
 

  
Abstract—Fruit thinning operations are a crucial part of the 

early management process in smart orchards, and the key to 
automation is the accurate detection of young fruits during the 
thinning period. However, in unstructured orchard 
environments, influenced by complex backgrounds and variable 
lighting, young fruits are often occluded, overlapped, or exhibit 
similar colors, which poses significant challenges for accurate 
detection. Therefore, this research employs YOLOv9s as the 
foundational network to enhance the deep learning model 
CIDA-Net, tailored for detecting young fruits during the 
thinning period. This method effectively addresses the 
challenges of identifying and locating green young fruits that are 
occluded or overlapped. Firstly, a serpentine dynamic 
convolution module is incorporated into the backbone network 
to improve the extraction of edge features. Secondly, the 
CARAFE structure is incorporated in the feature fusion part, 
optimizing the upsampling process with a content-aware 
mechanism to improve the perception of subtle features and 
effectively process complex image information. Finally, the 
InnerIoU loss calculation method is introduced into the 
detection head's localization branch, using auxiliary bounding 
boxes and dynamic scaling factors to improve loss computation 
and further enhance bounding box regression accuracy. To 
evaluate the effectiveness of the algorithm, a dataset of green 
young fruits during the thinning period is constructed, and 
experiments are conducted. The results indicate that the 
accuracy and recall values achieve 91.4% and 79.7%, 
respectively, highlighting the model's superior efficacy when 
compared to current mainstream algorithms. This model not 
only satisfies the detection performance and robustness 
demands in challenging orchard conditions, but also offers 
theoretical backing for automated fruit thinning and young fruit 
growth monitoring in other orchards. 
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I. INTRODUCTION 
RUIT earlyofaspectessentialanisthinning -stage 

onburdenthereducingataimedmanagement,orchard
fruit trees and promoting fruit growth and development [1–4]. 
As a key orchard management practice, fruit thinning not 
only improves fruit quality and yield, but also supports the 
healthy growth and long-term productivity of fruit trees. In 
modern orchards, fruit thinning is primarily performed 
manually, which not only consumes significant labor, but also 
suffers from issues such as insufficient precision and low 
efficiency, ultimately affecting both the thinning results and 
the overall effectiveness of orchard management. With the 
advancement of intelligent agricultural technology, computer 
vision systems can quickly identify and locate fruits in 
orchards [5]. When integrated with automated systems, these 
technologies enable efficient and accurate fruit detection and 
removal, laying the foundation for research on fruit thinning 
machinery [6] and further enhancing the intelligence of 
orchard management. 

Fruit recognition methods primarily consist of traditional 
techniques that rely on manually defined features and deep 
learning approaches that autonomously extract features. 
Traditional fruit recognition methods rely on manually 
extracting features based on visual attributes such as color, 
geometry, and surface texture, followed by the use of 
machine learning techniques like Support Vector Machines 
(SVM) and decision trees to perform target detection. Several 
studies have utilized these conventional approaches for fruit 
recognition. For example, Sashuang Sun et al. [7] employed 
the GrabCut model, utilizing color features to isolate fruits 
from the background for precise detection of the growth 
status of green fruits. They employed the Ncut algorithm to 
precisely segment overlapping fruits and applied geometric 
feature extraction techniques to reconstruct the segmented 
targets. Sengupta et al. [8] integrated conventional image 
processing techniques with machine learning algorithms to 
identify unripe green citrus fruits within tree canopies. They 
identified occluded citrus using geometric features, applied 
SVM for texture classification to locate fruits, employed 
Canny edge detection and Hough transform to enhance 
precision, and utilized the Scale-Invariant Feature Transform 
(SIFT) for keypoint detection, achieving a detection accuracy 
of 80.4%. Xiaoyang Liu et al. [9] proposed a detection 
method based on chromatic and geometric attributes. They 
applied the Simple Linear Iterative Clustering (SLIC) 
algorithm to segment fruit images into superpixels, extracted 
chromatic cues to identify candidate areas, and utilized the 
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Histogram of Oriented Gradients (HOG) to describe shapes 
and edges, thus achieving fruit recognition and positioning. 
To efficiently classify different fruit types, Jana et al. [10] 
combined texture and color features into feature descriptors 
and trained support vector machines for fruit classification. 
Although traditional object detection algorithms are 
relatively mature, they encounter limitations in challenging 
orchard conditions. Factors such as branch and leaf occlusion, 
varying lighting conditions, and background clutter 
complicate manual feature extraction. Moreover, feature 
descriptors derived from simple visual cues struggle to 
capture deep semantic information. In addition, traditional 
methods often suffer from low detection accuracy, slow 
processing speed, and high computational cost. As a result, 
traditional fruit recognition techniques struggle to meet the 
requirements of efficient and accurate fruit identification and 
localization in real-world applications. 

The continuous development of deep learning technology 
has promoted its wide application in the field of fruit 
recognition [11-13]. Unlike traditional techniques relying on 
manual feature extraction, deep learning can autonomously 
learn multi-level feature from large datasets [14-15]. This 
feature learning approach not only effectively captures 
detailed information in images but also adapts to various 
changes in complex environments, thus offering a clear 
advantage in fruit detection tasks. One such study by Kong et 
al. [16] presented an improved Faster R-CNN framework 
enhanced with a window-based Transformer, designed to 
mitigate the limitations of conventional Convolutional Neural 
Networks (CNNs) in complex orchard detection scenarios. 
Xu et al. [17] introduced a fruit detection approach optimized 
with YOLOX_m, utilizing CSPDarkNet as the backbone for 
extracting meaningful features across different scales. A 
feature fusion pyramid network was incorporated to gather 
multi-scale information, and the ASPP module was applied 
to expand receptive fields, resulting in significant 
performance gains when tested with apple and persimmon 
data samples. Wang et al. [18] proposed an efficient 
YOLOv5s-based model with channel pruning to enable fast 
and accurate identification of immature apples, yielding 95.8% 
accuracy, a recall rate of 87.6%, and an F1 measure reaching 
91.5%. The pruned model is only 1.4MB in size and 
processes images in an average of 8 milliseconds, thereby 
laying the groundwork for the creation of portable fruit 
thinning devices. Ma et al. [19] proposed a lightweight model 
aimed at detecting and counting small apples, where skip 
connections were added to the shallow layers of YOLOv7-
tiny. P2BiFPN was utilized to fuse and recycle multi-scale 
features, and a compact ULSAM attention module was 
introduced to boost both feature retention and the recognition 
capability for small-sized targets. These research efforts 
underscore the significant promise of deep learning 
techniques in the domain of fruit recognition, with advantages 
in addressing complex environments, handling diverse targets, 
and improving detection accuracy. Through accurate fruit 
detection, the automation level of orchard management can 
be significantly improved, promoting the development of 
intelligent agricultural equipment and providing strong 
support for precision agriculture, automated fruit thinning, 
and large-scale orchard management. 

With the deepening application of deep learning 
technology in the field of fruit recognition, many studies have 
made remarkable progress through innovative methods and 
models to address detection challenges such as similar target 
and background colors, fruit overlap, and occlusion by 
branches and leaves. For example, Lu et al. [18] proposed a 
detection head tailored for recognizing early-stage small 
fruits, utilizing rich semantic cues present in the highest-level 
feature representation to pinpoint vague targets and gradually 
transmit this information to deeper layers, thereby refining 
feature localization and enhancement step by step. Liu et al. 
[19] designed a single-stage detection model that accurately 
detects and segments occluded green fruits by replacing the 
FPN in FCOS with an RFPN, thereby improving the detection 
of green fruits across different sizes. Zhang et al. [20] 
integrated an attention mechanism into YOLOv5's feature 
extraction network, enabling the model to better highlight 
green apple features, thus improving its performance in 
detecting green apples in backgrounds with similar colors. 
Sun et al. [21] proposed an enhanced RetinaNet-PVTv2 
model (GHFormer-Net) for identifying small green apples 
and crabapples under low-light conditions, leveraging the 
global receptive field of the Transformer to capture feature 
information. Sun et al. [22] proposed a balanced feature 
pyramid network (BFP Net) aimed at addressing the 
difficulty of identifying small and immature green fruits 
within intricate orchard environments, especially focusing on 
problems such as background interference and the diminutive 
size of the fruits. Zhao et al. [23] introduced an optimized 
model based on the FCOS (Fully Convolutional One-Stage 
Detector), integrating the LSC multidimensional attention 
mechanism, and adopted an enhanced ResNet50 architecture 
to construct the core of the feature extractor, along with an 
improved sample selection strategy to accurately identify and 
locate green fruits under challenges such as overlap, 
illumination variation, and camera angles. These studies have 
made significant progress in addressing the complex 
challenges of fruit recognition and established a theoretical 
basis for identifying green fruits during the thinning process. 

To enhance the detection precision of green fruits in 
challenging orchard environments and meet the efficiency 
demands of orchard thinning robots, this paper presents the 
CIDA-Net model based on YOLOv9s for detecting fruits 
during the thinning stage. This research highlights the 
following essential contributions: 

(1) To strengthen the model's capability in extracting edge 
and shape features of green fruits, DySnakeConv is 
incorporated into the backbone network, allowing for better 
differentiation between green fruits and the background, thus 
enhancing recognition performance in complex environments. 

(2) In the neck network, CAFAFE is used for upsampling, 
and contextual information is refined by dynamically 
reconfiguring the feature maps, which enhances the 
expressive power of the feature maps while preserving spatial 
resolution. 

(3) To optimize the bounding box regression loss, the 
Inner-IoU loss method is adopted, utilizing auxiliary 
bounding boxes of varying scales to calculate the loss and 
adaptively adjust samples at different IoU thresholds, thereby 
improving the localization accuracy of the target fruit. 
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II. MATERIALS AND METHODS 

A. Green Fruit Dataset 
The study focuses on images of green fruits during the 

thinning period, as they are often similar in color to the 
background and prone to occlusion by branches and leaves, 
significantly increasing the complexity of recognition. Such 
factors can readily result in false positives and undetected 
green fruits, presenting substantial challenges for accurate 
identification. 
Dataset Collection 

The location of green fruit data image collection is 
Zhangjiazhuang Village, Yuexhuang Town, Yiyuan  

County, Zibo City, Shandong Province (118°29'N, 
36°23'E). The collection period is from late April 2024 to 
early May 2024, and the capturing time is from 6:00 to 22:00. 
The capturing device is the HUAWEI Nova7 smartphone, 
and the images are saved in "JPG" format.  

All data and images are collected in the natural 
environment of the apple orchard, with backgrounds such as 
the sky and soil. Green fruit images are captured at different 
times, under varying illumination, from various angles, and 
in diverse environments to enhance data variety and 
strengthen the model's resilience during training. As the 

images are collected randomly in an unstructured orchard 
environment, photos with substantial fruit overlap and 
blurriness are discarded, leaving a total of 1000 images. 

 The images collected are shown in Fig. 1, and Fig. 1 1a to 
1d display green fruit images under different lighting 
conditions, including natural light (front light and backlight) 
during the day and LED light at night. Figure 1e and 1g 
display the green fruit images taken from various shooting 
angles, which accurately mimic the perspective of the fruit 
thinning robot in a natural orchard setting. To enhance the 
model's stability and accuracy in challenging environments, 
images of occluded and overlapping green fruits are gathered 
and displayed in Figures 1h to 1i. 
Dataset Creation 

Given that the existing green fruit images are mainly used 
for target detection tasks, they lack the object location boxes 
and category labels required for detection. To solve this 
problem, LabelImg software labels the green fruits in the 
dataset with the label "prethion_apple". The annotation data 
of the image is stored as an XML file, which includes the 
positional details of the green fruit and its associated label 
information. Finally, through a normalization operation, the 
XML file is converted to a TXT file, and the dataset is 
converted to YOLO format, providing standardized input 
data for the model. 

   
a Daytime prethin apple Image b Frontlighting prethin apple image c Backlighting prethin apple image 

   
d Nighttime prethin apple image e Overhead shot of prethin apple image f Close-up image of prethin apple image 

   
g Distant view prethin apple image h Block the prethin apple image i Overlapping prethin apple image 

Fig. 1.  Green apple images in the fruit thinning stage under different environments 
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To effectively train and evaluate the model, the dataset is 
split into 70% for training and 30% for validation, with 700 
images allocated to the training set and 300 images to the 
validation set. By employing this data partitioning strategy, 
the model can thoroughly capture the data characteristics 
during training and receive an unbiased performance 
evaluation in the validation phase, thus enhancing its stability 
and reliability for practical use. 

B. CIDA-Net Young Fruit Detection 
In deep neural networks, the original information of input 

data is gradually lost after multi-layer feature extraction and 
spatial transformation, which impairs the model's capacity to 
effectively utilize advanced semantic information for 
accurate target detection and classification, thereby creating 
an information bottleneck. [26] Aiming at the above problems, 
YOLOv9 [27] proposes a systematic solution through 
innovative optimization in the training mechanism and 
network architecture design. The transfer of gradient 
information is optimized by introducing the Programmable 
Gradient Information (PGI) mechanism. By assisting with 
reversible branches and multi-level auxiliary information, 
PGI makes the gradient information more complete and 
reliable, alleviating the issues of gradient vanishing or 
explosion in deep networks. A Generalized Efficient Layer 
Aggregation Network (GELAN) is introduced to optimize the 
feature fusion process through efficient hierarchical 
aggregation. GELAN enhances the network's capability to 
capture intricate features, minimizes information loss, and 
boosts detection precision as well as the overall performance 
of the model. Through these two innovative designs, 
YOLOv9 enhances target detection performance while also 
offering a more efficient and stable solution for the training 
and inference processes of deep neural networks, effectively  

handling detection tasks in complex scenarios. YOLOv9s is 
better suited for real-world deployment environments, 
maintaining high detection accuracy, minimizing 
computational overhead, and enhancing operational 
efficiency. This study uses the YOLOv9s object detection 
model as the foundational framework for detecting green 
fruits during the fruit thinning process. Additionally, the 
CIDA-Net model for detecting young fruits is introduced, and 
its structural overview is shown in Fig. 2. 

The backbone network employs AConv and DySnakeConv 
modules for feature extraction. The neck network is enhanced 
through multi-layer convolution and upsampling modules, 
while the introduction of the CARAFE module improves the 
accuracy and efficiency of feature recombination. In the 
detection head, the integration of InnerIoU loss strengthens 
bounding box refinement, thereby improving the model's 
overall performance in complex environments. 
Target Shape Adaptation Based on DySnakeConv  

This study conducts a thorough investigation of YOLOv9s, 
particularly the RepNCSPELAN4 module. Although this 
module excels in extracting features and combining 
information across multiple scales, it demands a substantial 
number of parameters and results in increased computational 
overhead. Therefore, this study integrates Dynamic Snake 
Convolution (DySnakeConv) [28] into the backbone to 
enhance processing efficiency and reduce model complexity, 
as shown in Fig. 3. The module adaptively adjusts the 
convolutional kernel’s field of view by applying deformable 
offsets to better align with the shapes of different targets. 
Unlike traditional convolution operations, DySnakeConv not 
only performs standard local perception within the 
convolution kernel but also enables more refined feature 
extraction according to the morphological properties  

 
Fig. 2.  Overall architecture of the CIDA-Net model 
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Fig.3.  Diagram of Dynamic Snake Convolution 
 

 
Fig. 4.  Overall framework of CARAFE. 

Target Box

InnerTarget Box

Anchor Box

InnerAnchor Box

（𝔁𝒄
𝒈𝒕
，𝒚𝒄

𝒈𝒕
）

（𝒙𝒄，𝒚𝒄）

𝒘𝐠𝐭

𝒉
𝒊𝒏
𝒏
𝒆𝒓

𝒈
𝒕

𝒘𝒊𝒏𝒏𝒆𝒓
𝒈𝒕

𝒘𝒊𝒏𝒏𝒆𝒓

𝒉
𝒊𝒏
𝒏
𝒆𝒓

𝒉

𝒘

𝒃

𝒃𝒈𝒕𝒉
𝒈
𝒕

（𝔁𝒄
𝒈𝒕
，𝒚𝒄

𝒈𝒕
）

（𝒙𝒄，𝒚𝒄）

𝒉
𝒊𝒏
𝒏
𝒆𝒓

𝒈
𝒕

𝒘𝒊𝒏𝒏𝒆𝒓
𝒈𝒕

𝒉
𝒊𝒏
𝒏
𝒆𝒓

𝒉

𝒘

𝒃

𝒃𝒈𝒕

𝒘𝒊𝒏𝒏𝒆𝒓

𝒉
𝒈
𝒕

𝒘𝒈𝒕

 
Fig.5. Schematic of the InnerIoU calculation process 
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of the target. DySnakeConv gradually adjusts the position of 
the convolution kernel in different directions through the 
accumulated deformation offsets. For instance, considering x 
as an example, (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) represents the center position of the 
convolution kernel, 𝐾𝐾𝑖𝑖 ± 𝑐𝑐 = (𝑥𝑥𝑖𝑖 ± 𝑐𝑐,𝑦𝑦𝑖𝑖 ± 𝑐𝑐) represents the 
position of each element in the convolution kernel K, c is the 
deformation offset, Σ𝑖𝑖𝑖𝑖+𝑐𝑐Δ𝑦𝑦  denotes the accumulated offset 
along the y from the center point 𝑦𝑦𝑗𝑗 to the current position 
being processed by the convolution kernel, and similarly, 
Σ𝑖𝑖−𝑐𝑐𝑖𝑖 Δ𝑦𝑦 represents the backward-calculated offset. The 
equation representing this process is given below: 

𝐾𝐾𝑖𝑖±𝑐𝑐 = �
(𝑥𝑥𝑖𝑖+𝑐𝑐, 𝑦𝑦𝑖𝑖+𝑐𝑐) = �𝑥𝑥𝑖𝑖 + 𝑐𝑐,𝑦𝑦𝑖𝑖 + Σ𝑖𝑖𝑖𝑖+𝑐𝑐Δ𝑦𝑦�
(𝑥𝑥𝑖𝑖−𝑐𝑐 ,𝑦𝑦𝑖𝑖−𝑐𝑐) = �𝑥𝑥𝑖𝑖 − 𝑐𝑐,𝑦𝑦𝑖𝑖 + Σ𝑖𝑖−𝑐𝑐𝑖𝑖 Δ𝑦𝑦�

               (1) 

Similarly, the offset of the convolution kernel along the y 
direction is computed as: 

𝐾𝐾𝑗𝑗±𝑐𝑐 = �
�𝑥𝑥𝑗𝑗+𝑐𝑐 ,𝑦𝑦𝑗𝑗+𝑐𝑐� = �𝑥𝑥𝑗𝑗 + Σ𝑗𝑗

𝑗𝑗+𝑐𝑐Δ𝑥𝑥,𝑦𝑦𝑗𝑗 + 𝑐𝑐�

(𝑥𝑥𝑗𝑗−𝑐𝑐 ,𝑦𝑦𝑗𝑗−𝑐𝑐) = (𝑥𝑥𝑗𝑗 + Σ𝑗𝑗−𝑐𝑐
𝑗𝑗 Δ𝑥𝑥, 𝑦𝑦𝑗𝑗 − 𝑐𝑐)

               (2) 

Deformation offsets are typically small values. To 
accurately calculate the feature values at each position in the 
convolution kernel, bilinear interpolation is used to handle 
non-integer positions. Bilinear interpolation computes the 
interpolation at the target position by performing a weighted 
average from the four neighboring pixel positions, and the 
calculation process is represented by the following formula: 

𝐾𝐾 = Σ𝐾𝐾′𝐵𝐵(𝐾𝐾′,𝐾𝐾) × 𝐾𝐾′                         (3) 
Where 𝐵𝐵(𝐾𝐾,𝐾𝐾′)  represents the bilinear interpolation 

kernel, which is weighted based on the relative shift between 
the input and target positions to ensure the precision of the 
interpolation outcomes. Moreover, to streamline the 
calculation and enhance efficiency, the bilinear interpolation 
kernel is calculated separately along the horizontal and 
vertical axes:  

𝐵𝐵(𝐾𝐾,𝐾𝐾′) = 𝑏𝑏(𝐾𝐾𝑥𝑥,𝐾𝐾𝑥𝑥′) × 𝑏𝑏(𝐾𝐾𝑦𝑦,𝐾𝐾𝑦𝑦′)             (4) 
 By introducing the Dynamic Snake Convolution 

module, this study effectively enhances the target detection 
capability of YOLOv9s in complex environments. 
DySnakeConv adaptively modifies the convolution kernel's 
receptive field to accommodate targets with varying 
geometric shapes, particularly irregularly shaped green fruits 
impacted by occlusion and overlap, allowing for more 
accurate detection of the target's edges and details. By 
introducing deformation offsets and combining bilinear 
interpolation methods, the module performs accurate feature 
extraction across different scales, showing significant 
advantages in handling fruit overlap and occlusion issues. 
Content-Aware Feature Upsampling Based on CARAFE 
   To enhance both precision and efficiency in feature 
recombination, the CARAFE module [29] is introduced in the 
neck network to better preserve detail information during the 
upsampling process and enhance the feature map's expressive 
power. Traditional interpolation methods (such as bilinear 
interpolation and nearest neighbor interpolation) [30] mainly 
rely on positional information for feature reconstruction, 
which often leads to the loss of feature details. In contrast to 
traditional methods, the CARAFE module employs a content-
aware mechanism that dynamically adjusts the recombination 
strategy based on the semantic content embedded in the 
feature map. Specifically, the CARAFE module uses adaptive 
convolution kernels to recombine features and finely adjust 

them for different regions, preserving more local detail 
information. Therefore, the CARAFE module enhances the 
effectiveness of feature fusion and further boosts the model’
s accuracy in object detection and recognition. 

CARAFE mainly comprises an upsampling convolution 
kernel prediction module and a feature rearrangement unit, 
and its structural design is shown in Fig. 4. CARAFE 
processes computation in two distinct stages. The process 
begins by constructing reorganization kernels tailored to each 
target point, leveraging adjacent local feature information. 
Specifically, the reorganization convolution kernel is 
dynamically adjusted based on neighborhood data, enabling 
the feature map to more accurately represent the semantic 
information within the target region, thereby optimizing the 
upsampling process, as shown below: 

𝑊𝑊𝑙𝑙 = 𝜓𝜓(𝑁𝑁(𝑋𝑋𝑙𝑙 ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒))                       (5) 
In this case, Wl denotes the convolution kernel predicted 

for the target position l , N(Xl, kencoder)  represents the 
 kencoder × kencoder  neighborhood centered at position  l  in 
the input feature map X, and  ψ  denotes the function used to 
predict the convolution kernel. 

The second step of the feature reorganization module 
employs the predicted convolution kernel to restructure the 
feature map. The features at each target location are fused 
with those in its neighborhood through weighted summation 
to form a new upsampled feature map. The process is as 
follows: 

𝑋𝑋𝑙𝑙 = 𝜙𝜙(𝑁𝑁(𝑋𝑋𝑙𝑙 ,𝑘𝑘),𝑊𝑊𝑙𝑙)                            (6) 
In this case,  𝜙𝜙  is the content-aware reorganization 

function, which combines the local region features 
𝑁𝑁(𝑋𝑋𝑙𝑙 , 𝑘𝑘) with the predicted convolution kernel  𝑊𝑊𝑙𝑙  to 
generate the final features for the target position. 

CARAFE not only boosts the transformation efficiency 
from coarse to fine feature maps, but also significantly refines 
their quality, resulting in more accurate and detailed high-
resolution representations that are better  
adapted for object detection and recognition in complex 
environments. Through this adaptive upsampling method, 
CARAFE effectively boosts the model's effectiveness in 
multi-scale target detection, particularly in green fruit 
recognition tasks, where it can more accurately capture the 
target's details, thereby enhancing detection precision and 
robustness. 
Optimizing Bounding Box Regression Based on InnerIoU 
Loss 

 The localization process in object detection models 
heavily depends on bounding box regression loss, which 
measures the difference between the predicted and actual 
bounding boxes. A common approach for bounding box 
regression loss involves using the Intersection over Union 
(IoU), which measures how well the anchor box aligns with 
the ground truth by calculating the proportion of their 
overlapping region to the combined area. The calculation for 
this is expressed as follows: 

Io𝑈𝑈 = |𝐵𝐵∩𝐵𝐵gt|
|𝐵𝐵∪𝐵𝐵gt|

                                  (7) 

𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼                               (8) 
 Directly using the overlap between the predicted box and the 
ground truth to measure localization accuracy is simple and 
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intuitive, making it suitable for various object detection tasks. 
However, common methods cannot flexibly adjust to changes 
in the target's scale. They converge quickly for high IoU 
samples but more slowly for low IoU samples, which in turn 
affects detection accuracy. Therefore, to address these 
shortcomings, this study introduces the InnerIoU loss [31] 
calculation method in the localization branch, as shown in    
Fig. 5. This method regulates the size of the supplementary 
bounding box by introducing a supporting box and a dynamic 
adjustment factor. When the IoU of the predicted box is high, 
a smaller auxiliary box is used to accelerate convergence; 
When the IoU is low, a bigger supplementary box is used to 
enhance the regression results. The locations of the 
supplementary bounding box are calculated by adjusting the 
center coordinates and size of the bounding box. The central 
positions  
of the ground truth box and its inner bounding box are 
represented as （𝓍𝓍𝑐𝑐

𝑔𝑔𝑔𝑔
，𝑦𝑦𝑐𝑐

𝑔𝑔𝑔𝑔
）, whereas those of the anchor box 

and its corresponding inner box are indicated as（𝑥𝑥𝑐𝑐，𝑦𝑦𝑐𝑐）. 
The ground truth box's width and height are represented as 
𝑤𝑤gt and ℎgt, respectively, while the width and height of the 
anchor box are denoted as 𝑤𝑤  and ℎ . ratio  represents the 
scaling factor, with a value range between [0.5, 1.5].  
    Determining the dimensions of the inner bounding box for 
the ground truth box: 

 
𝑏𝑏𝑙𝑙
𝑔𝑔𝑔𝑔 = 𝓍𝓍𝑐𝑐

𝑔𝑔𝑔𝑔 − 𝑤𝑤gt
2

× ratio，𝑏𝑏𝑟𝑟
𝑔𝑔𝑔𝑔 = 𝓍𝓍𝑐𝑐

𝑔𝑔𝑔𝑔 + 𝑤𝑤gt
2

× ratio         (9) 

𝑏𝑏𝑡𝑡
𝑔𝑔𝑔𝑔 = 𝑦𝑦𝑐𝑐

𝑔𝑔𝑔𝑔 − ℎgt
2

× ratio，𝑏𝑏𝑏𝑏
𝑔𝑔𝑔𝑔 = 𝑦𝑦𝑐𝑐

𝑔𝑔𝑔𝑔 + ℎgt
2

× ratio        (10) 

Determining the dimensions of the inner bounding box for 
the anchor box: 

bl = xc −
w
2

× ratio，br = xc + w
2

× ratio            (11) 

bt = yc −
h
2

× ratio，bb = xc + h
2

× ratio           (12) 
The intersection (inter) and union (union) areas are 

computed using the edge coordinates of the internal bounding 
boxes corresponding to both the ground truth and anchor 
boxes, after which the IoU (Intersection over Union) is 
derived to assess the degree of overlap between these inner 
boxes. The formula for this calculation is as follows: 

inter=(min(br
gt,br)-max(bl

gt,bl))×(min(bb
gt,bb)-max(bt

gt,bt))              
(13) 

union = (wgt × hgt × (ratio)2) +  (w × h × (ratio)2) − inter     
(14) 

IoUinner = inter
union

                        (15) 
Calculation of InnerIoU loss: 

 LInner loU = 1 − IoUinner              (16) 
Based on retaining the original loss function structure, the 

InnerIoU loss calculation method is adopted, introducing 
auxiliary bounding boxes and dynamic scaling factors to 
improve the loss computation. This method adaptively 
modifies the dimensions of the auxiliary box, thereby 
accelerating the convergence process of the model, 
effectively mitigating the challenges of fruit overlap and 
occlusion, enhancing the precision of green fruit localization, 
and optimizing overall detection performance. 

III. RESULTS AND ANALYSIS 
In order to evaluate the performance of the CIDA-Net 

network model in detecting green fruits during the thinning 
period, we first provide a detailed description of the 
experimental setup, evaluation criteria, and the procedures 
followed during testing. The model is then trained using the 
green fruit dataset from the thinning period, and its 
performance is assessed on the test set using the best-
performing configuration. Finally, under identical 
experimental settings, the CIDA-Net model is benchmarked 
against leading object detection models, and the results are 
visualized. Through comparative analysis, the model's 
superiority in detecting green fruits is demonstrated. 

A. Experimental Setup and Model Optimization Strategies 
The experimental environment in this paper is based on the 

Ubuntu 18.04 64-bit system, with the deep learning 
framework being Pytorch. The GPU used for the experiments 
is a 24GB NVIDIA A30, and the CUDA version is 11.4. All 
models are implemented using Python 3.10.14 and Pytorch 
1.13.During the model training process, the initial learning 
rate, momentum, and weight decay are set to 0.01, 0.937, and 
0.0005, respectively, with Stochastic Gradient Descent (SGD) 
used as the optimization algorithm. The training model is set 
to 80 epochs, with a batch size of 4. The training dynamics 
and detection performance of the model are further illustrated 
in Fig. 6, including the learning rate schedule and the 
precision-recall curve. 

B. Evaluation Metrics 
   Since the model is required to accurately predict the 
outcomes of green fruit detection, precision and recall are 
adopted as effective evaluation metrics. Precision is 
calculated using formula (17), while recall is computed using 
formula (18):  

Precision = TP
TP+FP

                       (17) 

Recall = TP
TP+FN

                       (18) 
   In this equation, True Positives (TP) refer to the green fruits 
correctly detected by the model, where the Intersection over 
Union (IoU) between the detection box and the ground truth 
box exceeds the specified threshold (IoU_threshold); False 
Negatives (FN) refer to the green fruits missed by the model. 
To comprehensively assess the model, the accuracy of 
individual-category predictions under different thresholds is 
calculated via formula (19), and the average recall is 
computed using formula (20): 

APIoU=i = 1
101

∑ Precisionr∈Recall (r)                 (19) 

AR = 1
T
∑ RecallIoUi
T
i=1                           (20) 

   The AP value is calculated based on a specific IoU 
threshold, which is set within the range of 0 to 1. In this study, 
multiple thresholds within the range of [0.5, 0.95] (with a step 
size of 0.05) are used as the metric to evaluate the model's 
detection accuracy. ∑ Precisionr∈Recall (r)  refers to the 
summation of precision at different recall values, and 1

101
 

refers to the average precision across different recall rates, 
that is, the precision calculated at 101 different recall values 
within the range of [0, 1]. 
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Fig. 6.  Left: Learning rate change during training. Right: Precision-recall curve.  
 

TABLE I 
COMPARISON OF ABLATION EXPERIMENT IMPROVEMENTS 

Baseline  DySnakeConv CARAFE Precision Recall AP50 AP75 AP50-95 Params/M GFlops 

 - - 90.7 76.1 85.8 70.6 61.3 9.7 39.6 

Yolov9s √ - 90.6 78.6 87.1 71.6 62.2 8.8 35.8 

        - √ 92.8 77.5 87.2 71.9 62.5 9.8 39.9 

 √ √ 93.3 77.5 88.1 73.6 64.0 8.9 36.0 

 - - 91.7 77.0 86.5 72.8 63.2 9.7 39.6 

Yolov9s √ - 90.5 78.7 88.0 74.0 64.3 8.8 35.8 
+ 

InnerIoU       - √ 92.4 77.6 87.4 72.8 63.4 9.8 39.9 

 √ √ 91.4 79.7 88.6 74.7 65.0 8.9 36.0 

 

C. Ablation experiment 
 In order to evaluate how DySnakeConv, CARAFE, and 

InnerIoU influence model performance, this study conducted 
a set of ablation experiments aimed at comprehensively 
validating the improvements introduced by these components. 
In the experiment, DySnakeConv and CARAFE were 
successively integrated into the YOLOv9s base model, and 
the performance of green fruit detection before and after 
adding different modules was compared with different loss 
calculation methods to evaluate their improvements. To 
guarantee the fairness and validity of the experiment, the 
models were maintained with consistent experimental 
conditions and hyperparameter configurations. The outcomes 
obtained from testing on the green fruit dataset during the 
thinning stage are summarized in Table I. 

As shown in the table, with the integration of the 
DySnakeConv module into the base model, compared to the 
original version, the model's AP50, AP75, and AP50-95 
improve by 1.3, 1.0, and 0.9 percentage points, respectively, 
while the number of parameters decreases by 0.9M and the 
computational complexity is reduced by 3.8GFlops. When 
the CARAFE module is integrated into the base model, in 
comparison to the original model, the number of parameters 
and computational demands increase, but AP50, AP75, and 
AP50-95 improve by 1.4, 1.3, and 1.2 percentage points, 
respectively. The recall rate decreases, but precision 
improves. When both DySnakeConv and CARAFE modules 
are incorporated into the base model, in comparison to the 
original model, precision and recall show improvements of 

2.6 and 1.4 percentage points, respectively, while AP50, 
AP75, and AP50-95 increase by 2.3, 3.0, and 2.7 percentage 
points, respectively. The parameter count reduces by 0.8M, 
and the computational load decreases by 3.6GFlops. The 
introduction of the InnerIoU loss method into the base model 
results in improvements of 1.0, 0.9, 0.7, 2.2, and 1.9 
percentage points for P, R, AP50, AP75, and AP50-95, 
respectively. When the InnerIoU loss method is introduced 
on top of DySnakeConv, compared to using only 
DySnakeConv, AP50, AP75, and AP50-95 increase by 0.9, 
2.4, and 2.1 percentage points, respectively. When the 
InnerIoU loss method is introduced on top of CARAFE, 
compared to using only CARAFE, AP50, AP75, and AP50-
95 increase by 0.2, 0.9, and 0.9 percentage points, 
respectively. Finally, when the InnerIoU loss method is 
introduced with both DySnakeConv and CARAFE, 
compared to using both modules alone, AP50, AP75, and 
AP50-95 increase by 0.5, 1.1, and 1.0 percentage points, 
respectively. 

In comparison to the baseline model, P, R, AP50, AP75, 
and AP50-95 showed improvements of 0.7, 3.6, 2.8, 4.1, and 
3.7 percentage points, respectively. The model saw a 
reduction of 0.8M in parameters and a decrease of 3.6GFlops 
in computational complexity. The experimental results show 
that the enhanced approach can notably improve the model's 
detection performance in challenging environments, while 
simultaneously reducing its complexity, thus confirming the 
efficacy of the multi-module integration optimization 
strategy. 
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D. Comparative Experiments 
To further evaluate the effectiveness of the algorithm, this 

study conducts comparative experiments by evaluating the 
optimized model against several advanced and representative 
object detection models on the green fruit dataset during the 
fruit thinning period. A total of 11 models are selected for 
comparison, including classical representative models such 
as FasterRCNN [32], Dino [33], DDQ [34], RT-DETR [35], 
as well as mainstream YOLO series models: YOLOv6 [36], 
YOLOv8, YOLOv9, YOLOv10 [37], YOLOv11 [38], 
YOLOv12 [39], and the proposed CIDA-Net. Accuracy, 
recall rate, F1 score, AP50, AP75, AP50-95, model 
complexity, and computational performance are selected as 
evaluation metrics for the comparative experiments. The 
results of the comparison experiments are summarized in 
Tables Ⅱ and Ⅲ. 

The table presents the performance of various object 
detection models on the green fruit dataset during the fruit 
th inning  per iod.  The  proposed  CIDA-Net  model 
demonstrates significant improvements across multiple core 
evaluation metrics. Based on YOLOv9s, the optimized 

CIDA-Net achieves AP50, AP75, and AP50-95 scores of 88.6, 
74.7, and 65.0, respectively, indicating stable and superior 
detection performance under different confidence thresholds. 
Compared to Faster R-CNN, CIDA-Net improves by 3.5, 
13.8, and 10.7 percentage points; compared to DINO, by 11.5, 
13.1, and 12.2 percentage points; compared to DDQ, by 2.4, 
5.8, and 6.2 percentage points; and compared to RT-DETR, 
by 4.4, 8.9, and 6.5 percentage points. These results 
demonstrate that, in comparison with high-performance 
models such as DDQ and RT-DETR, CIDA-Net achieves a 
more balanced performance in terms of both accuracy and 
detection stability. Within the YOLO series, CIDA-Net also 
shows a clear performance advantage. Compared to 
lightweight models such as YOLOv6, YOLOv8n, and 
YOLOv12, it achieves an average increase of over 8 
percentage points in the AP50-95 metric. Even when 
compared to more powerful models such as YOLOv9s, 
YOLOv10, and YOLOv11, CIDA-Net still achieves 
noticeable gains in precision, particularly excelling in 
comprehensive performance metrics such as F1 score, recall 
rate, and average recall. While YOLOv10 to YOLOv12 offer 
advantages in lightweight design, CIDA-Net maintains a 

 
TABLE II 

THE DETECTION RESULTS OF EACH DETECTION MODEL 
Model P R F1 AR maxDet=100 /% 

FasterRCNN 67.8 87.4 76.3 60.9 

Dino 87.8 77.2 82.2 68.9 

DDQ 97.3 69.5 81.1 68.7 

RT-DETR 90.4 75.6 82.3 75.6 

Yolov6 89.8 72.8 80.4 72.7 

Yolov8n 88.4 72.8 79.9 72.8 

Yolov9s 90.7 76.1 82.8 76.1 

YOLOv10 91.0 78.8 84.6 78.8  

YOLOv11 90.4 75.0 81.8 75.1 

YOLOv12 89.4 70.0 78.5 70.4 

Ours 91.4 79.7 85.2 80.0 

 
TABLE III 

 PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR GREEN FRUIT DETECTION 

Model AP50 AP75 AP50-95 Params/M GFlops 

FasterRCNN 85.1 60.9 54.3 41.3 174 

 Dino 77.1 61.6 52.8 47.7 235 

DDQ 86.2 68.9 58.8 48.3 119 

RT-DETR 84.2 65.8 58.5 32.8 108 

Yolov6 82.3 65.7 57.6 4.2 11.9 

Yolov8n 81.9 66.0 57.3 3.1 8.1 

Yolov9s 85.8 70.6 61.3 9.7 39.6 

YOLOv10 87.0 73.1 63.1 2.7 8.4 

YOLOv11 83.6 66.5  58.7 2.6 6.4 

YOLOv12 80.8 64.2 56.1 2.5 6.0 

Ours 88.6 74.7 65.0 8.9 36.0 
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reasonable model size while achieving higher detection 
accuracy and better boundary fitting. It also exhibits 
enhanced detection stability in complex scenarios involving 
blurred boundaries, dense fruit clusters, and irregular fruit 
shapes. In summary, CIDA-Net achieves a well-balanced 
trade-off between accuracy, stability, and model complexity. 
It effectively meets the high-precision requirements of green 
fruit detection during the fruit thinning stage and 
demonstrates strong potential for deployment and practical 
applications. 

To offer a clearer comparison of the detection performance 
across different algorithms on the green fruit dataset, this 
paper performs comparative experiments under various 
lighting conditions (including daytime and nighttime) and 
visualizes the results. The visualization results are shown in 
Fig. 7. In complex environments, such as scenes with branch 
and leaf occlusion or multiple overlapping targets, other 
algorithms struggle with failing to detect targets and 
generating incorrect detections. In contrast, the improved 
CIDA-Net model handles the challenges posed by occlusion 
and target overlap more effectively. The experimental results 

demonstrate that this model efficiently addresses the 
complexities and dynamic changes in orchard environments, 
resulting in a notable improvement in green fruit detection 
accuracy, while also exhibiting robust performance and 
adaptability. 

The green fruit detection model proposed in this study 
effectively identifies and locates targets, addressing issues 
such as branch and leaf occlusion and fruit overlap. However, 
when fruit size is small and heavily obstructed by branches 
and leaves, the model struggles to accurately capture 
complete target information, as shown in Fig. 8, where 
missed fruits are highlighted with triangles. Because of the 
resemblance between the fruit and the surrounding 
background, coupled with low contrast, the model exhibits 
lower sensitivity in detecting small fruits, leading to missed 
detections. Therefore, the model still has limitations in 
detecting small targets under occlusion scenarios. To 
overcome these limitations, future research could concentrate 
on refining feature extraction techniques in occluded 
environments and improving the model's robustness and 
precision in detecting small targets. 

 

      
Ⅰ.Overlapping prethin 

apple image 
Ⅱ. Nighttime prethin 

apple image 
Ⅲ. Dense prethin 

apple image 
Ⅳ. Distant prethin 

apple image 
Ⅴ. Front-lit prethin 

apple image 
Ⅵ. Backlit prethin 

apple image 
(a) Original images of prethin apples 

      
（b）FasterRCNN 
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(f) Yolov8 

      
(g) Yolov9 

      
(h) Yolov10 

      
(i) Yolov11 

      
(j) Yolov12 

      
(k) Ours 

Fig.7. Visual Comparison of Experimental Results 
 

    
Fig. 8. Visualization of CIDA-Net Detection Results. 

IV. CONCLUSION 
The precision, stability, and real-time performance of 

detecting green fruits are vital for advancing fruit thinning 
equipment. This study proposes and validates a green fruit 
detection model based on YOLOv9s, addressing the fruit 
recognition problem in complex orchard environments by 
incorporating multiple optimization strategies. By 
introducing the serpentine dynamic convolution module, the 
model enhances its ability to capture edge features, improving 
detection accuracy for fruits affected by occlusion and 
overlap. Additionally, the CARAFE module is employed to 
refine the upsampling procedure, further enhancing the 
model's ability to perceive fine features. The InnerIoU loss 

function is incorporated into the detection head's location 
branch, enabling the model to dynamically optimize the 
bounding box regression, better aligning with irregular target 
boundaries and minimizing the creation of unnecessary boxes. 
Experimental results show that AP50, AP75, and AP50-95 
have increased by 2.8%, 4.1%, and 3.7%, respectively, while 
precision and recall rates have increased by 0.7% and 3.6%, 
respectively. The model's parameter size and computational 
complexity have decreased. Additionally, through a 
comparative analysis with various models, the enhanced 
YOLOv9s model satisfies the precision criteria for green fruit 
detection in challenging orchard conditions.  

Early detection and accurate identification of green fruits 
are of great significance for the fruit thinning task in orchard 
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management. By precisely detecting the fruits, accurate data 
support can be provided to orchard managers, optimizing the 
allocation of tree growth space, reducing the cost of manual 
thinning, and improving fruit quality and yield. Overall, this 
study not only provides an efficient solution for green fruit 
detection but also lays a solid foundation for the 
implementation of intelligent fruit thinning technology in 
orchard management, offering important technical support 
for the future automation of orchard management. 
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