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CIDA-Net: Optimized YOLOv9s-based Young
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Abstract—Fruit thinning operations are a crucial part of the
early management process in smart orchards, and the key to
automation is the accurate detection of young fruits during the
thinning period. However, in unstructured orchard
environments, influenced by complex backgrounds and variable
lighting, young fruits are often occluded, overlapped, or exhibit
similar colors, which poses significant challenges for accurate
detection. Therefore, this research employs YOLOvV9s as the
foundational network to enhance the deep learning model
CIDA-Net, tailored for detecting young fruits during the
thinning period. This method effectively addresses the
challenges of identifying and locating green young fruits that are
occluded or overlapped. Firstly, a serpentine dynamic
convolution module is incorporated into the backbone network
to improve the extraction of edge features. Secondly, the
CARAFE structure is incorporated in the feature fusion part,
optimizing the upsampling process with a content-aware
mechanism to improve the perception of subtle features and
effectively process complex image information. Finally, the
InnerloU loss calculation method is introduced into the
detection head's localization branch, using auxiliary bounding
boxes and dynamic scaling factors to improve loss computation
and further enhance bounding box regression accuracy. To
evaluate the effectiveness of the algorithm, a dataset of green
young fruits during the thinning period is constructed, and
experiments are conducted. The results indicate that the
accuracy and recall values achieve 91.4% and 79.7%,
respectively, highlighting the model's superior efficacy when
compared to current mainstream algorithms. This model not
only satisfies the detection performance and robustness
demands in challenging orchard conditions, but also offers
theoretical backing for automated fruit thinning and young fruit
growth monitoring in other orchards.

Index Terms—Green young fruits, Fruit thinning, CIDA-Net,
Object detection
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1. INTRODUCTION

RUIT thinning is an essential aspect of early-stage

orchard management, aimed at reducing the burden on
fruit trees and promoting fruit growth and development [1-4].
As a key orchard management practice, fruit thinning not
only improves fruit quality and yield, but also supports the
healthy growth and long-term productivity of fruit trees. In
modern orchards, fruit thinning is primarily performed
manually, which not only consumes significant labor, but also
suffers from issues such as insufficient precision and low
efficiency, ultimately affecting both the thinning results and
the overall effectiveness of orchard management. With the
advancement of intelligent agricultural technology, computer
vision systems can quickly identify and locate fruits in
orchards [5]. When integrated with automated systems, these
technologies enable efficient and accurate fruit detection and
removal, laying the foundation for research on fruit thinning
machinery [6] and further enhancing the intelligence of
orchard management.

Fruit recognition methods primarily consist of traditional
techniques that rely on manually defined features and deep
learning approaches that autonomously extract features.
Traditional fruit recognition methods rely on manually
extracting features based on visual attributes such as color,
geometry, and surface texture, followed by the use of
machine learning techniques like Support Vector Machines
(SVM) and decision trees to perform target detection. Several
studies have utilized these conventional approaches for fruit
recognition. For example, Sashuang Sun et al. [7] employed
the GrabCut model, utilizing color features to isolate fruits
from the background for precise detection of the growth
status of green fruits. They employed the Ncut algorithm to
precisely segment overlapping fruits and applied geometric
feature extraction techniques to reconstruct the segmented
targets. Sengupta et al. [8] integrated conventional image
processing techniques with machine learning algorithms to
identify unripe green citrus fruits within tree canopies. They
identified occluded citrus using geometric features, applied
SVM for texture classification to locate fruits, employed
Canny edge detection and Hough transform to enhance
precision, and utilized the Scale-Invariant Feature Transform
(SIFT) for keypoint detection, achieving a detection accuracy
of 80.4%. Xiaoyang Liu et al. [9] proposed a detection
method based on chromatic and geometric attributes. They
applied the Simple Linear Iterative Clustering (SLIC)
algorithm to segment fruit images into superpixels, extracted
chromatic cues to identify candidate areas, and utilized the
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Histogram of Oriented Gradients (HOG) to describe shapes
and edges, thus achieving fruit recognition and positioning.
To efficiently classify different fruit types, Jana et al. [10]
combined texture and color features into feature descriptors
and trained support vector machines for fruit classification.
Although traditional object detection algorithms are
relatively mature, they encounter limitations in challenging
orchard conditions. Factors such as branch and leaf occlusion,
varying lighting conditions, and background clutter
complicate manual feature extraction. Moreover, feature
descriptors derived from simple visual cues struggle to
capture deep semantic information. In addition, traditional
methods often suffer from low detection accuracy, slow
processing speed, and high computational cost. As a result,
traditional fruit recognition techniques struggle to meet the
requirements of efficient and accurate fruit identification and
localization in real-world applications.

The continuous development of deep learning technology
has promoted its wide application in the field of fruit
recognition [11-13]. Unlike traditional techniques relying on
manual feature extraction, deep learning can autonomously
learn multi-level feature from large datasets [14-15]. This
feature learning approach not only effectively captures
detailed information in images but also adapts to various
changes in complex environments, thus offering a clear
advantage in fruit detection tasks. One such study by Kong et
al. [16] presented an improved Faster R-CNN framework
enhanced with a window-based Transformer, designed to
mitigate the limitations of conventional Convolutional Neural
Networks (CNNs) in complex orchard detection scenarios.
Xu et al. [17] introduced a fruit detection approach optimized
with YOLOX m, utilizing CSPDarkNet as the backbone for
extracting meaningful features across different scales. A
feature fusion pyramid network was incorporated to gather
multi-scale information, and the ASPP module was applied
to expand receptive fields, resulting in significant
performance gains when tested with apple and persimmon
data samples. Wang et al. [18] proposed an efficient
YOLOv5s-based model with channel pruning to enable fast

and accurate identification of immature apples, yielding 95.8%

accuracy, a recall rate of 87.6%, and an F1 measure reaching
91.5%. The pruned model is only 1.4MB in size and
processes images in an average of 8 milliseconds, thereby
laying the groundwork for the creation of portable fruit
thinning devices. Ma et al. [19] proposed a lightweight model
aimed at detecting and counting small apples, where skip
connections were added to the shallow layers of YOLOv7-
tiny. P2BiFPN was utilized to fuse and recycle multi-scale
features, and a compact ULSAM attention module was
introduced to boost both feature retention and the recognition
capability for small-sized targets. These research efforts
underscore the significant promise of deep learning
techniques in the domain of fruit recognition, with advantages
in addressing complex environments, handling diverse targets,
and improving detection accuracy. Through accurate fruit
detection, the automation level of orchard management can
be significantly improved, promoting the development of
intelligent agricultural equipment and providing strong
support for precision agriculture, automated fruit thinning,
and large-scale orchard management.

With the deepening application of deep learning
technology in the field of fruit recognition, many studies have
made remarkable progress through innovative methods and
models to address detection challenges such as similar target
and background colors, fruit overlap, and occlusion by
branches and leaves. For example, Lu et al. [18] proposed a
detection head tailored for recognizing early-stage small
fruits, utilizing rich semantic cues present in the highest-level
feature representation to pinpoint vague targets and gradually
transmit this information to deeper layers, thereby refining
feature localization and enhancement step by step. Liu et al.
[19] designed a single-stage detection model that accurately
detects and segments occluded green fruits by replacing the
FPN in FCOS with an RFPN, thereby improving the detection
of green fruits across different sizes. Zhang et al. [20]
integrated an attention mechanism into YOLOVS's feature
extraction network, enabling the model to better highlight
green apple features, thus improving its performance in
detecting green apples in backgrounds with similar colors.
Sun et al. [21] proposed an enhanced RetinaNet-PVTv2
model (GHFormer-Net) for identifying small green apples
and crabapples under low-light conditions, leveraging the
global receptive field of the Transformer to capture feature
information. Sun et al. [22] proposed a balanced feature
pyramid network (BFP Net) aimed at addressing the
difficulty of identifying small and immature green fruits
within intricate orchard environments, especially focusing on
problems such as background interference and the diminutive
size of the fruits. Zhao et al. [23] introduced an optimized
model based on the FCOS (Fully Convolutional One-Stage
Detector), integrating the LSC multidimensional attention
mechanism, and adopted an enhanced ResNet50 architecture
to construct the core of the feature extractor, along with an
improved sample selection strategy to accurately identify and
locate green fruits under challenges such as overlap,
illumination variation, and camera angles. These studies have
made significant progress in addressing the complex
challenges of fruit recognition and established a theoretical
basis for identifying green fruits during the thinning process.

To enhance the detection precision of green fruits in
challenging orchard environments and meet the efficiency
demands of orchard thinning robots, this paper presents the
CIDA-Net model based on YOLOv9s for detecting fruits
during the thinning stage. This research highlights the
following essential contributions:

(1) To strengthen the model's capability in extracting edge
and shape features of green fruits, DySnakeConv is
incorporated into the backbone network, allowing for better
differentiation between green fruits and the background, thus
enhancing recognition performance in complex environments.

(2) In the neck network, CAFAFE is used for upsampling,
and contextual information is refined by dynamically
reconfiguring the feature maps, which enhances the
expressive power of the feature maps while preserving spatial
resolution.

(3) To optimize the bounding box regression loss, the
Inner-IoU loss method is adopted, utilizing auxiliary
bounding boxes of varying scales to calculate the loss and
adaptively adjust samples at different IoU thresholds, thereby
improving the localization accuracy of the target fruit.
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II. MATERIALS AND METHODS

A. Green Fruit Dataset

The study focuses on images of green fruits during the
thinning period, as they are often similar in color to the
background and prone to occlusion by branches and leaves,
significantly increasing the complexity of recognition. Such
factors can readily result in false positives and undetected
green fruits, presenting substantial challenges for accurate
identification.

Dataset Collection

The location of green fruit data image collection is
Zhangjiazhuang Village, Yuexhuang Town, Yiyuan

County, Zibo City, Shandong Province (118°29'N,
36°23'E). The collection period is from late April 2024 to
early May 2024, and the capturing time is from 6:00 to 22:00.
The capturing device is the HUAWEI Nova7 smartphone,
and the images are saved in "JPG" format.

All data and images are collected in the natural
environment of the apple orchard, with backgrounds such as
the sky and soil. Green fruit images are captured at different
times, under varying illumination, from various angles, and
in diverse environments to enhance data variety and
strengthen the model's resilience during training. As the

g Distant view prethin apple image

h Block the prethin apple image
Fig. 1. Green apple images in the fruit thinning stage under different environments

images are collected randomly in an unstructured orchard
environment, photos with substantial fruit overlap and
blurriness are discarded, leaving a total of 1000 images.

The images collected are shown in Fig. 1, and Fig. 1 1a to
1d display green fruit images under different lighting
conditions, including natural light (front light and backlight)
during the day and LED light at night. Figure le and 1g
display the green fruit images taken from various shooting
angles, which accurately mimic the perspective of the fruit
thinning robot in a natural orchard setting. To enhance the
model's stability and accuracy in challenging environments,
images of occluded and overlapping green fruits are gathered
and displayed in Figures 1h to 1i.

Dataset Creation

Given that the existing green fruit images are mainly used
for target detection tasks, they lack the object location boxes
and category labels required for detection. To solve this
problem, Labellmg software labels the green fruits in the
dataset with the label "prethion_apple". The annotation data
of the image is stored as an XML file, which includes the
positional details of the green fruit and its associated label
information. Finally, through a normalization operation, the
XML file is converted to a TXT file, and the dataset is
converted to YOLO format, providing standardized input
data for the model.
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To effectively train and evaluate the model, the dataset is
split into 70% for training and 30% for validation, with 700
images allocated to the training set and 300 images to the
validation set. By employing this data partitioning strategy,
the model can thoroughly capture the data characteristics
during training and receive an unbiased performance
evaluation in the validation phase, thus enhancing its stability
and reliability for practical use.

B. CIDA-Net Young Fruit Detection

In deep neural networks, the original information of input
data is gradually lost after multi-layer feature extraction and
spatial transformation, which impairs the model's capacity to
effectively utilize advanced semantic information for
accurate target detection and classification, thereby creating
an information bottleneck. [26] Aiming at the above problems,
YOLOV9 [27] proposes a systematic solution through
innovative optimization in the training mechanism and
network architecture design. The transfer of gradient
information is optimized by introducing the Programmable
Gradient Information (PGI) mechanism. By assisting with
reversible branches and multi-level auxiliary information,
PGI makes the gradient information more complete and
reliable, alleviating the issues of gradient vanishing or
explosion in deep networks. A Generalized Efficient Layer
Aggregation Network (GELAN) is introduced to optimize the
feature fusion process through efficient hierarchical
aggregation. GELAN enhances the network's capability to
capture intricate features, minimizes information loss, and
boosts detection precision as well as the overall performance
of the model. Through these two innovative designs,
YOLOV9 enhances target detection performance while also
offering a more efficient and stable solution for the training
and inference processes of deep neural networks, effectively

handling detection tasks in complex scenarios. YOLOV9s is
better suited for real-world deployment environments,
maintaining  high  detection accuracy, minimizing
computational overhead, and enhancing operational
efficiency. This study uses the YOLOvV9s object detection
model as the foundational framework for detecting green
fruits during the fruit thinning process. Additionally, the
CIDA-Net model for detecting young fruits is introduced, and
its structural overview is shown in Fig. 2.

The backbone network employs AConv and DySnakeConv
modules for feature extraction. The neck network is enhanced
through multi-layer convolution and upsampling modules,
while the introduction of the CARAFE module improves the
accuracy and efficiency of feature recombination. In the
detection head, the integration of InnerloU loss strengthens
bounding box refinement, thereby improving the model's
overall performance in complex environments.

Target Shape Adaptation Based on DySnakeConv

This study conducts a thorough investigation of YOLOV9s,
particularly the RepNCSPELAN4 module. Although this
module excels in extracting features and combining
information across multiple scales, it demands a substantial
number of parameters and results in increased computational
overhead. Therefore, this study integrates Dynamic Snake
Convolution (DySnakeConv) [28] into the backbone to
enhance processing efficiency and reduce model complexity,
as shown in Fig. 3. The module adaptively adjusts the
convolutional kernel’s field of view by applying deformable

offsets to better align with the shapes of different targets.
Unlike traditional convolution operations, DySnakeConv not
only performs standard local perception within the
convolution kernel but also enables more refined feature
extraction according to the morphological properties

Backbone 22:SPPELAN > Detect
0:Conv
l AN Neck Head
1:Conv 24:Concat
i 25-RepNCSPELAN4 > Detect
2 ELAN
l 26:Upsample
33A'I°ﬂ" 27.Concat ————» 28RepNCSPELAN4 ——»  Detect
4-DysnakeConv —i———————® 14:Concat ————» 15:RepNCSPELAN4 ————» Detect
l 13:CARAFE 16:AConv
5:AConv
l 12:RepNCSPELAN4 17:Concat
6DysnakeCony ~ -—-~——-————» 11:Conecat 18 RepNCSPELAN4 ———»  Detect
7T:AConv 10:CARAFE 19:AConv
8:DysnakeConv ——————% 98PPELAN ————— 20:Concat
21:RepNCSPELAN4 — ¥ Detect

Fig. 2. Overall architecture of the CIDA-Net model
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of the target. DySnakeConv gradually adjusts the position of
the convolution kernel in different directions through the
accumulated deformation offsets. For instance, considering x
as an example, (x;, y;) represents the center position of the
convolution kernel, K; + ¢ = (x; *+ ¢,y; £ ¢) represents the
position of each element in the convolution kernel K, c is the
deformation offset, Z:*°Ay denotes the accumulated offset
along the y from the center point y; to the current position
being processed by the convolution kernel, and similarly,
3! Ay represents the backward-calculated offset. The
equation representing this process is given below:
K.,.= {(xi+wyi+c) =(x+cy+ Zf.HA}’) 1
T e yicd) = (i — 6y + EEcAy)
Similarly, the offset of the convolution kernel along the y
direction is computed as:

B {(xjﬂ,yjﬂ) =(x + Zf”Ax, yj +¢c)
+c —

(X Yj—c) = (5 + Z;_CAx, yj—¢)
Deformation offsets are typically small values. To
accurately calculate the feature values at each position in the
convolution kernel, bilinear interpolation is used to handle
non-integer positions. Bilinear interpolation computes the
interpolation at the target position by performing a weighted
average from the four neighboring pixel positions, and the
calculation process is represented by the following formula:
K =3¢B(K' K)xK' 3)
Where B(K,K") represents the bilinear interpolation
kernel, which is weighted based on the relative shift between
the input and target positions to ensure the precision of the
interpolation outcomes. Moreover, to streamline the
calculation and enhance efficiency, the bilinear interpolation
kernel is calculated separately along the horizontal and
vertical axes:

K;

@

B(K,K'") = b(K,, Ky) x b(K,, K}) 4)
By introducing the Dynamic Snake Convolution
module, this study effectively enhances the target detection
capability of YOLOV9s in complex environments.
DySnakeConv adaptively modifies the convolution kernel's
receptive field to accommodate targets with varying
geometric shapes, particularly irregularly shaped green fruits
impacted by occlusion and overlap, allowing for more
accurate detection of the target's edges and details. By
introducing deformation offsets and combining bilinear
interpolation methods, the module performs accurate feature
extraction across different scales, showing significant
advantages in handling fruit overlap and occlusion issues.
Content-Aware Feature Upsampling Based on CARAFE
To enhance both precision and efficiency in feature
recombination, the CARAFE module [29] is introduced in the
neck network to better preserve detail information during the
upsampling process and enhance the feature map's expressive
power. Traditional interpolation methods (such as bilinear
interpolation and nearest neighbor interpolation) [30] mainly
rely on positional information for feature reconstruction,
which often leads to the loss of feature details. In contrast to
traditional methods, the CARAFE module employs a content-
aware mechanism that dynamically adjusts the recombination
strategy based on the semantic content embedded in the
feature map. Specifically, the CARAFE module uses adaptive
convolution kernels to recombine features and finely adjust

them for different regions, preserving more local detail
information. Therefore, the CARAFE module enhances the
effectiveness of feature fusion and further boosts the model’

s accuracy in object detection and recognition.

CARAFE mainly comprises an upsampling convolution
kernel prediction module and a feature rearrangement unit,
and its structural design is shown in Fig. 4. CARAFE
processes computation in two distinct stages. The process
begins by constructing reorganization kernels tailored to each
target point, leveraging adjacent local feature information.
Specifically, the reorganization convolution kernel is
dynamically adjusted based on neighborhood data, enabling
the feature map to more accurately represent the semantic
information within the target region, thereby optimizing the
upsampling process, as shown below:

W, = Y(N(X, kencoder)) Q)

In this case, W) denotes the convolution kernel predicted
for the target position 1, N(X, Kencoder) represents the
Kencoder X Kencoder N€ighborhood centered at position 1 in
the input feature map X, and { denotes the function used to
predict the convolution kernel.

The second step of the feature reorganization module
employs the predicted convolution kernel to restructure the
feature map. The features at each target location are fused
with those in its neighborhood through weighted summation
to form a new upsampled feature map. The process is as
follows:

Xi = ¢(N (X, k), Wp) (6)

In this case, ¢ is the content-aware reorganization
function, which combines the local region features
N(X,, k) with the predicted convolution kernel W, to
generate the final features for the target position.

CARAFE not only boosts the transformation efficiency
from coarse to fine feature maps, but also significantly refines
their quality, resulting in more accurate and detailed high-
resolution representations that are better
adapted for object detection and recognition in complex
environments. Through this adaptive upsampling method,
CARAFE effectively boosts the model's effectiveness in
multi-scale target detection, particularly in green fruit
recognition tasks, where it can more accurately capture the
target's details, thereby enhancing detection precision and
robustness.

Optimizing Bounding Box Regression Based on InnerloU
Loss

The localization process in object detection models
heavily depends on bounding box regression loss, which
measures the difference between the predicted and actual
bounding boxes. A common approach for bounding box
regression loss involves using the Intersection over Union
(IoU), which measures how well the anchor box aligns with
the ground truth by calculating the proportion of their
overlapping region to the combined area. The calculation for
this is expressed as follows:

_ IBnttI
loU = 028, ™)
LIOU = 1 —loU (8)

Directly using the overlap between the predicted box and the
ground truth to measure localization accuracy is simple and
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intuitive, making it suitable for various object detection tasks.
However, common methods cannot flexibly adjust to changes
in the target's scale. They converge quickly for high IoU
samples but more slowly for low IoU samples, which in turn
affects detection accuracy. Therefore, to address these
shortcomings, this study introduces the InnerloU loss [31]
calculation method in the localization branch, as shown in
Fig. 5. This method regulates the size of the supplementary
bounding box by introducing a supporting box and a dynamic
adjustment factor. When the IoU of the predicted box is high,
a smaller auxiliary box is used to accelerate convergence;
When the IoU is low, a bigger supplementary box is used to
enhance the regression results. The locations of the
supplementary bounding box are calculated by adjusting the
center coordinates and size of the bounding box. The central
positions
of the ground truth box and its inner bounding box are
represented as (x2°, y2°) , whereas those of the anchor box
and its corresponding inner box are indicated as (x,, y.) .
The ground truth box's width and height are represented as
W and hg, respectively, while the width and height of the
anchor box are denoted as w and h. ratio represents the
scaling factor, with a value range between [0.5, 1.5].
Determining the dimensions of the inner bounding box for
the ground truth box:

t t w . t t w, .
bJt = 22" — =B x ratio, b?" = xJ° + = x ratio 9)
2 2

t t  hgt : t t |, hgt .
bt =y — =% X ratio, b}t =yl + -2 x ratio

(10)

Determining the dimensions of the inner bounding box for
the anchor box:

(11
(12)

The intersection (inter) and union (union) areas are
computed using the edge coordinates of the internal bounding
boxes corresponding to both the ground truth and anchor
boxes, after which the IoU (Intersection over Union) is
derived to assess the degree of overlap between these inner
boxes. The formula for this calculation is as follows:

inter=(min(b,b,)-max(b$ b)) <(min(b$ by)-max(b:',b,))

w . w .
b, = x, — - X ratio, b, = x, + - X ratio

h ) h .
b, =y, —; X ratio, by, = Xc +; Xratio

(13)
union = (Wg X hg X (ratio)?) + (w X h X (ratio)?) — inter
(14)
int
loUjpper = % (15)
Calculation of InnerloU loss:
Linneriou = 1 — 10Ujpper (16)

Based on retaining the original loss function structure, the
InnerloU loss calculation method is adopted, introducing
auxiliary bounding boxes and dynamic scaling factors to
improve the loss computation. This method adaptively
modifies the dimensions of the auxiliary box, thereby
accelerating the convergence process of the model,
effectively mitigating the challenges of fruit overlap and
occlusion, enhancing the precision of green fruit localization,
and optimizing overall detection performance.

III. RESULTS AND ANALYSIS

In order to evaluate the performance of the CIDA-Net
network model in detecting green fruits during the thinning
period, we first provide a detailed description of the
experimental setup, evaluation criteria, and the procedures
followed during testing. The model is then trained using the
green fruit dataset from the thinning period, and its
performance is assessed on the test set using the best-
performing  configuration. Finally, under identical
experimental settings, the CIDA-Net model is benchmarked
against leading object detection models, and the results are
visualized. Through comparative analysis, the model's
superiority in detecting green fruits is demonstrated.

A. Experimental Setup and Model Optimization Strategies

The experimental environment in this paper is based on the
Ubuntu 18.04 64-bit system, with the deep learning
framework being Pytorch. The GPU used for the experiments
is a 24GB NVIDIA A30, and the CUDA version is 11.4. All
models are implemented using Python 3.10.14 and Pytorch
1.13.During the model training process, the initial learning
rate, momentum, and weight decay are set to 0.01, 0.937, and
0.0005, respectively, with Stochastic Gradient Descent (SGD)
used as the optimization algorithm. The training model is set
to 80 epochs, with a batch size of 4. The training dynamics
and detection performance of the model are further illustrated
in Fig. 6, including the learning rate schedule and the
precision-recall curve.

B. Evaluation Metrics

Since the model is required to accurately predict the
outcomes of green fruit detection, precision and recall are
adopted as effective evaluation metrics. Precision is
calculated using formula (17), while recall is computed using
formula (18):

Precision = (17)
TP+FP

Recall = ——— (18)
TP+FN

In this equation, True Positives (TP) refer to the green fruits
correctly detected by the model, where the Intersection over
Union (IoU) between the detection box and the ground truth
box exceeds the specified threshold (IoU threshold); False
Negatives (FN) refer to the green fruits missed by the model.
To comprehensively assess the model, the accuracy of
individual-category predictions under different thresholds is
calculated via formula (19), and the average recall is
computed using formula (20):

1 ..
APoy=i = EZrERecall Precision (I') (19)
1
AR = i=1 Recally,y, (20)

The AP value is calculated based on a specific IoU
threshold, which is set within the range of 0 to 1. In this study,
multiple thresholds within the range of [0.5, 0.95] (with a step
size of 0.05) are used as the metric to evaluate the model's
detection accuracy. Y.erecan Precision (r) refers to the

. .. . 1
summation of precision at different recall values, and o

refers to the average precision across different recall rates,
that is, the precision calculated at 101 different recall values
within the range of [0, 1].
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TABLE I
COMPARISON OF ABLATION EXPERIMENT IMPROVEMENTS
Baseline DySnakeConv  CARAFE Precision Recall AP50 AP75 AP50-95 Params/M GFlops
- - 90.7 76.1 85.8 70.6 61.3 9.7 39.6
Yolov9s S - 90.6 78.6 87.1 71.6 62.2 8.8 35.8
- S 92.8 775 87.2 71.9 62.5 9.8 39.9
S S 933 775 88.1 73.6 64.0 8.9 36.0
- 91.7 77.0 86.5 72.8 63.2 9.7 39.6
Yolov9s N - 90.5 78.7 88.0 74.0 64.3 8.8 35.8
N - N 92.4 77.6 87.4 72.8 63.4 9.8 39.9
InnerloU
N N 91.4 79.7 88.6 74.7 65.0 8.9 36.0

C. Ablation experiment

In order to evaluate how DySnakeConv, CARAFE, and
InnerloU influence model performance, this study conducted
a set of ablation experiments aimed at comprehensively

validating the improvements introduced by these components.

In the experiment, DySnakeConv and CARAFE were
successively integrated into the YOLOv9s base model, and
the performance of green fruit detection before and after
adding different modules was compared with different loss
calculation methods to evaluate their improvements. To
guarantee the fairness and validity of the experiment, the
models were maintained with consistent experimental
conditions and hyperparameter configurations. The outcomes
obtained from testing on the green fruit dataset during the
thinning stage are summarized in Table I.

As shown in the table, with the integration of the
DySnakeConv module into the base model, compared to the
original version, the model's AP50, AP75, and AP50-95
improve by 1.3, 1.0, and 0.9 percentage points, respectively,
while the number of parameters decreases by 0.9M and the
computational complexity is reduced by 3.8GFlops. When
the CARAFE module is integrated into the base model, in
comparison to the original model, the number of parameters
and computational demands increase, but AP50, AP75, and
AP50-95 improve by 1.4, 1.3, and 1.2 percentage points,
respectively. The recall rate decreases, but precision
improves. When both DySnakeConv and CARAFE modules
are incorporated into the base model, in comparison to the
original model, precision and recall show improvements of

2.6 and 1.4 percentage points, respectively, while AP50,
AP75, and AP50-95 increase by 2.3, 3.0, and 2.7 percentage
points, respectively. The parameter count reduces by 0.8M,
and the computational load decreases by 3.6GFlops. The
introduction of the InnerloU loss method into the base model
results in improvements of 1.0, 0.9, 0.7, 2.2, and 1.9
percentage points for P, R, AP50, AP75, and AP50-95,
respectively. When the InnerloU loss method is introduced
on top of DySnakeConv, compared to using only
DySnakeConv, AP50, AP75, and AP50-95 increase by 0.9,
2.4, and 2.1 percentage points, respectively. When the
InnerloU loss method is introduced on top of CARAFE,
compared to using only CARAFE, AP50, AP75, and AP50-
95 increase by 0.2, 0.9, and 0.9 percentage points,
respectively. Finally, when the InnerloU loss method is
introduced with both DySnakeConv and CARAFE,
compared to using both modules alone, AP50, AP75, and
AP50-95 increase by 0.5, 1.1, and 1.0 percentage points,
respectively.

In comparison to the baseline model, P, R, AP50, AP75,
and AP50-95 showed improvements of 0.7, 3.6, 2.8, 4.1, and
3.7 percentage points, respectively. The model saw a
reduction of 0.8M in parameters and a decrease of 3.6GFlops
in computational complexity. The experimental results show
that the enhanced approach can notably improve the model's
detection performance in challenging environments, while
simultaneously reducing its complexity, thus confirming the
efficacy of the multi-module integration optimization
strategy.
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D. Comparative Experiments

To further evaluate the effectiveness of the algorithm, this
study conducts comparative experiments by evaluating the
optimized model against several advanced and representative
object detection models on the green fruit dataset during the
fruit thinning period. A total of 11 models are selected for
comparison, including classical representative models such
as FasterRCNN [32], Dino [33], DDQ [34], RT-DETR [35],
as well as mainstream YOLO series models: YOLOvV6 [36],
YOLOvS, YOLOvV9, YOLOv10 [37], YOLOvll [38],
YOLOvI2 [39], and the proposed CIDA-Net. Accuracy,
recall rate, F1 score, AP50, AP75, AP50-95, model
complexity, and computational performance are selected as
evaluation metrics for the comparative experiments. The
results of the comparison experiments are summarized in
Tables II and III.

The table presents the performance of various object
detection models on the green fruit dataset during the fruit
thinning period. The proposed CIDA-Net model
demonstrates significant improvements across multiple core
evaluation metrics. Based on YOLOV9s, the optimized

CIDA-Net achieves AP50, AP75, and AP50-95 scores of 88.6,
74.7, and 65.0, respectively, indicating stable and superior
detection performance under different confidence thresholds.
Compared to Faster R-CNN, CIDA-Net improves by 3.5,
13.8, and 10.7 percentage points; compared to DINO, by 11.5,
13.1, and 12.2 percentage points; compared to DDQ, by 2.4,
5.8, and 6.2 percentage points; and compared to RT-DETR,
by 4.4, 8.9, and 6.5 percentage points. These results
demonstrate that, in comparison with high-performance
models such as DDQ and RT-DETR, CIDA-Net achieves a
more balanced performance in terms of both accuracy and
detection stability. Within the YOLO series, CIDA-Net also
shows a clear performance advantage. Compared to
lightweight models such as YOLOv6, YOLOvS8n, and
YOLOv12, it achieves an average increase of over §
percentage points in the AP50-95 metric. Even when
compared to more powerful models such as YOLOVYs,
YOLOvV10, and YOLOvI11, CIDA-Net still achieves
noticeable gains in precision, particularly excelling in
comprehensive performance metrics such as F1 score, recall
rate, and average recall. While YOLOv10 to YOLOv12 offer
advantages in lightweight design, CIDA-Net maintains a

TABLEII
THE DETECTION RESULTS OF EACH DETECTION MODEL

Model P R F1 AR 1axpe=100 /%
FasterRCNN 67.8 87.4 76.3 60.9
Dino 87.8 77.2 82.2 68.9
DDQ 97.3 69.5 81.1 68.7
RT-DETR 90.4 75.6 82.3 75.6
Yolov6 89.8 72.8 80.4 72.7
Yolov8n 88.4 72.8 79.9 72.8
Yolov9s 90.7 76.1 82.8 76.1
YOLOv10 91.0 78.8 84.6 78.8
YOLOvI11 90.4 75.0 81.8 75.1
YOLOvI2 89.4 70.0 78.5 70.4
Ours 91.4 79.7 85.2 80.0
TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR GREEN FRUIT DETECTION
Model APs, AP35 APsg.95 Params/M GFlops
FasterRCNN 85.1 60.9 54.3 413 174
Dino 717.1 61.6 52.8 47.7 235
DDQ 86.2 68.9 58.8 483 119
RT-DETR 84.2 65.8 58.5 32.8 108
Yolov6 82.3 65.7 57.6 42 11.9
Yolov8n 81.9 66.0 57.3 3.1 8.1
Yolov9s 85.8 70.6 61.3 9.7 39.6
YOLOV10 87.0 73.1 63.1 2.7 8.4
YOLOvl1 83.6 66.5 58.7 2.6 6.4
YOLOvI12 80.8 64.2 56.1 25 6.0
Ours 88.6 74.7 65.0 8.9 36.0
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reasonable model size while achieving higher detection
accuracy and better boundary fitting. It also exhibits
enhanced detection stability in complex scenarios involving
blurred boundaries, dense fruit clusters, and irregular fruit
shapes. In summary, CIDA-Net achieves a well-balanced
trade-off between accuracy, stability, and model complexity.
It effectively meets the high-precision requirements of green
fruit detection during the fruit thinning stage and
demonstrates strong potential for deployment and practical
applications.

To offer a clearer comparison of the detection performance
across different algorithms on the green fruit dataset, this
paper performs comparative experiments under various
lighting conditions (including daytime and nighttime) and
visualizes the results. The visualization results are shown in
Fig. 7. In complex environments, such as scenes with branch
and leaf occlusion or multiple overlapping targets, other
algorithms struggle with failing to detect targets and
generating incorrect detections. In contrast, the improved
CIDA-Net model handles the challenges posed by occlusion
and target overlap more effectively. The experimental results
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demonstrate that this model efficiently addresses the
complexities and dynamic changes in orchard environments,
resulting in a notable improvement in green fruit detection
accuracy, while also exhibiting robust performance and
adaptability.

The green fruit detection model proposed in this study
effectively identifies and locates targets, addressing issues
such as branch and leaf occlusion and fruit overlap. However,
when fruit size is small and heavily obstructed by branches
and leaves, the model struggles to accurately capture
complete target information, as shown in Fig. 8, where
missed fruits are highlighted with triangles. Because of the
resemblance between the fruit and the surrounding
background, coupled with low contrast, the model exhibits
lower sensitivity in detecting small fruits, leading to missed
detections. Therefore, the model still has limitations in
detecting small targets under occlusion scenarios. To
overcome these limitations, future research could concentrate
on refining feature extraction techniques in occluded
environments and improving the model's robustness and
precision in detecting small targets.
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Fig. 8. Visualization of CIDA-Net Detection Results.

IV. CONCLUSION

The precision, stability, and real-time performance of
detecting green fruits are vital for advancing fruit thinning
equipment. This study proposes and validates a green fruit
detection model based on YOLOvV9s, addressing the fruit
recognition problem in complex orchard environments by
incorporating multiple  optimization strategies. By
introducing the serpentine dynamic convolution module, the
model enhances its ability to capture edge features, improving
detection accuracy for fruits affected by occlusion and
overlap. Additionally, the CARAFE module is employed to
refine the upsampling procedure, further enhancing the
model's ability to perceive fine features. The InnerloU loss

(

pretiin_pile

Fog
o

SEgtinen

function is incorporated into the detection head's location
branch, enabling the model to dynamically optimize the
bounding box regression, better aligning with irregular target
boundaries and minimizing the creation of unnecessary boxes.
Experimental results show that AP50, AP75, and AP50-95
have increased by 2.8%, 4.1%, and 3.7%, respectively, while
precision and recall rates have increased by 0.7% and 3.6%,
respectively. The model's parameter size and computational
complexity have decreased. Additionally, through a
comparative analysis with various models, the enhanced
YOLOvV9s model satisfies the precision criteria for green fruit
detection in challenging orchard conditions.

Early detection and accurate identification of green fruits
are of great significance for the fruit thinning task in orchard
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management. By precisely detecting the fruits, accurate data
support can be provided to orchard managers, optimizing the
allocation of tree growth space, reducing the cost of manual
thinning, and improving fruit quality and yield. Overall, this
study not only provides an efficient solution for green fruit

detection but also lays a

solid foundation for the

implementation of intelligent fruit thinning technology in
orchard management, offering important technical support
for the future automation of orchard management.
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