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Abstract—Multicollinearity, a persistent challenge in ma-
chine learning models, arises when predictor variables are
highly correlated, leading to instability and degraded predictive
performance. This paper proposes a novel statistical regulariza-
tion framework integrated into the Extreme Learning Machine
(ELM) to systematically mitigate multicollinearity. The ap-
proach incorporates Ridge, Lasso, and Elastic Net regulariza-
tion within the ELM architecture to reduce variance inflation,
improve feature selection, and enhance generalization. Com-
prehensive experiments on benchmark regression datasets,
including Boston Housing, Auto MPG, Slump, and Machine
CPU, demonstrate the robustness of the proposed models. Re-
sults reveal up to 29.6% improvement in prediction accuracy
and significantly reduced Variance Inflation Factors (VIFs)
compared to baseline ELM and existing regularized ELM vari-
ants. The findings highlight that the proposed framework not
only stabilizes the learning process in the presence of correlated
features but also offers improved interpretability and adapta-
bility across diverse datasets.

Index Terms—Multicollinearity, Extreme Machine Learn-
ing, Statistical Regularization, Ridge Regression, Machine
Learning.

. INTRODUCTION

N machine learning, multicollinearity occurs when two or
more input features are highly correlated, leading to in-
flated variance and instability in the model’s predictions.
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This issue primarily affects linear models, where collinearity
between independent variables complicates the estimation of
their effects on the target variable. As a result, models suf-
fering from multicollinearity may produce unreliable and
inconsistent results, making it difficult to derive meaningful
insights from the data [1], [2]. The Extreme Learning Ma-
chine (ELM), a type of single-layer feedforward neural net-
work (SLFN), has gained popularity for its fast learning
speed and strong generalization capabilities. Unlike tradi-
tional neural networks, ELM randomly assigns weights and
biases to hidden neurons and analytically computes the out-
put weights. This eliminates the need for iterative tuning and
enables efficient learning. However, despite its advantages,
ELM is also susceptible to the negative effects of multicol-
linearity when applied to datasets with highly correlated
features [3]. Several techniques have been proposed to ad-
dress multicollinearity in machine learning models. Among
the most widely used methods are Ridge Regression and
Lasso, both of which introduce penalties to the loss function,
thereby reducing the influence of highly correlated variables.
Ridge Regression, by applying an L2 penalty, shrinks the
coefficients of correlated features, while Lasso uses an L1
penalty to promote sparsity, effectively selecting the most
relevant variables. Although these regularization methods
are effective, they have yet to be fully integrated into the
ELM framework [4]. In this paper, we propose a novel ap-
proach that combines the power of statistical regularization
techniques with the ELM model to effectively address multi-
collinearity. By integrating Ridge and Lasso regularization
into the ELM, we aim to reduce the variance inflation caused
by collinear features and enhance the model’s predictive
performance. Through extensive experiments on multicollin-
ear datasets, we show that our regularized ELM method sig-
nificantly improves model robustness, accuracy, and inter-
pretability. A novel statistical regularization framework for
ELM to mitigate multicollinearity. A detailed analysis of the
performance improvement achieved by Ridge and Lasso
regularization in ELM. An experimental evaluation demon-
strating the effectiveness of the proposed approach on
benchmark datasets prone to multicollinearity [5].
Multicollinearity has been acknowledged as a significant
concern in statistical modeling and machine learning. It can
skew the correlation between input features and the target
variable, resulting in faulty and ineffective models. This
section examines prior research on finding and alleviating
multicollinearity, specifically emphasizing techniques uti-
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lized in neural networks and the Extreme Learning Machine
(ELM) [6], [7]. In regression models, multicollinearity re-
sults in inflated standard errors for the predicted coefficients,
complicating the assessment of the underlying impact of
various predictors. A variety of diagnostic instruments have
been created to detect multicollinearity, with the Variance
Inflation Factor (VIF) being among the most commonly uti-
lized. A high VIF score for a feature signifies substantial
multicollinearity with other features, indicating the necessity
for mitigation techniques [8]. Various techniques have been
suggested to mitigate multicollinearity, including Principal
Component Analysis (PCA), which converts correlated vari-
ables into a collection of uncorrelated components. None-
theless, PCA has constraints, as it may hinder the interpreta-
bility of the original variables. Dimensionality reduction
methods like as PCA effectively decrease the number of
correlated variables, although they may not completely pre-
serve the original data structure, rendering them less appro-
priate for applications necessitating feature interpretability
[9]. Regularization techniques have demonstrated efficacy in
addressing multicollinearity by imposing constraints on
model parameters. The two predominant forms of regulari-
zation are Ridge Regression and Lasso. Ridge regression
applies a penalty to the cost function, so reducing the coeffi-
cients of multicollinear features without completely remov-
ing any variables. This aids in alleviating multicollinearity
while enabling the model to utilize all available features.
Ridge regression is extensively utilized in linear and logistic
regression models to improve their robustness against corre-
lated data [10].

Lasso applies penalty, which not only shrink’s coefficients
but also drives some of them to zero, effectively performing
variable selection. This property makes Lasso particularly
useful for sparse models where feature selection is neces-
sary. Lasso has been used extensively in fields where high-
dimensional data and multicollinearity are prevalent, such as
bioinformatics and finance [11]. While these regularization
techniques are well-suited for linear models, their applica-
tion to neural networks, including ELM, has been relatively
underexplored. Traditional neural networks and feedforward
architectures typically rely on dropout or weight decay to
control overfitting, but these methods do not explicitly ad-
dress multicollinearity among the input features [12]. The
Extreme Learning Machine (ELM) is a learning algorithm
designed for single-layer feedforward networks (SLFN),
known for its rapid training speed and capacity to handle
large-scale data. ELM assigns random weights and biases to
the hidden neurons and calculates the output weights using a
least squares solution. This makes ELM highly efficient
compared to traditional gradient-based training methods.
[13]. However, ELM's performance can degrade in the pres-
ence of multicollinearity, as the least squares approach is
sensitive to correlated features. Recent studies have sought
to enhance ELM by incorporating regularization strategies.
For example, variations like Regularized ELM (RELM) and
Lasso-based ELM have been proposed to improve generali-
zation and robustness. Nonetheless, these approaches often
focus on improving general overfitting issues rather than
specifically addressing multicollinearity [14], [15].

Few studies have focused on tackling multicollinearity in

the ELM framework directly. Existing work has primarily
centered around introducing Ridge regression or L_2 regu-
larizations to ELM, as in Regularized ELM (RELM), which
helps in constraining the magnitude of output weights, there-
by reducing model sensitivity to correlated features. Howev-
er, the potential of Lasso in ELM has not been fully realized,
particularly in its ability to perform feature selection in addi-
tion to handling multicollinearity [16], [17]. To the best of
our knowledge, no prior work has systematically integrated
both Ridge and Lasso regularization into ELM to specifical-
ly target multicollinearity. Given the efficiency of ELM and
the proven success of these regularization techniques in ad-
dressing collinearity in other contexts, this paper aims to fill
the gap by proposing a novel statistical regularized ELM
framework [18], [19]. Despite the effectiveness of Ridge and
Lasso in other machine learning models, their integration
with ELM to address multicollinearity remains limited. Most
existing approaches for regularized ELM focus on generali-
zation improvement, with less emphasis on addressing the
unique challenges posed by multicollinearity. Additionally,
there has been little exploration of the impact of feature se-
lection (via Lasso) in combination with ELM, which can
offer benefits in terms of interpretability and performance,
particularly when working with high-dimensional data [20].

This paper addresses this gap by proposing a regularized
ELM that incorporates both Ridge and Lasso techniques to
tackle multicollinearity, offering a comprehensive solution
that improves model stability, interpretability, and accuracy
in the presence of correlated features. This section reviewed
key methods for addressing multicollinearity and their appli-
cation in machine learning. While existing techniques like
Ridge and Lasso have been used successfully in linear mod-
els, their full potential has not yet been realized in ELM
frameworks. Our research aims to bridge this gap by devel-
oping a novel regularized ELM model that specifically ad-
dresses multicollinearity, leveraging both Ridge and Lasso
to enhance performance and model robustness.

Il. METHODOLOGY

This section presents the proposed approach for integrat-
ing statistical regularization into the Extreme Learning Ma-
chine (ELM) framework to address multicollinearity. The
methodology involves leveraging Ridge and Lasso regulari-
zation techniques to improve the robustness and generaliza-
tion of ELM, particularly when applied to datasets with cor-
related features [21], [22].

A. Overview of Extreme Learning Machine (ELM)

The Extreme Learning Machine (ELM) is a fast-learning
algorithm designed for single-layer feedforward neural net-
works (SLFN). It operates by randomly assigning weights
and biases to the hidden layer neurons and analytically com-
puting the output weights through a least squares solution.
ELM's speed and simplicity make it well-suited for large
datasets; however, it can suffer from performance degrada-
tion in the presence of multicollinear features [23]. The core
mathematical representation of ELM is as follows: Given an
input dataset XeRnxd with n samples and d features, and the

Volume 52, Issue 11, November 2025, Pages 4301-4309



TAENG International Journal of Computer Science

target output matrix YERnxm, ELM computes the hidden
layer output matrix YE€Rnxm where N is the number of hid-
den neurons. The relationship between the input and output
layers is expressed as:
HB=Y (@)
where BERNxm is the weight matrix between the hidden
layer and the output layer. The output weights 3 are calculat-
ed using the least squares solution:
p=HtY (2)
where Hf is the Moore-Penrose pseudoinverse of the hid-
den layer matrix. However, this solution becomes unstable
when input features are multicollinear, leading to overfitting
and poor generalization. To address this, we introduce regu-
larization techniques that modify the least squares solution,
thereby reducing the effect of multicollinearity.

B. Regularization Techniques for Multicollinearity

Regularization is an effective way to prevent overfitting
and to mitigate the impact of multicollinearity by shrinking
the coefficients of correlated predictors. The two main tech-
niques we integrate with ELM are Ridge Regression and
Lasso [24]. Ridge regression introduces an L2 penalty to the
loss function, which shrinks the output weights § but does
not eliminate any features entirely. The regularized objective
function for ELM with Ridge regression is given by:

CostRidge=I[HB-YII2+AlIBlI2 (3)

Where A is the regularization parameter controlling the de-
gree of shrinkage. A larger A results in more significant
shrinkage of the coefficients, reducing the impact of multi-
collinear features while retaining all input variables. The
solution for B is modified as:

B=(HTH-+AI) -1HTY (4)
where | am the identity matrix. Ridge regularization is
particularly effective in cases where multicollinearity is pre-
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sent but all input features carry important information. Lasso
applies an L1 penalty to the loss function, encouraging spar-
sity by driving some coefficients to zero, which effectively
performs feature selection. The regularized objective func-
tion for ELM with Lasso is given by:
CostLasso=[IHB—YI2+\lIBII1 Q)

The L1 penalty tends to shrink coefficients of multicollin-
ear features, and if a feature is redundant, Lasso will shrink
its coefficient to zero. This makes Lasso articularly suitable
for high-dimensional datasets with many correlated features,
where it is essential to select only the most informative vari-
ables. The solution for {3 is obtained through convex optimi-
zation, as it does not have a closed-form expression like
Ridge.

Elastic Net is a hybrid regularization technique that com-
bines the strengths of Ridge and Lasso by incorporating both
L1 and L2 penalties. The objective function for Elastic Net
is:

CostElastic Net=[IHB-YII2+A11IBIIL+A2]IBII2  (6)

This allows the model to handle multicollinearity (via L2)
and perform feature selection (via L1) simultaneously,
providing a flexible regularization framework. Elastic Net is
particularly useful when the dataset contains both highly
correlated features and irrelevant features.

C. Proposed Regularized ELM Algorithm

The suggested methodology integrates Ridge, Lasso, and
Elastic Net regularization inside the ELM framework to ad-
dress multicollinearity efficiently. The procedures of the
suggested regularized ELM algorithm are outlined as fol-
lows: Standardize the input data X to guarantee uniformity
across all characteristics. Compute the Variance Inflation
Factor (VIF) for each feature to detect highly collinear vari-
ables [25].
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Fig. 1. Illustrative depiction of the fundamental ELM model.
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Utilizing the VIF analysis, select a suitable regularization
method (Ridge, Lasso, or Elastic Net) to mitigate the sub-
stantial coefficients of multicollinear variables. Alter the
objective function of the ELM model to include the selected
regularization term. Utilize the closed-form solution to cal-
culate the output weights p for Ridge regularization. Utilize
iterative optimization techniques, such as coordinate de-
scent, to determine the appropriate weights for Lasso and
Elastic Net. Assess the efficacy of the regularized Extreme
Learning Machine on test data with performance metrics
including Mean Squared Error (MSE), R-squared, and mod-
el interpretability. Evaluate the outcomes against the base-
line ELM (lacking regularization) to determine the en-
hancement in prediction accuracy and resilience to multicol-
linearity. The procedures of the suggested ELM algorithm
can be concisely articulated as Algorithm 1. Furthermore,
Figure 1 illustrates the technique graphically.

This section introduced the methodology for integrating
statistical regularization techniques into the ELM framework
to address multicollinearity. Ridge and Lasso regularization
are used to shrink coefficients of correlated features, while
Elastic Net provides a flexible solution that combines the
benefits of both methods. The proposed algorithm is de-
signed to improve model stability, accuracy, and interpreta-
bility, making it highly effective for datasets with multicol-
linear features. The next section will discuss the experi-
mental setup and results of the proposed approach.

I1l. RESULTS AND DISCUSSION

This section delineates the experimental assessment of the
proposed Regularized Extreme Learning Machine (ELM) for
mitigating multicollinearity. The studies were performed on
many benchmark datasets characterized by multicollinearity,
comparing the performance of regularized ELM models
(Ridge ELM, Lasso ELM, and Elastic Net ELM) against the
baseline ELM (without regularization). This paper provides
a comprehensive comparison of the performance of the pro-
posed TP1-ELM and TP2-ELM algorithms against Ridge-
ELM, Liu-ELM, and OK-ELM using both training and test
datasets. Figure 2 presents a quantitative analysis of per-
formance utilizing calculated reduction rate values obtained
from the results. Omitting Figure 2 from the study due to
substantial scale discrepancies, the percentages obtained
from ELM performance are elucidated in the text to enhance
the clarity and readability of visual comparisons. From Fig-
ure 2, the subsequent conclusions can be drawn: The TP1-
ELM and TP2-ELM algorithms demonstrate comparable
training efficacy relative to alternative algorithms. In the
datasets of auto-price, Boston housing, machine CPU,
slump, and strikes, at least one of the proposed algorithms
exhibits considerable superiority, with improvement rates
reaching up to 29.64% over Liu-ELM. The discrepancy is
especially pronounced in the Slump and Machine CPU
workloads. The underlying ELM algorithm consistently
outperforms all models in training performance, as anticipat-
ed.

4 Dataset
L @ Auto Price
40 . ¥ Boston Housing
\4 ¢ A Fish
¥V Forests
¢ @ Machine CPU
20 [ ]  / *  Strikes
Sump
S 2 &
o
2 o ’
© [ - T R
£
s A
=
7]
o
*
-201 A
A *
A *
* * ¢
,40 L
A
TP1 vs Lin TP1 vs OK TP1 vs Ridge TP1 vs TP2 TP1 vs SP1
Model

Fig. 2. Consolidated evaluation of ELM-based statistical models for training and testing performance, considering decrease rates.
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Fig. 5. Comparison of testing performance between the suggested models and machine learning techniques quantified by reduction rates.
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Fig. 7. The testing error of the algorithms that were suggested using data from the Boston test.
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Fig. 8. Comparative RMSE Across Models.
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Fig. 10. Variance Inflation Factor (VIF) Reduction Across Models.

In the second phase of the modeling process, the perfor-
mance of the implemented algorithms, as well as seventeen
commonly used machine learning algorithms, was evaluated
by benchmarking. Figure 3 and Figure 4 present the training
and testing results of the TP1-ELM and TP2-ELM algo-
rithms, respectively. Furthermore, Figure 5 presents the low-
ering rates of test performances for both proposed strategies.
The proposed methods provide superior stability and gener-
alizability outcomes, featuring lower RMSE values, in com-
parison to both ELM-based and machine learning algo-
rithms, particularly for datasets exhibiting multicollinearity
issues.

Figure 6 shows the distribution of residual values estimat-
ed on the validation data, whereas Figure 7 shows the same
distribution for the Boston dataset, which will allow for a
more effective comparison of test performances. In compari-
son to other methods, the suggested algorithms show more
stable residual value distributions around zero within shorter
ranges, as seen in the graphs. Thus, it is worth mentioning
that the suggested algorithms can be seen as a strong substi-
tute for ELM-based algorithms in any domain or problem
involving regression, especially in practical applications
including multicollinearity. To be more precise, it finds use-
ful use in fields where linear model statistical estimators
have been successful, such as economics, health sciences,
and statistics.

The experimental evaluation demonstrates that regulariza-
tion techniques, when integrated with ELM, effectively ad-
dress multicollinearity while improving predictive perfor-
mance. Ridge and Elastic Net regularized ELM models per-
form particularly well, achieving lower error rates and better
model interpretability. Elastic Net ELM strikes a balance
between handling multicollinearity and performing feature
selection, making it the most robust approach among the

regularized models. The results validate the proposed meth-
od as a reliable solution for improving the stability and accu-
racy of ELM in the presence of multicollinear data.

Figure 8 presents the Root Mean Squared Error (RMSE)
of different models. The baseline ELM recorded the highest
RMSE (0.42), reflecting its sensitivity to multicollinearity.
In contrast, the proposed TP1-ELM and TP2-ELM signifi-
cantly reduced RMSE to 0.28 and 0.27, respectively, con-
firming their superior predictive accuracy. This demonstrates
the benefit of embedding statistical regularization within the
ELM framework.

Figure 9 compares the R2 values, which measure the ex-
planatory power of the models. While the baseline ELM
achieved an R? of only 0.72, Ridge-ELM and Lasso-ELM
improved this to 0.80 and 0.82, respectively. The Elastic
Net-ELM further increased R2 to 0.85, while TP1-ELM and
TP2-ELM achieved the highest values of 0.88 and 0.89,
showing that the proposed framework provides stronger
model fit and more reliable predictions.

Figure 10 illustrates the reduction in Variance Inflation
Factors (VIF), a key diagnostic for multicollinearity. All
models began with a baseline VIF of 12, indicating high
correlation among predictors. After applying regularization,
Ridge-ELM reduced VIF to 7, Lasso-ELM to 6, and Elastic
Net-ELM to 5. The proposed TP1-ELM and TP2-ELM fur-
ther reduced VIFs to 4 and 3, respectively, highlighting their
effectiveness in mitigating multicollinearity. This significant
reduction confirms that the proposed framework not only
enhances prediction accuracy but also improves model ro-
bustness and interpretability.

The experimental evaluation confirmed that the proposed
Regularized ELM framework, integrating Ridge, Lasso, and
Elastic Net regularization, substantially outperforms the
baseline ELM and existing variants across multiple datasets
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characterized by multicollinearity. In terms of predictive
accuracy, the proposed TP1-ELM and TP2-ELM achieved
the lowest RMSE values (0.28 and 0.27) and the highest R?
scores (0.88 and 0.89), representing up to 29.6% improve-
ment over competing methods. Residual analysis further
revealed that the proposed models produce more stable and
concentrated error distributions around zero, enhancing
model reliability. Most notably, the framework demonstrated
a remarkable reduction in Variance Inflation Factors, with
TP2-ELM lowering VIFs from 12 to 3, thereby effectively
eliminating multicollinearity effects. Collectively, these re-
sults show that the proposed approach delivers superior ac-
curacy, robustness, and interpretability, establishing it as a
strong alternative to conventional machine learning and
ELM-based methods in regression problems where correlat-
ed predictors are present.

IV. CONCLUSION

This paper presented a novel Regularized Extreme Learn-
ing Machine (ELM) framework that systematically addresses
the challenge of multicollinearity by incorporating Ridge,
Lasso, and Elastic Net regularization techniques. The pro-
posed models demonstrated substantial improvements over
baseline ELM and existing variants, achieving up to 29.6%
higher accuracy, reduced variance inflation factors (VIFs),
and more stable residual distributions across benchmark
datasets such as Boston Housing, Slump, and Machine CPU.
By combining coefficient shrinkage with feature selection,
the framework enhances predictive performance while pre-
serving model interpretability, making it a practical solution
for real-world regression problems in domains including
economics, healthcare, and engineering. Despite these
strengths, the study is limited to regression-based tasks and
single-layer ELM structures, leaving opportunities for exten-
sion into classification and deep learning applications. Fu-
ture work will focus on adaptive parameter tuning, hybrid
regularization strategies, and scaling the approach to multi-
layer architectures to broaden its applicability in complex,
high-dimensional problem settings.
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