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Abstract—In this paper, a method is proposed to detect
Cross-Site Scripting (XSS) vulnerabilities in website source
code. The method employs deep learning techniques, specifically
Convolutional Neural Networks (CNNs), for detection. First,
the source code (HTML, CSS, and JavaScript) is converted
into an image. This image is then fed into the CNN to extract
features. The extracted features are subsequently passed to a
fully connected neural network that classifies the input code
as either vulnerable or benign. To evaluate the performance
of the proposed method, a dataset containing both malicious
and benign scripts is used. Experimental results demonstrate
that the method achieves a promising performance compared
to existing approaches.

Index Terms—Cross-Site Scripting, vulnerability detection,
deep learning, convolutional neural network, gray image.

I. INTRODUCTION

Internet services such as online banking, medical care, e-
commerce, social networking and others are rapidly growing,
providing more opportunities to cybercriminals to exploit
the systems providing these services. Internet services have
become an essential part of our daily life, but users of
these services are unaware of hackers’ methods to steal
their sensitive information. Spreading awareness among users
about hacker behaviour is not a realistic solution to such a
problem. Thus, the best way to protect users’ information and
their privacy is via developing automatic and robust methods
to detect vulnerabilities (weaknesses) in web systems to im-
prove their security aspects. Most web vulnerabilities result
from incorrect practices by programmers during the develop-
ment of the source code. The Open Worldwide Application
Security Project (OWASP) is a nonprofit organization aiming
to improve software security by issuing a report listing the
top 10 vulnerabilities. This report is of great interest to many
public and private organizations, as well as to individuals
(see Table IV). It can be observed from the table that Cross-
Site Scripting (XSS) represents one of the most prominent
vulnerabilities on the list, rising from seventh position in
2017 to third position in 2021. This type of vulnerability has
caused organizations and individuals to suffer financial losses
amounting to several trillions of dollars. Therefore, many
researchers have focused on developing robust and effective
methods to identify and mitigate such vulnerabilities [1]-[3].

Several studies have been conducted to detect XSS vulner-
abilities in web applications [4]-[8]. These studies represent
traditional methods to address the problem of XSS attack
detection. However, one limitation of these studies is that
they cannot handle all types of XSS attacks. Moreover, to
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adapt to a new XSS type, these methods require major mod-
ifications. To avoid the limitations of traditional approaches,
researchers have proposed alternative approaches [9], [10].
These approaches are based on machine learning techniques
which offer several advantages over traditional methods. Ma-
chine learning-based approaches can capture general patterns
across various XSS attack types and significantly increase the
detection accuracy.

The XSS approaches adopting machine learning tech-
niques can be grouped into three categories: supervised,
unsupervised and reinforcement learning [11]. In the first
category, the dataset provided to the learning algorithm
is assumed to be labeled. Several techniques have been
developed in this category. In [12], they address the problem
using the linear support vector machine; they achieved 95.4%
detection accuracy. Another method which focuses on the
feature extraction part has been proposed [13]. As a final
step, the proposed method provides the extracted features to
a set of machine learning techniques such as the decision tree
and Naive Bayes to make the final decision. The authors have
reported that the decision tree algorithm achieved the highest
detection accuracy. An example of this category is the work
presented in [14], where the k-means clustering algorithm
is applied. In addition, reinforcement learning models have
been used in the context of XSS vulnerabilities detection
[15], [16].

Although machine learning-based XSS attack detection
approaches have become increasingly popular, they still
face challenges in handling a variety of XSS attacks. Re-
cent developments have introduced deep learning (DL) ap-
proaches [17] to address this problem. These approaches aim
to improve the detection accuracy and cope with diverse
XSS attacks. A plug-and-play ready-to-use device has been
implemented for detecting XSS attacks, DOS attacks, and
SQL attacks [18]. In this work, Convolutional Neural Net-
work (CNN) [19] and Long Short-Term Memory networks
(LSTM) models [20] have been adopted. Moreover, a mul-
tilayer perceptron (MLP) scheme which is integrated with
the dynamic feature extractor for detecting XSS attacks has
been proposed [21]. In addition, [22] has presented a strategy
to detect one particular type of XSS attack, namely DOM-
based XSS. Their approach combines DNN models and the
taint tracking method for detecting such an attack. Recently, a
new study combining the Universal Sentence Encoder (USE)
with Word2Vec embeddings as a feature extractor has been
introduced [23]. This approach led to improved performance
of both machine learning and deep learning models.

The research in the present study is based on the concept
of visualizing HTML scripts as grayscale images. It starts
with a script and each character is converted into an integer
code represented by 1 to 4 bytes. Then, all generated bytes
are arranged into a two-dimensional array forming an image
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TABLE I: OWASP Top 10 Vulnerabilities 2017-2021

Code  Vulnerability type (2017) Vulnerability type (2021)

A01 Injection Broken Access Control

A02 Broken Authentication Sensitive Data Exposure

A03 Sensitive Data Exposure Injection (Cross-Site Scripting (XSS))
A04 XML External Entities Insecure Design (new)

A05 Broken Access Control Security Misconfiguration

A06 Security Misconfiguration Using Components with known Vulnerabilities
A07 Cross-Site Scripting Broken Authentication

A08 Insecure Deserialization Software and Data Integrity Failures (new)
A09 Using Components with Known Vulnerabilities  Insufficient Logging and Monitoring

Al0 Insufficient Logging and Monitoring Server-Side Request Forgery (new)

which is used to extract features for the classifier (detector).
Images generated from malicious and benign scripts exhibit
distinct textures, and the classifier is trained to recognize
these texture patterns to distinguish between them. For
feature extraction, a CNN model is applied, followed by a
fully connected neural network with a single output neuron
for binary classification.
The key contributions of this work can be outlined as:

e Visualizing the HTML script as grayscale images. Im-
ages representing malicious scripts exhibit consistent
texture patterns, while those representing benign scripts
display a distinct pattern.

« Adopting a deep learning approach that uses a CNN for
feature extraction and a fully connected neural network
as the classifier. The model takes as input the images
generated during the visualization step and outputs the
class label.

o Evaluating the performance of the proposed method on
a dataset and comparing it with traditional methods to
demonstrate its effectiveness.

o Achieving superior performance over existing methods
with an accuracy of 99%, indicating the success of the
proposed approach.

o Developing a model that is less complex than other
methods used for detecting XSS vulnerabilities.

This paper is organized as follows. Section II gives a
background on the XSS attacks and their main types in
addition to deep learning and the CNN. A formal description
of the problem being addressed is introduced in Section
III. The proposed method and the approach to tackling this
problem are covered in Section IV. Also, the experimental
results obtained using the proposed method are presented
in Section V, in addition to a discussion that justifies these
results. This paper ends with a conclusion.

II. BACKGROUND
A. Cross-Site Scripting

Cross-site scripting, also known as XSS, is one of the most
popular attacks in which code (HTML tags or scripts) is
injected into a target website. Such an attack worldwide has
affected about 80% of web applications [11]. Any website
is vulnerable to an XSS attack when accepting content from
an untrusted source and inserting it into a benign website,
unless proper input encoding or input validation is carried
out. For example, if a malicious JavaScript code is inserted
into the input fields (comments or any other fields) that
receive some input from the user, and the malicious code is
further executed by the browser, this implies that the website

is vulnerable to an XSS attack. When the attackers run that
code, they can impersonate the user on this website, i.e. they
can perform operations allowed by the website on the user’s
behalf. Also, the malicious script can access any cookies,
session tokens, or other sensitive information retained by the
browser and used with that site, and even rewrite the content
of the HTML page. Three main types of XSS attack can be
listed here [24]:

o Reflected XSS: This XSS attack occurs when a web
application immediately returns a user input via a search
result, error message or any other response including
part or all of the input provided by the user as part of
the request, without checking whether the input data is
safe to render in the browser, and without permanent
storing of the data provided by the user.

o Stored XSS: When a user input comes from a comment
field, visitor log, a message forum, etc. and is stored in
a database on the target server, it is generally said that a
stored XSS attack has occurred. Consequently, a victim
can retrieve the stored data from the database without
considering if the data is safe to render in the browser.

« DOM-Based XSS: DOM-Based XSS is an XSS attack
in which the DOM environment is modified leading to
executing the attack payload in the victim’s browser
which executes the original client-side script, so that
the client-side code runs unexpectedly. In other words,
there does not exist a change in the page itself, but the
client-side code included in the page runs differently as
a result of the malicious modifications that occurred in
the DOM environment.

B. Convolutional Neural Network

The convolutional neural network (CNN) is considered the
most widely used deep learning model in learning features
for large-scale image classification and recognition. Le Cun
at el [25] originally proposed the CNN for a handwritten
recognition task. Since then, many works have frequently
appeared to report its success in numerous applications such
as computer vision, speech recognition and natural language
processing [26]. The CNN architecture has two main layers:
the convolutional layer and the subsampling layer (also
known as the pooling layer). The former layer implements
the convolution operation to share weights and the latter
layer reduces the dimensionality. Normally, the input of the
network is a 2D array. For example, given an image x and
a filter K (also called kernel), the convolution operation is
defined as:
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Fig. 1: The proposed approach

vi = Kij®x; +b)) ()

where y; is the output of the convolution operation, b;
is the bias and f is a non-linear activation function. The
convolution operation works by sliding windows of size 3 x 3
or 5 X 5 over the image to produce a feature map for each
filter. Each element (also known as the receptive field) of the
feature map represents the region in the input that produces
the feature.

The dimensions of feature maps are reduced via the
subsampling layer. This layer can typically be implemented
by an average pooling operation or a max pooling operation.
Multiple convolutional layers and pooling layers are stacked
to allow a CNN to learn hierarchical feature representations
of the input. The model learns the more abstract feature
representation whenever using deeper layers. To predict a
target (class), a fully connected neural network is added to
the end of the CNN layers after implementing a flattening
layer.

III. PROBLEM DESCRIPTION

In this work, the problem of detecting XSS vulnerability
in HTML files is reduced to a binary classification problem.
Suppose there exists a set X = {x1,...,z,} of n HTML
files each of which is associated with a label y; € {0,1} and
n =1,...,n. The label y = 1 refers to the vulnerability of
the file and y = O implies that the file is invulnerable. Each
of these files has a different number of characters (string).
The goal of the detection problem here is to build a model
to predict y given X using the data being analyzed. Such
a model can be expressed as a function h : X «+ {0,1}
which works as a classifier (detector). In other words, this is
a supervised learning problem in which the model is trained
until reaching the minimum error between the actual and
estimated labels.

IV. METHODS

In this section, the details of the present work will be
covered. This work consists of four phases as shown in
Fig. 1: 1) Starting with a dataset of scripts (HTML code
embedding JavaScript code), a set of images is created. 2)
Preprocessing is applied to the created images. 3) Then,
the set of images is partitioned into two subsets: training

and testing sets. The former is used to build the deep
learning model, which will be used online to detect XSS
vulnerabilities. 4) Finally, the result obtained by the learning
model is evaluated using different criteria.

A. Dataset

The deep learning model was evaluated using a publicly
available dataset from the Kaggle website. This dataset
was compiled using XSS attack examples from cheatsheets
provided by PortSwigger and OWASP. It contains both ma-
licious (XSS) and benign scripts, organized in two columns:
the Sentence column, which contains the script content, and
the Label column, which indicates the class label (benign or
XSS). Table II presents a snapshot of the dataset, showing
row 0 (label 0, benign) and row 88 (label 1, XSS). The
dataset comprises a total of 13,686 samples, with 6,313
benign scripts and 7,373 XSS scripts.

B. Script to Image Conversion

This phase handles the conversion of the script, which
is a string of characters, into a 2D image. This conversion
takes two steps: (1) each character is encoded into 1-4 bytes
(the number of bytes allocated to each character depends on
the character itself). (2) The resulting sequence of bytes is
visualized as follows: given a sequence S of k& characters,
this sequence is divided into n subsequences of m characters
each. Then, a 2D (n x m) grayscale image is created (see
Fig. 3). Consider that the last row of the image is padded
with zeros when needed.

C. Preprocessing

CNN-based deep learning models require input images
of a fixed size. However, since the script lengths vary, the
resulting images also differ in size. To address this, all images
are resized to a uniform dimension of 60 x 60 using the
bicubic interpolation method [27]. The next preprocessing
step involves normalizing the pixel values of the images to
the range [0, 1] by dividing each grayscale value by 255.

D. The architecture of the CNN

The architectural details of the CNN model used here are
described in this subsection. The architecture is summarized

Algorithm 1 Script to Image Conversion.

Input: S, a script of k characters.
QOutput: I, a 2D grayscale image of n X m dimensions.
: Let L be an empty list.
: for each c € S do

ec + encode(c)

Add e, to L
end for
n e [1L]
rem < |L| mode m
pad (m — rem) zeros to the end of L.
while L is not empty do

Move m elements from L to I.

end while

D AN TS

—_
- O
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TABLE II: Snapshot of the Dataset

Sentence Label

SRS

<li><a href=""/wiki/File: Socrates.
png”” class=""image””><img alt
="”Socrates.png”” src=""//
upload . wikimedia.org/wikipedia
/commons/thumb/c/cd/Socrates .
png/18px—Socrates .png””
decoding=""async”” width
=""18"" height=""28"" class=
noviewer”” srcset=""//upload.
wikimedia.org/wikipedia/
commons/thumb/c/cd/Socrates .
png/27px—Socrates .png 1.5x, //
upload . wikimedia.org/wikipedia
/commons/thumb/c/cd/Socrates .
png/36px—Socrates .png 2x”7”
data—file —width=""326"" data-
file —height=""500"" /> </a> <a
href=""/wiki/Portal:
Philosophy”” title=""Portal:
Philosophy””>Philosophy &#32;
portal </a> </li> </ul>

9999

88 1

<style >@keyframes x{from {left:0;}
to {left: 1000px;}}:target {
animation:10s ease—-in—-out 0s 1
X3} </style><sub id=x style=""
position:absolute;””
onanimationcancel=""alert (1)
77> < /sub>

in Table III, where the input is a 2D grayscale image repre-
senting the script. The model consists of three convolutional
layers, each using a different number of kernels and the
ReLU activation function. These convolutional layers are
followed by max pooling layers, which serve to reduce the
spatial dimensions of the feature maps generated by each
convolution.

For example, the first convolutional layer takes an input
of dimensions 60 x 60 x 1 and transforms it into an output of
58 x 58 x 64. This transformation is achieved by convolving
the input image with 64 kernels of size (3 x 3), resulting in
64 feature maps. The output from this convolutional layer is
then passed to a max pooling layer, where each 2 x 2 block
in the feature maps is replaced with its maximum value. This
reduces the output dimensions to 29 x 29 x 64.

As shown in Table III, the output of the last max pooling
layer is flattened (converted into a vector containing all
feature maps) to prepare it for a series of fully connected
layers of varying sizes. These layers form the final part of
our deep learning model. The last layer is a sigmoid-activated
output layer, which serves as the final classifier—i.e. the
XSS detector. To train the model, binary cross-entropy is
used as the loss function, which is standard for binary clas-
sification tasks like this. Additionally, the Adaptive Moment
Estimation (Adam) algorithm is employed to optimize the
loss function and minimize its value during training.

(® (b

Fig. 2: Visual representation of scripts: (a)-(d) are benign
scripts and (e)-(f) are XSS scripts

V. RESULTS AND DISCUSSION

In this section, the experimental results obtained using the
dataset described earlier are presented. The proposed method
was implemented in Python using the TensorFlow/Keras
library. Table IV outlines the hyperparameter settings used;
these were selected through a trial-and-error process. A set
of evaluation metrics - accuracy, recall, precision, F1-score
and ROC was used to assess performance. Additionally,
the confusion matrix was used to provide insights into true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), offering a comprehensive view of the
model’s balance between detection and false alarm rates.

The first experiment investigated how the number of
training iterations (epochs) impacts model accuracy and loss
during training. As shown in Fig. 3, accuracy improves
steadily with more epochs, starting at 0.73 in the first epoch
and reaching 0.99 by the final epoch. Conversely, the loss
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TABLE III: Deep Learning Model Architecture

Layer Number  Layer Type Input Shape Receptive Field Number of Kernels
1 Convolution 60 x 60 x 1 3 X 3 X stride 1 64
2 Max Pooling 58 X 58 X 64 2 x 2 X stride 2 -
3 Convolution 29 x 29 x 64 3 x 3 x stride 1 128
4 Max Pooling 27 X 27 x 128 2 X 2 X stride 2 -
5 Convolution 13 x 13 x 256 3 X 3 X stride 1 256
6 Max Pooling 11 x 11 x 256 2 X 2 X stride 2 -
7 flatten 5 X 5 X 256 - -
8 Fully Connected 6400 - -
9 Fully Connected 256 - -
10 Fully Connected 128 - -
11 Sigmoid 64 - -

Training accuracy

1.00 A
0.98 - (&
>, 0.96 A
[}
©
5 0.94 1
(9}
[}
< 0.92 -
0.90 A
0.88 A —— Training accuracy
0 10 20 30 40
Epoch
(a) Accuracy increase during training
Training loss
0.25 1 —— Training loss
0.20 A
4 0.15 A
o
—
0.10 A
0.05 A
0.00 A
0 10 20 30 40
Epoch

(b) Loss (error) decrease during training

Fig. 3: The performance of the training model

decreases from 0.48 to 0.006 over the same period. These
results indicate significant accuracy gains and error reduction
during training.

The other experiment evaluated the performance of the
proposed approach using different baseline learning models
such as Logistic Regression (LR), Support Vector Machine
(SVM) and Random Forest (RF). Table V reports the results

TABLE IV: Model parameters

Parameter Value
Batch size 128
Epochs 40

Image width 60
Learning rate  0.001

given by the baseline models and the present approach. It
can be observed that the best result has been obtained when
applying the proposed approach with respect to all evaluation
metrics (indicated in bold). In addition, Table V compares
the performance of the proposed approach with two state-of-
the-art approaches reported in [23]. The first method utilizes
the RF model, while the second employs a CNN-based deep
learning approach. The proposed approach outperforms both,
as indicated by the results in bold, achieving a superior
accuracy of 0.9956. These result demonstrate that the pro-
posed approach effectively captures the distinguishing visual
features of benign and malicious scripts.

Despite only marginal improvements in evaluation metrics,
the proposed model requires significantly fewer training
iterations—from 100 epochs in previous studies to just 40.
Moreover, the confusion matrix in Fig. 4 reveals that the
proposed approach gives the lowest misclassification rates
(with only 6 false negatives and 6 false positives). However,
using the baseline models leads to higher false negatives
and positives, for example the SVM model obtains 15 false
negatives and 22 false positives. Only the reduction in
false negatives is especially important, as it highlights the
method’s robustness in detecting actual threats. This indicates
that the proposed method not only achieves high accuracy but
also minimizes misclassification.

Furthermore, Receiver Operating Characteristic (ROC)
curves and the corresponding Area Under the Curve (AUC)
values were found to evaluate the proposed model’s classi-
fication performance against the baseline model mentioned
previously. The ability of the model to balance between the
True Positive Rate (TPR) and the False Positive Rate (FPR)
can be measured by these metrics, providing insights into its
overall performance. It has been observed in Fig. 5 that the
present approach accomplishes the highest result (AUC of
1.00) compared to the baseline models. This implies that the
proposed classifier reaches the top-left corner (TPR is 1 and
FPR is 0). Furthermore, this result has not been achieved by

TABLE V: A comparison between the proposed method and
existing methods

Method Accuracy  Recall  Precision  Fl-score

LR 0.9800 0.9800 0.9800 0.9800

SVM 0.9900 0.9800 0.9900 0.9900

RF 0.9900 0.9900 0.9900 0.9900

RF with USE-Word2Vec 0.9945 0.9926 0.9973 0.9949
CNN with USE-Word2Vec 0.9905 0.9946 0.9878 0.9912
Proposed method 0.9956 0.9952 0.9966 0.9949
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Fig. 4: Confusion Matrix for the testing dataset
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Fig. 5: ROC curves of our approach for XSS attack detection

any approach listed in [23].

A further experiment was conducted to assess training
time, comparing the proposed method against existing ap-

proaches. As shown in Table VI, the proposed method
requires less training time both per batch and per sample. A
training time of 4 ms per sample suggests strong scalability,
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TABLE VI: Training time for two different models

Method Epoch level time (sec) ~ Sample level time (ms)
CNN with USE-Word2Vec 141.9 12.9
Proposed method 45 4

making it suitable for larger datasets and further model
generalization. Additionally, online detection time is a critical
factor in real-time web environments. Our method achieves
an average detection time of 3 ms per sample, enabling rapid
response to XSS attacks. This makes the approach highly
effective for high-traffic web applications that demand both
speed and precision in security.

VI. CONCLUSION

In this work, a method for detecting XSS vulnerabilities
by reducing the detection problem to a binary classification
task is proposed. A deep learning approach is adopted,
specifically applying a CNN model for feature extraction,
followed by a fully connected neural network for classi-
fication. Before classification, the script being analyzed is
converted into a grayscale image and fed into the CNN.
The performance of the proposed method was demonstrated
using a dataset containing both benign and malicious scripts,
introducing a learning model capable of detecting XSS
vulnerabilities online. Experimental results show that this
method achieves high accuracy and outperforms existing
approaches. For future work, the plan is to extend this method
to handle multiple types of XSS vulnerabilities. Specifically,
given a script, the goal is to identify which specific XSS
vulnerabilities it contains.
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