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Abstract—Convolutional neural networks (CNNs) and Vision
Transformer (ViT) fusion models have been widely applied
in image recognition. This paper presents an enhanced
fusion method based on convolutional and Transformer
representation learning (CTRL-F) fusion to improve the model’s
performance in representing position information and enhance
computational efficiency. First, a partial-channel rectangular
self-calibration module (PRCM) is designed by combining
a rectangular self-calibration module (RCM) with partial
convolution (PConv). This module enhances target recognition
for objects with varying shapes, reduces computational
complexity, and maintains feature extraction capabilities.
Second, the Transformer employs a flexible relative position
encoding (RPE) instead of fixed positional encoding, enabling
the model to capture spatial relationships among objects more
accurately across images of varying sizes and scales. Finally,
the proposed model achieves an accuracy of 99.83% on the
Plant Village tomato pest dataset, which is 3.53% higher than
the original method. Comparative results demonstrate that the
proposed method outperforms ResNet 50 (98.80%), ResNet 101
(97.14%), and ViT (94.80%). These results demonstrate its
effectiveness in identifying tomato pests and diseases.

Index Terms—Convolutional Neural Networks, vision
transformer, pest and disease recognition, partial convolution,
relative position encoding.

I. INTRODUCTION

OMATO is China’s fourth most widely cultivated
vegetable, with an annual output of more than
60 million tons. However, due to the impact of pests
and diseases, the problem of crop losses has received
more attention. According to the Food and Agriculture
Organization of the United Nations [1], the global economic
losses of the major food and cash crops caused by pests are
more than 20%. Hence, pest monitoring and yield forecasting
are crucial to ensuring food security. Accurate identification
of pests and diseases is essential for implementing effective
control measures.
Traditional recognition methods relying on expert
experience suffer from low efficiency and poor scalability,
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making them unsuitable for real-time monitoring in modern
agricultural practices. With the rapid advancement of
artificial intelligence and computer vision [2], numerous
researchers have invested in various methods for pest
identification. These methods can generally be classified
into conventional machine learning and deep learning.
However, traditional machine learning methods perform
well in controlled environments but have low accuracy
in complex field conditions. Although CNNs perform
well in conventional target recognition, their fixed square
receptive fields limit their ability to perceive strip-shaped,
highly directional, and structurally variable targets (e.g.,
lesions, insect bites, and corrosion). This limitation makes
it challenging to capture spatial features fully. Although
ViT achieves superior performance in capturing global
dependencies, its limited capacity for local feature extraction
makes it prone to overfitting when trained on small-scale
datasets.

Using fixed absolute positional embeddings in hybrid
models constrains positional encoding, limiting adaptability
to complex agricultural scenes with varying image sizes and
aspect ratios. To solve these limitations, this paper presents
an improved CNN-Transformer fusion model to enhance
recognition, improve computational efficiency, and intensify
the model’s ability to represent positional information.

The main contributions in this paper are concluded as
follows: (1) A PRCM based on partial channel convolution
is designed to combine an RCM with PConv, which not only
improves the recognition ability of different shapes and sizes
of targets but also reduces the calculation complexity and
maintains a robust feature extraction ability. (2) This paper
also replaces the fixed position information in the original
Transformer with a more flexible RPE, so that the proposed
method can understand the position relationship of the object
more accurately when the input images have different sizes
and scales. (3) Results indicate that the proposed model can
achieve an accuracy of 99.83% on the public dataset of Plant
Village [3], which can prevail over the baseline model by
3.53%.

The rest of this paper is organized as follows. In Section II,
the related works are briefly reviewed. In Section III, an
improved model is proposed to enhance the recognition
ability and computation efficiency. Experiments and analyses
are provided in Section IV. The conclusion of this paper is
completed in Section V.

II. RELATED WORKS

Following the rapid development of deep learning, CNNs
have successfully changed the way of pest identification.
Especially, Praveen and Jung [4] proposed an improved
YOLO model combining CBAM attention mechanism with
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spatial transform network (STN) and thin plate spline (TPS)
modules, which can significantly enhance the perception
of irregular and distorted objects through spatially adaptive
transformation. This method performs superiorly on plant
growth phenotype datasets containing complex backgrounds
and occlusions. On the other hand, Ung [5] has proposed a
multiple CNN fusion method, which can achieve efficient
recognition of insect pest classification by combining
multiple CNN models for feature fusion [6]. However,
although these techniques improve recognition accuracy, they
still have key limitations. The receptive field is a fixed square
window for local information extraction in the traditional
convolution structure. Although this structure performs well
in regular target recognition, it permits deficiencies in
perception ability for targets with spatial directionality and
structural variation, such as strip-shaped disease spots, insect
bite tracks, and linear corrosion [7], [8].

To overcome these limitations, the Vision Transformer
(ViT) has been proposed as an emerging architecture [9].
ViT addresses the long-range dependency problem using
a global self-attention mechanism on image patches and
surpasses CNNs on public datasets [10]. Although ViT
outperforms CNNeE, it still faces two significant challenges in
plant pest identification: (1) it needs large training samples
to avoid overfitting[11]; (2) its computational complexity
increases as image resolution increases. Although ViT
exhibits excellent global modeling capability, its local feature
extraction remains weak, which can easily lead to overfitting
when the sample size is small.

In recent years, many researchers have tried integrating
CNN and Transformer structures to balance local feature
extraction and global modeling abilities [12]. TransUNet
proposed by Chen [13]Juses CNN as an encoder to extract
fine-grained features, then feeds these features into the ViT to
model globally. Although TransUNet achieves good results in
medical image segmentation and related tasks, its positional
encoding is still limited by fixed absolute embeddings. It is
unsuitable for complex agricultural scenes with varying input
image sizes and aspect ratios [14].

III. IMPOROVED CNN-TRANSFORMER HYBRID MODELS
USING DYNAMIC FUSION METHOD

CTRL-F model [15] is a typical CNN and Transformer
fusion image classification framework, aiming to balance
the local modeling advantages of CNN and the global
modeling capabilities. The convolution branching part uses
the lightweight mobile inverted bottleneck convolution
(MBConv) module as the basic construction unit. This
module has good expression ability and structural efficiency,
and has the advantage of the Transformer model. In addition,
the Squeeze-and-Excitation (SE) attention mechanism has
been integrated into MBConv to dynamically recalibrate
the feature response along the channel dimension, thereby
improving the model’s ability to perceive global semantic
information.

Although the CTRL-F model enables effective feature
extraction and global modeling capabilities in the fusion
of CNN and Transformer structures, it still has three
main limitations: (1) A limited local receptive field leads
to insufficient spatial modeling accuracy [16]. (2) The
computational resource consumption in the feature fusion

stage is very high [17]. (3) Absolute position coding cannot
model relative spatial relationships [18]. To overcome these
problems, based on the CTRL-F model, this paper proposes a
lightweight and efficient improved CNN-Transformer fusion
model displayed in Fig. 1.

In Fig. 1, the yellow blocks represent key improvements
proposed in this paper. The input image first passes through
an initial convolution stage (SO) containing stem blocks,
followed by four convolution stages (S1 to S4), each
based on the MBConv structure. Two sets of features are
extracted in S2 and S4, respectively, and put into the
Transformer module for global modeling [15]. The feature
fusion module combines the local structure information
captured in CNN branches with the worldwide information
obtained by Transformer branches, enhancing the ability to
recognize different-scale and shape targets in pest images.

A. RCM with PConv

In traditional convolutional structures, the receptive field
is limited to a fixed square window for local information
extraction. Although this structure performs well in regular
target recognition, it has severe limitations in recognizing
pest targets with pronounced spatial directionality and
structural variability (such as strip-shaped disease spots,
insect bite tracks, and linear corrosion). This limitation is
further exacerbated in pest images, where object distributions
often exhibit strong geometric anisotropy (such as lateral
extension or longitudinal growth); it is difficult for the
convolution kernel with a single scale and direction to
accurately capture their key features[19].

To enhance the modeling capability of sensitive directional
features, a rectangular self-calibration module [20] is
employed in the convolution branch. The RCM integrates
Rectangular  Self-Calibration Attention (RCA), batch
normalization (BN), and a multilayer perceptron (MLP)
to enhance feature representation [21]. The adaptive
receptive field adjustment in spatial direction is achieved
by extracting channel importance weights in horizontal
and vertical directions, thereby enhancing the model’s
perception capability of target structural characteristics and
edge information [22]. RCM in Fig. 2 first extracts global
context information in horizontal and vertical directions
through horizontal and vertical pooling, respectively. The
two directional features are combined via broadcast addition
to construct a rectangular region of interest (ROI). Its
mathematical expression is as follows

P =Hp(z)® Vp(z), (1)

where & denotes broadcast addition, and P is the resulting
rectangular area of interest. To better align the ROI with
object structures, the RCM introduces a shape self-calibration
function that adjusts the horizontal and vertical shapes
through two independent band convolutions. Specifically, the
horizontal band convolution refines the ROI in the horizontal
direction, while the vertical band convolution modifies its
vertical counterpart [23]. Finally, the calibrated attention map
is generated through the Sigmoid function [20]defined in (2).

§c(y) = 6 (Yrx1 (¢ (V1xk(H)))) 2)

where ;1 and 1« represent horizontal and vertical
banded convolutions, ¢ denotes batch normalization and
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Fig. 1. Improved CNN-Transformer fusion network structure

ReLU activation [24], and ¢ represents the Sigmoid function.
After completing shape self-calibration, RCM has extracted
local details from input features using a 3 x 3 depth-separable
convolution and fuses calibrated attention, which can be
expressed as

Er(z,y) = Y3xs(z) Oy, 3)

where 1343 indicates the 3 x 3 depthwise separable
convolution, y corresponds to the calibrated attention feature,
and © signifies the element-wise (Hadamard) multiplication.
Finally, RCM can optimize feature representation using BN
and MLP and utilize a residual connection to enhance the
feature reuse ability. The output expression [25] can be
expressed as follows

Fo=p(r (z,éc (Hp(z) ® Vp(x)))) + 2, (4)

where p corresponds to the BN and MLP operations and x
denotes the input feature map.

To reduce the computational complexity of the module,
this paper introduces a partial channel convolution
mechanism in RCA [26]. Based on the redundancy
assumption of the feature graph in the channel dimension,
this mechanism can effectively reduce computational cost
and enhance the model’s expressive ability by performing
a convolution operation on a subset of the channels. In
Fig. 3, the partial channel convolution convolves a part of
the channels, and reduces computational complexity while
enhancing the model’s selectivity for key features [27].
Compared with full-channel convolution, PConv decreases
computational overhead and focuses more on capturing
representative channel information, thus effectively avoiding
redundant computation [28].

Let the denotes feature input X € RE*HXW  PpCony
initially splits the channels into two groups: the first C), =
r-C (r % ) channels are processed by the K x K
convolutional kernel, and the rest C' — C}, channels are
passed through without any changes. Finally, the outputs
of both channel subsets are merged across the channel axis
and yield the resultant feature map Y € RE*HXW The
channel selection strategy adopts a fixed sampling method to
realize continuous and regular memory access. This method
selects several consecutive channels in the input channels as
representations to perform a standard convolution operation,
while the rest remain unchanged. This selection method
simplifies the implementation difficulty and facilitates the
optimization of memory access by hardware accelerators.
The experiment assumes the input and output feature maps
have the same channels. The proportion of partial channels
can be expressed as r = %”, where ¢, denotes how
many channels participate in the convolution operation, and
c represents the complete channel count. Hence, one can
express the floating-point operation of a PConv module
[26]as

S

where h and w represent the height and width of the feature
map, respectively, and k is the convolution kernel size. For
r= %, the floating-point operations of PConv are reduced to
% compared to a regular convolution. Additionally, PConv
efficiently decreases memory bandwidth requirements and
computational cost [26]can be expressed as

hxwxk®xcl,

(6)

relative to

hxw x 2, + k> x ¢ & h xw x 2.

For r = 1

7 - its memory access is merely i
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a standard convolution. PConv has an advantage regarding
information retention, as it does not participate in convolution
and retains the original global feature information. This
processing can help alleviate the feature degradation caused
by the overfitting problem. By using point-wise convolution
(1 x 1 PWConv) after PConv, the model can fuse information
from all channels to enhance its overall expressive ability.

B. Incorporating relative position encoding into vision
transformers

To improve the sensitivity of the Transformer model to
positional relationships in sequences, we introduce relative
position-coding (RPE) into the cross-attention mechanism
[29]. Relative position coding strengthens the Transformer’s
capacity to model the relative relationships between elements
in a sequence. Unlike traditional absolute position coding, it
focuses on the “distance” between two tokens rather than the
“position” of each in the sequence. By using a learnable bias
matrix, the model not only considers the matching degree of
Query and Key but also adds a bias term based on their
relative positions when calculating the attention score, so
that the attention mechanism can perceive and utilize the
positional differences between tokens [30]. In addition, the
relative position between each pair of tokens is mapped to an
offset index, which retrieves the corresponding offset value
from the offset matrix and adds it to the attention score.
This method ensures the network extracts practical structural
features and handles variable-length inputs, enhancing its
generalization and positional awareness.

For a sequence of length L, we use a trainable relative

Rectangular self-Calibration Attention(RCA)

position bias matrix B € R(L-DxH "with H representing

the total number of attention heads. Each row encodes the
bias associated with a specific relative position in this matrix.
For arbitrary positions ¢ and j ,we define the bias index as
index(i,j) =i —j+ (L —1). @)

This operator ensures that the index is non-negative and
that all possible relative offsets are fully covered. In addition
to the regular dot-product score, we add a relative position
bias b;; to the score matrix so that the final attention
distribution reflects the relative relationship between tokens.
In the cross-attention module, where Q € RE*Hx1xd
K € REXHXLxd and V ¢ REXHXLXd represent the query,
key, and value (B denotes the batch size and d represents the
dimension per head), the standard attention score is defined

by
Qn(i) - Kin(j)"
Vd

With the introduction of relative position bias, the attention
score was updated to

Qn(i) - Kn(j) "
Vd

where By,[-] denotes the bias vector for the i head, looked
up via the relative position index. We then perform a softmax
over each head’s score matrix to normalize the attention
weights and apply these weights to 'V to compute the final
output.

An(i,j) = ®)

Ay, j) = + Byp[index(i,5)], (9)

Volume 52, Issue 11, November 2025, Pages 4326-4335



TAENG International Journal of Computer Science

IV. EXPERIMENTS AND ANALYSIS
A. Dataset and preprocessing

This paper uses the Plant Village dataset [3], which covers
10 tomato leaf diseases and healthy samples, including
bacterial spot, early blight, late blight, leaf mold, wilt spot,
two-spotted spider mite, target spot, mosaic virus, chlorotic
leaf curl, and healthy leaves [31]. All images present
intact tomato leaves against a monochromatic background,
reducing noise and occlusion and improving data quality.
The resolution of all images is 256 x 256 pixels. To minimize
unnecessary edge information, cropping the image from the
center is adopted to resize it to 224 x 224 pixels. The dataset
is divided into three subsets: a training set, a validation set,
and a test set, with a 7:2:1 ratio. A typical example image of
tomato disease from the Plant Village dataset [3] is shown
in Fig. 4.

B. Model evaluation metrics

Accuracy, Precision, Recall, and F} were used as the
primary evaluation indices to validate the efficacy of the
proposed approach, which are defined by (10)-(13) as follows
[32].

Accuracy = IP+TN , (10)
TP+TN+ FP+ FN
Precision = L7 (11D
TP+ FP
TP
Recall = m, (12)
and ..

F = 2 x Precision x Recall ’ (13)

precision + Recall

where T'P denotes a true positives, F'N for false negatives,
F'P for false positives, and T'N for true negatives [32]. A
confusion matrix is an intuitive evaluation tool that shows
how well a model predicts various types of samples. This
paper uses the matrix form to visualize the results of disease
prediction for different disease categories. This method can
identify misclassification and provide data to improve the
reliability of a model.

C. Ablation experiment

To verify the contribution of each module (RCM, PConv,
and RPE) proposed in this paper, ablation experiments were
designed to evaluate the model’s performance. Based on
the original CTRL-F model as a baseline, four comparative
experimental models are constructed using a rectangular
self-calibration module with partial channel convolution
and utilizing relative position coding in the Transformer
branch, respectively. The influence of each improvement
on the overall recognition performance is then analyzed.
Experiments were conducted on the Plant Village tomato
pest image dataset, with all experiments using Accuracy,
Precision, Recall, and F; value. The performance of each
model is presented in Table I below. Table II presents
a computation comparison of the baseline model and its
three variants in terms of parameter count, M-Adds, and
FLOPs, from which the impact of each module on the overall
computational cost can be directly observed.

The experimental findings, as detailed in Table I and
Table II: in the Baseline model, the Accuracy, Precision,
Recall, and F1 values are 96.30%, 96.62%, 96.48%, and
96.45%, respectively. Meanwhile, the parameters, M-Adds
and FLOPs are 21.48M, 3582.34M, and 7164.68M. After
introducing the RCM module, all indexes are significantly
improved, and the accuracy rate is enhanced to 98.37%,
indicating that the enhancement of direction perception
ability substantially impacts the extraction of spatial structure
features. Correspondingly, the computational overhead has
also increased, with the number of parameters rising to
21.92M, reflecting the additional self-calibration operations
introduced by RCM.

After replacing the full channel convolution with partial
channel convolution, the model’s accuracy improves to
99.41%, and all indices are highly consistent. Meanwhile,
the number of parameters related to calculation complexity
has been reduced to 21.34 M. This result indicates that
partial channel convolution can improve the recognition
performance of the model while effectively reducing its
computational complexity, thereby verifying its design
advantages of both being lightweight and expressive. Based
on the above structure, relative position coding is introduced
to replace the original absolute position coding in the
Transformer [33]. The model’s accuracy is improved to
99.83%, and the Precision, Recall, and F1 values are
99.86%, 99.84%, 99.85%. The corresponding computational
overhead remains almost unchanged, with the number of
parameters being 21.26M. This demonstrates that relative
position coding can capture objects’ relative spatial structure
information in complex scenes.

From Table I, the three improved strategies proposed in
this paper significantly enhance spatial perception ability,
reduce computational complexity, optimize spatial modeling
effects, and exhibit good complementarity and superposition
effects on the model structure. The proposed model improved
accuracy by 3.53% and reduced FLOPs by 4.97% compared
with the baseline on the Plant Village tomato pest dataset,
verifying the effectiveness and practical value of the research
method.

D. Comparison experiments

To demonstrate the validity of the presented approach,
comparative experiments are executed to evaluate its
performance against existing methods in the tomato pest
recognition task. ResNet-50 [34], ResNet-101 [34], ViT-B/16
[35], ConvNeXt-T [36], EfficientNetV2-S [37], GoogleNet
[38], and Swin Transformer [39] are selected to conduct
comparative experiments on the Plant Village tomato disease
dataset. All models are trained under the same training
rounds, learning rate scheduling, and data enhancement
strategies to guarantee experimental fairness. Table III
demonstrates the performance of different models in
the tomato pest identification task, including Accuracy,
Precision, Recall, and F1 Score. Table IV compares the
computational complexity of several representative models
with the proposed method regarding parameter count,
M-Adds, and FLOPs.

In Table III, the proposed model achieves the highest
value in all evaluation indexes, with an accuracy of 99.83%,
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(a) bacterial spot (b) carly blight

(f) wilt spot

(g) two-spotted spider mite

Fig. 4. Examples of Tomato Pest and Disease Images

(¢) healthy leaves (d) late blight

(h) target spot

(e) leafmold

(i) mosaic virus (j) chlorotic leaf curl

TABLE I
ABLATION EXPERIMENTS
Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Baseline 96.30 96.62 96.48 96.45
Baseline + RCM 98.37 98.47 98.45 98.44
Baseline + PRCM 99.41 99.45 99.43 99.43
Baseline + PRCM + RPE 99.83 99.86 99.84 99.85
TABLE 11
COMPUTATION COMPARISON OF BASELINE AND VARIANTS
Models Params (M) M-Adds M) FLOPs (M)
Baseline 21.48 3582.34 7164.68
Baseline + RCM 21.92 3810.78 7621.56
Baseline + PRCM 21.34 3375.11 6750.22
Baseline + PRCM + RPE 21.26 3404.45 6808.91
TABLE III

EXPERIMENTAL RESULTS OF RECOGNITION FOR DIFFERENT NETWORK METHODS

Models Accuracy (%) Precision (%) Recall (%) Fy Score (%)
ResNet-50 [34] 98.80 98.88 98.85 98.86
ResNet-101 [34] 97.14 97.30 97.28 97.23

ViT-B/16 [35] 94.80 95.00 94.80 94.70
ConvNeXt-T [36] 98.80 98.80 98.80 98.80
EfficientNetV2-S [37] 98.07 98.18 98.16 98.15
GoogleNet [38] 97.04 97.14 97.18 97.07
Swin Transformer [39] 95.85 96.39 96.05 96.07
Proposed method 99.83 99.86 99.84 99.85

which is 1.03% higher than that of the best contrast models
(ResNet-50 and ConvNeXt-T). Meanwhile, the precision,
recall, and F}-score are 99.86%, 99.84%, 99.85%, indicating
the model has high stability and generalization ability in
the disease classification task. Compared with CNNs, the
proposed model improves accuracy by 1.03% over the best
contrast CNNs (ResNet-50 and ConvNeXt-T) and by 2.79%
over GoogleNet. Compared with Transformers, the proposed
model improves accuracy by 5.03% over ViT-B/16 and

3.98% over Swin Transformer, indicating that our method
has better adaptability on small-scale datasets.

From the computational efficiency perspective, as shown in
Table IV, the proposed model achieves a favorable trade-off
between computation and model size. It has FLOPs of
6808.91M and parameter size 21.26M, which are the lowest
(or among the lowest) values for the high-performing models.
GoogleNet has the smallest footprint overall (10.33M
params, 3194.38M FLOPs), but its recognition performance
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TABLE IV
COMPUTATION COMPARISON OF DIFFERENT NETWORK METHODS

Models Params (M) M-Adds (M) FLOPs (M)
ResNet-50 [34] 23.53 4131.72 8263.43
ResNet-101 [34] 42.52 7864.41 15728.82

ViT-B/16 [35] 85.65 16862.87 33725.74
ConvNeXt-T [36] 27.81 4454.77 8909.55
EfficientNetV2-S [37] 20.19 5397.22 10794.43
GoogleNet [38] 10.33 1597.19 3194.38
Swin Transformer [39] 27.53 4380.27 8760.53
Proposed method 21.26 3404.45 6808.91

is substantially lower (Accuracy 97.04%). EfficientNetV2-S
has slightly fewer parameters than ours but notably higher
FLOPs. Under low computational overhead, the model
still obtains recognition performance, demonstrating a good
balance between accuracy and efficiency, offering a more
reliable solution for disease detection.

From the training curve in Fig. 5, the model rapidly
improves verification accuracy within the first 10 to
20 epochs, indicating that it can efficiently capture the
discriminant information of the data at an early stage.
During 20 and 60 epochs, the accuracy exhibits a steady
upward trend and indicates the proposed model achieves
substantial generalization on the training samples, effectively
avoiding the overfitting problem. As training progressed,
the model continued to optimize, eventually reaching or
slightly exceeding the level of other advanced models,
such as ConvNeXt-T, EfficientNetV2-S, the ResNet family,
ViT-B/16, GoogleNet, and Swin Transformer. The results
demonstrate that the fusion model responds rapidly in the
initial stage and maintains a stable and effective learning
process throughout the training process, providing a powerful
solution for related tasks with high learning speed and
excellent final performance.

Accuracy Variation Curves of Different Models

1.0
0.9
3081
c
3 (
g 0.7 1
c ConvNeXt-T
206 EfficientNetV2-S
§ —— Proposed method
T 05 —— ResNet50
—¥— ResNet101
0.4 —— ViT-B16
GoogleNet
03 —=— Swin Transformer
0 20 40 60 80 100
Training Epochs
Fig. 5. Accuracy variation curves for different models

The confusion matrix is a key metric for evaluating
the model’s classification accuracy. Within the confusion
matrix, actual classes are represented by rows and predicted
classes by columns. In Figs. 6, 7, it is evident that
although ResNet101, ResNet50, EfficientNetV2-S, ViT-B/16,
ConvNeXt-T, GoogleNet, and Swin Transformer models all

exhibit distinct classification abilities, the proposed model
in this paper stands out. Its confusion matrix shows that
the prediction accuracy of all categories is close to perfect,
and there is no misjudgment phenomenon. This demonstrates
that the proposed model efficiently extracts fine-grained
features and captures subtle differences between categories,
particularly in distinguishing disease categories with similar
characteristics.

V. CONCLUSION

An improved CNN-Transformer fusion model with high
performance is proposed based on the CTRL-F model to
address the challenges of insufficient spatial modeling, high
computational complexity, and limited ability to express
position relationships in plant pest image recognition.
The rectangular self-calibration module PRCM based on
partial channel convolution is designed, and the rectangular
self-calibration module RCM and partial channel convolution
PConv are combined. This module enhances the recognition
ability of different shape targets and reduces the calculation
amount while maintaining a strong feature extraction effect.
In addition, this paper also replaces the fixed position
information representation in the original Transformer with
a more flexible relative position coding RPE so that the
model can understand the position relationship of objects
more accurately when facing images with different sizes or
scales. Experimental results on the Plant Village tomato pest
image dataset demonstrate that the proposed model achieves
an accuracy of 99.83%, surpassing the original model and
several mainstream comparison methods.
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