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Abstract—Truth degree of a formula in classical propositional
logic refers to a numerical or qualitative measure that indicates
how true a proposition is. It’s not just a binary true or false,
but a spectrum that can include intermediate values. This
manuscript presents a quantum approach for calculating the
truth degree of formulas within the realm of classical two-valued
propositional logic. We further present a quantum approach
for calculating the similarity degree between formulas. Finally,
several examples for calculating the truth degree and similarity
degree on the HiQ quantum computing cloud platform are
demonstrated.

Index Terms—Classical propositional logic, truth degree,
proposition, quantum computer.

I. INTRODUCTION

IN two-valued logic (also call classical propositional
logic), formulas (also call propositions) are interpreted as

having exactly one truth value, either true or false. A formula
A is a tautology (totally true) if v(A) = 1 for every valuation
v. A formula A is a contradiction (totally false) if v(A) = 0
for every valuation v. The majoring of formulas are not the
tautologies nor the contradictions. This naturally raises the
question: how true are these formulas? In other words, is
there a numerical or qualitative measure that can gauge the
truthfulness of a proposition.

Wang et al. [1] (also see [2], [3]) introduced the
truth degrees of propositions in two-valued logic. The
theory of truth degrees is a measure of the the reliability
of propositions. A tautology is more reliable than a
contradiction. A proposition with a higher degree of truth
is more reliable than a proposition with a smaller degree of
truth. As all known, probabilistic logic introduced by Adams
[4] is another successful realization of the idea of uncertainty
of propositions. Our method is different from probabilistic
logic. In probabilistic logic, the truth values of propositions
are probability values (between 0 and 1), which is arbitrarily
given. And in many probabilistic logics, truth value of a
proposition is not determined by the truth values of its atom
propositions (see [3], [5], [6]).

Based on the theory of truth degrees, the concepts
of similarity degrees and distance between propositions
have been proposed [1], [3], [7], [8]. Consequently, many
researchers have improved the theory and extend it to various
many-valued logical systems and fuzzy logical systems [9],
[10], [11]. Furthermore, they have applied the theory of truth
degrees to approximate reasoning [1], [12], predicate logic
[13], modal logic [14] and rough logic [15], [16].
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The term ”quantum” is increasingly prevalent in
interdisciplinary scientific literature, as exploring quantum
counterparts of classical models inspires technological
advancements [17], [18], [19], [20], [21]. In this paper,
quantum computing provides a new perspective on
calculating the truth degrees of propositions. In quantum
computing, a proposition’s truth value can exist as a
superposition of true and false, enabling parallel processing
and faster results.

The structure of this article is organized as follows:
Section II provides a review of the two-valued propositional
logic system, including the truth degrees of propositions
and the role of quantum gates. In Section III, we apply
quantum circuits to propositions. Sections IV and V present
quantum circuits designed to calculate the truth degree and
the randomized truth degree of propositions, respectively.
Subsequently, Sections VI and VII focus on quantum circuits
for determining the similarity degree and the randomized
similarity degree between propositions, respectively. Finally,
Section VIII concludes our research findings.

II. PRELIMINARIES

A. Two-valued propositional logic system

First let us recall the some notions of two-valued
propositional logic system L. For more details, see [22], [23].

Suppose that S = {p1, p2, ...} is a countable set and F(S)
is the set of all propositions, which is free algebra of type
(¬,→) generated by S, where ¬ and → are unary and binary
operators, respectively.

The axiom schemes of two-valued propositional logic
system L given in [22], [23] are as follows:

(L1) A → (B → A),
(L2) A → (B → C) → ((A → B) → (A → C)),
(L3) (¬A → ¬B) → (B → A).

The deduction rule of L is Modus Ponens (briefly, MP):
from A and A → B infer B.

Let Σ = {0, 1}, a valuation of F(S) is a homomorphism
v : F(S) → Σ, where v(¬A) = 1 − v(A) and v(A →
B) = v(A) → v(B) = max{1 − v(A), v(B)}. Since
A ∨ B = (A → B) → B, A ∧ B = ¬(¬A ∨ ¬B)
and A ↔ B = (A → B) ∧ (B → A). Hence,
we have v(A ∨ B) = max{v(A), v(B)}, v(A ∧ B) =
min{v(A), v(B)} and v(A ↔ B) = max

(
min{1 −

v(A), 1− v(B)},min{v(A), v(B)}
)
.

Denote Ω the set of all valuations. A proposition A is a
tautology, denoted by ⊨ A. if v(A) = 1 for every v ∈ Ω,
and A is a contradiction if v(A) = 0 for every v ∈ Ω.

B. Truth degrees of propositions

In this paper, Σ = {0, 1} and Σm = {0, 1}m, |S|
represents the cardinality of a set S.
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Assume that A = A(p1, p2, ..., pm) is a proposition built
up from m atomic propositions p1, p2, ..., pm by using the
connectives ¬ and →. Then we can obtain a mapping
Ā(x1, x2, ..., xn) : Σm → Σ, called a m-ary truth function
(or Boolean function) induced by A.

Definition 1. [1] Let A = A(p1, p2, ..., pm) be a proposition
containing m atomic proposition p1, p2, ..., pm, Ā be the
truth function induced by A. Define

τ(A) =
|Ā−1(1)|

2m
(1)

the truth degree of proposition A in L.

It is noteworthy that all atomic formulas are assigned
a uniform truth degree of 1

2 . From the point of view of
probability, the probability of each atomic formula is

Pr(pi = 1) = Pr(pi = 0) =
1

2
, ∀i ∈ {1, 2, · · · , n}, (2)

and atomic formulas are mutually independent.
Then the truth degree of a proposition

A = A(p1, p2, ..., pm) containing m atomic proposition
p1, p2, ..., pm is the probability of A being true, i.e.,

τ(A) = Pr(A(p1, p2, ..., pm) = 1). (3)

For example, the truth degree of the conjunction of any
two atomic formulas is precisely the product of the individual
truth degrees of those formulas, i.e.,

τ(p ∧ q) = Pr(p ∧ q = 1)

=Pr(p = 1) · Pr(q = 1) =
1

2
· 1
2
=

1

4
. (4)

Let A,B be two propositions, the similarity degree
between A and B is defined as

S(A,B) = τ
(
(A → B) ∧ (B → A)

)
. (5)

Wang et al. [11], [24] introduced the concept of the
randomized truth degree of a formula, where the truth degree
of each atomic formula is assigned a value randomly selected
from the interval (0, 1). Specifically, for each atomic formula
pi, the probability that pi = 1 is given by di, where
di ∈ (0, 1) for all i ∈ {1, 2, . . . ,m}, i.e.,

Pr(pi = 1) = di ∈ (0, 1), ∀i ∈ {1, 2, · · · , n}. (6)

Consequently, D = (d1, d2, . . . , dm) is defined as a random
sequence. The randomized truth degree of a formula A,
denoted as τD(A), is then the probability that the formula
A(p1, p2, . . . , pm) = 1 under the random sequence D, i.e.,
the condition specified by Equation 6.

Let A,B be two propositions and D be a random
sequence, the randomized similarity degree between A and
B under random sequence D is defined as

S(A,B) = τD
(
(A → B) ∧ (B → A)

)
. (7)

C. Quantum gates

Some notions of of quantum computation are recalled
below, whereas others refer to reports from [20].

The fundamental concept of quantum computation is
the qubit, which is a pure state in the Hilbert space C2.
The standard orthonormal basis of C2 is {|0⟩ , |1⟩}, where

Fig. 1: Quantum circuit of the oracle function UA for the
proposition A(p1, p2, ..., pm).

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
. In some contexts, the state |1⟩ is

associated with truth, while |0⟩ is associated with falsity. A
pure state |ξ⟩ is expressed as a coherent superposition of |0⟩
and |1⟩ with complex coefficients, given by the equation:

|ξ⟩ = β0 |0⟩+ β1 |1⟩ , (8)

where β0, β1 ∈ C and satisfy the normalization condition:

|β0|2 + |β1|2 = 1. (9)

An n-qubit quantum register is represented by a unit vector
in the n-dimensional Hilbert space H(n) = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n−times

,

where ⊗ denotes the tensor product of spaces. Any factorized
unit vector |ξ1⟩ · · · |ξn⟩ can also be expressed as |ξ1 · · · ξn⟩.

The main objective of this paper is to design quantum
circuits for calculating the truth degrees of propositions using
quantum gates. As outlined in Table 1, six types of quantum
gates will be employed: the Hadamard gate, the RY gate,
the I gate, the Pauli-X (NOT) gate, the CNOT gate, and the
Toffoli gate.

III. QUANTUM CIRCUITS OF PROPOSITIONS

Indeed, a proposition A = A(p1, p2, ..., pm) containing
m atomic proposition p1, p2, ..., pm is a m-bit input, 1-bit
output Boolean function A : {0, 1}m → {0, 1}.

Note that any quantum gate is reversible, all the gates in
a quantum circuit are required to be reversible. To overcome
this, a useful concept is that of an oracle function UA. Given
a function A : {0, 1}m → {0, 1}, the function UA is a
(m+1)-input (m+1)-output Boolean function that is defined
as follows:

UA(p1, p2, ..., pm, 0) = UA

(
p1, p2, ..., pm, A(p1, p2, ..., pm)

)
.

(10)
Figure 1 illustrates the quantum circuit for the

oracle function UA corresponding to the proposition
A(p1, p2, . . . , pm). The oracle functions of five connectives
are given in Table 2. Additionally, Figure 2 presents
the quantum circuits for the oracle functions of these
connectives.

IV. QUANTUM CIRCUIT FOR CALCULATING THE TRUTH
DEGREE

A. Approach

Let A = A(p1, p2, ..., pm) be a proposition containing
m atomic proposition p1, p2, ..., pm. For convenience,
let p = (p1, p2, ..., pm). In this paper, we assume each
proposition A is provided as an oracle UA. We examine
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TABLE I: QUANTUM GATES.

Gate I RY Hadamard

Diagram

Matrix

1 0

0 1

 .

cos(
θ
2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

 . 1√
2

1 1

1 −1

 .

Gate Toffoli CNOT Pauli-X (NOT)

Diagram 𝑎ଷ ⊕ 𝑎ଵ 𝑎ଶ

𝑎ଶ

𝑎ଵ

𝑎ଶ

𝑎ଷ

𝑎ଵ

𝑎ଶ ⊕ 𝑎ଵ

𝑎ଵ

𝑎ଶ

𝑎ଵ

𝑎 𝑎 ⊕ 1

Matrix



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



.



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

0 1

1 0

 .

TABLE II: Truth-table of the oracle functions UA1
, UA2

,UA3
,UA4

and UA5
of A1(p) = ¬p, A2(p, q) = p∧q, A3(p, q) = p∨q,

A4(p, q) = p → q and A5(p, q) = p ↔ q, respectively.

p q UA1 (p, 0) UA2 (p, q, 0) UA3 (p, q, 0) UA4 (p, q, 0) UA5 (p, q, 0)
0 0 01 000 000 001 001
0 1 01 010 011 011 010
1 0 10 100 101 100 100
1 1 10 111 111 111 111

the quantum algorithm for computing the truth degree of
propositions. The quantum circuit of our method is shown
in Figure 3 and the steps of the method are as follows.

(1). The initial state |α0⟩ is |0⟩⊗(m+1).
(2). Apply the H⊗m ⊗ I on the initial state, producing

|α1⟩ =
∑

p∈{0,1}m

|p⟩√
2m

⊗ |0⟩ . (11)

(3). Perform the UA on |α1⟩, producing

|α2⟩ = UA(|α1⟩) =
∑

p∈{0,1}m

|p,A(p)⟩√
2m

. (12)

(4). Perform a single-qubit measurement on the bottom
qubit of |α2⟩ and denote the output |α3⟩.

B. Analysis

Let

Q =
{
p = (p1, p2, ..., pm) ∈ {0, 1}m

∣∣A(p1, p2, ..., pm) = 1
}
,

(13)

S =
{
p = (p1, p2, ..., pm) ∈ {0, 1}m

∣∣A(p1, p2, ..., pm) = 0
}
.

(14)

Then the truth degree of proposition A is τ(A) = |Q|
2m .

In step 3, the state of the qubit |α2⟩ can be described as
follows:

|α2⟩ =
∑

p∈{0,1}m

|p,A(p)⟩√
2m

=
∑
p∈S

|p, 0⟩√
2n

+
∑
p∈Q

|p, 1⟩√
2m

. (15)

When measuring the bottom qubit of |α2⟩, the state
is revealed to be |0⟩ with probability |S|

2m and |1⟩ with
probability |Q|

2m .
Therefore, all we need to do is repeat steps 1-4 a number

of times to estimate the truth degree of the proposition.
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|𝑝⟩

|0⟩

|𝑝⟩

|¬𝑝⟩
(a) Quantum circuit of the oracle
function for A(p) = ¬p

|0⟩

|𝑝⟩

|𝑞⟩

|𝑝 ∧ 𝑞⟩

|𝑝⟩

|𝑞⟩

(b) Quantum circuit of the oracle function for
A(p, q) = p ∧ q

|0⟩

|𝑝⟩

|𝑞⟩

|𝑝 ∨ 𝑞⟩

|𝑝⟩

|𝑞⟩

(c) Quantum circuit of the oracle function for A(p, q) = p ∨ q

|0⟩

|𝑝⟩

|𝑞⟩

|𝑝 → 𝑞⟩

|𝑝⟩

|𝑞⟩

(d) Quantum circuit of the oracle function for A(p, q) = p → q

|0⟩

|𝑝⟩

|𝑞⟩

|𝑝 ↔ 𝑞⟩

|𝑝⟩

|𝑞⟩

(e) Quantum circuit of the oracle function for A(p, q) = p ↔ q

Fig. 2: Quantum circuits of the oracle functions for
connectives

𝑚

Fig. 3: Quantum circuit for calculating truth degree of the
proposition A.

Classical algorithms, in the worst case, require
evaluating A(p) for all possible values, which involves 2m

computations. In contrast, our method leverages quantum
parallelism to obtain the truth degree of the proposition
in one time, storing the result as a quantum state in the
last qubit of Fig. 3. This method can serve as a subroutine
in Section VI for calculating the similarity between
propositions, as this quantum state can be directly used as
input for that computation. The primary drawback of our
approach is that its output is a quantum state rather than a
classical, crisp value. Therefore, multiple measurements are
necessary to obtain an estimated value.

C. A sample example

Let us consider the proposition A = p → q. It is easy to
know that the truth degree of proposition A is τ(A) = 0.75.

The proposed quantum implementation for calculating the
truth degree of A is executed using Huawei’s quantum
computing cloud platform HiQ (https://hiq.huaweicloud.com/
home). The quantum circuit utilized for this example is
illustrated in Fig. 4(a), where the initial state is |0⟩ |0⟩ |0⟩.
Upon executing the program depicted in Fig. 4(a) on the
HiQ quantum platform, the results are presented in Fig. 4(b).
Notably, out of 10,000 repeated tests, the state was measured
as 0 a total of 2,469 times, while the probability of the state
being 1 was recorded as 7,531 times. Consequently, the truth
degree of A on the HiQ quantum platform is calculated to be
0.7531, which closely approximates the ideal result of 0.75.

V. QUANTUM CIRCUIT FOR CALCULATING THE
RANDOMIZED TRUTH DEGREE

A. Approach

Let D = (d1, d2, . . . , dm) be a random sequence in (0, 1).
Let A = A(p1, p2, ..., pm) be a proposition containing m
atomic proposition p1, p2, ..., pm. Here we examine the
quantum algorithm for computing the randomized truth
degree τD(A) of proposition A under the random sequence
D. The quantum circuit of our method is shown in Figure
4 and the steps of the method are as follows.

(1). The initial state |α0⟩ is |0⟩⊗(m+1).
(2). Apply the RY (θ1) ⊗ RY (θ2) ⊗ · · · ⊗ RY (θm) on the

initial state where

θi = 2arcsin(
√
di), (16)

producing

|α1⟩ = RY (θ1) |0⟩ ⊗RY (θ2) |0⟩ ⊗ · · · ⊗RY (θm) |0⟩ .
(17)

(3). Perform the UA on |α1⟩, producing

|α2⟩ = UA(|α1⟩). (18)

(4). Perform a single-qubit measurement on the bottom
qubit of |α2⟩ and denote the output |α3⟩.
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(a)

(b)

Fig. 4: Quantum implementation for calculating truth degree of A = p → q.

𝑚

Fig. 5: Quantum circuit for calculating the randomized truth
degree of proposition A.

B. Analysis

In step 2, for each i, we have θi = 2arcsin(
√
di), then

RY (θi) |0⟩ =
[
cos( θi2 ) − sin( θi2 )

sin( θi2 ) cos( θi2 )

] [
1
0

]
= cos(

θi
2
) |0⟩+ sin(

θi
2
) |1⟩ (19)

=
√
1− di |0⟩+

√
di |1⟩ .

The state RY (θi) |0⟩ is revealed to |1⟩ with probability di.
Consequently, when measuring the bottom qubit of |α2⟩, the
probability of it being |1⟩ is equivalent to the probability that
A(p1, p2, . . . , pm) = 1, given that Pr(pi = 1) = di for all i.

Thus, repeating above steps 1-4 a number of times allows
us to estimate the proposition’s randomized truth degree.
Clearly, when the proposition is a tautology, the measurement

result is always |1⟩; when it is a contradiction, the result is
always |0⟩.

To compute the truth degree of a proposition, we utilize the
Hadamard gate, which ensures that each atomic proposition
has an equal probability of taking the value 0 or 1. In
contrast, when calculating the randomized truth degree, we
replace the H gate with the RY (θ) rotation gate. The
parameter θ allows us to adjust the probability distribution of
each atomic proposition taking the value 0 or 1. Consistent
with our previous approach in Section IV, this method
capitalizes on quantum parallelism: a single application of
the UA suffices to encode the randomized truth degree of
proposition A into a quantum state, held in the final qubit
depicted in Fig. 5. This method can serve as a subroutine
in Section VII for calculating the randomized similarity
between proposition, meaning this quantum state can then
be used as input for the randomized similarity computation.
A key limitation, however, remains: the algorithm’s output
is a quantum state rather than a classical, crisp value.
Consequently, repeated measurements are necessary to yield
an estimated value.

C. A sample example
Let us consider the proposition A = p → q. If Pr(p =

1) = Pr(q = 1) = 0.25, then the randomized truth degree
of proposition A under random sequence D = (0.25, 0.25)
is τ(A) = 0.8125.

The proposed quantum implementation for calculating
the randomized truth degree of A under random sequence
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(a)

(b)

Fig. 6: Quantum implementation for calculating randomized truth degree of A = p → q.

D is executed using Huawei’s quantum computing cloud
platform HiQ. The quantum circuit utilized for this example
is illustrated in Fig. 6(a), where the initial state is |0⟩ |0⟩ |0⟩.
Upon executing the program depicted in Fig. 6(a) on the
HiQ quantum platform, the results are presented in Fig. 6(b).
Notably, out of 10,000 repeated tests, the state was measured
as 0 a total of 1,925 times, while the probability of the state
being 1 was recorded as 8,075 times. Consequently, the truth
degree of A on the HiQ quantum platform is calculated to
be 0.8075, which closely approximates the ideal result of
0.8125.

VI. QUANTUM CIRCUIT FOR CALCULATING THE
SIMILARLY DEGREE BETWEEN PROPOSITIONS

A. Approach

Let A = A(p1, p2, ..., pm) be a proposition containing m
atomic proposition p1, p2, ..., pm and B = B(q1, q2, ..., qn)
be a proposition containing n atomic proposition
q1, q2, ..., qn. For convenience, let p = (p1, p2, ..., pm)
and q = (q1, q2, ..., qn). Here we assume both propositions
A and B are provided as two oracles UA and UB ,
respectively. We examine the quantum algorithm for
computing the similarly degree between propositions A and
B. The quantum circuit of our method is shown in Figure 5
and the steps of the method are as follows.

(1). The initial state |α0⟩ is |0⟩⊗(m+n+3).
(2). Apply the H⊗m ⊗ I ⊗H⊗n ⊗ I2 on the initial state,

𝑚

𝑚

𝑈஺(௣)↔஻(௤)

Fig. 7: Quantum circuit for calculating the similarly degree
between propositions A and B.

producing

|α1⟩

=
∑

p∈{0,1}m

|p⟩√
2m

⊗ |0⟩ ⊗
∑

q∈{0,1}n

|p⟩√
2n

⊗ |0⟩ ⊗ |0⟩ .

(20)
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(a)

(b)

Fig. 8: Quantum implementation for calculating similarly degree between propositions A and B.

(3). Perform the UA ⊗ UB ⊗ I on |α1⟩, producing

|α2⟩
=UA(|α1⟩) (21)

=
∑

p∈{0,1}m

|p,A(p)⟩√
2m

⊗
∑

q∈{0,1}n

|q,B(q)⟩√
2n

⊗ |0⟩ .

(4). Perform the UA(p)↔B(q) on the n+ 1th, m+ n+ 2th,
and m+n+3th qubits of |α2⟩, as shown in Figure 5,
and obtain |α3⟩

(5). Perform a single-qubit measurement on the bottom
qubit of |α3⟩.

B. Analysis

From section 4, we can know that, in step 3, the n+ 1th
and m+n+2th qubits of the state |α2⟩ can be described as
follows:

|ξ1⟩ =
√
1− τ(A) |0⟩+

√
τ(A) |1⟩ , (22)

|ξ2⟩ =
√
1− τ(B) |0⟩+

√
τ(B) |1⟩ . (23)

In step 4, we use UA(p)↔B(q) on |ξ1⟩ |ξ2⟩ |0⟩ and obtain
|ξ1⟩ |ξ2⟩ |ξ3⟩ where

|ξ3⟩ =
√
1− τ(A)τ(B)− (1− τ(A))(1− τ(B)) |0⟩
+
√
τ(A)τ(B) + (1− τ(A))(1− τ(B)) |1⟩ (24)

The state |ξ3⟩ is revealed to |1⟩ with probability
τ(A)τ(B) + (1 − τ(A))(1 − τ(B)) which is the similarly

degree between propositions A and B. Thus, repeating above
steps 1-5 a number of times allows us to estimate the
similarly degree between propositions A and B.

C. A sample example

Let us consider the proposition A = p ∧ q and B =
r → s. It is easy to know that the similarly degree between
propositions A and B is S(A,B) = 0.375.

The proposed quantum implementation for calculating
similarly truth degree between propositions A and B is
implemented using Huawei’s quantum computing cloud
platform HiQ. The quantum circuit for this example
is depicted in Fig. 8(a). Note that the initial state is
|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩. The result of executing the program
of Fig. 8(a) on HiQ quantum platform is shown in Fig. 8(b).
As it can be seen, the times of the state being 0 after the
measurement is 6289, while the probability of the state being
1 is 3711, note that the number of repeated tests is 10000.
The truth degree of A on HiQ quantum platform is 0.3711,
which is very close to the ideal result 0.3711.

VII. QUANTUM CIRCUIT FOR CALCULATING THE
RANDOMIZED SIMILARLY DEGREE BETWEEN

PROPOSITIONS

A. Approach

Let A = A(p1, p2, ..., pm) be a proposition
containing m atomic proposition p1, p2, ..., pm and
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(a)

(b)

Fig. 9: Quantum implementation for calculating randomized similarity degree between A and B.

𝑚

𝑚

𝑈஺(௣)↔஻(௤)

Fig. 10: Quantum circuit for calculating the randomized
similarly degree between propositions A and B.

B = B(q1, q2, ..., qn) be a proposition containing n atomic
proposition q1, q2, ..., qn. Let D1 = (d1, d2, . . . , dm) and
D2 = (e1, e2, . . . , en) be two random sequences. Denote
D = (d1, d2, . . . , dm, e1, e2, . . . , en). Let τD1

(A) and
τD2(B) be the randomized truth degrees of proposition A
under the random sequence D1 and proposition B under
the random sequence D2, respectively. The randomized
similarly degree between propositions A and B under the

random sequence D is τD(A ↔ B).
We examine the quantum algorithm for computing the

randomized similarly degree between propositions A and B
under the random sequence D. The quantum circuit of our
method is shown in Figure 6 and the steps of the method
are as follows.

(1). The initial state |α0⟩ is |α0⟩ is |0⟩⊗(m+n+3).
(2). Apply the RY (θ1)⊗ · · · ⊗RY (θm)⊗RY (θ1′)⊗ · · · ⊗

RY (θn)⊗ I on the initial state where

θi = 2arcsin(
√
di), i = 1, 2, ...,m, (25)

θj′ = 2arcsin(
√
ej), j = 1, 2, ..., n, (26)

producing

|α1⟩
=RY (θ1) |0⟩ ⊗ · · · ⊗RY (θm)RY (θ1′) |0⟩
⊗ · · · ⊗RY (θn′) |0⟩ ⊗ |0⟩ . (27)

(3). Perform the UA ⊗ UB ⊗ I on |α1⟩ and obtain |α2⟩.
(4). Perform the UA(p)↔B(q) on the n+ 1th, m+ n+ 2th,

and m+n+3th qubits of |α2⟩, as shown in Figure 5,
and obtain |α3⟩

(5). Perform a single-qubit measurement on the bottom
qubit of |α3⟩.
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|𝑝ଵ⟩

⋮

|𝑞௡⟩

|0⟩ |𝐴(𝑝ଵ, ⋯ , 𝑝௠, 𝑞ଵ, ⋯ , 𝑞௡)⟩

|𝑝ଵ⟩

|𝑝௠⟩ |𝑝௠⟩

|𝑞ଵ⟩

⋮

|𝑞௡⟩

|𝑞ଵ⟩

⋮ ⋮

|𝑝ଵ⟩

⋮

|𝑟௞⟩

|0⟩ |𝐵(𝑝ଵ, ⋯ , 𝑝௠, 𝑟ଵ, ⋯ , 𝑟௞)⟩

|𝑝ଵ⟩

|𝑝௠⟩ |𝑝௠⟩

|𝑟ଵ⟩

⋮

|𝑟௞⟩

|𝑟ଵ⟩

⋮ ⋮

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

 𝐻

|0⟩ |𝐴 ↔ 𝐵⟩

Fig. 11: Quantum circuit for calculating the similarly degree between propositions A and B with common atomic
propositions.

B. Analysis
From section 5, we can know that, in step 3, the n+ 1th

and m+n+2th qubits of the state |α2⟩ can be described as
follows:

|ξ1⟩ =
√

1− τD1
(A) |0⟩+

√
τD1

(A) |1⟩ , (28)

|ξ2⟩ =
√

1− τD2
(B) |0⟩+

√
τD2

(B) |1⟩ . (29)

In step 4, we use UA(p)↔B(q) on |ξ1⟩ |ξ2⟩ |0⟩ and obtain
|ξ1⟩ |ξ2⟩ |ξ3⟩ where

|ξ3⟩
=
√
1− τD1

(A)τD2
(B)− (1− τD1

(A))(1− τD2
(B)) |0⟩

+
√

τD1
(A)τD2

(B) + (1− τD1
(A))(1− τD2

(B)) |1⟩
(30)

The state |ξ3⟩ is revealed to |1⟩ with probability
τD1

(A)τD2
(B) + (1 − τD1

(A))(1 − τD2
(B)) which is the

randomized similarly degree between propositions A and B
under random sequence D. Thus, repeating above steps 1-
5 a number of times allows us to estimate the randomized
similarly degree between propositions A and B.

C. A sample example
Let us consider the proposition A = p ∧ q and B =

r → s. If Pr(p = 1) = Pr(q = 1) = Pr(s =

1) = Pr(t = 1) = 0.25, then it is easy to know that
the randomized similarly degree between propositions A
and B is S(A,B) = 0.2265625 under random sequence
D = (0.25, 0.25, 0.25, 0.25).

The proposed quantum implementation for calculating
similarly truth degree between propositions A and B is
implemented using Huawei’s quantum computing cloud
platform HiQ. The quantum circuit for this example is
depicted in Fig. 10(a). Note that the initial state is
|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩. The result of executing the program
of Fig. 10(a) on HiQ quantum platform is shown in Fig.
10(b). As it can be seen, the times of the state being 0 after
the measurement is 7743, while the probability of the state
being 1 is 2257, note that the number of repeated tests is
10000. The truth degree of A on HiQ quantum platform is
0.2257, which is very close to the ideal result 0.2265625.

D. Discussion

In the previous sections, we presented quantum circuits
for computing the similarity degree and randomized
similarity degree between two propositions, A and B,
under the assumption that they contain no common atomic
propositions. We now extend our analysis to the more
general case where A and B may contain overlapping atomic
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propositions. Suppose A = A(p1, p2, . . . , pm, q1, q2, . . . , qn)
and B = B(p1, p2, . . . , pm, r1, r2, . . . , rk), where {pi}mi=1

are the common atomic propositions shared by both A and
B. To handle this scenario, we propose a quantum circuit
for evaluating their similarity degree. The quantum circuit
is depicted in Figure 11. A key feature of this approach is
that the first m qubits of A and the first m qubits of B are
prepared in an entangled state. This ensures that their truth
values are the same.

VIII. CONCLUSIONS

Quantum computers have demonstrated successful
applications across various fields, and the quantum circuit
model serves as a crucial tool in the theory of quantum
computation. In this study, we employed quantum computers
to estimate the truth degree of propositions and the similarity
degree between propositions using quantum circuits. Our
experimental evaluation, conducted on the HiQ quantum
platform, confirmed the effectiveness of the proposed
quantum circuits. This research aims to demonstrate the
feasibility of quantum computers in computing truth
degrees. Although truth degree theory is a valuable asset, it
requires further exploration from the perspective of quantum
computing. Future work should focus on investigating
the implementation of quantum circuits for truth degree
computation in many-valued logic systems.
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