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Abstract—Liver disease (LD) is a critical global health
challenge, causing 1.5 million annual deaths (WHO 2021),
with early detection essential for effective intervention.
This study proposes a novel Whale Optimization Algorithm
(WOA)-optimized Multilayer Perceptron (MLP) framework to
enhance LD diagnosis accuracy using clinical, biochemical,
and lifestyle data from 1,460 patients in AP, India’s North
Coastal region. Through exact feature selection (statistical + ML
methods), key predictors were identified: Alkaline Phosphatase
(AP, F11), Fever (F07), Aspartate Aminotransferase (AAT,
F12), and Vomiting (F05). Comparative analysis showed the
WOA+MLP model outperformed traditional classifiers with
92% accuracy, 0.91 AUC, and 0.92 F1-score—surpassing MLP
(89% accuracy), Decision Trees (88%), and Naive Bayes (0.93
AUC but 80% accuracy). The optimized model reduced false
positives by 31.6% and enhanced generalizability for early LD
identification. The study shows significant potential for clinical
deployment in early LD identification, reducing diagnostic
burdens.

Index Terms—Liver Disease, Machine Learning, Neural
Networks, Feature Ranking, Optimization, WOA, Andhra
Pradesh.

I. INTRODUCTION

HE liver is an important and large organ in the

human body. It weighs around 1.5 kg and makes
up 2-3% of an adult’s body weight. It is near several
other organs, including the stomach, spleen, heart, right
kidney, pancreas, and intestines. The gallbladder is located
beneath the liver. LD is a global health concern with
chronic diseases such as hepatitis, cirrhosis, and NAFLD.
Reduces quality of life and burdens healthcare systems[1].
This research explores the prevalence and consequences
of LD, highlighting the potential of machine learning for
improved diagnosis and treatment strategies. According
to WHO (2021) reports, LD is the 12th leading cause
of death globally, with approximately 1.5 million deaths
annually [2]. LD significantly affects individuals and families
both personally and financially. Primary symptoms include
fatigue, jaundice, and abdominal pain. Advanced conditions
such as cirrhosis and liver cancer can result in organ failure,
decreased life expectancy, and death. Chronic hepatitis
C infections are the main risk factors for LD. Alcohol
abuse also increases the risk [3]. Metabolic disorders such
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as obesity, diabetes, and dyslipidemia contribute to liver
problems [4]. Chronic hepatitis (HC and HB) can cause
cirrhosis [5]. They can also cause liver cancer.

The Table I shows that the stages of LD include treatment
and diagnosis. It shows the stages of liver disease. It
lists important symptoms, ways of diagnosing the disease,
treatments, and prevention methods for each stage. This
information helps us understand how liver disease progresses
from inflammation to end-stage. LDs cause many deaths in
people of all ages. We need better ways to predict these
diseases in healthcare. Machine learning (ML) can help
because it processes large amounts of data and acts as
human intelligence. However, single ML classifiers often do
not provide high accuracy. This is why ensemble methods,
like Hybrid ML Models, are used. These models combine
different classifiers to improve performance. Previous studies
have looked at classifier ensembles for predicting diseases,
but no single model works for various diseases. The WOA
is a nature-inspired method. It helps optimize Multi-Layer
Perceptrons (MLPs). WOA is based on the hunt for
humpback whales. It effectively balances exploration and
exploitation. The design makes it suitable for complex
models like MLPs. Combining WOA with MLP improves
accuracy and efficiency in identifying LD. It overcomes the
limitations of manual tuning and traditional optimization
techniques.

Objectives of the Study: i) The study’s objective is to
accurately identify individuals at risk of LD in the North
Coastal region of AP, India through analysis of clinical,
biochemical, and lifestyle data. ii) The primary objective is to
develop a smart model that uses MLP and WOA to improve
diagnostic accuracy in predicting LD. iii) Using statistical
and ML-based feature selection (FS) techniques, the study
aims to find the top features that affect LD. It will rank these
features based on their influence. iv) To demonstrate Hybrid
Al techniques for LD: Improves early detection. Supports
clinical decision-making. Reduces healthcare burden.

This paper presents a comprehensive framework for
the proposed approach, structured as follows: Section 2
provides a detailed literature review, highlighting recent
developments in LD prediction using machine learning (ML)
and optimization techniques. Section 3 describes the models
and materials, including the dataset used, feature selection
methods, baseline models, and the architecture of the
WOA-optimized MLP model. Section 4 outlines the results
analysis, presenting the LD statistical analysis, the results
of the feature selection, the model performance metrics,
and comparative evaluations with traditional classifiers.
Section 5 provides discussions on the experimental findings,
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TABLE 1
STAGES OF LIVER DISEASE AND THEIR CONSEQUENCES LIKE SYMPTOMS AND TREATMENT

Stage Symptoms Diagnosis Treatment Prevention & Precautions

Inflammation  Often asymptomatic;  Blood tests (e.g., liver Address underlying cause (e.g., Avoid alcohol, maintain healthy

(Stage 1) may include fatigue, function tests: AST, stop alcohol, manage viral weight, vaccinate against hepatitis A
mild abdominal ALT, GGT), imaging hepatitis); lifestyle = changes and B, practice safe hygiene.
discomfort. (ultrasound). (healthy diet, exercise).

Fibrosis Fatigue, abdominal pain, Blood tests (e.g., albumin, Treat underlying cause (e.g., Limit alcohol, control metabolic

(Stage 2) itching (pruritus) due to  bilirubin levels), imaging antiviral drugs for hepatitis), factors (blood sugar, cholesterol),
bile salt buildup. (CT, MRI), elastography monitor progression, lifestyle avoid toxins  (e.g.,  excessive

[1]. changes (weight loss if NAFLD). acetaminophen) [2].

Cirrhosis Jaundice, ascites  Blood tests (e.g., Manage complications (e.g., Regular health checkups, avoid

(Stage 3) (abdominal  swelling),  prothrombin time), diuretics for ascites, beta-blockers  alcohol/drugs, manage diet (low salt),
easy bruising, imaging, endoscopy (for for varices), lifestyle changes, screen for hepatocellular carcinoma
confusion (hepatic  varices), liver biopsy. consider transplant evaluation. (ultrasound every 6 months).
encephalopathy).

End-Stage Severe jaundice, Blood tests (e.g., low Liver transplant (if eligible), Early intervention, lifelong

LD (ESLD)/ significant weight  albumin, high bilirubin), manage complications (e.g., monitoring, avoid all liver stressors,

Liver Failure loss, internal bleeding, imaging, clinical scoring lactulose for encephalopathy), adhere to medical advice, join support

(Stage 4) kidney/lung issues, (e.g., MELD score for palliative care if transplant not  groups (e.g., British Liver Trust) [4].
coma [3]. transplant). viable.

addressing their clinical significance, model limitations, and
potential enhancements. Finally, Section 6 of the study
provides a summary of key contributions and emphasizes the
effectiveness of the research of the WOA-MLP framework
and suggests directions for future work in the diagnosis of
intelligent LD.

II. LITERATURE REVIEW

Improving LD classification models can increase their
accuracy. It can also make them more efficient. Houssein et
al. (2024) [5] introduced a new model KOA to enhance (FS)
feature selection for LD classification. The new algorithm
enhanced the selection of useful features from medical data
sets, decreasing dimensionality and enhancing performance
in classification tasks. The research demonstrated that the
enhanced KOA performs better compared to conventional
optimization techniques, with a more efficient solution for
the early treatment with early diagnosis of LD. Raziani et al.
(2022) [6] combined Modified WOA and MLP to develop a
hybrid model for medical classification problems. Optimizing
the parameters and structure of MLP, the WOA enhances its
performance in fields like heart disease prediction and cancer
diagnosis. Despite the improvement in the accuracy (ACC) of
the model, problems such as overfitting, high computational
cost, and interpretability persist. The conclusion of the
research is that more research is needed to enhance such
models for more generalization and practical pharmaceutical
applications. Hybrid soft computing approaches can improve
FS and classification. These methods combine different
techniques to enhance efficiency. Varchagall et al. (2023) [7]
targets early diagnosis of liver issues. It enhances the ACC
of LD classification through methods like SVM and GA
to select the most relevant information from medical data.
The hybrid approach maximizes the classification model and
eliminates redundant features in a bid to enhance diagnostic
ACC. Compared to traditional techniques, the research
reveals that using these methods can enhance liver disorder
detection, offering a potential route to early treatment and
diagnosis. Qiao et al.,’s (2024) [8] goal of their study was
to combine deep learning with an enhanced WOA to create
a liver tumor segmentation technique that is more accurate.
To distinguish between different areas of the liver image,

including background, healthy tissue, and tumor tissue,
multi-threshold segmentation was employed. For feature (FE)
extraction, CNN, a DL model, was utilized. By optimizing
the multi-thresholding procedure, the IWOA increased
the accuracy of segmentation. The suggested method
demonstrated the potential to improve liver tumor treatment
and diagnosis planning by outperforming conventional
methods in terms of accuracy and computational efficiency,
according to the results. The LD Literature Review Table II
shows studies on using ML to predict LD. It shows recent
studies on LD prediction from 2019 to 2024. It summarizes
the use of ML models, datasets, and sample sizes. The table
IT also highlights the methodologies used and key findings
of each study. The relevance of each study to LD research
and diagnosis is evident.

A. Datset Description

Singh et al. (2024) [17] predicted the accuracy and
performance of several ML classification algorithms in
predicting LD. To find the best algorithm for precise
LD prediction, it compared several models, such as DTs,
SVM, and NNs. The outcomes emphasized each approach’s
advantages and disadvantages. To diagnose LD early, to
enhance breast cancer diagnosis, Stephan et al. (2021)
[18] suggested a hybrid (combined) model that combines
the WOA and the ABC algorithm. WOA improved the
optimization procedure, while the ABC algorithm was
utilized for the best FS. By lowering computational
complexity and improving classification ACC, this method
outperformed conventional techniques in differentiating
cancer tumors. Routray et al. (2023) [19] suggested using
histopathological data to classify breast cancer and identify
other organs at risk using an ensemble learning model in
conjunction with the SOS optimization algorithm. While
the ensemble method increased classification ACC, the SOS
algorithm optimized FS. The hybrid model outperformed
CNN. It is a promising tool for assessing organ risk. It
can also aid in early cancer diagnosis. Kaur et al. (2022)
[20] proposed WOA for liver cyst image segmentation.
The segmentation procedure was optimized using the
modified WOA, improving the effectiveness and efficiency
of liver cyst identification in medical images. The proposed
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TABLE 11
SUMMARY OF RECENT STUDIES UTILIZING MLS AND DIAGNOSTIC TECHNIQUES FOR LIVER DISEASE (LD) PREDICTION AND ANALYSIS

Author Study Data Methods Key Findings and Result Analysis Relevance to LD

Details Size

Homsana Cross-sectional2826 Abdominal ultrasonography,  SLD prevalence was 27.1%, higher in non-lean ~ Rising prevalence of SLD
et al. interviews persons among females

(2024) [9]

Joloudari Comparative 583 ELTA and multiple  PSO-SVM model achieved the highest ACC ~ Demonstrates the
et al.  study classification models (94.42%) when compared to others effectiveness of data mining

(2019) [10]
Islam
(2024) [11]
Ganie et al.
(2024) [12]
Mohamed
et al.
(2024) [13]
Behera et
al.  (2023)
[14]
Babatunde
et al.
(2024) [15]
van et al.
(2023) [16]
Singh et al.
(2024) [17]

Comparative 583
study
Comparison

Comparative 583

Experiment 583

Retrospective 1404

3000

Informatic

Experiment 1476

ML algorithms tree
structured

ML algo, hyperparameter
tuning

Machine Learning

Hybrid model combining

SVM and modified PSO

Neuro-Fuzzy
Machine Learning

System,

Al-assisted data collection

Data preprocessing, rough
set theory for FS along with
ML classifying algos

ETC with TPE achieved the highest ACC
GB achieved the highest ACC

Ensemble Stacking achieved 93.88% without
FS, 94.12% with it; Two-level stacking model
reached 94% ACC

CCPSOSVM achieved the highest ACC of
92.59% for heart disease and 97.41% for LD

Achieved 97% classification

Identified 38 distinct key events and 135 key
event relationships

RF classifier achieved 88.66% ACC
for hepatitis, 97.29% for dermatological
conditions, 91.58% for hepatic disease

models

Approach for early and
accurate LD prediction
Approach for early disease
prediction

Improve disease prediction

Provides a path in ML for
innovation

Advanced algorithm  for
early detection of LDs

Understanding of cholestasis
mechanisms

Approach  for
identifying LDs

accurately

Data Collection Process:

i Collected from Clinical Centres |
L

Collect the Personal

and Clinical Data
from LD and Nen-
LD Patients

Data B

Normalizat

Scaling

Data Cleaning

Imputation

Pre—Pmoessing
) Clinical Data

\\._1.

]
! Process

ion

Store The Data
in CSV Format

]

1 i i

nl

I g BN

P BE

' 341

P § I Store The 11
! < ! | Features Datain
PR CSV Format
A 7

e

Splitting | Data

using rank b

Select 11 Features

Statistical and ML
Models (R1 to R11)

Compute LD data
Feature Rankings
using Statistical
and ML Models

ased

-

Statistical
Analysis
Reports

Info. Gain
Gain ratio
Gini
Khi-Square

XGBoost

AdaBoost

Cat Boost
DTs

I
* Accuracy, P‘recisionl-' 1
% Recall, FLLAUC ; |

s choT

1 & | svMm,NBs
i 2 | KNN,DT
I
i
I
I
1

l WOA+MLP———»

Compute
Performance
Analysis

Analvsis

Unknown Clinical
and Personal Data

Performance
and Test
Reports

Fig. 1.

Proposed Workflow for Intelligent Liver Disease Identification Using WOA-Optimized Multilayer Perceptron
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method enhanced the algorithm’s precision by 20%. It
also increased the convergence speed by 15%. These
improvements led to better segmentation results. According
to experimental results, the modified WOA performed
better than conventional techniques, offering a more useful
instrument for precise liver cyst identification in medical
imaging. Ekinci et al. (2023) [21] compared algorithms
for FS and meta-heuristic optimization in ML-based
heart disease classification, including GA, PSO, and
ACO. It assessed each algorithm’s performance according
to its computational efficiency and -classification ACC,
demonstrating both its advantages and disadvantages. The
study highlights how crucial FS is to enhancing heart disease
prediction models, with the optimal algorithm relying on the
demands of a given application.

III. MODELS AND METERIALS

This section outlines the models, materials, and methods
for identifying LD. It focuses on a WOA-optimized MLP
approach. Details of the workflow and dataset are provided.
Additionally, it addresses baseline ML models and the MLP
architecture. The discussion also includes the WOA-based
optimization strategy.

1) Proposal Model: Fig. 1 shows a workflow for
identifying LD. It includes processing clinical data, feature
engineering, and using WOA-optimized MLP modelling. The
workflow has four main phases. It includes data collection,
preprocessing, feature extraction, and classification. Clinical
data is collected from patients at medical centres. This
includes both personal and clinical information from patients
with and without LD. After processing, the data is saved
in CSV format for future use. Feature engineering involves
selecting important features for a model. Eleven key features
were identified using different ranking methods. These
methods include statistical metrics like Information Gain
and Gini Index and ML techniques like XGBoost and DTs.
The chosen features are saved in a refined CSV format.
The model detects LD using a MLP NN. It optimizes
hyperparameters and weights through the WOA. This process
enhances accuracy and reliability. The raw data is cleaned,
normalized, and scaled to ensure consistency.

Performance Analysis using MLP and WOA: 1. Divide the
dataset into two parts: 80% for training and 20% for testing.
2. Train four baseline classifiers: SVM, Naive Bayes, KNN,
and DTs. Check how well they perform. 3. Train an MLP
model with several hidden layers using ReLU activations. 4.
Use the WOA to optimize the MLP’s hyperparameters. 5.
Adjust the no.of neurons, learning rate, epochs, and batch
size. Evaluate the model’s performance metrics. Check the
accuracy, F1 score, precision, AUC, and recall. Performance
reports are created, including a confusion matrix and ROC
curve. These reports help provide clinical insights and
support diagnoses based on the model’s predictions.

2) Dataset Description: For LD Dataset analysis (Table
III), the North Coastal of AP, India LD (NCAPL) dataset
contains one class attribute (C1) and sixteen feature attributes
(F1-F16). Blood pressure (BP), biochemical markers like
total bilirubin and alkaline phosphatase, clinical symptoms
like vomiting and fever, lifestyle factors like smoking and
drinking, and demographic information like age and gender
are all included. Every attribute has distinct types and ranges,

such as categorical, integral, and numerical. The target
variable for predictive modelling is the diagnosis (C1), which
divides patients into two groups: Non- LD (Class 0) and LD

(Class 1).

TABLE III
NORTH COASTAL REGION OF AP, INDIA LIVER DISEASE DATASET
DESCRIPTION
Feature Code Range or Values Data
Type
F1.AG (Age) 6 -99 Numeric
F2.GEN (Gender) Female(0), Male(1) Categorical
F3.SMK (Smoke) No(0), Yes(1) Categorical
F4.DRK (Drink) No(0), Yes(1) Categorical
F5.VMT (Vomiting) Absent(0), Present(1) Categorical
F6.BHA(BoneAche/ Absent(0), Present(1) Categorical
HeadAche)
F7.FVR (Fever) Absent(0), Present(1) Categorical
F8.BPS(Blood Pressure) Norm(0), Low(1), High(2)  Categorical
F9.TB(Total Bilirubin) 0.4 -175 Integral
F10.DB(Direct Bilirubin) 0.1 - 19.7 Integral
F11.AP(Alkaline 10 — 4929 Numeric
Phosphatase)
F12.AAT(Alanine 10 — 2000 Numeric
Aminotransferase)
F13.ASAT(Aspartate 5 —4929 Numeric
Aminotransferase)
F14.TP(Total Proteins) 09 -1717 Integral
F15.ALB(Albumin) 09 -77 Integral
F16.AGR(A-G Ratio) 03 -4.0 Integral
C1.Class (Diagnosis) NLD (0), LD (1) Categorical

TABLE IV
DESCRIPTION OF PARAMETERS USED IN THE MLP TRAINING PROCESS

Parameters  Description

X Input vector with n features [x1,z2,...,Tn]

H; Number of neurons in the [*" hidden layer

wll Matrix of weights between (layer [ — 1) and (layer [)
plil Bias vector for layer [ (since bl is a vector)

Alll Activation output at layer [

zll Linear combination at layer | before activation
o ReLU, sigmoid, or softmax (Activation function)
n Learning rate for gradient descent

Y Predicted output

Y True output

3) ML Models: Naive Bayes is a simple classification
algorithm. It is based on Bayes’ Theorem. This algorithm
assumes that features are independent. It works well with
categorical data. It is effective even with small amounts of
training data. The assumption of conditional independence
makes calculations easier. It reduces the model’s complexity.
A Decision Tree (DT) is an ML model that helps categorize
and predict data by dividing it into branches based on various
characteristics. It visually represents the decision-making
process and is easy to understand, although it can sometimes
be complex to explain. Rule-based splits utilize statistical
methods to generate clear visualizations and effectively
handle non-linear data without requiring feature adjustments.
However, they may be influenced by high variance and slight
changes in the data. SVM is a strong model [22] [23]. It
is used for regression and classification. It is supervised
learning. It is known for its accuracy. Its ability to handle
high-dimensional data and its effectiveness in scenarios.
SVM performs effectively with complex datasets that contain
numerous features. It finds the best line or surface to separate
data points. The KNN algorithm is a type of supervised
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(SL) learning. It is non-parametric. KNN can be used for
regression and classification. It predicts outcomes by looking
at the ’k’ nearest data points. Then, it chooses the most
common class among them [24].

4) MLP Model architecture: The MLP model, as shown
in the Fig. 2, comprises three primary layers: an input
(I/P) layer, hidden (HL) layers, and an output (O/P)layer. It
processes input features using weights, biases, and activation
functions to find complex patterns. The O/P layer gives
the final prediction. Training the model includes steps like
forward propagation, backpropagation, and using gradient
descent. The loss function checks how far the predictions
are from the real results[25]. Activation functions add
non-linearity, with ReLU for HL and sigmoid/softmax for
output. The table IV shows the essential parameters involved
in the MLP training process.

A) Forward Propagation

The MLP algorithm is a ML technique that processes inputs
through each layer to generate outputs.

i. Input Layer(l = 0) for (n features):

A = X = [2y, 20, ..., 2] (1)

ii. Hidden Layers (1=1,2, ..., L)
ZU — il gli=1 4yl )
Al = o(Z1) 3)
o(z) = max(0, z) if o is ReLU 4)
o(z) = # if o is Sigmoid )

iii. Output Layer (I=L+1 )

Z[L-‘rl] _ W[L-‘rl]A[L] + b[L-‘rl] (6)
}A/ — A[L+1] — O_(Z[L+1]) (7)

For multi-class classification, Sigma is SoftMax.

e~
SoftMax(z;) = =m—— (8)
Zj:l e

iv. Loss Function The loss is the difference between
the predicted and actual outputs. For binary classification
(cross-entropy loss) as

L= _% Z[%‘ log(g:) + (1 — y;) log(1 — 4;)]  (9)

m m

1
J— . log (4
2 2 vk log(ii) (10)
=1 k=1
yix is 1 i™ sample € class k (11)
else i =0 (12)

B) Backpropagation (Error Reduction and Weights and
Bias Updating Process )

Backpropagation is a method used in MLP. It calculates how
much the loss changes when the parameters change. This
helps improve the model’s efficiency. The Fig. 3 describes
the iterative weight updating process in a multi-layer
perceptron (MLP). It evaluates the error rate and adjusts the

weights until the error attains a target level. When the goal
is achieved, the process concludes. An Optimize-trained
model is subsequently created for use.

i. Output Layer Gradient: Compute the gradient of
the loss to Z[F+1] as

oL -
L+ _ _ 9% 5 1 7 [L41]
) 5L+ Y -Y)od (2 )
where © is the element-wise multiplication and ¢’ is the
derivative of the activation function. Gradients for weights

and biases.

13)

oL
i — SILH1(pILI\T
for Weights S =4 (A% (14)
oL
. G 2 ||

for Biases SO = (15)

ii. Hidden Layers Gradient
for Weights 76£ = §lLH] (A[L})T (16)

OWIL+1]

oL
; — §lL+1]
for Biases S (17)
iii. Parameter Update (Gradient Descent) : Using Gradient

Descent for weights and biases are likely to

for Weights oL = IEHI (AT

OWIL+1] (18)

0L r4]
8b[L+l]
Algorithm 1 describes the MLP training process. It includes
three main steps: forward propagation, backpropagation, and
updating weights and biases using gradient descent. The
training continues for several epochs until the loss converges,
or the epoch limit is reached.

5) WOA+MLP Optimization Models: The WOA+MLP
model (Fig. 4) uses WOA to search for the best solutions.
It helps improve the MLP’s performance, especially in
detecting CKD using the AP-CKD dataset. The model
combines two parts. First, it uses the MLP’s forward
propagation and loss calculation. Second, it applies WOA’s
methods to update positions. It helps balance exploring new
options and using known good ones.

WOA+MLP Model Workflow: MLP  Structure:
Feedforward NN with input, hidden, and output layers.
WOA Optimization: Treats MLP’s hyperparameters as a
position vector in the search space. WOA Phases: Encircling
Prey, Bubble-Net Attacking, and Search for Prey. Fitness
Function: Minimizes MLP’s error on a validation set.
Stopping Criteria: Optimization stops after a maximum
number of iterations or when the error converges to a
satisfactory level. Output: Optimized MLP parameters used
to train the final model on training data, evaluated on
a test set. The WOA+MLP Optimization Algorithm 2
combines the Whale Optimization Algorithm with MLP
training. It starts by creating a group of whales and checking
their fitness based on MLP validation loss. The algorithm
updates the positions of the whales using specific strategies.
It continues this process until it finds the best whale
position with the lowest loss. This position is the optimal
configuration for the MLP [26].

for Biases (19)
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Algorithm 1 MLP Training Process

1: Initialization: Set up weights W1 and biases bl for all layers (using small random values).
2: for each epoch do

3: Perform forward propagation to compute Y and loss L.
4: Perform backpropagation to compute gradients % and %.
5 Update weights and biases using gradient descent:
Wl —wl_ 9L g, 9L

~ Towm ~ Tl
6: end for

7: Stop the process when the loss £ converges or after a set number of epochs.

Algorithm 2 WOA+MLP Optimization

1: Initialization: Start by placing N whales at random positions X;(0) in the search area, where ¢ ranges from 1 to N.
Define WOA parameters: a (linearly decreases from 2 to O over iterations), c1, cs (random coefficients), and maximum
iterations 7.

2: Step 1: Fitness Evaluation:

3: for each whale ¢t =1 to N do

Compute the fitness as the MLP validation loss:

F(X(t) = Loa(MLP(X,(1))) (20)

end for
Identify the best position X* with the lowest fitness.
Step 2: Encircling Prey (Update Whale Positions):

fort=1to 7T do
a=2 1—3 (21)
n T

R A

Update a:

10: for each whale 1 =1 to N do

11: Generate random vectors: = =
A=2i-7—a, C=2-7, pel0,1] (22)
where 7 is a random vector in [0, 1].
12: if p < 0.5 then
13: if |A| < 1 then
14: Compute: . o .
D=|C - X*(t) — X;(t)] (23)
Xi(t+1)=X*(t)—A.-D (24)
15: else
16: Select a random whale X,una(t).
17: Compute: . o .
D = |C rand(t) - 1(t)| (25)
Xi(t+1) = Xuna(t) = A- D (26)
18: end if
19: else
20: Compute: . . .
D' = |X*(t) — Xi(t)] 27)
Xi(t+1)=X*(t)+ D -e" - cos(27) (28)
where [ € [—1,1] is a random value and b is a constant defining the spiral shape.
21: end if
22: end for
23: Re-evaluate fitness and update X*.
24: end for

25: Step 3: Return the Best Solution: .
26: Output the optimized MLP parameters X *.
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6) Confusion Matrix and Performance Parameters : Precision(LD) = TruePos(LD)
The confusion matrix (Fig. 5) assesses a model’s accuracy TruePos(LD) + FalseP OS(LD()30)
in predicting CKD and NCKD, encompassing TPs, False TrueNea( NLD
Negatives (FN), FPs, and TNs. The matrix also includes  Precision(NL D) = rueNeg( )
totals for predicted and actual cases of both diseases [27]. TrueNeg(NLD) + FalseP OS(A%’]? )
Performance matrices: ML metrics include accuracy Precision(NLD) + Precision(LD)
(ACC), precision (PRE), recall (REC), and Fl-score. Precision = 5 (32)
Accuracy shows how many predictions were correct.
Precision indicates the percentage of TPs among all positive TrueNeg(LD)
dictions. The recall i f h TP Recall(LD) = (33)
predictions. The recall is a measure of how many TPs were TrueNeg(LD) + FalseNega(LD)
recognized. The F1 score combines ACC and REC to provide
a fair evaluation. Equations (5) to (14) show the whole TruePos(NLD)
metrics for classes LD(1) and NLD(0). Recall(NLD) = TruePos(NLD) + FalseNega(NLD)
(34)
TruePos(LD) + TruePos(N LD
Accuracy — (LD) (NLD) g, Recall — FecallLD) + Recall(NLD) - 1

Total((LD) + (NLD))

2
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Fig. 5. Confusion Matrix Structure for the LD Dataset Classification
Precision(LD) x Recall(LD)
F1 LD)=2
Score(LD) x Precision(LD) + Recall(LD)
(36)
Precision(LD) x Recall(LD)
F18 LD)=2
core(LD) % Precision(LD) + Recall(LD)
(37
F1 LD)+ F1 NLD
FlScore — Score(LD) 4+ F1Score( ) (38)

2

IV. RESULTS ANALYSIS

This section analyses the results from the WOA-optimized
MLP model for LD identification. It starts with statistics from
the dataset. Then, it evaluates feature selection techniques
using statistical and ML methods. The performance of
different ML classifiers is compared using confusion matrices
and evaluation metrics. The WOA+MLP framework shows
better accuracy and predictive abilities.

1) Statistical Analysis of AP-LD Dataset: Table V
presents a statistical analysis of categorical attributes in
a dataset comparing individuals with NLD and LD. The
analysis shows that males have a higher prevalence of LD
(62.4%), while females have a more balanced distribution
(174 in NLD and 191 in LD). Smoking is more prevalent

TABLE V
STATISTICAL ANALYSIS ON CATEGORICAL FEATURES OF APLD
DATASET
Features Group (IDs) NLD LD Total-Data
Gender Male (1) 412 683 1095
Female (0) 174 191 365
Smoke No (0) 316 410 726
Yes (1) 270 464 734
Drink No (0) 496 418 914
Yes (1) 88 458 546
Vomiting Absent (0) 470 243 713
Present (1) 116 631 747
Headache/ Absent (0) 443 290 733
BoneAche
Present (1) 144 583 727
Fever Absent (0) 468 208 676
Present (1) 118 666 784
BP Normal (0) 394 368 762
Low BP (1) 91 182 273
High BP (2) 98 327 425

among males (63.2%) than non-smokers (56.5%), suggesting
a correlation between smoking and an increased likelihood
of LD. Drinking is more prevalent among drinkers (83.9%),
with a strong association between alcohol consumption and
LD , aligning with known medical risk factors. The study
shows that vomiting is a major symptom of LD. About
84.5% of people who vomit have LD. In contrast, only
34.1% of those who do not vomit have LD. Headaches
and bone aches are also linked to LD , with 80.2% of
affected individuals having the condition. Fever is another
strong indicator, as 84.9% of those with fever have LD.
Blood pressure is classified as Normal, Low, or High. Among
individuals, 762 have normal BP, 273 have low BP, and 425
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TABLE VI
STATISTICAL ANALYSIS ON CONTINUOUS FEATURES OF APLD DATASET

Continuous Mean Values Median Values
Attributes

NLD (0) LD (1) Total Data NLD (0) LD (1) Total Data
Age 41.75427  45.63616  44.07808 40 46 45
TB 1.219283  4.65389 3.275342 0.9 1.8 1.3
DB 0.384642  2.199199  1.47089 0.2 0.8 0.3
AP 96.87884  325.1705 233.5411 49 194 151
AA 36.3686 186.4611  126.2185 28 74 48
AAT 114.6672  213.7586  173.9863 93 168 126
TP 5.312799  6.237071  5.866096 5.5 6.4 6.2
Albumin 3.268601  3.071739  3.150753 32 3 3.1
AG-Ratio 1.074198  0.922197  0.983205 1 0.9 1

have high. The data shows a clear trend. The risk of LD goes
up with abnormal blood pressure. High blood pressure has
the strongest link to LD.

The table VI analyzed integral or continuous attributes to
identify differences between NLD and LD cases. The mean
age of LD patients was found to be higher (45.63) than non-
LD patients (41.75), indicating a higher prevalence of LD in
older individuals. Total Bilirubin (TB) levels were higher in
LD cases. Direct Bilirubin (DB) levels were also higher in
LD cases (Mean TB: 4.65, DB: 2.19), confirming bilirubin’s
role as a critical biomarker. Alkaline Phosphatase (AP) and
Aminotransferases (AA, AAT) levels were also significantly
elevated in LD cases (Mean AA: 186.46, Mean AAT:
213.75), emphasizing liver enzyme elevation as a strong
indicator of disease presence. Total Protein (TP) was slightly
higher in LD cases (Mean: 6.23) compared to NLD (Mean:
5.31), but the difference was not as pronounced. Albumin
levels were lower in LD patients (Mean: 3.07) than non- LD
cases (Mean: 3.26), suggesting that liver dysfunction may
reduce albumin production. The Albumin-Globulin Ratio
(AG-Ratio) was notably lower in LD patients (Mean: 0.92)
compared to non- LD cases (Mean: 1.07), reinforcing its role
as a diagnostic parameter for liver health.

2) Feature Selection of LD Dataset Through Statistical
Models: The LD dataset is based on the North Coastal
Districts of AP, India. It examines the relationship between
16 features and the diagnosis of LD. The correlation (Fig.
6) coefficients range from -1 to 1, and colours show the
strength and direction of these correlations. The diagonal
elements F1 and F2 have a self-correlation of 1.0. This sign
indicates that the matrix structure is intact, as each feature
correlates perfectly with itself. There are moderate to strong
positive correlations among several biochemical markers.
Total Bilirubin (TB) and Direct Bilirubin (DB) have a strong
correlation of 0.99, indicating that higher total bilirubin
levels are associated with higher direct bilirubin levels,
often seen in liver dysfunction. Alkaline Phosphatase (AP)
and Aspartate Aminotransferase (AST) have a significant
connection of 0.54, meaning that when one liver enzyme
level goes up, the other one might also rise in LD. Alanine
Aminotransferase (AAT) and total proteins are somewhat
related, with a score of 0.43, suggesting that changes in
liver enzyme activity could be connected to how proteins
are made.

The target variable T1 (Diagnosis: 0 = non-LD , 1 = LD
) has weak to moderate negative correlations with several
features. The A-G Ratio (F16) has a correlation of -0.26 with

T1, indicating that a lower albumin-to-globulin ratio may be
linked to LD. A15 feature (Albumin) had a -0.21 association
with Target T1, indicating LD. This finding aligns with
clinical predictions. LD usually leads to lower albumin levels
and changes in A-G ratios because of impaired liver function.
Lifestyle factors like smoking (F3) and drinking (F4) have
weak correlations with T1, at 0.13 and 0.08, respectively,
implying that while they may contribute to LD risk, their
direct impact on diagnosis is limited. Symptoms such as
Vomiting (F5), Headache/Bone Ache (F6), and Fever (F7)
exhibit very weak correlations with T1 (ranging from 0.11
to 0.16). Blood pressure (BP, F8) has a moderate positive
correlation of 0.33 with T1, indicating that higher BP may
relate to LD , possibly due to conditions like cirrhosis-related
hypertension. Age (F1) shows moderate positive correlations
with total bilirubin (F9, 0.34) and direct bilirubin (F10,
0.33), suggesting older individuals may have higher bilirubin
levels, a risk factor for liver issues. Gender (F2) has a
weak positive correlation of 0.22 with Drink (F4), indicating
possible gender-specific drinking habits, but its effect on T1
is minimal at 0.08.

The table VII shows the importance of features in the
LD Dataset. It uses four metrics: Information Gain, Gain
Ratio, Gini Index, and Chi-Square. The top five features
are F11, FO7, F12, FO5, and F10. They have the highest
Information Gain value of 0.262. It means they are important
for classifying the dataset. The Gain Ratio and Gini Index
also help measure feature significance. The top features have
high scores, indicating they are crucial for the classification
of LD. F11, F0O7, and F12 are the most important attributes.
Middle-tier features can be used as extra inputs. Low-ranked
features can be removed to simplify the model without losing
much accuracy.

Table VIII shows the importance scores of features for the
LD dataset. It uses ML models like XGBoost, AdaBoost, DT,
and CatBoost. The table lists the most important attributes
and their statistical weights, including the mean and SD in
predicting liver disease. The LD Dataset shows important
features using four methods: XGBoost, AdaBoost, DTs, and
CAT Boost. The top features are F11, FO7, FO5, and F12.
AdaBoost highlights F11 the most, with a mean of 0.1636.
DTs also rank F11 highest, at 0.1468. However, CAT Boost
ranks FO7 first, at 0.0621. These features are important for
predicting LD as they relate to key biochemical markers. The
method used affects which features are prioritized. XGBoost,
AdaBoost, and DTs fever F11, while CAT Boost focuses on
FO7.
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Fig. 6. Correlation Matrix analysis of AP LD Dataset

3) Feature Selection (FS) of AP-LD Dataset Through ML
Models: The XGBoost Feature Ranking and Importance
graph reveals F11, FO5, and FO7 as the most influential
features in predicting LD. AdaBoost Feature Ranking and
Importance figure 6 (A) shows how boosting enhances
FS, with F11, FO7, and F12 playing crucial roles in
classification. Decision Trees (DTs) Feature Ranking and
Importance plot shows F11, FO7, and FO05 as dominant
factors in decision-making. CAT Boost Feature Ranking and
Importance visualization highlights FO7, F11, and FO5 as
top-ranking attributes. Fig. 7 shows the top 10 attributes for
predicting LD. These attributes were identified using ML
methods. The data comes from the AP-LD dataset in the
North Coastal region of Andhra Pradesh. Feature selection
was done using four ML models: XGBoost, AdaBoost,
Decision Trees, and CatBoost. Each model shows ranked
attributes based on importance scores. This reveals both
common and unique predictors important for diagnosing LD.
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The target variable T1 (Diagnosis: 0 = non-LD , 1 = LD
) has weak to moderate negative correlations with several
features. The A-G Ratio (F16) has a correlation of -0.26 with
T1, indicating that a lower albumin-to-globulin ratio may be
linked to LD. A15 feature (Albumin) had a -0.21 association
with Target T1, indicating LD. This finding aligns with
clinical predictions. LD usually leads to lower albumin levels
and changes in A-G ratios because of impaired liver function.
Lifestyle factors like smoking (F3) and drinking (F4) have
weak correlations with T1, at 0.13 and 0.08, respectively,
implying that while they may contribute to LD risk, their
direct impact on diagnosis is limited. Symptoms such as
Vomiting (F5), Headache/Bone Ache (F6), and Fever (F7)
exhibit very weak correlations with T1 (ranging from 0.11
to 0.16). Blood pressure (BP, F8) has a moderate positive
correlation of 0.33 with T1, indicating that higher BP may
relate to LD , possibly due to conditions like cirrhosis-related
hypertension. Age (F1) shows moderate positive correlations
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TABLE VII
ATTRIBUTE RANKS FOR THE LIVER DISEASE DATASET — RANK NUMBER AND FEATURE ATTRIBUTES

Information Gain Gain Ratio Gini Index x2 (Chi-Square)
Rank (F#) Value Rank (F#) Value Rank (F#) Value Rank (F#) Value
ROI (F11) 0.262  ROIL (FO7) 0.232 ROl (FI1) 0.162 ROl (FI11) 301.294
RO2 (FO7)  0.231 RO2 (FO5) 0.205  RO2 (FO7) 0.148 RO02 (F12)  301.278
RO3 (F12) 0227 RO3 (FO6) 0.139  RO3 (F12)  0.137  RO3 (F07)  198.957
RO4 (FO5) 0.205 RO04 (F11) 0.131  RO4 (F05) 0.132  RO04 (F05) 184.719
ROS5 (F10)  0.143  ROS (F04)  0.120  ROS (F06)  0.091 ROS5 (F09)  160.350
RO6 (FO6)  0.139  RO6 (F12) 0.114  RO6 (F10)  0.090  RO6 (F04)  128.059
RO7 (F09) 0.130 RO7 (F10) 0.076  RO7 (F09) 0.080  RO7 (FO6)  127.791
RO8 (FO4)  0.113  RO8 (F09)  0.065 RO8 (FO4) 0.072 RO8 (F10)  118.743
R09 (F14)  0.089  RO09 (F14) 0.045 RO09 (F14) 0.060  R09 (FO8) 96.540
R10 (F16)  0.079  RI10 (F16)  0.041 R10 (F16)  0.051  RI10 (F16) 77.355
R11 (F13)  0.075 RI11 (F13) 0.037 RI1 (F13) 0.049 RI11 (F14) 76.589
R12 (FO8) 0.053 RI12(FO8) 0.037 RI12 (FO8) 0.035 RI12 (F13) 57.236
RI13 (F15) 0.041 RI13 (F15) 0.020 RI3 (F15) 0.027 RI13 (FOl) 23.139
R14 (FO1) 0.017 RI14 (FO1) 0.008 RI14 (FO1) 0.011 R14 (F15) 9.980
R15 (F02) 0.005 RI15(F03) 0.008 RI15(F02) 0.004 RI15 (F03) 7.535
R16 (FO3) 0.005 RI16 (F02) 0.007 RI16 (FO3) 0.003 RI16 (F02) 2.560
TABLE VIII

ATTRIBUTE RANKS FOR THE LIVER DISEASE DATASET — FEATURE IMPORTANCE FROM ENSEMBLE AND TREE-BASED MODELS

XGBoost AdaBoost Decision Tree (DTs) CatBoost

Rank (F#) Mean * Std Rank (F#) Mean + Std Rank (F#) Mean + Std Rank (F#) Mean * Std

ROI (F11)  0.0703 £ 0.0030 ROl (F11) 0.1636 £ 0.0062 ROl (F11)  0.1468 + 0.0046  ROI (F07) 0.0621 + 0.0062
RO2 (F05)  0.0665 £ 0.0044  RO2 (FO7) 0.1284 £ 0.0033  R02 (FO7)  0.0957 + 0.0047  RO02 (F11) 0.0572 £ 0.0046
RO3 (FO7) 0.0643 + 0.0034 RO3 (F12) 0.1049 + 0.0068 RO3 (FO5) 0.0951 £ 0.0066 RO3 (FO5) 0.0528 + 0.0058
RO4 (F12)  0.0473 £ 0.0029 RO4 (FO5) 0.0933 £ 0.0055 RO04 (F12)  0.0631 + 0.0037  RO04 (F12) 0.0478 + 0.0014
RO5 (FO1)  0.0208 £ 0.0017  RO5 (F14)  0.0529 £ 0.0032  RO05 (F06)  0.0551 + 0.0020  RO5 (FO1) 0.0273 £ 0.0032
RO6 (F14)  0.0178 £ 0.0029 RO6 (F13)  0.0463 + 0.0042  RO6 (F13)  0.0482 + 0.0023  RO06 (F14) 0.0258 + 0.0035
RO7 (F06)  0.0165 £ 0.0031  RO7 (FO1)  0.0395 + 0.0034  RO7 (FO1)  0.0420 + 0.0024  RO7 (F13) 0.0197 £ 0.0024
RO8 (F13)  0.0141 £ 0.0021  RO8 (F02)  0.0348 £ 0.0016  RO8 (FO2)  0.0351 + 0.0021  RO8 (F02) 0.0181 £ 0.0034
R09 (F04)  0.0068 + 0.0014  RO9 (FO6)  0.0343 + 0.0026  R09 (FO4)  0.0264 + 0.0041  RO09 (F16) 0.0156 + 0.0033
R10 (F09)  0.0065 £ 0.0011  R10 (F16)  0.0276 £ 0.0039  R10 (F09)  0.0211 £ 0.0011  R10 (F06) 0.0127 £ 0.0026
R11 (F15) 0.0063 + 0.0006  R11 (FO4) 0.0267 + 0.0042 RI11 (F14) 0.0162 + 0.0026  R11 (F09) 0.0122 + 0.0012
RI12 (F02) 0.0062 £ 0.0012 RI12 (F0O9) 0.0199 + 0.0011  RI12 (F15)  0.0151 £ 0.0027  RI12 (F04) 0.0077 £ 0.0018
R13 (F08)  0.0024 £ 0.0010  R13 (F15) 0.0164 £ 0.0017 R13 (FO3)  0.0063 + 0.0011  R13 (F15) 0.0049 £ 0.0012
R14 (F16)  0.0009 + 0.0003 R14 (FO8) 0.0101 £ 0.0011  RI14 (F16)  0.0021 + 0.0008  R14 (F08) 0.0034 £ 0.0011
R15 (F03) 0+0 RI15 (F10)  0.0063 £ 0.0018 R15 (F10) 0.0018 + 0.0004  R15 (F03) 0.0003 + 0.0004
R16 (F10) 00 R16 (F03) 0+£0 R16 (FO8) 0+£0 R16 (F10)  -0.0003 + 0.0009

TABLE IX

PERFORMANCE PARAMETERS VALUES FOR THE EXPERIMENTAL ML
MODELS ON AP-LIVER DATASET

ML Model AUC CA  Precision Recall F1-Score
SVM (RBF) 0.87 0.82 0.82 0.82 0.82
Naive Bayes 093  0.80 0.81 0.81 0.81
KNN 0.85 0.79 0.82 0.82 0.82
Decision Tree 0.87 0.88 0.87 0.87 0.87

with total bilirubin (F9, 0.34) and direct bilirubin (F10,
0.33), suggesting older individuals may have higher bilirubin
levels, a risk factor for liver issues. Gender (F2) has a
weak positive correlation of 0.22 with Drink (F4), indicating
possible gender-specific drinking habits, but its effect on T1
is minimal at 0.08.

4) Feature Selection using all Ranking of Statistical and
ML Models: The AP-LD dataset analysis identified the top
11 attributes (RO1 to R11) based on their consistently high
rankings across various FS methods. These methods include
Information Gain, Gain Ratio, Gini Index, Chi-Square (?),
XGBoost, AdaBoost, DTs, and CAT Boost. Attributes that
frequently ranked high and maintained consistency across
different methods were prioritized, with higher individual
rankings receiving more importance. There are three main
steps in the analysis methodology. Prioritizing frequently
occurring attributes, ranking aggregation first extracts the

top 11 ranks (ROI to R11) for each method. The second
is feature importance scores, such as an Info. The ranking
order is supported by the gain value of 0.262 for F11, which
illustrates how strongly each feature contributes. Lastly,
cross-method consistency identifies attributes that rank high
in statistical methods (e.g., Info. Gain, 2), and ML methods
like XGBoost and CAT Boost are considered more reliable
predictors. The items are ranked from RO1 to R11 as follows:
F11, FO7, F12, FO5, F06, F10, F09, F04, F14, F16,and F13.

5) ML Models Analysis on Selected Features on AP-LD
Dataset: Confusion Matrices Analysis is shown in the Fig.
8. The image shows four confusion matrices for different
ML models analysing a LD dataset. Each matrix is a
2x2 grid displaying TPs, TNs), FPs), and FNs for binary
classification. Darker colours (like blue) represent higher
values, while lighter colours (like white) indicate lower
values. The Confusion Matrix for the SVM (Fig. 8 top left)
shows 139 TPs, 19 FPs, 31 false negatives (FN), and 83
TNs. The NBs Confusion Matrix (Fig. 8 top right) shows
the following values: TPs = 116, FPs = 42, False Negatives
(FN) = 12, and TNs of 102. The KNN Confusion Matrix
(Fig. 8 (bottom left)) shows 130 TPs, 28 FPs, 28 false
negatives (FN), and 86 TNs. The Confusion Matrix (Fig.
8 (bottom right)) for the DTs shows 142 TPs, 16 FPs, 18
true negatives, and 96 false negatives. Fig. 9 and Table IX
evaluate the performance parameters values for experimental
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Fig. 7. Feature Selection Process (top 10 ranked features) though ML Models like XGBoost, AdaBoost, DTs and CAT Boost on AP-Liver Dataset
TABLE X
ROC-AUC ANALYSIS ON EXPERIMENTAL ML MODELS
Model Colour AUC Value Performance
SVM Blue  0.87 Very good. The SVM model can separate the classes well but not perfectly.
Naive Bayes Orange 0.93 Excellent. NBs has the highest AUC, indicating it’s the best among the compared models for this task.
KNN Green 0.85 Good, but comparatively lower than SVM and Naive Bayes. Shows more confusion between classes.
Decision Tree  Red 0.87 Matches SVM in AUC score. Good discrimination ability but less smooth curve.

ML models on the AP-LD dataset. The models tested include
SVM (RBF), NBs, KNN, and DTs. They were measured
using important metrics like AUC, CA, FI-Score, etc.The
ROC analysis (Fig. 10) shows that NBs is the best model
for LD classification, achieving an AUC of 0.93. SVM and
Decision Tree have an AUC of 0.87, but the Decision Tree
may overfit. KNN has an AUC of 0.85, which is decent but
needs tuning.

The table X shows the detailed comparison of ML model
concerning ROC-AUC values. The SVM-RBF model showed
a good separation between LD and NLD. It had an AUC
of 0.87. The classification accuracy was 82%. The model
kept steady precision and recall values. It reduced FPs and
false negatives. The F1-score was 0.82, showing it worked
effectively for the classification of LD and NLD. Naive
Bayes (NB) achieved an AUC value of 0.93, indicating
excellent classification ability. The classification accuracy is
80%. Both Precision and Recall are 0.81, showing reliable
performance in identifying positive cases. The Fl-score is

also 0.81, reflecting a good balance. The KNN model has an
AUC of 0.85. Its classification accuracy is 79%, the lowest
compared to other models. Both Precision and Recall are
0.82. The F1-score is also 0.82. The study indicates that KNN
performs reasonably well. The Decision Tree (DT) model
has a classification accuracy of 88%. It achieves a Precision,
Recall, and F1-score of 0.87. The AUC score is also 0.87,
like the SVM model. The DT model performs well. It can
be effective with techniques like pruning.

TABLE XI
ROC-AUC ANALYSIS ON OPTIMIZED AND BASELINE MLP MODELS
PERFORMANCE ON AP-LIVER DATASET

Model Colour AUC  Performance
Value
MLP Orange 0.89 Very good. The MLP model shows strong
classification performance.
WOA + Green 091 Excellent. Optimization using WOA
MLP improves the model’s discrimination
power.
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Fig. 9. Detailed Performance Parameters of each Experimental ML Models on AP-Liver Dataset
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Fig. 10. ML ROC-AUC Analysis on AP-Liver Dataset

TABLE XII
PERFORMANCE PARAMETERS VALUES FOR THE MLP AND WOA+MLP
ON AP-LIVER DATASET

MLP Models AUC CA F1Score Recall Precision

MLP(10 10) 0.89 0.89 0.89 0.89 0.89

WOA+MLP(10 10) 091  0.92 0.92 0.92 0.92
TABLE XIII

COMPARATIVE PERFORMANCE ANALYSIS OF ML MODELS AND THE
OPTIMIZED MLPs

ML Model AUC CA  Precision Recall F1-Score
SVM (RBF) 0.87 0.82 0.82 0.82 0.82
Naive Bayes 0.93  0.80 0.81 0.81 0.81
KNN 0.85 0.79 0.82 0.82 0.82
Decision Tree 0.87 0.88 0.87 0.87 0.87
MLP(10 10) 0.89  0.89 0.89 0.89 0.89
WOA+MLP(10 10) 0.91 0.92 0.92 0.92 0.92

6) MLP and WOA+MLP Models Analysis: The confusion
matrix (Fig. 11) compares two models for classifying LD.

For the MLP (10,10) model: The model correctly identifies
148 cases of LD and 95 cases NLD. It misclassifies 19
non-disease cases as positive and misses 10 disease cases.
This indicates The WOA + MLP model has the following
results: (TP-148 ),(TN-10), (FP-13), and (FN-10). The model
performs better in identifying non-disease cases, with 101
true negatives compared to 95. It also reduces FPs from 19
to 13. It leads to improved precision and overall accuracy.

The ROC analysis (Fig. 12) shows that the
WOA-optimized MLP is better than the standalone
MLP for classifying LD. The WOA + MLP model has an
AUC of 0.91. The standard MLP model has an AUC of 0.89.
The study indicates that the WOA + MLP model is more
reliable. The ROC analysis shows that the WOA-optimized
MLP is better than the standalone MLP for classifying LD.
The WOA + MLP model has an AUC of 0.91. The standard
MLP model has an AUC of 0.89. The study indicates that
the WOA + MLP model is more reliable. The detailed
analysis shows in the table XI.

The study (Fig. 13 and Table XII) compares two models
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for LD classification. The MLP model is a standard structure
with a (10,10) dimensions. It has an accuracy of 0.89 for both

Class 0 (Non-Disease) and Class 1 (Disease). The second
model is a WOA-optimized MLP, also with a structure

Volume 52, Issue 11, November 2025, Pages 4366-4384



TAENG International Journal of Computer Science

support

114

L 0.89

(A) MLP Performance Parameter Values

weigh 9.92

(B) WOA+MLP Performance Parameter Values

Fig. 13. Detailed Performance Parameters of each Experimental MLP and WOA+MLP Models Analysis on AP-Liver Dataset
Comparative Analysis of ML models Performance
Analysis on Liver Disease Dataset
EAUC mCA
0.95
0.93
0.92
0.91
0.9 0.89 089

0
@
=
]
>

80.85
@©
E
o
5

a 0.8

0.75

0.7

SVM(RBF) [Naive Bayes KNN Decision Tree MLP(1010) WOA+MLP(10
ML Modles "
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of (10,10). This model achieves an accuracy of 0.92 for
Class 0 (Non-LD Macro Average). The application of the
WOA significantly improves performance, particularly in
balancing Precision and recall, FPs reducing and enhancing
generalization.

V. DISCUSSIONS

This section evaluates the comparative performance of
various ML models and an optimized MLP model on the
AP-LD dataset. The study compares the effectiveness of
WOA-based MLP tuning with existing studies, analysing

evaluation metrics like AUC, CA, recall, precision, and
F1-score.

1) Comparative Study on Experimental ML and Optimized
MLP Models : This study (Table XIII) analyses the
performance of different ML classifiers and an optimized
Multilayer Perceptron model using WOA, considering
metrics like AUC, CA, Precision, Recall, and F1-Score. NBs
achieved the highest AUC of 0.93. This indicates strong
discriminative capability. However, its overall accuracy was
0.80, and its Fl-score was 0.81. This suggests some
misclassification. SVM with RBF kernel had an AUC of
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TABLE XIV

COMPARATIVE STUDY OF THE PROPOSED WORK WITH EXISTING LD PREDICTION MODELS USING ML TECHNIQUES

Author Year Data Methods Key Findings and Result Analysis Relevance to LD
Details Size
Dritsas et 2023 828 Various ML models evaluated The Voting classifier outperformed others Findings  support  early
al. (2023) using SMOTE and 10-fold with 80.1% accuracy, 80.4% precision, 80.1%  detection and prediction of
[28] cross-validation. Performance  recall, and AUC of 88.4%. AdaboostM1 and LD.
measured by CA, AUC, REF also showed good performance.
F1-Value, PRE, and REC
Amin et al. 2023 583 Used the ILPD dataset. Methods ~ Achieved 88.10% accuracy, 85.33% recall, Helped in early diagnosis of
(2023) [29] like PCA, FA, LDA for feature  88.68% F1 score, and 88.20% AUC. LD.
extraction and ML algorithms for
classification.
Rahman et 2019 583 ML algorithms LR, KNN, DTs, Logistic Regression achieved the highest This highlights the potential
al. (2019) SVM, NBs, RF are evaluated accuracy of 75%, while Naive Bayes had the of ML to reduce costs and
[30] lowest at 53%. complexity.
Yang et al. 2024 730  LASSO regression, multiple AUC: Training set: 0.877; Validation set:  Personalized predictive
(2024) [31] logistic regression used. 0.871. model for NAFLD risk
assessment.
Wu et al. 2019 577 Classification models used. RF model achieved an AUROC of 0.925  Effectiveness of RF model.
(2019) [32] and accuracy of 87.48%, outperforming other
models.
Current - 1460 SVM(RBF), NBs, KNN, and DTs ~ SVM(RBF): AUC 87.00%, CA 82.00%; NBs:  Proposed WOA+MLP model
Study AUC 93.00%, CA 80.00%; KNN: AUC outperforms most existing
85.00%, CA 79.00%; DTs: AUC 87.00%, CA  models in accuracy and
88.00%. AUC, enhancing early LD
detection.
Current - 1460 MLP, WOA+MLP (Proposed MLP(10 10) achieved 89.00% accuracy,
Study Model) 89.00% recall, 89.00% F1-score, and 89.00%

AUC. WOA+MLP(10 10) achieved 92.00%
accuracy, 92.00% recall, 92.00% F1-score, and
91.00% AUC.

0.87. DT classifiers also had an AUC of 0.87. The KNN
model had a classification accuracy of 0.79. This indicates
it is sensitive to noise and struggles in high-dimensional
space. In contrast, the standard MLP (10-10) neural network
architecture performed better. It achieved an AUC of 0.89
and an accuracy of 0.89. The WOA+MLP (10-10) model uses
WOA for hyperparameter tuning. It achieved a classification
accuracy of 0.92. The precision, recall, and F1l-score were
all 0.92. The model also improved its AUC to 0.91. The
study shows that optimizing MLP weights and learning
parameters enhances model performance. The study shows
that combining optimization algorithms, such as WOA,
with ML models, like MLP, improves performance. This
combination enhances the reliability of conventional ML
techniques. The Fig. 14 compares various ML models,
including SVM, NBs, KNN, DT, MLP, and WOA-optimized
MLP, using their AUC and CA. NBs had the highest AUC of
0.93 but lower accuracy at 0.80. SVM and Decision Tree had
similar AUCs of 0.87, with DT being more accurate (0.88)
than SVM (0.82). KNN had the lowest AUC of 0.85 and
accuracy of 0.79.

2) Comparative Study on Experimental ML and
Optimized MLP Models: Zheng et al. (2025) [33]
investigated the application of the WOA in conjunction with
Kolmogorov-Arnold Networks (KAN) for FS in medical
datasets. WOA, a bio-inspired algorithm that imitates
whale hunting behavior, is combined with KAN, a type
of NN recognized for its capacity to approximate complex
functions. The proposed method aimed to efficiently
select the most relevant features from medical datasets,
enhancing the performance of ML models in tasks such
as disease prediction. Shuaib et al. (2019) [34] utilized
WOA to select the most pertinent features from the dataset
for email spam classification. The Rotation Forest (RF)

algorithm is used for classification after the best features
have been chosen. By using WOA to optimize FS and RF’s
rotation-based transformation to improve generalization, this
combination improves classification accuracy and creates an
effective spam detection system. Chakraborty et al. (2023)
[35] enhanced performance, a hybrid WOA for global
optimization combines WOA with additional optimization
methods like PSO or GA. This hybrid approach overcomes
the drawbacks of WOA, such as premature convergence,
and enhances speed, accuracy, and balance in exploiting and
exploring. For complicated, multi-dimensional optimization
problems, it provides a more reliable solution. Table XIV
compares the ML and optimized models with existing LD
prediction studies. It shows differences in datasets, methods,
and performance metrics. The current approach is more
effective in improving the accuracy and early diagnosis of
LD. Wu et al. (2019)[32] used various ML algorithms to
predict the likelihood of developing fatty LD entails by
evaluating patient data, including age, BMI, liver enzymes,
and other biomarkers. To find important variables and trends
linked to fatty LD, algorithms such as DTs, RFs, SVM,
or NN are trained on this data. Early predictions from the
model can then help with prompt diagnosis and treatment
and lower the chance of developing more serious LDs.
Ghazal et al. (2023)[36]proposed a model for early LD
prediction analyzes medical data using ML techniques to
spot patterns linked to the disease early on. The model
can predict the likelihood of LD and classify risk factors
by utilizing algorithms such as NNs, DTs, and SVM. This
allows for prompt interventions. This method increases the
precision of diagnoses, and it helps in the early identification
of LDs. Early management of LDs is also crucial. Shaban
et al. (2024) [37] suggested combining ML techniques with
an enhanced binary butterfly optimization algorithm. By
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improving FS, it sought to increase prediction accuracy and
produce more dependable and effective diagnosis models.
When compared to conventional methods, the approach
showed better performance.

VI. CONCLUSION

The study developed an intelligent LD identification
framework by integrating an MLP with the WOA, addressing
the need for accurate and early diagnosis in the North
Coastal region of AP, India. The average total bilirubin level
was 4.65 in LD patients and 1.22 in non-LD patients. The
albumin-globulin ratio was 0.92 in LD patients compared
to 1.07 in non-LD patients. There was a decrease in the
albumin-globulin ratio (0.92 in LD compared to 1.07 in
non-LD), and 83.9% of LD patients had alcohol consumption
as a lifestyle factor. Feature selection techniques found
important predictors. These include total bilirubin (F11),
fever (FO7), and vomiting (FOS5). Information Gain values
reached 0.262. This value helps in analysing the most
influential attributes. The WOA+MLP model has a (10,10)
architecture. The model outperformed baseline models,
including SVM, Naive Bayes, KNN, and Decision Tree. The
model achieved an AUC of 0.91. Its classification precision
was 0.92 and balanced precision, recall, and F1 score were
0.92. The standalone MLP model achieved an AUC of
0.89 and an accuracy of 0.89. NBs had the highest AUC
but lower accuracy. The decision tree model showed signs
of overfitting. The WOA+MLP model improved diagnostic
reliability. Reduce FPs and increase true negative predictions.
The findings demonstrate the value of integrating advanced
ML methodologies in the medical field, highlighting their
role in improving patient outcomes. Future research could
build on these techniques, examining their use in other
complex diseases to further improve diagnostic precision and
treatment strategies.
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