzing the complete image context during both training 

and inference, allowing YOLO to capture not just visual 

features but also valuable contextual relationships between 

objects. For instance, the fast R-CNN is a top detection 

technique, but YOLO outperforms it by making fewer than 

half as many background mistakes. By taking a global view 

of the image, YOLO is able to achieve more accurate and 

efficient object detection results. Furthermore, YOLO 

excels at learning generalization representations of objects. 

When evaluate in artistic photographs and trains in real-

world images, YOLO outperforms top detection techniques 

such as DPM and R-CNN. Its ability to generalize well 

across different contexts and handle unexpected inputs 

makes it less likely to fail when used in unfamiliar 

situations. This adaptability and robustness make YOLO a 

highly effective and versatile object detection model [24].  

YOLOv5 stands out as a simpler and more reliable deep 

learning system compared to other alternatives. Notably, it 

achieves significantly faster performance and demands 

fewer processing resources while delivering equivalent 

outcomes. YOLOv5's architecture builds on YOLOv4, 

employing CSPDarknet as its encoder, complemented by 

the inclusion of Path Aggregation Network (PANet). 

Additionally, YOLOv5 replaces the Leaky ReLU and Hard-

swish activation used in YOLOv4 with the SiLU activation 

function. These improvements contribute to YOLOv5's 

efficiency and effectiveness in object detection tasks [25]. 

The YOLOv5 architecture has chosen because of its 

lightweight design, which enables users to train the model 

with minimal processing resources and thereby reduces 

costs. Additionally, its compact size enables its deployment 

on mobile devices. However, there are both advantages and 

disadvantages concerning the memory usage of YOLOv5. It 

is 88% more compact and 180% faster than YOLOv4, 

achieving an impressive frame rate of 140 Frames per 

Second (FPS) compared to YOLOv4's 50 FPS. Despite 

these improvements, the precision difference between 

YOLOv4 and YOLOv5 is minimal, around 0.003, 
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rendering them almost identical in performance. YOLOv5 

is introduce with four different versions (s, m, l, and xl), 

where larger models offer more tunable parameters and 

potentially better performance. However, it is essential to 

consider that larger models with more parameters may lead 

to longer training times. For real-time detection, smaller or 

medium-sized models that are more suitable [26]. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Collection

The goal of this work is to localize, recognize and

distinguish the green, red and rotten chili from the plant. 

300 images from various categories of chili with various 

angles of direction is collected from 2D mobile devices 

camera. The image has divided into two different subsets; 

training and testing. 270 images are used for training while 

the rest 30 images will reserved for testing. A background 

that is all white in order to exclude any possible outside 

distractions and create a stark contrast. The chili has 

rotated at various angles before the images has taken. The 

datasets has also taken at various camera-to-subject 

distances. These variants were included, making the 

datasets more complete and addressing various conceivable 

conditions found in real-world applications. Fig. 2 depict 

the sample of image chili plant. 

Fig. 2.  Sample chili image 

B. Image Labeling

After drawing the bounding outlines around the objects,

the appropriate class label as in Fig. 3 has assigned to each 

of them. YOLO supports multiple classes, allowing objects 

with designated with class names such as “green chili”, 

“red chili” and “rotten chili”. Once the image annotation is 

complete, the annotations must be save in the specific 

format required by YOLO. Usually, YOLO utilizes a text 

file for each image, where each line represents an object 

annotation and contains information like the class 

identifier, bounding box coordinates, and other relevant 

details. The annotated images and their corresponding 

annotation files has organized within a hierarchical 

directory structure. Each image should have a separate 

annotation file with the same name but different file 

extensions, for instance, “image1.jpg” and “image1.txt”.  

Fig. 3.  Sample labeling image 

C. Model Training and Testing

YOLO architecture is widely regarded as the primary

choice for object detection, with several versions available, 

such as YOLOv3, YOLOv4, and YOLOv5. To use the 

YOLO model, pre-trained weights and their corresponding 

configuration file are required. The configuration file 

specifies important details about the model's architecture, 

such as the number of classes to detect dimensions of 

anchor boxes, input size, and other parameters. By using 

pre-trained weights, the YOLO model is initializes with 

valuable features learned from a large datasets, making it a 

form of transfer learning. During training, the YOLO 

model adjusts its parameters to improve object detection 

accuracy. The instruction procedure typically involves 

adjusting hyper-parameters, such as learning rate, weight 

decay, and sample size, to find a configuration that yields 

better training results. Experimentation and model 

performance monitoring on the validation set may be 

necessary throughout this procedure. The model's 

performance on the validation set is evaluates during 

training. Metrics such as precision, recall, and mean mAP 

used as indicators to assess the accuracy of the model's 

object detection capabilities. By fine-tuning the model and 

monitoring its performance, the YOLO model can achieve 

excellent results in object detection tasks. 

A portion of the annotated datasets is set aside 

specifically for testing purposes. This testing datasets 

contains images that unused during the training or 

validation stages. This ensures that the custom YOLO 

model is evaluate on completely unseen data, providing a 

more accurate representation of its performance in real-

world scenarios. Once the custom YOLO model is train, its 

weights are loaded, ensuring they match the model's 

architecture and configuration used during training. The 

model's configuration for inference is prepare by importing 

the model architecture and adjusting parameters like input 

size and class identifiers. During the testing phase, the 

model iterates through the images in the testing datasets 

and performs inference on each image. For each object 

found in the images, the model predicts bounding boxes, 

class labels, and confidence scores. Typically, a list of 

bounding boxes, class labels, and confidence scores 

generated along with these predictions. The predicted 

bounding boxes, class labels, and confidence scores is
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Fig. 4.  Training and validation performance for chili detection 

impose on the example images to assess the model's 

performance. This visualization helps in comprehending 

how well the model is detecting objects. Testing a 

customized YOLO model is crucial in assessing its 

effectiveness in detecting objects in unseen data. By 

evaluating its performance on a distinct testing datasets, 

potential areas for improvement can be identify, and 

informed deployment decisions can be made. In this 

experiment, we label the green chili as 0, red chili as 1 and 

rotten chili as 3. 

The training and validation performance graphs as in 

Fig. 4 for chili fruit detection model reveal both its 

strengths and areas for optimization. The box loss curves 

indicate effective bounding box regression, with both 

training and validation losses converging near 0.02, 

suggesting accurate localization with minimal overfitting. 

Notably, the validation loss plateaus after epoch 50, 

signaling diminishing gains from continued training. 

Meanwhile, the classification loss trends towards zero, 

indicating that the model effectively distinguishes between 

different chili categories. However, intermittent fluctuations 

in validation loss imply occasional misclassifications, 

particularly in the rotten chili class. This is likely due to 

limited and visually ambiguous samples, which reduce the 

model’s discriminative power. Incorporating additional 

rotten chili images with varied visual features could 

significantly reduce this ambiguity and improve 

classification accuracy. The reported performance metrics 

support these observations. The model achieves high 

precision (~0.95) and recall (~0.90), reflecting its ability to 

minimize false positives and false negatives effectively. 

However, the mAP@0.5:0.95 score plateaus at 

approximately 0.05, indicating difficulty in maintaining 

high precision under stricter IoU thresholds.  

Table I shows the performance of detection for all three 

categories chili using YOLOv5 using testing subsets. These 

results show that the model is highly effective at identifying 

the correct chili class when it detects an object (high 

precision), and even better at detecting most chili objects 

present (very high recall). However, the relatively lower  

mAP@0.5:0.95 score reflects the model’s decreasing 

localization accuracy at stricter IoU thresholds, indicating a 

need for bounding box refinement. For fair comparison, all 

types of chili (green, red and rotten) applied with the same 

numbers of testing sample with 30 images. As we can 

observed, an average precision of green and red chili 

achieves an outstanding performance above 95% of 

accuracy. Green chili shows excellent detection and 

classification performance with both precision and recall 

above 95%, and the highest mAP@0.5 value. This suggests 

the model is very consistent in both identifying and 

localizing green chilies. The mAP@0.5:0.95 also indicates 

strong robustness under stricter evaluation, likely due to 

clear color contrast and sufficient sample representation.  

Red chili detection maintains high accuracy, though 

slightly lower than green chili, especially in recall. This 

could be attributed to overlapping instances or less 

distinguishable shapes, resulting in some missed detections. 

Nevertheless, the model performs reliably in most test 

cases, as evidenced by the strong mAP@0.5. Since we are 

using the real chili plant for this experiment, it is 

challenging to have a good sample of rotten chili due to the 

chili conditions. Rotten chili exhibits the lowest precision 

(76%) among the classes, meaning that some predictions 

made as “rotten” are false positives. However, the high 

recall (90%) indicates that the model was able to detect 

most actual rotten chilies. This class also achieves a 

respectable mAP@0.5 and mAP@0.5:0.95, despite being 

underrepresented. This highlights potential overfitting or 

confusion with similar visual features, and suggests the 

need for more training samples and better augmentation for 

this class. The chili needed to be harvest for few days before 

it becomes rotten. About 76% of accuracy has obtained 

where it considered the lowest performance from all three 

classes. In average, 94% of mAP is recorded which is 

considerably outstanding in differentiating various kind of 

chili categories. 
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TABLE I 

ACCURACY OF DETECTION FOR VARIOUS CHILI CATEGORIES 

Class Precision Recall mAP@0.5 mAP@0.5:095 

Green 0.954 0.952 0.974 0.725 

Red 0.919 0.868 0.938 0.663 

Rotten  0.766 0.900 0.900 0.670 

Average  0.880 0.906 0.937 0.686 

 

The graph as in Fig. 5 illustrates the relationship 

between model confidence scores and precision across the 

three-chili classes (green, red, rotten) and their collective 

performance. The X-axis shows the confidence threshold 

(from 0 to 1), while the Y-axis shows precision, i.e., the 

proportion of correct predictions out of all predictions made 

at a given confidence level. The blue line represents the 

average precision over all classes. It reaches 100% 

precision at a confidence threshold of 0.976, indicating that 

at high confidence, the model predictions are extremely 

accurate. The green chili class maintains very high 

precision (≥95%) across most of the confidence range. This 

indicates the model is very confident and accurate in 

detecting green chilies. The curve flattens near the top, 

meaning the model rarely misclassifies green chilies, even 

at moderate confidence. Red chili also shows strong 

precision performance, with values consistently above 90% 

throughout the range. A slight dip at the end near 1.0 

confidence suggests a few misclassifications at very high 

confidence, possibly due to visual similarity with green 

chilies or class imbalance. The rotten chili class has the 

weakest precision performance across all confidence levels. 

It starts low (≈40–50%) and slowly increases, peaking 

below 90%. This curve shows a more gradual slope and 

higher variance, indicating that the model is less confident 

and more error-prone when predicting this class. The likely 

cause is insufficient training data or visual ambiguity (e.g., 

color similarity with leaves, partial rotting). 
 

D. Experiments on Various Conditions 

In order to ensure the model is able to detect the chili 

from various conditions, different sources of input has 

utilized. Fig. 6 shows the sample of detection using image 

that has been captured beforehand.  

 

 
Fig. 6.  Detection of chili images 

 

The model is capable to differentiate between green and 

red chili in the plant with average above 90% of accuracy. 

We also tested the model by measuring its ability to detect 

the presence of chili from the recorded video. The model 

demonstrates promising performance, even when the video 

background is not a plain white background. This finding 

suggests that the model is robust in handling diverse 

background conditions and displays its effectiveness in 

accurately detecting and classifying chili fruits. This 

finding suggests that the model is robust in handling 

diverse background conditions and displays its effectiveness 

in accurately detecting and classifying chili fruits. On 

average, the red chili records an accuracy above 90% due to 

its distinct red color, making it easily distinguishable from 

the leaves. However, some green chili instances do not yield 

promising results. This is likely because the green chili's 

color closely resembles that of the plant leaves, making it 

challenging the model to differentiate between them 

accurately. Fig. 7 displays the sample of experimental result 

of chili detection from recorded video. 

 

 
Fig. 7.  Detection of chili images from real-time video 

 

The last part of experiment is by utilizing the model on 

real-time experimental conditions. In this part, we use low-

resolution camera using webcam to evaluate the model 

performance for real-time situations. As we know, when it 

comes to the real farming, there are few aspects need to be 

tackle such as weather conditions, lighting, clutter, etc. The 

live testing conditions and lower resolution of the webcam 

can affect the model's performance to some extent, but it 

still demonstrates the ability to distinguish chili from their 

plants. Because of the camera's limitations and lower image 

quality, the objects placed close to the webcam, leading to a 

higher accuracy of detection for both chili categories, with 

an average accuracy of above 96%. Fig. 8 shows the sample 

of experimental result of chili detection for real-time 

conditions. 
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Fig. 5.  Relationship between model confidence scores and precision across the three-chili classes (green, red, rotten) 

Fig. 8.  Detection of chili images from recorded video 

E. Experiments on Different Version YOLO

In addition, we also tested the chili datasets sourced from

Roboflow, providing a robust foundation with 4,376 pre-

labeled images. These images include a diverse range of 

chili types, specifically red and green varieties, capturing 

the variability of chili shapes, colors, and orientations. The 

dataset underwent augmentation techniques to enhance its 

diversity, which improves the model’s robustness by 

exposing it to a broader set of visual conditions.  

Additionally, 100 images of chili plants has captured 

from various angles using the Intel RealSense Camera 

D455 to test the model’s compatibility with RGB image 

inputs from this specific camera. These 100 images 

manually labeled using Roboflow's labeling tools to ensure 

precision in the dataset and to assess the effectiveness of the 

Intel RealSense Camera D455. Throughout the training 

phase, several parameters, such as the number of epochs 

and dataset size, were iteratively fine-tuned to optimize 

model performance. Adjustments to these parameters 

systematically applied to maximize the model’s detection 

and localization capabilities for chili objects. Performance 

metrics, including precision, recall, and mAP, tracked to 

assess accuracy across different parameter configurations, 

as presented in Table II. This comparative analysis of 

training metrics provides insight into the model’s behavior  

and stability under varying conditions, guiding the 

refinement process toward achieving optimal detection 

accuracy.  

TABLE II 

COMPARISON OF ROBOFLOW DATASET 

YOLO 
Total 

images 
Epochs Precision Recall  mAP 

Time 

(h) 

YOLOv5 4476 100 0.926 0.866 0.932 1.047 

YOLOv7 4476 68 0.971 0.940 0.974 3.674 

Comparative performance results show that the YOLOv5 

algorithm demonstrates high efficiency and accuracy under 

different training conditions. With an expanded dataset of 

4,476 images over 100 epochs, YOLOv5 achieved an 

improved precision of 92.6%, although this required a 

longer training time of 1.047 hours. In comparison, 

YOLOv7, trained with 4,476 images over 68 epochs, 

reached the highest precision of 97.1% but necessitated a 

substantially longer training duration of 3.674 hours. 

Although YOLOv7 demonstrated superior precision, its 

extended training time highlights a trade-off between model 

accuracy and computational efficiency. In this study, 

YOLOv5 has selected as the preferred model for object 

detection due to its balanced performance, achieving over 

90% precision with a considerably shorter training time 

than YOLOv7. YOLOv5’s capability to deliver high 

accuracy in less time is especially advantageous in 

applications where computational resources are 

constrained, making it both cost-effective and efficient for 

GPU-based processing [27-28]. Fig. 9 to 11 visually 

illustrate the detection of YOLOv5 across different chili 

categories, highlighting the model’s accuracy in detecting 

and localizing chili fruits across diverse image types. These 

figures provide a comprehensive visualization of YOLOv5’s 

performance, reinforcing its suitability for real-world object 
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detection tasks by highlighting the precision and reliability 

of its bounding box predictions in various detection 

scenarios.  

 

 
Fig. 9.  Detection of single chili (red and green) 

 

 
Fig. 10.  Detection of multiple chilies (red and green) 

 

 
Fig. 11.  Detection of harvested chili  

 

Despite the similar training time per epoch for these 

lighter YOLO architectures, YOLOv7 required nearly twice 

the total training duration to reach convergence and the 

added computational depth in its architecture. This 

extended training time, while providing higher model 

accuracy, underscores the more intricate structure of 

YOLOv7 compared to YOLOv5, which more streamlined 

for efficient training. A notable observation is the 

improvement in inference speed demonstrated by YOLOv7 

over YOLOv5, consistent with expectations for lighter 

YOLO models in real-time applications. YOLOv7's 

optimized architecture enables faster inference speeds 

critical for real-time applications, though these performance 

gains necessitate longer training periods compared to 

previous versions. As the complexity of object detection 

networks rises, so too does the time required for precise 

identification, highlighting a necessary balance between 

network sophistication and operational speed. The decision 

to select an appropriate YOLO architecture becomes 

essential for applications prioritizing real-time tracking and 

high bounding-box accuracy. Selecting between YOLOv5 

and YOLOv7 requires an evaluation of application needs, 

computational resources, and acceptable trade-offs between 

processing efficiency and detection precision, underscoring 

the importance of aligning network complexity with 

specific project requirements to achieve optimal outcomes. 
 

F. Distance Estimations 

The evaluation of the model’s performance in distance 

estimation reveals that the model performs with a high 

degree of accuracy within a range of 40 cm to 90 cm. 

Within this distance range, the model estimates closely 

align with actual distances, indicating a strong ability to 

interpret spatial parameters effectively and project 

bounding boxes that closely match the true object size. This 

minimal error range suggests that the model’s calibration 

and algorithmic approach to distance measurement are 

highly reliable within this specific field of operation. The 

accuracy in this range likely stems from a combination of 

well-tuned parameters and precise object recognition, 

highlighting the model's suitability for applications 

requiring detailed spatial estimations within short to 

moderate distances. For distances less than 40 cm, however, 

the model exhibits a tendency to underestimate the true 

measurement, leading to a smaller bounding box projection 

around the subject. This behavior may be due to the 

increased parallax and perspective distortions typically 

encountered at very close ranges, which can introduce 

spatial ambiguities that challenge the model’s algorithms. 

Additionally, sensors and camera limitations may 

contribute to the underestimation at close distances, as finer 

details become harder to capture accurately, affecting the 

model's overall depth perception. 

In contrast, when distances exceed 90 cm, the model 

demonstrates a trend of overestimating the actual distance. 

This overestimation results in the projection of a larger 

bounding box than the actual object dimensions warrant. 

Factors contributing to this overestimation might include 

diminished resolution and decreased sensitivity in 

distinguishing depth at greater distances, which can 

influence the model's ability to capture the relative size of 

objects. As distance increases, depth information becomes 

less precise, and any minor error in estimation can become 

magnified, leading to noticeable discrepancies. Fig. 12 

visually captures an image taken during the distance 

estimation testing, displaying the detection of a chili fruit 

and the corresponding bounding box as projected by the 

model. This figure provides a clear illustration of how the 

model's estimations visually translate into spatial 

representations. It also serves as a reference for 

understanding the interaction between the bounding box 

and the actual object when the model operates within 

varying distances. 

For further quantify the model’s performance, Table III 

presents detailed comparisons between estimated distances 

and actual measurements. The table highlights individual 

data points, highlighting where the model's estimates align 

or diverge from true values. Through these data points, the 

error percentage has calculated, offering a concrete measure 

of the model's accuracy across the entire distance range. 

This error analysis allows for an objective assessment of the 

model’s capacity to generalize its distance estimation and 

provides insights into specific areas for improvement. The 

observed variations in accuracy underscore the need for 

adjustments or calibrations in scenarios requiring accurate 

detection at distances outside the model’s optimal range. 

Enhancing the model's algorithms to improve accuracy for 

both closer and farther distances could involve integrating 

additional calibration data or refining feature extraction 

techniques. These adjustments help reduce detection errors 

at close and far distances, expanding the model’s accurate 

detection range. 
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30 cm 50 cm 

70 cm 100 cm 

Fig. 12.  Distance estimation of chili image 

TABLE III 

DISTANCE ESTIMATION WITH ACTUAL DISTANCE 

Actual (cm) Estimation (cm) Error (%) 

30 34 13.33 

35 37.5 7.14 

40 41.5 3.75 

45 47 4.44 

50 52 4.00 

55 57 3.51 

60 64 6.67 

70 72 2.86 

80 83 3.75 

90 88 2.22 

100 114 14.00 

V. CONCLUSION

Regarding chili recognition and localization, the 

YOLOv5 model demonstrated high effectiveness in 

accurately detecting chili from their plants, achieving a 

precision score above 90%. The model displays excellent 

performance across various sources, including images, 

videos and live webcam. The evaluation of green, red, and 

rotten chili detection accuracy accomplishes by analyzing 

the model's parameters after training. The objective has 

successfully achieved with the model achieving a mAP 

score almost 94% during the testing phase. High precision 

at high confidence (especially >0.9) confirms the model’s 

strong discriminative ability when it is certain. The green 

and red chilies can be reliably detected even at lower 

confidence levels, which is critical for real-time agricultural 

use. The rotten chili reflects the need for data augmentation 

and better labeling—this class introduces the greatest 

uncertainty and should be prioritized for improvement. If 

deployed in production (e.g., robotic picking or sorting 

systems), the confidence threshold could be tuned to ~0.8–

0.9 to balance high precision with sufficient recall, 

especially for green and red chili detection. In conclusion, 

the investigation demonstrated the effectiveness of YOLO-

based algorithms in accomplishing the desired objectives. 

Improved production, lower labor costs, and increased 

efficiency in chili farming made possible by the effective 

recognition, localization, and accuracy analysis of chili. 

This work is a part of our invention in developing an 

agricultural robot which is able to replace traditional 

approach including detection, picking and grading.  

The limitation is commonly observed in agricultural 

datasets due to fruit overlap, occlusion, and irregular 

shapes. Enhancing the input resolution or adopting more 

advanced architectures, such as YOLOv8 with anchor-free 

detection heads, may offer improvements in localization 

precision across varying IoU thresholds. For projection, we 

will test the image with high resolution to ensure the 

proposed model able to execute as what we have done in 

laboratory conditions. However, when it involves bigger 

sizes of images or videos, features selection might useful to 

increase the effectiveness and efficiency of the model [29]. 

We also planning to expand our work to evaluate the 

detection of fruits variations that not limited to chili with 

the effect of light intensity distribution [30] and using RGB 

color intensity [31]. The use of latest version of YOLO 

models is necessary to expand this work using UAV images 

[32]. Depth cameras use intensity analysis to calculate an 

object's distance from a perspective while also giving details 

on the object's shape, location, classification, and real-world 

distance. Unlike standard cameras, depth cameras include 

an additional pixel value that represents the object's 

distance from the camera. This depth information displays 

alongside the image. Various depth cameras are able to 

produce pixels various aspects: red, green, blue, and depth; 

this achieve by incorporating an RGB color space with a 

depth system. Utilizing this additional information allows 

for precise determination of the object's exact location and 

its distance from the camera, which is particularly useful in 

processes such as picking or sorting. 
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