TAENG International Journal of Computer Science

A Novel Network Based on Dynamic Graph
Convolution and Multi-head Attention Mechanism
for End-to-End Multimodal Trajectory Prediction

Hai-Sheng Li, Hui-Jia Ma, and Cong Hu

Abstract—Accurately predicting the future trajectories of
agents in complex traffic scenarios is crucial for achieving
intelligent transportation. However, existing trajectory
prediction methods face challenges, such as modeling
long-term dependencies and neglecting the impact of dynamic
driving scenarios on trajectory prediction. We propose a
novel trajectory prediction model named DG-Trajector
to address these issues. This model leverages information
from multimodal data through dynamic graph convolution
networks and an end-to-end learning approach. The model
employs dynamic graph convolution layers (DGConvLayer) to
capture the correlations between trajectories flexibly. DGANet
can adaptively focus on the importance of different parts
by introducing a multi-head attention mechanism into the
trajectory data. The features extracted by DGANet predict
both endpoint goals and trajectories, achieving more accurate
trajectory prediction by utilizing goal-driven prediction
methods and considering information at different levels.
Specifically, on the Argoverse dataset, The DG-Trajector
achieves improvements over the benchmark network, while
adding MR Indicators and expanding multimodal prediction
capabilities. The experimental results of DG-Trajector show
that the performance of multi-mode prediction is also very
competitive. Its effectiveness and feasibility are verified in
complex traffic scenarios.

Index Terms—Autonomous Vehicles, Dynamic graph
convolution, Multimodal motion prediction, End-to-end
learning.

I. INTRODUCTION

UTONOMOUS driving agents must make safe and

effective decisions in complex traffic scenarios, such
as lane changes, overtaking, and deceleration. Existing
tactical path planning algorithms [1] rely on reliable
estimation of future trajectories of surrounding agents
(e.g., vehicles and pedestrians). Consequently, predicting
trajectories for adjacent vehicles has garnered increasing
attention and application. For instance, location-based traffic
recommendation services rely heavily on predicting vehicle

Manuscript received April 20, 2025; revised September 1, 2025. This
work was supported by a grant (Nos. BCIC-25-Y1 and BCIC-25-Y3)
from Guangxi Key Laboratory of Brain-inspired Computing and Intelligent
Chips, the Science and Technology Project of Guangxi under Grant
Nos. 2024GXNSFAA010524, the Project of Guangxi Key Laboratory
of Automatic Detection Technology and Instruments under Grant no.
YQ24204.

Hai-Sheng Li is a Professor at Guangxi Key Laboratory of Brain-inspired
Computing and Intelligent Chips, Guangxi Normal University, Guilin,
Guangxi 541004, China (corresponding author, e-mail: lhs_ecjtu@126.com).

Hui-Jia Ma is a postgraduate at School of Electronic and Information
Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
(e-mail: 728518157 @qq.com).

Cong Hu is a Professor of Guangxi Key Laboratory of Automatic
Detection Technology and Instruments, Guilin University of Electronic
Technology, Guilin, Guangxi 541004, China (e-mail: hucong @guet.edu.cn).

behaviors in real time. This enables features like dynamic
lane change suggestions and personalized risk assessments.
Therefore, accurate and efficient vehicle trajectory prediction
is crucial for deploying traffic control and management
systems [2]. Effectively leveraging dynamic information in
trajectories and integrating local and global information to
enhance prediction accuracy and robustness pose significant
challenges in trajectory prediction tasks. With the rapid
development of graph neural networks, researchers have
found that their application to trajectory prediction [3]
has a good effect. As for how to model interaction
and scene dynamics, research on interactive perception
methods based on deep learning can be divided into two
categories: one is non-graph-based trajectory prediction,
Deo et al. [4] extract vehicle interaction features from
gridded road scenes using convolutional networks. However,
this method is limited by the accuracy of maneuver type
classification and the inflexibility of fixed grid scenes.
The second category is trajectory prediction based on
graphs. Typically, existing methods represent input data
as graph structures and predict trajectories by learning
relationships between nodes in the graph through graph
convolutional networks. VectorNet [5] proposed a new
feature representation method by vectorizing trajectories,
effectively capturing the interaction relationships between
trajectories. Subsequently, a series of graph-based trajectory
prediction models were proposed. Li et al. [6], [7] introduced
the GRIP method, which combines graph operations with
convolutional layers, treating driving scenes as graph
models and representing vehicle interactions as correlations
between nodes in the graph model. Although this method
effectively captures spatial correlations between vehicles, it
still lacks the extraction of time-related features. Chandra
et al. [8] proposed a spectral clustering-based framework
that can simultaneously predict vehicle trajectories and
driving behaviors. However, this method constructs a global
graph model of all historical driving scenes, resulting in
huge and sparse corresponding adjacency matrices, leading
to low computational efficiency. There is little research
on dynamic graph processing in trajectory prediction
[9]. To better extract time-related features, Malik et al.
[10] constructed dynamic graphs as dynamic tensors and
extracted time features through mathematical operations
on three-dimensional tensors. Unfortunately, the authors
used only single-layer graph convolution models to meet
the needs of applications such as social networks and
financial transactions. This design is unsuitable for traffic
scenarios due to the complexity and realism of urban traffic
environments.

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

Despite some advanced methods, there are still many
limitations. These methods often fail to fully exploit
dynamic information in trajectory sequences and struggle
to capture long-term dependencies between trajectories.
We propose a novel dynamic graph network model
called DG-Trajector to address these challenges. This
model combines dynamic graph convolutional networks
(GCNs) and multi-head attention mechanisms, effectively
capturing dynamic information and long-term dependencies
in trajectory sequences.

The core of the DG-Trajector model, DGANet, is
a multi-layer dynamic graph convolutional network
incorporating a multi-head attention mechanism. It
dynamically constructs graph structures based on input data
and extracts feature representations of trajectory sequences
through multi-layer graph convolution operations. Unlike
traditional static graph networks, DGANet dynamically
adjusts the graph connections according to the dynamic
characteristics of trajectory sequences, thereby better
capturing the dynamic relationships between trajectories.
Additionally, the multi-head attention mechanism introduced
by DGANet effectively captures important information
in trajectory sequences, focusing on significant trajectory
features. Notably, DG-Trajector is not limited to dynamic
graph convolutional network methods but also integrates
endpoint generators and trajectory prediction modules.
By predicting trajectories step by step, our method
comprehensively addresses trajectory prediction tasks while
maintaining model efficiency and interpretability. Our
contributions can be summarized as follows:

e We propose a new method based on dynamic
graph convolutional networks that effectively captures
dynamic information and long-term dependencies in
trajectory sequences.

o We utilize multi-layer dynamic graph convolution and
multi-head attention mechanisms to extract and integrate
both local and global trajectory information effectively,
comprehensively modeling traffic scenes and improving
prediction accuracy and robustness.

e Our method is evaluated on real datasets and
demonstrates strong performance in the trajectory
prediction task, validating its effectiveness and
reliability.

II. RELATED WORK

Recent social interaction model methods for vehicle
trajectory prediction based on machine learning can be
divided into two categories: rasterization and vectorization.

A. Rasterized Representation

Rasterization relies on grid-based operations to simulate
social interactions, transforming real-world scenes into
discrete grid cells. Traditional trajectory prediction models
mainly utilize rasterized scene representations [11], [12],
[13] to depict context and interactions. Social-LSTM [14]
is an extension based on LSTM networks, modeling
social trajectory data to predict future trajectories; however,
LSTM fails to capture interaction effects between vehicles.
To address this limitation, Deo et al. [15] proposed a
unified framework to identify the maneuvers of surrounding

vehicles on highways and predict vehicle trajectories. They
employ the convolutional social pooling mechanism to learn
interdependencies between vehicles. These methods convert
continuous scenes in high-precision maps into discrete
grid representations, leading to a loss of accuracy and
an inability to fully capture the details and continuity of
the real world. Additionally, rasterization results in a large
amount of data redundancy, increasing the burden of data
storage and processing, and also incurs rendering losses.
In comparison to rasterized representations, the Bird’s Eye
View (BEV) representation is a more advanced and flexible
mapping method. BEV representation [16] converts maps
from two-dimensional grids into more abstract topological
structures to better describe objects and their relationships in
the environment. However, generating BEV representations
requires rasterization, inevitably resulting in information loss
[17].

B. Vectorized Representation

In vectorized map representation [5], [18], geographical
spatial information is decomposed into a series of vector

features, such as points, lines, and polygons. These
features can represent the position, shape, attributes,
and other information of geographical objects. Using

a graph structure to describe the relationships between
these geographical features, social interactions are modeled
within the graph structure. The development of vectorized
representation has greatly helped address information loss
and data redundancy, while also significantly promoting
the development of graph-based methods. Researchers have
been exploring graph-based methods to capture spatial
dependency relationships between vehicles. Compared to
rasterized representations, graph neural networks support
a more explicit interaction modeling, such as lane graphs
or vectorized representations of scenes [5]. Building on
their success in capturing hierarchical representations, recent
works have employed GNNs for interaction modeling [19],
[20]. However, due to the limited perception range of sensors
in autonomous vehicles, once these models are determined,
they cannot adapt to changes in vehicle composition in traffic
scenes. In complex traffic scenarios, traffic graphs exhibit
heterogeneity across different time periods. In our work, we
also adopt vectorized representation; unlike them, we utilize
dynamic graphs to model social interactions, which can more
efficiently capture vehicle interaction information in highly
dynamic traffic scenes.

C. Dynamic graph convolution

Dynamic Graph Convolution is a convolution operation
used to process dynamic graph data. In traditional graph
convolutional networks, the graph’s structure is static,
meaning that the nodes and edges of the graph do not change
during training. In contrast, in dynamic graphs, the graph’s
structure changes over time, with nodes and edges able to
change with each time step. Dynamic graph convolution [21],
[22] models dynamic graph data by introducing a temporal
dimension. It associates node features with time steps and
utilizes node connections for information propagation and
feature updates. Specifically, dynamic graph convolution
first performs convolution operations on node features at

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

each time step, then updates the features of the current
node by aggregating the features of neighboring nodes.
This effectively captures temporal relationships and evolution
patterns between nodes in dynamic graphs.

This technology has been widely applied in social
networks, financial transactions, and traffic flow prediction
[23], [24]. There are some similarities among these
application scenarios, where the features of objects
represented by graph models change dynamically, and
the relationships between objects change dynamically.
Therefore, effectively modeling dynamic graphs and
extracting spatiotemporal features is one of the main
challenges. Dynamically learned adjacency matrices from
data exhibit more accurate effects on related traffic prediction
problems, improving the accuracy and effectiveness of
these tasks. Combining dynamic graph convolution, many
excellent models have been successively proposed and
applied to traffic prediction. Seo et al. [25] constructed a
graph convolutional recurrent network for graphs, where
features change over time but edges remain fixed. EdgeConv,
proposed by Wang et al. [26], is a neural network that
dynamically applies convolution operations on static graphs.
Zhao et al. [27] developed a time GCN method called
T-GCN for traffic prediction. To capture graph structures
and handle temporal dynamics, Li et al. [28] combined a
fixed adjacency matrix with a self-attention mechanism to
generate a dynamic adjacency matrix to capture changes
in spatio-temporal features and improve the accuracy of
lane-level traffic prediction. Sankar et al. [29] proposed using
a time self-attention layer to learn representations of dynamic
graphs.

However, in trajectory prediction tasks, most GCN-based
for trajectory prediction adopt static adjacency matrices,
assuming that the correlation between nodes does not
change over time. This adjacency matrix is often manually
designed by researchers based on actual traffic conditions,
with the most common being the 0-1 matrix representing
the connection relationship between road nodes and the
distance matrix representing the actual geographical distance
between nodes. For example, the GRAPH-LSTM [30] and
PRIME [31] models use binary tuples (A, D) as adjacency
representations, where A is the adjacency matrix between
road nodes (0-1 matrix), indicating whether there is a
connection between nodes on the road, and D is a diagonal
matrix indicating the degree of each node on the road. These
matrices fail to capture the complex relationships and spatial
dependencies between nodes. Because they treat the graph
as a fixed-size matrix, they cannot adapt to changes in
the graph structure over time. Therefore, traditional graph
convolutional networks cannot handle dynamic graph data
directly. Capturing vehicle interaction information in highly
dynamic traffic scenarios remains a major challenge. Inspired
by the successful application of dynamic graph convolution
methods in the field of traffic prediction [28], [32], [33], we
introduce dynamic graph convolution to deal with frequently
changing graphs. To this end, we introduce dynamic graph
convolution combined with self-attention mechanisms to deal
with changing graphs. In this paper, we apply dynamic graph
convolution to the trajectory prediction task and propose
the DGANet module, which can effectively process dynamic
graph data.

D. Multi-head Attention Mechanism

The Multi-Head Attention Mechanism, originally propsed
by Vaswani et al. in [34], allows the model to compute
attention across different positions in multiple representation
subspaces. Specifically, it splits the input feature vector into
multiple heads (typically 8 or more), each of which learns
an independent set of attention weights. Then, the attention
results of each head are concatenated together and passed
through a linear transformation to generate the final output.
Specifically, assuming the input features are X, after linear
transformation, we obtain queries Q, keys K, and values V,
where the parameters of the linear transformation are denoted
as Wy, Wy, and W, and the number of attention heads is
h. The input first undergoes linear projection through linear
layers, then attention scores are calculated for each query
and key pair, and values are weighted summed, resulting
in the output of each head, generating h attention values,
where h is the number of heads. Finally, the outputs of each
head are concatenated or weighted summed to obtain the
final multi-head attention output. Attention score calculation
adopts the scaled dot-product attention mechanism, and the
computation of multi-head attention is as follows:

QK"
e

where dj, is the dimension of keys, i.e., the input dimension
of each head divided by the number of heads.

Attention(Q, K, V) = soft max(W (1

E. Trajectory prediction

In recent years, trajectory prediction has been studied
extensively. Traditional methods typically rely on
physics-based models or statistical methods. However,
these methods often struggle to accurately describe target
behaviors in complex environments and are sensitive to
noise and other disturbances. To address the challenges
posed by the limitations of traditional approaches, such
as handling variable target behaviors, high uncertainty,
and significant noise interference, target-driven prediction
methods have emerged. Target-driven prediction involves
predicting future trajectories based on given target points
or regions through the analysis of historical data. For
instance, Ziebart et al. [35] utilized reinforcement learning
algorithms to predict future trajectories and learned from
inferred reward functions. The inferred reward function
provides destination-related information, and trajectory
planning is conducted through Inverse Reinforcement
Learning (IRL). Rehder et al. [36] introduced the concept
of target-oriented pedestrian prediction, where machine
learning algorithms first predict pedestrian targets and
then guide trajectory formation based on these targets.
Mangalam et al. [37] proposed an endpoint-conditioned
trajectory prediction method, utilizing latent representations
learned from Conditional Variational Autoencoder (CVAE)
to generate endpoints, guiding predictions using multiple
probabilistic anchor trajectory hypotheses [38]. R2P2 [39],
[40] guided the path prediction process by introducing
target point information, generating paths more aligned
with practical requirements. PRIME [31] directly searched
for a set of reachable paths and generated possible
trajectory anchors in a planning manner. LTP [41] initially

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

Endpoint Trajecto
DGANet L * %k *k jectory
Generation Prediction
S Input Vectors Yc Endpoints 6 Trajectory Prediction

Fig. 1: Overview of DG-Trajector.

predicted possible target lanes and positions, and after
obtaining target information, utilized conditional generation
models to generate conditional trajectories. Furthermore, to
consider uncertainty and multimodality in prediction space,
generative adversarial networks (GAN) [42] and variational
autoencoders (VAE) [43] were used to sample the latent
space to generate multiple trajectory predictions. TNT [44]
employs a goal-driven approach to predict future trajectory.
The decoder receives the information from the encoding
stage as input and calculates the probability distribution of
the future position through forward propagation, which can
better capture the time dependence and dynamic change
characteristics.

Inspired by target-driven prediction methods [40], [41],
[42], [43], [44], similarly, we use a goal-driven prediction
method to predict trajectories, thereby improving prediction
accuracy.

III. METHOD

This section outlines the overall framework of our
proposed model, the DG-Trajector network architecture, as
illustrated in Figure 1. In the vectorized scene representation,
DGANet encodes and extracts features from vectorized
polyline features. The endpoint generation module generates
a set of candidate endpoints. In the input trajectory prediction
module, a set of candidate trajectories is generated and scores
are computed for each trajectory. Finally, K trajectories are
selected based on trajectory scoring, where orange represents
the optimal trajectories. Specific design details will be
elaborated in the subsequent subsections of this section.

A. Feature encoding

Polyline Encoding: We wuse a structured vector
representation to represent maps and agents. The vector
representation proposed by VectorNet [5] creates a connected
graph for each scene element independently. Given the
agent’s past trajectory, A = {a;}, where a; € RT*2, T is
the number of time steps in the trajectory, and each time
step contains the agent’s position (X, y) on the HD map. For
lane data, represented as M = {m;}, where m; € R'*2,
l; denotes the number of continuous points included in
lane i For each scene element, we convert its trajectory
data into polylines. The polyline encoding for each agent
and lane is independent, and therefore, each is represented
using separate subgraphs (see Figure 2). The length of each
polyline is d, and its feature vector is F{. Based on the

Fig. 2: Polyline encoding module.

continuous points of the trajectory data, we calculate the
center point and direction of the polyline, considering them
as part of the polyline’s feature vector. Additionally, we
include the corresponding type identifier (agent or lane) as
part of the feature vector.

B. Interaction Module

DGANet presented in Figure 3, an essential component
of the DG-Trajector, is meticulously designed to capture
local structural information among points in polylines
effectively. It consists of key multi-layer DGConvLayers
and a multi-head attention mechanism. The multi-layer
DGConvLayers propagate and aggregate information layer
by layer through dynamic graph convolution, gradually
extracting higher-level feature representations. Normalization
operations are applied to the features via linear layers
to enhance their representational capability. Figure 4
illustrates the specific details of DGConvLayer. Since
trajectory prediction tasks require considering temporal
dependencies, dynamic graph convolution can adaptively

Y

DGConvLayer
DGConvLayer
DGConvLayer
DGConvLayer
Global Integration
MultiHeadAttention
l¢

Y

Fig. 3: DGANet.

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

Dynamic

a
linear

adjacency matrix

,,,

Fig. 4: DGConvLayer.

generate dynamic adjacency matrices based on dynamic
changes in the input data, thereby better modeling the
dynamic relationships and spatiotemporal dependencies
within the data. In the DGConvLayer, original features
are transformed into higher-level abstract representations
via linear layers to enable the network to learn richer
feature information. Meanwhile, normalization operations
are applied to the features to enhance their representational
capability, eliminate differences in scales among features.
According to the length d of each polyline and the feature
dimension d of each polyline point, an adjacency matrix A of
the shape (d,d) is initialized to preliminarily represent the
relationships between points in the polyline. The softmax
operation is performed on matrix A to generate attention
scores, determining the degree of association between each
node and other nodes, so that weighted consideration can
be given during information propagation to better utilize
the information of the graph structure. After transposing the
node feature tensor F and multiplying it with the attention
scores, the information of each node is propagated and
aggregated, effectively integrating information among nodes
and generating node feature representations F,,.;, which are
modulated by attention mechanisms. At each time step 7,
the weights of the dynamic adjacency matrix A are adjusted
based on the input feature tensor to better capture time-series
information. The formulas are as follows:

A= f(FT) 2
Agir = {soft max(fl)} 3)
Fwei == Aatt(FT) (4)

where F' represents the feature tensor of trajectory points,
the function f denotes the process of generating the dynamic
adjacency matrix.

The dynamic adjacency matrix A is passed to the
GCN module for graph convolution. Weighted propagation
based on A helps each node better utilize information
from neighboring nodes, thereby enhancing the feature
representation capability. Features generated at each layer
are concatenated with the input features of the current layer,
effectively incorporating residual connections, aggregating
features to retain important information, and mitigating
the vanishing gradient problem. To enhance the model’s
representational power, multiple dynamic graph convolution

layers are stacked. The output of each layer serves as the
input for the next layer, gradually extracting higher-level
feature information. Thus, the concatenated polyline features
proceed to the next DGConvLayer, and this process is
repeated four times to extract higher-level semantic features.
The operation formula for the DGConvLayer is as follows:

F' = F + GCN (Fype;, A) (5)

By adjusting the adjacency matrix with a self-attention
mechanism, different trajectory data can be adaptively
modeled accordingly, and the spatiotemporal dynamic
characteristics of trajectory data can be better understood and
predicted. At the same time, high-level abstract features of
trajectory data are extracted step by step through multi-layer
dynamic graph convolution to represent the complexity and
diversity of trajectory data, thus improving the representation
capability and prediction accuracy of the model.

After multiple layers of feature extraction and temporal
information integration, the feature representation possesses
richer semantic information and better temporal modeling
capabilities. The features of all polylines are aggregated into
a tensor through batch encoding and aggregation operations,
which is then input input as a whole into the global layer
(see Figure 5).

Global Integration

MultiHeadAttention

Features

N Local Polyline
Features

Fig. 5: Global layer.

In the global layer, this tensor represents the entire graph
and applies the multi-head attention mechanism to capture
global relationships and contextual information between
polylines. The calculation formula for the multi-head

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

attention mechanism is as follows:
VQn(Ly) x VKh(Lg))VVh(L)
Vd !
(6)

where VQp(L,), VK (Lg) and VVj(L,) are the linear
projections of the node feature matrix V' (L,) for head h.
The global features generated after the multi-head attention
mechanism form a tensor that contains the global contextual
information and relationships between the input polylines.
These global features are concatenated with the input
polyline features along the feature dimension. The final
output is a feature tensor of shape (64, 128), where 128
is the output feature dimension of the linear layer. This
concatenation operation is similar to residual connections
but not identical. In residual connections, the original input
is combined with the processed output through simple
element-wise addition or concatenation to better preserve the
original input information. Here, the concatenation operation
connects the two along the feature dimension. The global
features provide overall information for all polylines, while
the original polyline features contain local features for each
polyline. By concatenating them along the feature dimension,
the model can consider both global and local information,
leading to a more comprehensive understanding of the data.

Compared to the standard multi-head attention mechanism,
the multi-head attention in dynamic graph convolution
considers the influence of the dynamic adjacency matrix
when calculating attention weights. This allows attention
calculation to adapt to the dynamic changes in the input
data, better capturing the temporal correlations. DGANet,
combining dynamic graph convolution and multi-head
attention, can fully leverage local polyline features and global
polyline relationships, achieving multi-level information
fusion. This results in richer and more expressive feature
representations.

head(h) = soft max(

C. Endpoint and Trajectory prediction

Features

=
29 |28
8 EL,2E 858
[§ o = O 0 O =
,,,,,, 7 = 0 22 3 8 >
£S5 FB3EI
N Anchors | & 5 S @l

Anchor Sampling ——»

Fig. 6: Endpoint and Trajectory prediction.

We use endpoint generation and trajectory prediction
modules to improve trajectory prediction, integrating
information from different levels. The endpoint generation
module takes the features extracted by DGANet and sampled
anchors as input, generates a set of candidate endpoints, and
selects the top N. The trajectory prediction module receives
these N endpoints and combines them with the input features
to create a set of candidate trajectories. These trajectories are
scored by a trajectory scorer, and the top K trajectories with
the highest scores are selected as the final prediction results.
Figure 6 shows the structure of the endpoint generation and
trajectory prediction modules. The detailed design of these
modules will be elaborated in the following subsections.

D. Endpoint generation

Firstly, lane centerline points are sampled as candidate
anchor positions (see Figure 7). These centerlines represent
the paths along which vehicles might travel on the road.
For each candidate anchor, the vehicle’s driving path is
approximated using polyline or curve methods based on
nearby lane centerline points. When using the polyline
sampling algorithm (e.g., straight driving), straight segments
are generated between lane centerline points to approximate
the vehicle’s path. In contrast, when using the curve sampling
algorithm (e.g., turning), polynomial fitting methods are
employed to generate curves. Sampling algorithms are used
to determine the specific positions of the sampled points.
The polyline sampling algorithm samples a fixed number of
points at equal intervals along each polyline as anchors. The
curve sampling algorithm fits curves to the polylines and then
samples a fixed number of points at equal intervals along
the fitted curves as anchors. The points sampled from each
polyline are combined to form a set of anchor points. These
anchors represent possible vehicle trajectories, with the final
anchor points representing the possible final positions of the
vehicle. In practice, the differences between each candidate
anchor and others are calculated to ensure no duplicates are
generated. The resulting anchor points are then used in the
subsequent endpoint generation process.

Lane Centerline Anchors

Fig. 7: Anchor sampling.

The endpoint generation module in Figure 8 consists
of an endpoint corrector, a confidence evaluator, and a
series of linear layers and activation functions. The endpoint
corrector and the confidence evaluator are responsible
for generating endpoint corrections and confidence scores,
respectively. The linear layers and activation functions
merge the feature representation with anchor point positions
through a series of linear and nonlinear transformations,
producing an intermediate representation for the endpoint
generation module. This intermediate representation contains
preliminary prediction information about the endpoint
positions, providing a foundation for subsequent endpoint
correction and confidence evaluation. The endpoint corrector
adjusts the endpoint positions based on the intermediate
representation. It maps the intermediate representation
to the correction space through a series of linear
transformations and activation functions to obtain the final
endpoint corrections. These corrections are used to refine

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

Anchor
Samplig

confidences \}
(. - |
1 |
| |
(g }
! .
> offsets | Endpoints

(2 [

B e
. Nl !
Endpoint !
Prediction i
|
|
|

Fig. 8: Endpoint generator.

the preliminary endpoint predictions, making them more
accurate and reliable.

EndPoint = anchor + of fset @)

The confidence evaluator is used to assess the confidence
level of each endpoint position. It maps the intermediate
representation to the confidence score space through a
series of linear transformations and activation functions,
obtaining the confidence score for each endpoint position.
This confidence score represents the model’s confidence
in predicting the endpoint position, where higher scores
indicating greater confidence in the prediction at that
position. Endpoints are then filtered based on their confidence
scores, selecting the top-N endpoints with the highest
confidence. Together, these two components constitute the
endpoint generation module, which completes the prediction
and evaluation of endpoint positions through a series of
interactive operations and information propagation, providing
crucial support and foundation for target-driven prediction
tasks.

1) Trajectory prediction: The trajectory prediction
module, as presented in Figure 9, uses the given endpoints
to forecast trajectories and comprises a trajectory predictor
and a trajectory scorer.

The trajectory predictor forecasts trajectories based
on the provided global features and endpoints. Initially,
it concatenates the global features with the target
position to effectively integrate the features. Then,
it transforms the features through a series of linear
layers and activation functions to produce the predicted
trajectories. During prediction, the trajectory predictor also
utilizes skip connections between endpoint positions and
features to enhance information propagation and prediction

performance. The Trajectory Scorer evaluates the quality
of predicted trajectories by receiving global features and
predicted trajectories as input and outputting trajectory
scores after a series of processing. These scores represent
the model’s assessment of the quality of each predicted
trajectory, with higher scores indicating better trajectory
quality. The design of the trajectory scorer aims to
improve the accuracy and robustness of the model’s
trajectory predictions. Together, these components constitute
the endpoint-driven prediction module, playing a crucial
role in model training and inference. Through a series
of interactive operations and information exchanges, they
jointly accomplish trajectory prediction and evaluation,
providing an effective solution for trajectory prediction tasks.

E. Loss Functions

In our DG-Trajector approach, three key loss functions
are employed: endpoint loss, prediction loss, and prediction
score loss. These loss functions play a crucial role during
training, aiding the model in learning and optimization. The
endpoint loss is used to quantify the accuracy of endpoint
position estimation. It consists of two parts: confidence loss
Leony and offset loss Ly rsei.The specific formulas is as
follows:

Lconf = BCE(Pclosestonﬁ;mta Pconfs) (8)

Loffset = H(S(Pclosestoffset7PClOSCStOffset) (9)

LEndpPoint = Lconf + Loffset (10)

where Pj,sest represents the element extracted from the
endpoint set P, that is closest to the true endpoint
P,, Hs is the Huber loss parameterized by .
Pclosestoffset:Pgt—PclosestO”m, is the predicted endpoint

=== N
I
Features : I
| —)
Endpoints (¥ %)

Trajectory
Forecaster

scores
(~

|
|
|
|
N —

Trajectory
Scorer

Trajectories

Fig. 9: Trajectory Prediction.

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

offset. BCE denotes binary cross-entropy 10ss, Priosesto,ono:
is the index of the P.j,scs¢+ €lement represented in one-hot
format, and Pcon ts is the confidence of each predicted
endpoint, ranging between 0 and 1. The endpoint loss
LEgnapoint helps the model accurately locate the endpoints
by comparing the model’s predicted endpoint positions
with the true positions. It encourages the model to output
high-confidence endpoint positions.

The prediction loss measures the distance between the
trajectory predicted by the model and the true trajectory.
It utilizes the Huber loss to balance the accuracy and
robustness of the predicted trajectory, aiding the model
in better predicting the motion trajectory of endpoints.The
calculation formula is as follows:

Ltrajde = H6(Ttraj>TtTaj) (11)

where T},,; is the true trajectory, and Ttmj is the predicted
trajectory, during trajectory evaluation training, Ttmj adopts
the true endpoints of the trajectory to stabilize learning.
The prediction scoring loss is used to evaluate the model’s
confidence in predicting trajectories. It first represents the
similarity between trajectories by calculating the maximum
distance between all paired points of the predicted trajectory
and the true trajectory, i.e.:
D(Tyrajs Tiraj) = max(|| T} — T3

D

The magnitude of the negative value is usually related to
the degree of error. Therefore, by computing the softmax
of the negative values and using it as the true distribution
Pirajeon ;.- reliable trajectory confidence is trained as:
Lsorce = BCE(PtTajconf57Ptrajconfs) (13)
The prediction scoring loss helps the model better
estimate the quality of the predicted trajectories, improving
the model’s robustness in complex scenarios. By considering
the endpoint loss, prediction loss, and prediction scoring
loss comprehensively, the DG-Trajector model can
optimize target prediction and trajectory prediction
tasks comprehensively, enhancing the model’s performance
and generalization ability, thus better adapting to various
complex real-world scenarios.

IV. EXPERIMENT
A. Datasets

The Argoverse prediction dataset [45] is provided for
future trajectory prediction. This dataset contains 333,000
sequences, each 5 seconds long, with a trajectory sampling
frequency of 10Hz. In this dataset, the observation time
is 0.2 seconds, and the future prediction time is 2.5
seconds. Argoverse comprises 323,557 scenes and is
commonly used as a benchmark for single-agent motion
prediction. Considering high-definition maps and 20 seconds
of historical information, the objective is to predict the
position of targets within the next 3 seconds. Additionally,
the dataset includes 62,022 multi-agent scenes, with up to
40 agents per scene. In these scenarios, the goal is to predict
the trajectories of agents in the future.

B. Evaluation Metrics

In trajectory prediction tasks, we adopt widely used
metrics such as minimum average displacement error
(mADFE[), final displacement error (mF DFEg), and miss
rate (M Rg). These metrics are computed based on the
endpoints closest to the true trajectories among K trajectory
predictions. Specifically, mADFEg measures the average
L2 distance between complete predictions and ground truth
values. It calculates the average distance between each
predicted trajectory and the true trajectory and then takes
the average over all predicted trajectories. mF D E is used
to measure the difference between predicted endpoints and
ground truth values. It computes the distance between the
endpoint of each predicted trajectory and the endpoint of the
true trajectory and then takes the minimum over all predicted
trajectories. M Ryx measures the proportion of cases, based
on FDE, where all predictions fall outside a 2-meter range
of the true ground. This metric can be used to evaluate the
model’s performance under large error conditions.

C. Experimental details

We trained our DG-Trajector model on an NVIDIA 4090
GPU with 24GB of memory. Adam optimizer was used for
training, PyCharm Community Edition 2024.1 served as the
development tool, and the experiments were conducted using
the Python programming language. We set batch to 8 and
epoch to 50 in the initial training, using a learning rate of
0.0001.

D. Performance

In this section, we compare the proposed DG-Trajector in
detail with other methods on the Argoverse validation set.
The results are shown in detail in Table I and Table II.

TABLE 1. Comparisons with advanced algorithms in
Argoverse leaderboard

Method mADFE—1 mFDEg_, MRg—1
Argoverse Baseline[45] 3.45 7.88 0.87
TPNet[40] 1.75 3.88 -

Vector Net[5] 1.66 3.67 -

Ours 1.68 3.62 0.61

TABLE II: Comparisons with advanced algorithms in
Argoverse leaderboard

Method mADFErx_¢ mFDErx_¢ MRKg_g
Argoverse Baseline[45] 1.71 3.29 0.54
SMARTI[49] 1.44 2.47 -
R2P2[38] 1.40 2.35 -
Luo[48] 1.35 2.68 -
WIMP[44] 1.30 2.46 0.33
TPNet[40] 1.28 1.91 -
DiversityGAN[41] 1.13 1.78 -
TNT-Henryliu[31] 1.11 2.12 0.31
Half-normal[46] 1.09 2.07 0.38
DESIRE[47] 1.09 1.89 -
MTPLA[11] 1.05 1.56 -
BVN[46] 1.04 1.98 0.35
Ours 1.02 1.71 0.28

We compared the DG-Trajector with existing methods
having similar configurations. Results in Table I and Table
I, presented on the validation set for K = 1 and

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

K = 6, include the Argoverse official baseline and other
candidate-based trajectory prediction methods similar to the
proposed architecture. To ensure fairness in comparison, we
take all data from the original papers and highlight the best
results for each metric in bold. In Table I, the DG-Trajector
model indicators were on par with VectorNet in terms
of accuracy with mADEg_1=1.68 and mFDEg_1=3.62.
Compared with the traditional LSTM Baseline (Argoverse
Baseline), mADE (3.45) and mFDFE (7.88) were reduced
by 51% and 54% respectively, verifying the robustness of
the dynamic graph convolutional network in capturing the
kinematic characteristics of vehicles. It was worth noting
that in terms of the loss rate (M R) index, DG-Trajector
reached an MR of 0.61, indicating that the model effectively
reduced the probability of the trajectory deviating from the
feasible area. Compared with TPNet (with an mFDE of
3.88 in Table 1), DG-Trajector achieved a 6.7% improvement
in the end point accuracy (mFDE) through the implicit
multimodal coding mechanism (3.62 vs. 3.88), demonstrating
the generalization ability of the dynamic graph structure in
complex interaction scenarios.

In the multimodal prediction tasks in Table II (K=6),
the advantages of DG-Trajector were more significant. Its
mADFE=1.02 was 1.9% lower than 1.04 of the current
Bayesian variational network BVN, while its mF D E=1.71
was 3.9% optimized compared with 1.78 of DiversityGAN.
This indicated that the model could not only cover diverse
motion patterns in multi-candidate trajectory generation, but
also accurately capture the physical laws of the main modes.
In terms of the loss rate index, the M R of DG-Trajector
was 0.28, which was 26.3% lower than 0.38 of Half-normal,
highlighting the synergy effect of its spatio-temporal joint
modeling and uncertainty quantification module. Compared
with SMART and DESIRE, the DG-Trajector reduced
the fusion ability of multi-scale spatiotemporal features
through the multi-head attention mechanism by 29.1% and
6.4% respectively on the mADE index. Furthermore, the
DG-Trajector demonstrated outstanding stability in long-term
prediction tasks. Its mF'DE index was 17.0% lower than that
of MTPLA, verifying the advantages of the dynamic graph
structure in time series modeling. It was worth noting that the
the mADE and M R of DG-Trajector was the best among all
the comparison methods, which indicated that DG-Trajector
had the competitive ability to capture the main mode while
considering the multimodality of the predicted trajectory.

E. Ablation Study

We conducted ablation studies on the DGANet module
on the Argoverse validation set to explore the impact of the
module on performance.

As shown in Table III, the introduction of dynamic
graph convolution and multi-head attention mechanism

significantly improves the model performance. When
DGANet is not enabled, the model performs weakly in
indicators such as the minimum average displacement error
in orbit, the final displacement error and the loss rate, and
the parameter scale is small. After introducing Dynamic
graph convolution (DGConv), the model performance has
been substantially improved. mADFy_¢ decreased from
1.15 to 1.12 (a decrease of 2.6%), and mF' D Ei_¢ decreased
from 1.95 to 1.85 (a decrease of 5.13%), verifying the
adaptive modeling ability of the dynamic adjacency matrix
for spatial interaction relationships. Further analysis shows
that DGConv can effectively identify the game intentions
of conflicting vehicles at intersections by adjusting the
interaction weights among agents in real time. However,
at this time, MR only slightly decreased from 0.40 to
0.38, reflecting that there are still bottlenecks in the
modeling of the long-term spatiotemporal dependence of
a single dynamic graph convolution. After superimposing
the multi-head Attention mechanism (MHAT), the model
has made breakthrough progress in trajectory multimodal
modeling. MR dropped sharply to 0.30 (a decrease of
21.05%), and mF D Eg_¢ was further optimized to 1.78 (a
decrease of 3.8%). This was attributed to the focusing ability
of the attention mechanism on key spatiotemporal features,
confirming the resource efficiency advantage of the attention
module. Finally, after introducing the residual connection
and normalization operation, the comprehensive performance
of the complete DGANet model reaches the optimum.
mADFEk_¢ was further reduced to 1.02 (a decrease of
4.67%), and MR was further reduced to 0.28 (a decrease
of 6.67%), proving that the residual structure effectively
alleviated the gradient decay problem of deep networks. The
computational overhead brought by increasing the number of
parameters to 496K was still within an acceptable range.

The complete results of the ablation experiment show
that dynamic graph convolution enhances the spatial
relationship modeling ability through the adaptive adjustment
of interaction weights, while the multi-head attention
mechanism solves the generation problem of multimodal
trajectories through feature focusing. The synergistic effect
of the two enables the model to achieve the optimal balance
between accuracy and scene coverage ability. DGANet
effectively improves the accuracy of trajectory prediction
and scene coverage ability through the adaptive modeling
of interaction relationships by dynamic graph convolution
and the focusing of key spatiotemporal features by the
multi-head attention mechanism. Although the increase in the
number of parameters may bring computational overhead,
the marginal benefit of its performance improvement is
significant. Especially in complex dynamic scenes, the
model’s modeling ability for long-term dependencies and
multimodal interactions has been substantially enhanced,

TABLE III: DGANet ablation on the argoverse dataset

Component mADEx_¢ mFDErg_¢ MRg_¢ Param(K)
Baseline 1.15 1.95 0.40 162
DGANet(DGConv) 1.12 1.85 0.38 284
DGANet(DGConv+MHAT) 1.07 1.78 0.30 438
DGANet(DGConv+MHAT+Resconn) 1.02 1.71 0.28 496

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

Graph Scenario 23439

B candidate centerline
= centerline \
150 neighbor
mm agent
= forecast
mm ground truth
100 @ target predictions \ \
chosen anchors
e anchors \
ground truth target
50 }
| 1 o
(@) > |
’ \
-50 \
B .
Tt C¢ 1
-100
-80 -60 X -40 -20 0
Graph Scenario 20056
100 = candidate centerline
mm centerline ‘ ‘
neighbor ‘
75/ EEmagent | |
forecast ‘
mm ground truth ‘ ‘
50/ @ targetpredictions ‘ #
chosen anchors |
« anchors \
25 ground truth target “ ? »
| ¥
b > o0 J ‘
-25 N \t
|
-50 ‘
-75 “
|l
-100
-70 -60 -50 -40 X -30 -20 -10 0

Fig. 10: Qualitative results of DG Trajector on Argoverse validation set.

verifying the rationality and necessity of the module design.

FE. Visualizations

In Figure 10, panels (a) and (b) show the prediction results
for K = 1 and K = 6, respectively. Gray lines represent
lanes around the target vehicle; dark blue represents observed
historical trajectories of the agents; green lines represent
multiple predictions; and dark green represents the true future
trajectory. These visualization results clearly demonstrate
that our DG-Trajector can effectively predict intelligent
agents in both single-modal and multimodal scenarios. They
confirm the effectiveness of DGANet in accurately predicting
vehicle trajectories in different scenarios while capturing
dynamic motion characteristics, indicating its effectiveness
for trajectory prediction tasks.

V. CONCLUSION

In this work, we propose a novel and effective trajectory
prediction model, DG-Trajector, which achieves outstanding

performance in complex interaction scenarios. The DGANet
module combines dynamic adjacency matrix generation
and multi-head attention mechanisms to extract features
and model dynamic relationships in the input trajectory
data, effectively capturing its spatiotemporal correlations.
Experiments show that compared with the baseline model,
DG-Trajector improves performance at mFDEx_—; and
reduces the MR index. More importantly, DG-Trajector
achieves multimodal prediction, and even compared with
many advanced methods, DG-Trajector’s performance is
competitive, with low mADFEx—; and M R, It is particularly
worth noting that its dynamic adjacency matrix generation
mechanism, through robust modeling of vehicle kinematic
characteristics, further reduces the MR Index to 0.28 in
the multimodal prediction task (K=6), indicating that our
method has higher accuracy and lower error. However, at the
same time, it also brings challenges. The model complexity
and environmental adaptability still need to be optimized,

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

and it will take a long time for repeated training and
adjustment. One promising direction for future work could
be to further optimize the model. For example, the efficiency
and accuracy of the model can be improved by introducing
more complex attention mechanisms or incorporating more
prior information. Another promising direction is to explore
the application of trajectory prediction models in multimodal
data, better understand the relationships between different
modalities, and improve the accuracy and robustness of
trajectory prediction.

DATA AVAILABILITY

The datasets generated during or analyzed during the
current study are available from the corresponding author
upon reasonable request.

REFERENCES

[1] S. Sivaraman and M. M. Trivedi, “Dynamic Probabilistic Drivability
Maps for Lane Change and Merge Driver Assistance,” [EEE
Transactions on Intelligent Transportation Systems, vol. 15, pp.
2063-2073, 2014.

[2] X. Quan, A. Halik, and Y. Ma, “Regularized Multi-Scale
Spatial-Temporal Attention with Dual Decoders for Traffic Flow
Prediction,” IAENG International Journal of Computer Science, vol.
52, no. 5, pp. 1570-1584, 2025.

[3] L. Geng, W. Yang, and Jiao, “A Multilayer Human Motion Prediction
Perceptron by Aggregating Repetitive Motion,” Machine Vision and
Applications, vol. 34, 2023.

[4] N. Deo and M. M. Trivedi, “Convolutional Social Pooling for Vehicle
Trajectory Prediction,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2018, pp.
1468-1476.

[5] J. Gao, C. Sun, H. Zhao, Y. Shen, and D. Anguelov, “VectorNet:
Encoding HD Maps and Agent Dynamics from Vectorized
Representation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11525-11533.

[6] X. Li, X. Ying, and M. C. Chuah, “GRIP: Graph-Based
Interaction-Aware Trajectory Prediction,” in 2019 IEEE Intelligent
Transportation Systems Conference, 2019, pp. 3960-3966.

[71 X. Li, X. Ying, and M. C. Chuah, “GRIP++: Enhanced Graph-Based
Interaction-Aware Trajectory Prediction for Autonomous Driving,”
arXiv Preprint arXiv:1907.07792, 2019.

[8] R. Chandra, T. Guan, S. Panuganti, and T. Mittal, “Forecasting
Trajectory and Behavior of Road-Agents Using Spectral Clustering
in Graph-LSTMs,” IEEE Robotics and Automation Letters, 2020.

[91 F. Manessi, A. Rozza, and M. Manzo, “Dynamic Graph Convolutional
Networks,” Pattern Recognition, 2020.

[10] O. A. Malik, S. Ubaru, L. Horesh, M. E. Kilmer, and H.
Avron, “Dynamic Graph Convolutional Networks Using the Tensor
M-Product,” arXiv:1910.07643, 2019.

[11] C. Luo, L. Sun, D. Dabiri, and A. Yuille, “Probabilistic Multi-Modal
Trajectory Prediction with Lane Attention for Autonomous Vehicles,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2020, pp. 2370-2376.

[12] H. Cui, V. Radosavljevic, and F. C. Chou, “Multimodal Trajectory
Predictions for Autonomous Driving Using Deep Convolutional
Networks,” in International Conference on Robotics and Automation,
2019, pp. 2090-2096.

[13] Z. He, Y. Li, H. Li, and N. Xu, “Multi-Objective Optimization for
Online Train Trajectory Planning with Moving Window Method,”
IAENG International Journal of Computer Science, vol. 50, no. 3,
pp. 1074-1082, 2023.

[14] A. Alahi, K. Goel, and V. Ramanathan, “Social LSTM: Human
Trajectory Prediction in Crowded Spaces,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 961-971.

[15] N. Deo and M. M. Trivedi, “Multi-Modal Trajectory Prediction
of Surrounding Vehicles with Maneuver Based LSTMs,” in [EEE
Intelligent Vehicles Symposium, 2018, pp. 1179-1184.

[16] M. S. Shirazi and B. T. Morris, “Trajectory Prediction of Vehicles
Turning at Intersections Using Deep Neural Networks,” Machine
Vision and Applications, vol. 30, pp. 1097-1109, 2019.

[17] M. Liang, B. Yang, and R. Hu, “Learning Lane Graph Representations
for Motion Forecasting,” in Computer Vision-ECCV, Springer
International Publishing, 2020, pp. 541-556.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Schmidt, J. Jordan, and Gritschneder, “CRAT-Pred: Vehicle
Trajectory Prediction with Crystal Graph Convolutional Neural
Networks and Multi-Head Self-Attention,” in International Conference
on Robotics and Automation, 2022.

B. Liu, J. Wang, and Z. Wang, “Combined Multilevel Detection
and Trajectory Prediction with FairMOT for Pedestrian Multi-Object
Tracking,” IAENG International Journal of Computer Science, vol. 52,
no. 4, pp. 1137-1147, 2025.

H. Sen, “Time Series Prediction Based on Improved Deep Learning,”
IAENG International Journal of Computer Science, vol. 49, no. 4, pp.
1133-1138, 2022.

F. Manessi, A. Rozza, and M. Manzo, “Dynamic Graph Convolutional
Networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2019, pp. 3552-3559.

Z. Wu, S. Pan, F. Chen, and G. Long, “A Comprehensive Survey on
Graph Neural Networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, pp. 4-24, 2024.

L. Zhao, Y. Song, and Zhang, “T-GCN: A Temporal Graph
Convolutional Network for Traffic Prediction,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, 2019.

X. Huang, Y. Ye, and X. Yang, “Multi-View Dynamic Graph
Convolution Neural Network for Traffic Flow Prediction,” Expert
Systems with Applications, 2023.

Y. Seo, M. Defferrard, and P. Vandergheynst, “Structured Sequence
Modeling with Graph Convolutional Recurrent Networks,” in Neural
Information Processing 25th International Conference, 2018, pp.
362-373.

Y. Wang, Y. Sun, and Z. Liu, “Dynamic Graph CNN for Learning on
Point Clouds,” ACM Transactions on Graphics, vol. 38, 2019.

L. Zhao, Y. Song, and C. Zhang, “T-GCN: A Temporal Graph
Convolutional Network for Traffic Prediction,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, 2019.

B. Li, Q. Yang, J. Chen, D. Yu, D. Wang, and F. Wan, “A
Dynamic Spatio-Temporal Deep Learning Model for Lane-Level
Traffic Prediction,” Journal of Advanced Transportation, vol. 2023,
no. 1, 2023.

A. Sankar, Y. Wu, L. Gou, and Zhang, “Dysat: Deep Neural
Representation Learning on Dynamic Graphs via Self-Attention
Networks,” in Proceedings of the 13th International Conference on
Web Search and Data Mining, 2020, pp. 519-527.

H. Cheng and W. Liao, “Exploring Dynamic Context for Multi-Path
Trajectory Prediction,” in IEEE International Conference on Robotics
and Automation, 2021, pp. 12795-12801.

J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q. H. Meng, “A Survey
on Deep-Learning Approaches for Vehicle Trajectory Prediction in
Autonomous Driving,” in Proceedings of the IEEE International
Conference on Robotics and Biomimetics, 2021, pp. 978-985.

K. G. Quach, P. Nguyen, and Le, “DyGLIP: A Dynamic Graph Model
with Link Prediction for Accurate Multi-Camera Multiple Object
Tracking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 13784-13793.

C. Gao, J. Zhu, and F. Zhang, “A Novel Representation Learning
for Dynamic Graphs Based on Graph Convolutional Networks,” IEEE
Transactions on Cybernetics, vol. 53, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
Advances in Neural Information Processing Systems, vol. 30, 2017.
B. D. Ziebart and N. Ratliff, “Planning-Based Prediction for
Pedestrians,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009.

E. Rehder and H. Kloeden, “Goal-Directed Pedestrian Prediction,” in
IEEE International Conference on Computer Vision Workshops, 2015.
K. Mangalam, H. Girase, H. Agarwal, K. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It Is Not the Journey but the Destination: Endpoint
Conditioned Trajectory Prediction,” arXiv:2004.02025, 2020.

C. Choi, A. Patil, and S. Malla, “Drogon: A Causal Reasoning
Framework for Future Trajectory Forecast,” arXiv:1908.00024, 2019.
N. Rhinehart and K. M. Kitani, “R2P2: A Reparameterized
Pushforward Policy for Diverse, Precise Generative Path Forecasting,”
in Proceedings of the European Conference on Computer Vision, 2018,
pp- 772-788.

L. Fang, Q. Jiang, and J. Shi, “TPNet: Trajectory Proposal Network
for Motion Prediction,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 6796-6805.
J. Wang, T. Ye, and Y. Gu, “LTP: Lane-Based Trajectory Prediction for
Autonomous Driving,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

X. Huang and S. G. McGill, “DiversityGAN: Diversity-Aware Vehicle
Motion Prediction via Latent Semantic Sampling,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5089-5096, 2020.

Volume 52, Issue 11, November 2025, Pages 4385-4396

TAENG International Journal of Computer Science

[43] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M.
Chandraker, “DESIRE: Distant Future Prediction in Dynamic Scenes
with Interacting Agents,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 336-345.

[44] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, A. Varadarajan, Y.
Shen, Y. Shen, Y. Chai, C. Schmid, C. Li, and D. Anguelov, “TNT:
Target-Driven Trajectory Prediction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[45] M. E. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3D Tracking and Forecasting with Rich Maps,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020.

[46] J. Strohbeck, J. Miiller, M. Herrmann, J. Biichner, and M. Buchholz,
“Deep Kernel Learning for Uncertainty Estimation in Multiple
Trajectory Prediction Networks,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2022, pp.
11396-11402.

[47] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M.
Chandraker, “DESIRE: Distant Future Prediction in Dynamic Scenes
with Interacting Agents,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 336-345.

[48] C. Luo, L. Sun, D. Dabiri, and A. Yuille, “Probabilistic Multi-Modal
Trajectory Prediction with Lane Attention for Autonomous Vehicles,”
in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2020, pp. 2370-2376.

[49] N. Sriram, B. Liu, F. Pittaluga, and M. Chandraker, “SMART:
Simultaneous Multi-Agent Recurrent Trajectory Prediction,” in
Proceedings of the European Conference on Computer Vision, 2020,
pp. 463-479.

Volume 52, Issue 11, November 2025, Pages 4385-4396

