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EGSNet: A Multi-scale Tooth Surface Defect
Segmentation Algorithm Combined with Edge
Guidance
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Abstract—Accurate segmentation of tooth surface defects in
wind turbine gearboxes is essential for ensuring reliable
operation and maintenance of wind turbine systems. To solve
the problem that the tooth surface defects of wind turbine
gearboxes are similar to the background and there are many
small-sized defects, this work presents a tooth surface defect
segmentation algorithm, EGSNet. First, a lightweight initial
structure, DeepStem, is introduced to construct a progressive
feature extraction path by stacking multiple 3x3 convolutional
layers, which effectively enhances fine-grained representations
in shallow layers and improves the perception of tiny and
low-contrast defects. Second, a Boundary Perception Module
(BPM) is devised to deeply fuse high-level semantic and
low-level spatial features from the Feature Pyramid Network
(FPN), using attention mechanisms and multi-scale deformable
convolutions to adaptively capture complex boundary features,
improving the modeling and delineation of defect edges. Finally,
an edge-guided loss function based on the Sobel operator is
constructed to extract gradient information from multiple
directions and impose pixel-level alignment constraints
between the predicted mask and the ground-truth boundaries
in the loss function, thereby improving the accuracy and clarity
of edge segmentation. Experiments are conducted on
specialized tooth surface defect data. The results showed that
the mAP7s and mloU of the EGS algorithm proposed in this
paper are 81.10% and 79.24%, respectively, representing
improvements of 3.3% and 1.5% compared to the original
network. This validated the effectiveness and practical value of
the algorithm in tooth surface defect segmentation tasks.

Index Terms—Tooth Surface Defects, DeepStem, BPM,
Sobel
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I. INTRODUCTION

Wind energy, a cornerstone of the global energy
transition, accounted for 117 GW of newly installed
grid-connected capacity worldwide in 2024, representing the
highest annual addition on record [1]. As the service life
extends, the likelihood of failures in wind turbine systems
rises, while expenses for operation and maintenance may
account for 30%~35% of the overall wind power cost [2].
The gearbox, as the wind turbine generator chain’s central
power transmission hub, is the primary cause of unplanned
shutdowns and significant maintenance costs [3][4]. The
service state of the tooth surface, which acts as the dynamic
load-bearing contact during conjugate meshing, play a
crucial role in the gearbox’s overall operation and stability
[5]. As a result, monitoring the condition of tooth surface
defects in gearboxes is not only theoretically significant but
also invaluable in engineering practice.

In the detection of gearbox tooth surface defects, manual
visual inspection is still commonly employed; however, it is
inefficient and highly subjective. Therefore, as technology
progresses, approaches for detecting tooth surface defects
are generally divided into two types, with the first focusing
on physical detection techniques, such as acoustic emission,
weak magnetic field detection, and eddy current array
technologies [6][7][8], the second relies on machine vision
for defect detection, and depending on the stage of
development, it falls into two groups: conventional image
processing techniques and approaches founded on deep
learning [9]. Traditional image processing methods are

grounded in classical computer vision techniques,
performing image feature extraction, processing, and
analysis through predefined algorithms. Traditional

approaches are largely based on hand-crafted features and
manually defined rules, such as edge detection [10],
morphological operations [11], threshold segmentation [12],
texture analysis [13]. However, traditional image processing
methods suffer from limited feature extraction capabilities,
poor adaptability, and low accuracy. They are also highly
sensitive to image noise, making them difficult to apply in
practical scenarios. In recent years, with the rapid
advancement of artificial intelligence, deep learning has
achieved notable progress in computer vision, showing clear
benefits in detection speed, processing efficiency, and
adaptability. It has thus emerged as a research hotspot in
tooth surface defect analysis. However, most existing deep
learning studies focus on defect detection tasks, such as
classification or localization, making it difficult to
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accurately delineate pixel-level damage boundaries.

The purpose of image segmentation is to classify each
pixel of an image, separating it into distinct regions or
objects. Unlike image classification, which maps the entire
image to a single label, image segmentation provides more
fine-grained information and can generally be divided
between semantic and instance segmentation [14]. Semantic
segmentation uses fine-grained reasoning to anticipate the
label of each pixel in the input image [15]. Ashrafi et al. [16]
provided effective technical support for quality control in
industrial ~ production by combining the semantic
segmentation model and target detection model for
segmenting small-sized defects in complex backgrounds.
Pan et al. [17] used semantic segmentation using an
improved U-Net algorithm to detect surface defects, and the
network constructs a coding-decoding structure based on the
MBConv module, which reduces network parameters
without compromising segmentation accuracy, meeting the
demand for real-time detection in industrial scenarios. Shi et
al. [18] introduced an industrial surface defect detection
approach based on a semi-supervised segmentation
framework, which addresses issues of insufficient samples
and low data utilization in conventional methods, and offers
important theoretical and practical implications. Zuo et al.
[19] based their work on the semantic segmentation
algorithm SegNet and introduced the DenseNet connection
method to achieve pixel-level segmentation of surface
damage points, which is a representative improvement in
semantic segmentation for industrial defect detection.
Instance segmentation can be understood as an extension of
semantic segmentation, where individual instances of
similar objects are independently segmented at the pixel
level. Gao et al. [20] proposed an automated method for
detecting defects on track surfaces using the Mask R-CNN
framework, evaluating the impact of different backbone
networks and learning rates on detection performance, and
achieving precise segmentation under varied lighting
conditions and defect-dense scenarios. Wang et al. [21] used
the Mask R-CNN network to detect surface defects on paper
disks, and achieved automatic detection and pixel-level
segmentation of paper disk defects, confirming the potential
of instance segmentation algorithms for industrial product
defect detection. Wen et al. [22] proposed an instance
segmentation network, YOLACT-++, to detect surface
defects such as cracks and stains on magnetic tiles. They
enhanced detection robustness and stability by incorporating
an attention mechanism and a lightweight network,
demonstrating the method’s effectiveness and practicality.
Fu et al. [23] employed the YOLACT++ algorithm to detect
bridge cracks. They improved the activation function to
mitigate overfitting during training and pre-trained the
model on the COCO dataset using transfer learning, which
enhanced the detection of small-sample cracks. This
approach improves the model ’ s generalization ability on
small datasets, resulting in better crack detection
performance. Although existing instance segmentation
methods have their advantages in different scenarios, most
of them still have deficiencies in small target detection,
mask edge alignment and robustness in complex
backgrounds, in contrast, Mask R-CNN shows higher
segmentation accuracy and stronger generalization by its

precise candidate region alignment mechanism and
independent mask prediction branch, Liu et al. [24]
employed the Mask R-CNN network for defect detection on
steel surfaces, achieving precise recognition of multi-class
defects such as cracks by conducting both object detection
and pixel-level segmentation simultaneously, which
effectively enhanced detection accuracy in complex
backgrounds. Huang et al. [25] introduced an approach for
defect detection leveraging Mask R-CNN, which achieved
multi-class defect diagnosis by replacing the main network,
incorporating an attention module, and employing a path
aggregation network. Wang et al. [26] increased detection
accuracy by incorporating new fusion routes into the FPN,
Mask R-CNN’s backbone network, and proposing new
evaluation indexes.

Compared with traditional surface defect detection
methods, deep learning-based instance segmentation models
can autonomously learn discriminative features, adapt to
various types and morphologies of tooth surface defects, and
exhibit stronger generalization and robustness. The
end-to-end learning framework eliminates the need for
manual feature engineering, greatly improving the overall
performance of defect detection and segmentation. However,
due to complex operating environments, tooth surface
images of wind turbine gearboxes often suffer from blurring
and low contrast caused by uneven lighting, oil
contamination, and the small size of defects. These
challenges place higher demands on the accuracy and
precision of defect segmentation. Existing methods still face
issues such as heavy computational cost, redundant network
structures, and insufficient capability to capture edge details
and small-scale features, making them difficult to apply
directly in real-time wind power equipment monitoring.

To solve the problem that there are many small target
defects and similar defects and similar backgrounds in the
existing tooth surface defect segmentation methods, this
paper designs a tooth surface defect segmentation network,
EGSNet, built upon an improved Mask R-CNN framework,
with the following main contributions:

1) A lightweight starting structure, DeepStem, is
proposed to replace the traditional large convolution kernel
with multi-layer 3x3 convolutions to construct fine-grained
feature expression paths, which effectively improves the
network’s perception of small-scale targets and strengthens
the model’s capability in representing the intricate features
of tooth surface defects.

2) A BPM edge perception module is proposed, which
fuses high and low-level feature information in the FPN,
combining the attention mechanism with multi-scale
Convolution operations effectively improves the ability to
perceive and express target defect boundaries, and
strengthens the model’s capability to model the edge
information.

3) Based on Mask R-CNN, design the edge guidance loss
based on the Sobel operator to extract the image gradient
information from horizontal, vertical and two diagonal
directions to realize the multi-directional edge-aware
constraints and improve the segmentation accuracy and
contour retention details of small target defects.
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II. RELATED WORK

This section presents the architecture and operating
principles of the Mask R-CNN instance segmentation
network model, along with its loss function and SE attention
mechanism.

A. Mask R-CNN

Mask R-CNN [27] build upon Faster R-CNN [28] to
perform instance segmentation. Beyond the detection
pipeline, it introduces a parallel mask head that predicts a
binary mask for each region of interest (Rol). The overall
architecture is shown in Fig. 1, the architecture consists of a
backbone for feature extraction, a region proposal network
(RPN), an RolAlign module, and three task heads:

classification, bounding-box regression, and mask prediction.

The image fed into the network is first passed through the
backbone to extract feature maps, on which the RPN
proposes candidate regions. Next, the Rol Align module
ensures that the spatial locations on the feature map are not
lost by performing accurate spatial alignment of the
candidate regions. The classification branch and the
regression branch are used to predict the category label and
location regression for each candidate region, respectively.
The mask branch performs fine pixel-level segmentation of
instances by predicting the corresponding mask image for
each Rol. It uses a convolutional network to generate a
binarized mask for each Rol and finally outputs the
segmentation results for each instance. In this way, the Mask
R-CNN can not only perform target detection but also
accurately segment each target instance at the pixel level.
This structure enables Mask R-CNN to achieve superior
performance in multiple-instance segmentation tasks,
particularly effective in handling complex scenarios and
multiple objects, while maintaining high flexibility and
accuracy.

V . I regression | classification

mask ;,—1
head Uk = fully connected layers
# 77777777 fixed size feature map
T """"""" Rol Align layer
—— Wy . 0
RPN feature map

ResNet S0+FPN &
-

Fig. 1. Mask R-CNN network structure

B. Loss Function

The overall loss function of Mask R-CNN is composed of
three components: the classification loss and bounding-box
regression loss from the detection branch, together with the
mask prediction loss from the segmentation branch, as
shown in Equation 1:

L = Lcls + Lbox + Lmask (1)

Where Lmask is the mask loss of pixel-level segmentation,
Lbox is the regression loss of the bounding box position, and
Leis is the classification loss of the class to which the Rol
belongs. Lcs employs the standard multiclass cross-entropy

loss for quantifying the discrepancy between predicted class
probabilities and the true labels, as shown in Equation 2:
Ly =—%y, log(p;) (2)
Where i is the true label of the first class, and pi denotes
the predicted probability. The border regression loss Lyox is
used to minimize the offset between predicted and actual
bounding boxes, employing the Smooth L1 loss function to
regress the four parameters, including the center coordinates,
width, and height, which are defined as shown in Equation
3:
L, = >, Smooth, (t,—t;) (3)
ie{x,y,w,h}
Where ti and t" represent the parameters of the prediction
box and the real box, respectively, and the Smoothri(x) loss
function is defined as shown in Equation 4:

0.5x’ if |x[<1

|x|—0.5 otherwise

Smooth,,(x) = { @)

This loss behaves as an L, loss with a smoother gradient

for small regression errors, and transitions to an L; loss for

large errors, thus enhancing robustness. Mask R-CNN

predicts a pixel-level segmentation mask of the target region

on each Rol by a small fully convolutional neural network.

This branch uses the binary cross-entropy loss function to

perform supervised learning on the mask of each positive
sample Rol, and the loss is defined as shown in Equation 5:

1 * * *

L, = FZ[Mij logM, +(1—M; )log(1-M; )|~ (5)

i

Where M;j is the pixel value (in the range [0,1]) that

predicts the position in the mask, M,J is the true label (0 or

1) of the corresponding position, and the mask size is
usually mxm.

C. Squeeze-and-Excitation Attention Module

The SE module, introduced by Hu et al. [29] as a
channel-wise attention module, is shown in Fig. 2 and
comprises three main components: the Squeeze, Excitation,
and Scale operations, where Squeeze and Excitation are two
important steps. First, given the input feature map X, an
updated feature map is obtained via a standard convolution
operation, as defined in Equation 6:

F,:X— UXeRVHC yerWie (6)
B (W)
Fer (-) ~ —_——— LIRS
X Y ‘q(] IxIxC ﬁl'xl'!' ™
H Fir H :/ = ‘
, Fseale (-
\M scale
c v c
Fig. 2. SE network structure

Global average pooling is applied to the generated feature
map to produce a 1x1xC vector, effectively capturing the
overall response intensity of each channel. The
corresponding equation is given in Equation 7:

2. =Eq(uc>=ﬁ22uc<i,p )

i=l j=I

Subsequently, the obtained channel descriptor vector is

fed into an excitation operation composed of two fully

connected layers to model the nonlinear inter-channel
dependencies, as defined in Equation 8:
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s=F _(z, W) =0(g(z, W)) = o(W,8(W,z)) (®)
o(-) represents the Sigmoid function. Finally, each

channel of the input feature map is multiplied by its
corresponding channel weight to achieve dynamic
re-calibration of the channel features, as defined in Equation
9:

ic = Fscale (uc’sc) = Scuc (9)

III. ALGORITHM DESIGN

In the task of image segmentation for tooth surface
defects in wind turbine gearboxes, the targets are typically
small, numerous, and irregularly shaped. Moreover, due to
the high similarity between defects and the background,
traditional segmentation methods often suffer from false
positives and missed detections in such complex scenarios.
Although deep learning-based instance segmentation
algorithms have improved segmentation accuracy, they still
face challenges such as insufficient representation of small
target features, loss of edge information, and low feature
extraction efficiency. To overcome these limitations, this
work introduces a series of improvements built upon the
Mask R-CNN framework for instance segmentation. First,
for the problem that the 7x7 large convolutional kernel in
the first layer of the ResNet-50 backbone network tends to
cause the loss of texture information, a starting structure
named DeepStem is designed, which adopts three
consecutive 3x3 small convolutions instead of the large
convolution, and better preserves the edge details of the
small defects while keeping the same size of the original
features. Secondly, a BPM boundary perception module is
proposed for the problem of insufficient edge expression
ability of small defective targets. This module integrates
high and low-level features in FPN, combines the attention
mechanism with Multi-scale convolution operation, and
improves the perception and expression ability of small
target boundaries. Finally, to further enhance overall
segmentation performance, Mask R-CNN’s loss function is
adjusted to emphasize feature learning and boundary
supervision in small target regions, thereby enhancing the
model’s segmentation performance on small-scale defects.
The improvements introduced in this work substantially
boost the network’s capacity for segmenting minor defects
on the tooth surfaces of wind turbines, outperforming the
traditional architecture in both accuracy and edge
preservation, and demonstrating strong potential for
practical application.

A. Design of the BPM Module

In tooth surface defect segmentation tasks, the small size
and complex morphology of defect targets often cause
traditional feature extraction networks to lose edge clarity
and miss fine structural details during representation,
thereby limiting segmentation performance in complex
backgrounds. In particular, while Feature Pyramid Networks
(FPNs) enhance multi-scale feature fusion, their high-level
semantic representations offer strong global perception but
lack the spatial precision needed to capture fine-grained
details. In contrast, while low-level features retain rich edge
information, they are easily affected by background noise,
making it challenging to precisely delineate defect

boundaries. To tackle these challenges, we design a BPM
module that improves the network’s capability to capture the
edges of defect targets, as illustrated in Fig. 3.

The module takes the low-level feature P2 and the
high-level feature PS5 in the FPN structure as inputs, and
adaptively enhances the edge-sensitive channel by
introducing the SE attention mechanism, combined with the
upsampling operation and feature fusion method, and fully
combines the low-level detail structure and the high-level
semantic information. On this basis, to improve the
network's modeling ability of multi-scale edge structure,
multi-scale Dilated Convolution (DC) operations are further
introduced. Specifically, three parallel sets of 3x3 dilated
convolutions are used, and their dilation rates are setto 1, 2
and 3, respectively, to perceive edge context information at
different scales and enhance the response ability to small
defect boundaries. Finally, after fusing the above multi-scale
features, the edge perception map is generated through a
1x1 convolution and Sigmoid function, which guides the
network to focus on the target boundary region of the defect
more accurately, to effectively improve the segmentation
accuracy. The calculation process is shown below, where
o () represents the Sigmoid function.

F = Convi X (10)
F,. = Concat(F,F,.F,) (11)
F, = o(Conv,,, (Fy.)) 12)

Compared to existing mainstream edge modeling methods,
the BPM module proposed in this work offers notable
advantages in boundary representation. First, the multi-scale
dilated convolution structure incorporated in the module
enhances the perception of edge context information across
various scales, demonstrating strong adaptability in handling
small-scale defects. Second, by fusing the middle and
high-level semantic features of FPN and the low-level detail
features, and combining them with the SE attention
mechanism to adaptively adjust the channel information, it
is helpful to reduce the background interference while
retaining the edge details, to improve the boundary
expression ability of the defective target. Furthermore, the
edge-aware map generated by the module is integrated into
the backbone network as auxiliary information, which
guides the network to focus more precisely on defect
boundaries within complex backgrounds and contributes to
an overall enhancement of segmentation performance.

B. Design of the Backbone Network

The original Mask R-CNN employs ResNet50 as its
feature extraction backbone, which uses a large 7x7
convolutional kernel with a stride of 2 in the first layer to
achieve rapid downsampling of image features. However, in
tooth defect detection tasks, the generally small size of
defect targets and the low contrast between defect details
and the background often lead this design to lose fine
texture information during early feature extraction. This is
particularly detrimental to the extraction of edge features for
small targets, thereby impairing subsequent segmentation
accuracy. To address these issues, the DeepStem initial
module is proposed, and its architecture is illustrated in Fig.
4.
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Fig. 3.

The structure replaces the original 7x7 convolution with
three consecutive 3x3 convolutional layers. The first two
layers focus on fine-grained texture feature extraction, while
the third layer employs a stride of 2 to perform
downsampling. Stacking multiple small convolutional
kernels substantially boosts the network’s proficiency in
capturing edge and local details. Moreover, this design
mitigates the excessive information compression and
smoothing typically introduced by large kernels. As a result,
it improves the representation of shallow features,
particularly for the edges of small defect targets, and
provides more discriminative base features for subsequent
layers.

3 x 3 Conv,stride=1,padding=1

|
|
Batch Normlization :
i
|

Feature map3
3 x 3,MaxPool,stride=2,padding=1
Output

Fig. 4. DeepStem network structure

BPM network structure

C. Design of the Loss Function

In gear surface defect detection tasks, traditional loss
functions primarily emphasize overall region matching
while often overlooking edge features. To address this
limitation, this paper introduces an edge-aware loss function,
which improves the model’s awareness of edge information,
thereby enhancing segmentation accuracy and boundary
precision. The loss function is built upon the Sobel operator,
which captures edge information by computing image
gradients in multiple directions. Unlike the standard Sobel
method that uses only two convolutional kernels to extract
horizontal and vertical gradients, the proposed approach
incorporates two additional kernels for diagonal directions,
thus enhancing the network’s capability to detect edges with
greater directional diversity. The improved directional
templates and their corresponding convolution kernels are
illustrated in Fig. 5.

-1jo)1 012

90° 2]0]2 1ol

135° -10|1 21-1]0

g (0°) (45°)

detection direction |-1|-2]"! 2[1]0
olofo o]

1]2]1 0/-1[-2

(90°) (135%)

Fig. 5. Improved Sobel operator template diagram

The directional templates shown in the figure indicate the
convolution structure of the Sobel operator for the four
principal directions. Based on these templates, the edge
response at pixel (x,y) is computed by convolving the image
I(x,y) with each corresponding directional kernel, as defined
in Equation 13:

G,(x,y) =1(x,y)*K,,0 €{0°,45,90",135} (13)
The gradient calculation formula for any pixel is shown in
Equation 14:

G* :\/GO0 +G45“ +G900 +G135° (14)
The proposed edge loss is shown in Equation 15:
1 *
LcdgCZE(G—G) (15)

Where G is the target edge position of the marker, which
is the predicted target edge position, so the improved loss is
shown in Equation 16:
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Ltmal = L + L +Lmask + Ledge (16)

By incorporating a multi-directional edge sensing
mechanism, the proposed method enhances the model’s
capacity to capture target boundary structures, particularly
in the segmentation of small-scale and morphologically
complex defects. The gradient constraints applied along four
directions provide more comprehensive coverage of edge
information, thereby supporting improved accuracy and
robustness in tooth defect segmentation.

cls box

D. Overall Algorithmic Structure

In the defect detection task of wind turbine gearbox tooth
surfaces, traditional instance segmentation models exhibit
significant limitations in extracting edge features and
recognizing small targets. This is primarily due to the
typically small size of defect regions, blurred boundaries,
and low contrast with the background, which collectively
hinder the final segmentation performance. To address these
challenges, this paper proposes a synergistically enhanced
tooth surface defect segmentation network, EGSNet, built
upon the Mask R-CNN framework. The overall model
framework designed in this research is shown in Fig. 6.

First, considering that the initial downsampling operation
of the original ResNet network is prone to losing small-scale
defect texture information, this paper replaces the first layer
of ResNet50 with a lightweight DeepStem structure as the
front-end feature extraction module. This structure achieves
a balance between receptive field expansion and detail
retention by replacing large 7x7 convolution kernels with
multiple layers of 3%3 convolution kernels. This structure
effectively mitigates the loss of edge information for small
objects in the early stages of the network and provides more
discriminative base features for subsequent advanced
semantic modeling. Second, to improve the model's ability
to model defective boundaries in complex backgrounds, the
BPM boundary perception module is designed. The module
integrates shallow detail features and deep semantic features,
guides the network to focus on edge-sensitive regions
through the attention mechanism, and enhances multi-scale
edge perception by combining with dilated convolution,
which effectively enhances boundary localization capability
and avoids sticking and mis-segmentation issues caused by
blurred boundaries. Finally, in terms of loss function design,
an edge perception loss function based on the Sobel operator
is proposed. By calculating the gradient differences between
predicted and ground truth segmentation maps in four
symmetric directions (0°, 45°, 90°, 135°), the network is
guided to learn structural information at the edges. This loss
provides a clear supervisory signal to the boundary region
during the optimization process, which enhances the model's
responsiveness in the fine-grained boundary region and is an
important support to improve the segmentation accuracy and
edge clarity. In summary, EGSNet significantly improves
the model's capacity to capture small-scale tooth defects and

recognize boundaries through synergistic improvements at
three levels: feature extraction, edge perception, and loss
constraints, which effectively enhances segmentation
performance in real-world wind turbine gearbox images.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Dataset

The study of tooth surface defect detection relies on a
large number of images of tooth surface defects, but there is
no publicly available dataset similar to the images of defects
on the gear surface, therefore, this study utilizes a GE
industrial endoscope to obtain real defect images of wind
turbine gearboxes, and penetrates the endoscope probe deep
into the interior of the gearbox from its internal slit to take
images of the parts to be inspected, and manually rejects the
images of poorer quality, to study the four types of defects,
which are. They are rust, unbalance, gluing and crack, as
shown in Fig. 7. After filtering, a total of 980 images with a
resolution of 640x480 pixels are retained. The distribution
of these defect types is summarized in Table I. All images
are manually annotated using the Visual Annotation Tool
(VIA), and the annotation results are saved in JSON format.
Before training, the dataset was randomly partitioned into
three subsets: training, validation, and test, following an
8:1:1 distribution.

TABLE 1
VARIOUS NUMBER OF DEFECTS
Defect category rust gluing unbalance crack
Quantity(Sheet) 278 264 232 206
Percentage of 28.37% 26.94% 23.67% 21.02%

B. Experimental Platform and Parameter Settings

The experiment platform environment as well as the
hyperparameter settings in this paper are shown in Table II:

TABLE II
EXPERIMENTAL PLATFORM ENVIRONMENT AND HYPERPARAMETER
SETTINGS
Designation Versions/parameters
Operating System Windows 10
GPU NVIDIA GeForce RTX4060Ti
VRAM 24G
framework TensorFlow and Keras
CUDA version 11.6
Python 3.6.0
Epoch 300

C. Evaluation indicators

The proposed model is assessed using standard metrics
commonly employed in instance segmentation tasks,
including mean Average Precision (mAP), mean
Intersection over Union (mloU), total number of trainable
parameters (Params), and model inference speed (FPS).
mAP reflects the model’s ability to comprehensively
account for both precision and recall in instance
segmentation tasks, and its calculation is provided in

Equation 17:
N

Where N represents the total number of categories, and
AP denotes the average precision of a specific category at
different recall rates, equivalent to the area under the
PR-curve with accuracy as the x-axis and recall rate as the
y-axis. mAPso, mAP7s, and mAPso.05, respectively, indicate

mAP =
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the average precision when the threshold IoU is set to 0.5,
0.75, and 0.5-0.95. mloU quantifies the overlap between
model-predicted  segmentation  regions and  the
corresponding ground truth annotations. The calculation
process is as shown in Equation 18:

(18)

Where N represents the number of categories, and IoU
represents the intersection-union ratio of a certain category,
which represents the intersection-over-union between the
predicted and ground truth masks of a single category.

1 N
mloU = — Z IoU;,
N i=1

D. Analysis of Experiment Results

1) Feasibility experiment results and analysis: Feasibility
experiments were performed on the tooth surface dataset to
assess the proposed algorithm, and a detailed analysis of its
effectiveness was conducted. The evaluation metrics
considered include mean average precision mean mAP,
instance segmentation metrics mean intersection and merger
ratio, mloU, number of parameters, and detection speed.

Feasibility testing was conducted on the six model groups
listed in the table, and the corresponding variations in the
primary evaluation metrics are summarized in Table III.

TABLE III
COMPARISON OF FEASIBILITY EXPERIMENT RESULTS
DeepStem BPM Ledge mloU(%) mAP75(%)
— — - 78.06 78.49
v 7831 78.51
- N - 78.63 78.61
— - v 78.15 78.65
v N 78.48 79.19
v v v 79.24 81.10

The experimental results demonstrate that integrating the
DeepStem and BPM modules into the original network
backbone significantly enhances segmentation performance.

Specifically, relative to the baseline Mask R-CNN, mloU
and mAP7s increased by 0.54% and 0.90%, respectively.
Furthermore, the incorporation of an edge loss function
further boosts detection accuracy, yielding improvements of
1.5% in mloU and 3.3% in mAP7s. These findings provide
comprehensive evidence of the efficacy of the algorithm
developed in this study for segmenting gear-tooth defects.
As shown in Fig. 8, our algorithm markedly enhances the
contrast at defect edges and strengthens edge continuity,
with particularly notable improvement for crack defects.
This indicates that the model developed in this study is
capable of focusing more effectively on defect-critical
regions and accurately capturing edge details through
enhanced boundary perception. Fig. 9 shows the comparison
of the loss curves of the original network and the proposed
algorithm during the training process, which shows that the
convergence speed of the proposed algorithm is faster and
the convergence effect is better.

3.0+

——Mask R-CNN

251 —_EGSNet

0 50 100 150 200
Epoch

Fig. 9. Training loss comparison between the baseline network and the
proposed method in this study
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Fig. 8. Comparison chart of network visualization:(a): Image;
(b): Mask R-CNN;(c): EGSNet

2) Comparative experimental results and analysis: To
comprehensively assess the effectiveness of EGSNet, this
study was compared with multiple instance segmentation
models, and the evaluation was based on a unified test set,
including four types of images: rust, gluing, unbalance, and
crack. Table IV shows the experimental results, together
with the detailed performance metrics for different instance
segmentation models. The structure of the visualization
graph is shown in Fig. 10, illustrating how various models
perform in segmenting the four defect categories.

As shown in Table IV, compared with existing instance
segmentation algorithms, our algorithm has obvious
advantages in mAP7s and mloU metrics while ensuring
parameter quantity and inference speed. In addition, the
visualization in Fig. 10 indicates that our algorithm performs
better in edge detection and overall segmentation.

TABLE IV
COMPARISON OF EXPERIMENT RESULTS
Network mloU(%) mAP75(%) Params/M FPS
Mask R-CNN 78.06 78.49 56.7 10.1
YOLACT[30] 78.56 79.32 56.4 10.2
BlendMask[31] 78.18 78.52 57.1 11.4
SOLOvV1[32] 74.06 75.26 41.8 8.7
SOLOV2[33] 74.12 76.18 43.9 93
EGSNet(our) 79.24 81.10 62.8 12.7
V. CONCLUSION
This paper presents EGSNet, a novel instance

segmentation network for wind turbine tooth surface defect
detection, built upon the Mask R-CNN framework. The
model is designed to address the challenge of identifying
small and medium-sized defects that often blend into the
background. To enhance the network’s sensitivity to such
subtle defects, a lightweight DeepStem structure is
introduced at the front end. This module replaces the
traditional large-kernel convolution with a stack of 3x3
convolutions, enriching the feature extraction pathway and
improving the representation of fine-scale defect features.
To further improve the ability of the model to capture defect
boundary information, a Boundary Perception Module BPM
is introduced. This module integrates high-level and
low-level features within the FPN framework, leveraging
attention mechanisms and multi-scale dilated convolutions
to enable fine-grained edge perception. Additionally, to
strengthen boundary supervision, an edge-guided loss based
on the Sobel operator is incorporated. By extracting gradient
information in horizontal, vertical, and diagonal directions,
this loss function imposes multi-directional edge constraints,
effectively  improving  contour  preservation  and
segmentation accuracy for small-scale defects. Results
indicate superior performance of the proposed method
compared with the baseline network in both segmentation
accuracy and edge detail preservation, showing strong
generalization and practical applicability. The current model
is trained and validated on wind turbine gearbox tooth
surface images acquired via industrial endoscopes. However,
challenges such as limited viewing angles, drastic lighting
variations, and sensor noise introduce constraints on its
performance under complex real-world conditions. In
particular, for crack defects affected by specular reflections
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Fig. 10. Comparison chart of network visualization effect:(a): Image;(b): Mask R-CNN;(c): YOLACT;(d): BlendMask;
(e): SOLOvVI1;(f): SOLOV2;(g): EGSNet

or blurred boundaries, the model’s edge representation and
segmentation stability remain areas for further improvement.
Future research will further enlarge the tooth surface image
dataset to cover various operating conditions and diverse
scenarios, aiming to improve the model’s capability to
operate effectively across different settings, including
offshore and inland wind farms. Meanwhile, varying
lubrication states, including clean surfaces and oil
contamination, also affect image features, requiring the
model to demonstrate stronger robustness against such
differences. In addition, variability in imaging devices,
along with differences in shooting angles, lighting
conditions, and operational procedures, leads to changes in
image style and quality, which consequently affect model
performance. Therefore, improving the model’s adaptability
and generalization to such complex real-world factors is a
crucial task before engineering deployment. Future efforts
will integrate image preprocessing, defect enhancement,
domain adaptation, and transfer learning techniques to
improve model stability and accuracy in complex
environments, providing more reliable technical support for
the health assessment and intelligent operation and
maintenance of wind power gearboxes.
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