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Abstract—Photovoltaic (PV) systems have gained recent at-
tention as a crucial component of the advancement of renewable
energy. Smooth solar power generation requires precise and
trustworthy forecasts to maximize the performance of the
power grid and to prevent issues with solar generation due
to instability. This research presents a study that employes
regression models with feature engineering combined with Deep
Neural Networks (DNN) to forecast solar power generation. The
proposed model used a Tree-Enhanced Deep Neural Network
(TEDNN) architecture. It is divided into three phases: phase
one, optimizing the Hyperparameters (HPs) of the regression
models. The HPs were optimized using four algorithms, Grid
Search (GS), and Bayesian Optimization (BO), and Particle
Swarm (PSO). In phase two, two feature engineering techniques
(Squared Irradiation and Temperature Differential) were ap-
plied over extracted data from phase one. Phase three combines
different tree-based regression algorithms with DNN to forecast
solar power generation. Multiple regression techniques were
compared, including Decision Tree Regression (DTR), Random
Forest Regression (RFR), Gradient Boosting Regression (GBR)
and Xgboost Regression (XgbR) techniques. The proposed
model was applied over a real-world data from a PV solar
power plant in India and evaluated according to performance
metrics. The results show that the proposed model can ac-
curately forecast solar power with GBR+DNN (With Feature
Engineering), achieves the highest closeness coefficient (0.781)
due to strong performance across all metrics. Furthermore, it
was found that the PSO outperforms BO and GS in terms of
accuracy and execution time. In addition, feature engineering
improves performance, as models with feature engineering
dominate the top 3 ranks and models combined with DNN show
significantly better results than their non-DNN counterparts.

Index Terms—Photovoltaic Solar Power, Bayesian Optimiza-
tion, Grid Search, Particle Swarm Optimization, Decision Tree,
Random Forest, Gradient Boosting, Xgboost

I. INTRODUCTION

N essential part of producing renewable energy is

photovoltaic (PV) energy generation. Because of its
abundance, cleanliness, and environmental friendliness,
PV energy has gradually increased in popularity in recent
years [1]. Furthermore, the generated power from PV plant
energy can differ according to time, location, and the panel
size. In addition, it is also influenced by the atmosphere’s
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conditions such as irradiation, temperature, wind speed, and
humidity [2]. Forecasting PV solar power is an important
task for the efficient management of renewable energy
resources [3], [4]. Accurate forecasting of solar power
generation can help to reduce the risk of over-supply or
under-supply of electricity, and to optimize the use of
available resources. Furthermore, power forecasting keeps
the balance between power production and consumption,
which contributes to the financial benefits of electrical
utilities. Moreover, forecasting reduces the additional costs
related to weather dependence and raises the quality of
the energy delivered to the grid [S5]. Statistical analysis
and machine learning are two significant strategies for
solar power forecasting that compete with one another.
Supervised machine learning algorithms are frequently
applied for classification and forecasting problems [6], [7].
Regression-based supervised machine learning attempts
to effectively predict the continuous outputs based on the
input data. Moreover, regression models that use statistical
methods such as decision tree regression to discover the
link between a criterion and a predictor variable can be
used to forecast the generated power [8]. In addition, the
process by which an output is produced from an input and
a series of decisions is also parametrically represented as
each decision in the decision tree algorithm [9]. Random
forest regression is an ensemble learning algorithm that
combines multiple decision tree to improve performance,
which is known as a bagging algorithm, while gradient
boosting regression combines multiple weak models to
create a strong model. XgbR is a more regular model that
uses advanced configuration to improve model capabilities
[10].

To adapt a machine learning model to a dataset, certain HPs
must be set. Nominating the optimal HP combination is
challenging to achieve optimal performance of a prediction
model that minimizes a predetermined loss function on given
independent data. Optimization techniques are frequently
used to improve the predictive ability of Machine Learning
(ML) algorithms because the performances of these models
are highly sensitive to their HPs [11]. The authors in [12]
provide a practical solution for improving the performance
of machine learning models by optimizing their HPs based
on BO and comparing the results with grid search and
random search methods. Choosing an optimization method
is not entirely easy, as some of these methods are suitable
for small HP configuration spaces such as BO and others for
large configuration spaces such as PSO [13]. Furthermore,
PSO has the benefits of quick convergence, minimal
processing time, and excellent precision [14]. GS is one of
the optimization algorithms that evaluates the model for a
given HP vector using cross-validation. The independence
of the HP settings is one benefit of the grid search; due
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to this, parallel computation can be done [15], [16], while
BO is a sequential optimization technique that builds a
probability model of the objective function to choose the
most favorable HPs to test against the objective function [17].

The literature on solar PV forecast estimation presents dif-

ferent types of models, some of which are illustrated in Table
I which summarizes some research work on solar forecasting
using the most popular machine learning algorithms. As this
brief review indicates, irradiance and temperature are the
most frequently utilized features in solar power forecasting,
making them essential features to estimate a PV system’s
effectiveness. In addition, there are numerous machine learn-
ing models that have been utilized for forecasting solar
power; the variations among these models are related to their
formulation, forecasting range, data processing, dependency,
and model sophistication.
In this paper, a novel approach for forecasting solar power
generation is presented using feature engineering and DNN
employed to enhance models’ output. Additionally, this paper
will provide an overview of the HPs behind each model and
how they can be tuned for optimal performance. Feature
engineering preprocessing and DNN employed to enhance
models’ output. The remaining paper is organized as fol-
lows: Section II has some literature about how solar energy
generating systems work and the performance metrics that
the proposed model uses. Section III demonstrates the pro-
posed model. In Section IV, the dataset description, dataset
visualization, and experimental findings are presented. The
conclusion is presented in Section V.

II. LITERATURE REVIEW
A. Solar Energy Generation

A solar power generation system uses solar cells (PV pan-
els) to convert sunlight into electricity. PV panels consist of
semiconductor materials like silicon, which absorb photons
from sunlight and generate direct current (DC) electricity
through the photovoltaic effect. This electricity is then con-
verted into alternating current (AC) using inverters for use in
homes, businesses, or the grid [26]. Solar power generating
systems provide clean, renewable energy, contributing to
sustainability goals by reducing greenhouse gas emissions
and dependence on fossil fuels. Fig. 1 illustrates the flow of
solar power systems that generate electricity.

B. Performance Metrics

The objective of these metrics is to measure how well
the model can predict unknown values based on known
input. The most commonly used performance metrics for
regression methods are Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
and coefficient of determination R2? [27] [28]. Hence, in this
study, the performance of the suggested model strategy is
examined using the following indices:

N
MAE =1/N Y |y; — 4] (1)
j=1
N
MSE =1/N> (ly; — 4;)° 2)
j=1

N

RMSE = | 1/N Y (ly; — ;)2 3)
j=1
R2—1_— 2 (i —95) (4)

>y — ;)
where, R? represents the proportion of the variance in the
dependent variable that is predictable from the independent
variables in the model, N is the total number of samples, y;
and g; are state of charge of truth values and the predicted
values from the regression model, respectively, and ; is
the mean value of y;. To compare the extracted results,
TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) is used. It is a multi-criteria decision-making
method that ranks alternatives by their distance from the
ideal solution (best performance) and negative-ideal solution
(worst performance) [29]. Since this study applied over
one dataset, formal statistical tests (e.g., Friedman test with
post-hoc analysis) would not have a significant output.
The average rank method is a non-parametric, simplified
approach often used in machine learning and statistical
comparisons to compare algorithms across multiple metrics
or datasets. Algorithm 1 has the detailed steps of TOPSIS.

Algorithm 1: TOPSIS

1) Construct the Decision Matrix
2) Normalize the Decision Matrix - Convert all metrics
to a common scale using vector normalization:

Tij
Z:?=1 xf]
2;;: Original value of metric j for model i. r;;: Nor-
malized value.
3) Weight the Normalized Matrix
4) Identify Ideal (A™) and Negative-Ideal Solutions
(A7)
- Ideal Solution: Best value for each criterion (min
for errors, max for R?).
- Negative-Ideal Solution: Worst value for each
criterion (max for errors, min for R?).

Tij =

5) Calculate Distances Compute the Euclidean distance
of each model from A* and A™:

r” - A+

D =

MS H'MS

TU

6) Computes Closeness Coefficient

C; = (D;)/(D} + D;)

Higher C; = better overall performance.
7) Rank Models

- Sort models by C; in descending order.

III. METHODOLOGY

This section provides the proposed model methodology,
including feature engineering, and proposed model architec-
ture.
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TABLE I: Literature on solar PV forcast estimation models

Reference Year Regression Method Features used Metric Optimization method
implemented
[17] 2018 Gradient Boost irradiance, RMSE, MAPE - -
Decision Tree ambient temperature
[18] 2019 Linear regression, ANN, radiation, vapor pres- MSE, RZ, RMSE - -
AdaBoost, SVM ,RFR K-NN sure,
surface temperature, at-
mospheric pressure
[19] 2021 ANN air (ambient) MAE, MSE , R2, RMSE - -
temperature, cell
temperature, wind
speed, humidity, cloud
opacity, snow depth
[20] 2021 Decision tree regression irradiance, MAPE, MAE, MSE --
grid availability,
equipment availability
[21] 2022 Multiple Linear Regression, module temperature, ir-  MAE, R?.RMSE - -
RFR, XgbR radiance, ambient tem-
perature, wind speed
[22] 2022 Random forest irradiance,  humidity, @MAE, MSE , R?2 |, RF optimizer
temperature, pressure RMSE,MAPE
[23] 2022 Support  Vector ~ Machine  temperature , humidity = MAE, RMSE Bayesian Optimization
(SVM) , irradiance (BO)
[24] 2022 Regression Trees, Random irradiance, sunshine MAE, R%, RMSE BO
Forests, Bagged Trees  duration, temperature,
Regression, Support Vector  pressure, humidity,
Regression, Multi-Layer  precipitations, and
Perceptron wind speed
[25] 2023 Gradient Boosting Machine  solar insolation (irradi- MAE, R?, RMSE --
(GBM), RFR ance), ambient temper-
ature, humidity, wind
speed
Solar Cells AC-DC Inverter Users

Sunlight Battery Banks

a

a
I

e ekl wl

AC Combiner

Fig. 1: Solar Power Generation System

A. Feature Engineering

In this study, two engineered features were incorporated
a. Squared Irradiation (IRRADIATION_SQ) that captures
non-linear relationships between solar irradiance and power
output. It is a physically feature that improves model flex-
ibility for low/high irradiance regimes without violating
monotonicity [30]. It is calculated by Eq. 5.

IRRADIATIONsQ = IRRADIATION?  (5)

b. Temperature Differential (TEMP_DIFF) which quanti-
fies the thermal gradient between module and ambient tem-
peratures. Additionally, it quantifying the thermal gradient

affecting PV panel efficiency [31]. It is given by Eq. 6.

TEMP_DIFF= MODULE_TEMPERATURE - AMBIENT_TEMPERATURE

(6)

B. Proposed Model

Forecasting of solar power means analysing data to predict
solar power generation over various time spans to minimize
the impact of solar fluctuation. Regression algorithms depend
on a set of HPs whose values need to be optimized to get
the optimal model prediction form. Therefore, this research
is divided into three phases: phase 1: regression HPs op-
timization based on optimization algorithms, phase 2: data
processing via feature engineering, and phase 3: forecasting
solar power via TEDNN. The proposed hybrid forecasting
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Fig. 2: Proposed Model for Solar Power Forecasting

model aims to enhance solar power (AC power) prediction
accuracy by integrating tree-based regression algorithms with
a deep neural network (DNN). This architecture operates
through two parallel pathways. In the tree-based regression
pathway, each model independently generates predictions
and produces leaf embeddings (terminal node indices) that
encode decision paths, serving as structured feature rep-
resentations. Concurrently, in the deep learning pathway,
a neural network processes both the original engineered
features and the tree embeddings in separate sub-networks.
These two pathways are then merged via concatenation,
enabling the DNN to learn complex interactions between the
structured decision rules from the tree models and the raw
feature representations. Table II summarizes the architecture
of TEDNN.

Fig. 2 depicts a general overview of the steps forming the
development process. As demonstrated, it starts by feeding
the data to the model, where it is divided into 80% and
20%, which represent training and test sets, respectively.
The training set is utilized through the three phases. For the
optimization phase, three optimization methods were used to
tune the HPs of regression algorithms including GSO, BO
and PSO. The HPs for regression methods and their ranges
are shown in Table III. In addition, the objective function
of the optimization methods is based on minimizing MAE.
Then, the raw data undergoes systematic feature engineering,
which includes outlier handling and derived features genera-
tion. Finally, for forecasting, the optimized HPs from phase
1 and engineered features from Phase 2 are utilized in two
parallel workflows. First, tree-based regression algorithms
including DTR, RFR, GBR and XgbR [32], using optimized
HPs from Phase 1 for interpretable predictions. Second, tree-
based regression algorithms + DNN to capture non-linear
patterns.

IV. SIMULATION AND RESULTS

The proposed learning model is tested using the PV solar
power dataset. The structure of the used dataset is described
in subsection 4.1. The dataset analysis and visualization are
in subsection 4.2. Finally, the outcomes of the proposed
model are displayed according to performance metrics in
subsection 4.3. A study of the influence of parameters on
output was also presented.

A. Dataset

A solar power system uses photovoltaic (PV) panels
to transform sunlight into electrical energy. The PV solar
power dataset that was used in this study came from two
separate solar plants in India [33]. Each plant generates two
files of data: one for weather data and the other for solar
power generation. The weather data file includes ambient
temperature, module temperature, and irradiation, while the
generation data file includes AC power, DC power, daily
yield, and total yield. Over the course of 34 days, data was
gathered at a 15-minute interval. Results from the experiment
in this study were based on information from plant-2. The
plant-2 data file shows there are 22 inverters (S) with only
one weather monitoring unit. The DC power generation for
all inverters is shown on Fig. 3. Two data files are merged to
train and test the proposed model. The experimental results
are based on three features which are irradiation, ambient
temperature, and module temperature, to predict AC power.

B. Data analysis and visualization

This section provides a graphical representation of the
dataset to extract information and identify the dataset pat-
terns. Fig. 3 illustrates the DC power generation from all
inverters over the course of the day. The PV cells generate
DC power, which is transmitted to a total of 22 inverters.
The highest three DC power values were achieved by in-
verters S5, S8, and S21, with respective values of 27,709.2,
27,430.7, and 27,240.1. Conversely, the figure also indicates
the three lowest DC power values obtained by inverters
S6, S4, and S12, with values of 18,859.7, 18,071.2, and
16,640.6, respectively. The lower DC power outputs from
these inverters could be attributed to various factors, such as
potential faults in the solar cells connected to the inverters or
the presence of shading obstructing the solar cells’ exposure
to sunlight. Table IV presents the inverters’ source key and
their alternative symbols.

Fig. 4 displays the time-dependent profiles of the AC and
DC power generated over a span of 34 days. As depicted
in the figure, the power generation remains constant at
zero from 18:30 pm to 6:00 am, representing a duration of
approximately 12.30 hours every day. Additionally, the AC
power exhibits variability within the range of [0, 1358.4]
Watt, while the DC power fluctuates within the range of
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TABLE II: Tree-Enhanced Deep Neural Network Architecture

Layer Input Output Size Activation Regularization
Tree Embedding Input Leaf indices (n_estimators) - -
Dense 1 Leaf embeddings 64 ReLLU L2 (0.01)
Dense 2 Output from Dense 1 32 ReLU L2 (0.01)
Raw Feature Input Engineered features (scaled)  — -
Dense 3 Raw features 32 ReLU
Concatenation Outputs from Dense 2 & 3 64 -
Final Dense Layer Concatenated features 1 Linear
TABLE III: HPs ranges for regression algorithms
Regression Algorithm HP Values
max_depth [2, 10 ]
DTR min_impurity_decrease [0.0, 0.5]
Criterion {squared_error, friecdman_mse, absolute_error}
min_samples_leaf [1:70]
n_estimators [10, 1000] (log)
RFR max_depth [2, 10 ]
max_features {0.25, 1.0, sqrt, log2}
min_weight_fraction_leaf [0.0, 0.001 ,0.01, 0.1]
n_estimators [10, 1000] (log)
max_depth 2,10 ]
GBR max_features {0.25, 1.0, sqrt, log2}
learning_rate [0.01, 0.3]
subsample [0.1, 1]
n_estimators [10, 1000] (log)
max_depth [2, 10 ]
XgbR colsample_bylevel {0.25, 1.0, sqrt, log2}
learning_rate [0.01, 0.3]
reg_lambda {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
gamma {0, 0.1, 0.2, 0.3, 0.4, 1.0, 1.5, 2.0}

TABLE IV: Inverters’ source key and their alternative sym-
bols

Source Key Symbol
4UPUgMRK7TRMgml S1
8laHJ1q1 INBPMrL S2
9kRcWv60rDACzjR S3
Et9%kgGMDI729KT4 S4
1Q2d7wF4YD8zU1Q S5
LYwnQax7tkwHSCb S6
LIT2YUhhzqhg5Sw S7
Mx2yZCDsyf6DPfv S8
NgDI119wMapZy17u S9
PeE6FRyGXUgsRhN S10
Qf4GUclpJu5T6c6 S11
QuclTzZYxW2pYoWX S12
V94E5Ben1TlhnDV S13
WexssY2VbP4hApt S14
mqwcsP2rE7JOTFp S15
0Z35aAeo0ifZaQzV S16
0ZZkBaNadn6DNKz S17
q49J11KaHRwDQnt S18
rrq4fwEjgrTyWy S19
vOulvMaM2sgwLmb S20
xMblugepa2P71BB S21
x0JJ8DcxJEcupym S22

[0, 1420.93] Watt per day, and the maximum values of
total power generated with time of the day for AC and DC
are 474924.4, 486466.9, respectively. Notably, the maximum
power output is attained around 13:00 pm.

C. Results and discussion

This section holds the optimization and model evaluation
results. In addition, parametric analysis was performed to
show the influence of different parameters on the output
model.

1) Optimization results: Table V presents the optimized
HPs for each regression algorithm across three optimization

methods, with varying values due to MSE minimization.
These HPs are tested to evaluate performance. Results
show differing metrics for each algorithm. The initialization
parameters for PSO dictate the algorithm’s operation in
searching for optimal solutions. Table VI presents these
parameters, including a population size (N) of 10 particles
and 3 dimensions (D) for optimization. The maximum weight
(Wmax) is set at 0.9 and the minimum weight (Wmin) at
0.5, balancing exploration and exploitation. The acceleration
coefficients influence particle behavior; the first coefficient is
zero, meaning particles focus solely on their best positions,
while the second is 0.3, allowing them to consider neighbors’
best positions as well.

Table VII displays the performance metrics for DTR, RFR,
GBR and XgbR based on the optimal HP results achieved by
GSO, BO and PSO. As demonstrated in the table, for DTR,
the maximum value of MAE is achieved by BO, which equals
1503.6, followed by 1347.7 for GSO, while PSO achieves the
minimum value, which equals 1213.3. Additionally, for RFR,
PSO attained the least MAE value, which equals 1074.01,
while GSO obtained the highest value, which is equal to
1507.6. Furthermore, for GBR, the PSO method yields the
lowest MAE of 917.7 and highest R? of 0.901, indicating
optimal predictive accuracy compared to BO and GSO.

2) Model Performance: For XgbR, PSO method demon-
strates the optimal performance with a MAE of 1174.9 and
an R? of 0.913. In overall, PSO emerges as the most effective
optimization method based on the analysed metrics.

Table VIII holds the results of applying TOPSIS method to
rank regression models and optimized HPs results achieved
by GSO, BO and BSO optimization methods based on
their performance metrics. The results are sorted by the
closeness coefficient, where higher values indicate better
overall performance. This ranking depends on equal weights
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Fig. 3: DC power generation in KW for all inverters
500000 A . AC POWER ance. However, the standalone GBR model also shows great
Mﬁv WA , — DC_POWER predictive performance (MAE: 798.2, R?: 0.931), implying
400000 that the algorithm is naturally strong. Interestingly, deep
5 neural network inclusion invariably enhances base models’
5300000 efficiency: XgbR +DNN results in R? upgrade to 0.933
g from 0.915. These results show that DNN assists existing
S 200000 \ models. Also, through feature engineering, the performance
< of the models is further improving. After feature engineering,
100000 GBR+DNN has the best metrics (MAE of 708.6, RMSE of
/ 11560.9, R? of 0.941). Table X holds the results of applying
0 TOPSIS method to rank regression models performance with
00:00  05:33:20 11{)1(’1\‘/‘1% 16:40  22:13:20 and without feature engineering based on their performance

Fig. 4: Total power generated with time of the day

assumption. RFR_PSO and DTR_PSO top the list despite
higher errors, primarily due to their trade-off across all met-
rics with relatively good R2. Table IX holds a comparative
evaluation of regression models DTR, RFR, GBR, and XgbR
with and without feature engineering across metrics MAE,
MSE, RMSE, and R?. The GBR model combined with deep
learning (GBR+DNN) shows better predictive power with
feature engineering, reaching the greatest R? score (0.941),
lowest MAE (708.6), and least RMSE (11560.9), which
highlights its efficiency in reducing error and clarifying vari-

metrics. The results are sorted by the closeness coefficient,
where higher values indicate better overall performance. Best
model is GBR+DNN (With Feature Engineering), achieves
the highest closeness coefficient (0.781) due to strong per-
formance across all metrics (MAE = 708.6, R? = 0.941).
Feature engineering improves performance, as models with
feature engineering dominate the top 3 ranks. Example:
GBR+DNN (With) outperforms GBR+DNN (Without) by 16
in closeness. Models with DNN (e.g., XgbR+DNN) show
significantly better results than their non-DNN counterparts.
Gradient boosting methods (GBR, XGBR) occupy the top
ranks, while decision trees (DTR) and random forests (RFR)
trail behind.

Fig. 5 illustrates the comparison between actual AC and
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TABLE V: Optimized HP values

Regression HP GS BO PSO
Algorithm

max_depth 3 2 5
DTR min_impurity_decrease 0.1 0.4 0.48

Criterion squared_error squared_error absolute_error

min_samples_leaf 10 10 10
n_estimators 100 123 134
RFR max_depth 3 5 5
max_{features sqrt Log2 sqrt
min_weight_fraction_leaf 0.0 0.01 0.001
n_estimators 100 778 550
max_depth 3 3 5
GBR max_features sqrt sqrt sqrt
learning_rate 0.1 0.25 0.2
subsample 0.2 0.4 0.4
n_estimators 150 100 50
max_depth 4 3 3
XgbR colsample_bylevel 0.1 log2 log2
learning_rate 0.015 0.1 0.2
reg_lambda 2 3 3
gamma 0 0 0

TABLE VI: PSO parameters values

Parameters Values
Population Size N 10

No. of Dimensions (D) 3

No. of Iterations (T) 100
Maximum Weight (Winaz) 0.9
Minimum Weight (Wp,in) 0.5
Acceleration Coefficient (c1, c2) 0.0, 0.3

TABLE VII: Performance metrics results for regression al-
gorithms based on the optimal HPs results achieved by GSO,
BO and PSO optimization methods

Optimization y p ' pop RMSE  R?
method
DTR
GSO 3377 4.032087e+06 200799 0882
BO 1503.6  4.790283¢+06 21886 0.883
PSO 12133 4.855904c+06 22036  0.898
RFR
GSO 1507.6 4597589406 714419 0883
BO 11052 4477948406 201611 0.886
PSO 107401 4.795537¢+06 218987  0.88
GBR
GSO 9177 3.976826e+06 1994198 0.899
BO 83693  4.1426300+06 203534 0.895
PSO 82392  3.884271c+06 19708 0.901
XgbR
GSO 2133 4.032047+06 2007.99  0.898
BO 1190.8  3.886385¢+06 197139 0.901
PSO 11749 35925290406 18953 0.913

TABLE VIII: TOPSIS method to rank regression models
performance based on the optimal HPs results achieved by
GSO, BO and PSO optimization methods

Rank Opt. _Model Closeness Coefficient
1 RFR_PSO 0.9497
2 DTR_PSO 0.9463
3 DTR_BO 0.8693
4 DTR_GSO 0.6284
4 XGBR_PSO 0.6284
6 RFR_BO 0.6040
7 RFR_GSO 0.5834
8 XGBR_BO 0.5632
9 XGBR_GSO 0.5128

10 GBR_PSO 0.2426
11 GBR_BO 0.2231
12 GBR_GSO 0.1653

predicted AC values for four engineered regression models
+ DNN. Within the figure, a single band is displayed,
representing the 95% confidence range. This band serves
as an indicator of the accuracy of the estimation of the
models. Additionally, a prediction range is represented by
another band, with its width corresponding to the 95%
prediction interval. This interval provides a comprehensive
understanding of the predictive capability of the models. The
figure compares the performance accuracy of four learning
models of TEDNN, based on the values of HPs selected
by PSO. The red dashed diagonal line that started at the
origin (0,0) and has a 45-degree angle represents the line of
equality, which means, the ideal scenario where the actual
values are exactly equal to the predicted values. Additionally,
the regression equation for each model is represented by (y
= slope x + intercept) as illustrated in table XII. As shown
in table XII, all four models+DNN demonstrated strong
predictive accuracy, with correlation coefficients (r) exceed-
ing 0.966, confirming a robust linear relationship between
predicted and actual values. The GBR outperformed others,
achieving the highest correlation (r= 0.9682) and a near-ideal
slope (0.9044), which indicates both precise predictions and
minimal systematic bias. While RFR exhibited the steepest
slope (0.9276) and lowest intercept (327.10), its marginally
lower correlation (r =0.9662) suggests slightly less consistent
predictions compared to GBR. XgbR and DTR delivered in-
termediate performance; XgbR’s elevated intercept (395.25)
implies systematic overestimation for lower power values,
whereas DTR’s balanced slope (0.9223) and correlation (r=
0.9665) underscore its reliability despite its simpler structure.

3) Parametric Study: Parametric analysis study the influ-
ence of different parameters on the output model. To study
the impact of the parameter on the model, a set of data
was generated, where the values of each parameter ranged
between the minimum and maximum of its values on the
original dataset. In addition, the values of the remaining
parameters were determined by their mean value. Minimum,
maximum, and average values for the three parameters are
demonstrated in Table XI. Subsequently, the generated data is
passed through each model (engineered regression algorithm
+ DNN) to get the prediction output. Figure 6 shows the
parametric study of each parameter with the prediction output
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TABLE IX: Regression Models Performance with and without Feature Engineering

Model MAE MSE RMSE R?
DTR 1347.7 4.855904¢+06 2203.6 0.882
DTR+ DNN 1482.4 4.387759¢+06 2094.6 0.893
RFR 1507.6 4.795537e+06 2189.9 0.88
Without feature engineering RFR + DNN 936.2 3.871631e+06 1967.64 0.902
GBR 917.7 3.884271e+06 1970.8 0.901
GBR + DNN 932.8 3.840170e+06 1959.6 0.902
XGBR 1190.8 3.592529e+06 1895.3 0.913
XgbR + DNN 844.1 2.842114e+06 1685.8 0.931
DTR 836.9 4.142630e+06 2035.3 0.895
DTR+ DNN 942.1 3.613706e+06 1900.9 0912
RFR 1190.8 3.592529e+06 1895.3 0.913
With feature engineering RFR + DNN 823.9 3.976827e+06 1994.1 0.899
GBR 798.2 2.843335e+06 1686.2 0.931
GBR +DNN 708.6 2.436520e+06 11560.9 0.941
XgbR 1155.6 3.512624e+06 1874.2 0.915
XgbR +DNN 807.7 2.820365e+06 1679.3 0.933

TABLE X: TOPSIS method to rank regression Models Per-
formance with and without Feature Engineering based on
their performance metrics.

Rank  Model Closeness Coefficient
1 GBR+DNN (With) 0.781
2 XgbR+DNN (With) 0.733
3 GBR (With) 0.697
4 XGBR+DNN (Without)  0.662
5 GBR+DNN (Without) 0.621
6 XGBR (Without) 0.589
7 RFR+DNN (With) 0.554
8 DTR (With) 0.522
9 RFR+DNN (Without) 0.498
10 DTR+DNN (With) 0.475
11 XgbR (With) 0.452
12 RFR (With) 0.433
13 DTR+DNN (Without) 0.417
14 GBR (Without) 0.398
15 RFR (Without) 0.382
16 DTR (Without) 0.361

for every model. As demonstrated in the Figure 6 (a) , for
all models, the predicted AC power increases with increasing
irradiation values, this indicates that a rise in solar radiation
causes an increase in output power, which improves a solar
panel’s efficiency [34].

For temperature, Figure 6(b) shows that the output power
of PV is not affected much by an increase in the ambient
temperature. Additionaly, Figure 6 : (c) show that as module
temperature increases, the output power increases slightly
with DTR and RFR, while the output power of GBR +
DNN and XgbR + DNN decreases with increasing module
temperature. Consequently, increasing module temperature
results in a decrease in the output power of the PV system,
while the output of PV modules improves significantly
with increasing irradiance levels. This indicates that GBR
and XgbR demonstrate the correct relationship between PV
output power, temperature, and irradiance.

TABLE XI: Feature Measure

Feature Max Min Avg
Irradiation 1.099 0 0.23
Ambient temp. 39.18 20.94 28.07
Module Temp. 66.64 20.27 32.77

4) Comparative study: Table XIII presents the accuracy
of the proposed model compared with a related one. The
authors in [35] employed time series models such as ARIMA

TABLE XII: Comparative Performance Metrics of Engi-
neered Regression Methods + DNN

Engineered model  Slope Intercept  Correlation coefficient (r)
DTR+DNN 0.9223  338.6497  0.9665
RFR+DNN 0.9276  327.1008  0.9662
XgbR+DNN 0.9012 3952470  0.9669
GBR+DNN 0.9044  349.0124  0.9682

TABLE XIII: Comparison of the proposed model with related

Reference  Year  Technique Accuracy
[35] 2021  Prophet Model 89.4%
[36] 2023  Random Forest 84.3%
[37] 2023  Polynomial Regression  93.7%
Proposed GBR based PSO 94.1%

and Prophet to obtain meaningful results for forecasting solar
power. The objectives of the study include understanding and
managing the output variability of solar power generation
using machine learning algorithms for power generation that
achieved 89.4% accuracy based on the Prophet model. In
addition, authors in [36] utilized machine learning techniques
for solar forecasting and the highest accuracy was achieved
by RF with an accuracy of 84.3%. Moreover, authors in [37]
used polynomial regression based PSO achieving accuracy of
93.7%. While the proposed model TEDNN (GBR) based on
feature engineering and PSO, achieved an optimal accuracy
of 94.1%.

V. CONCLUSION

The forecasting of solar system output power is crucial for
assessing system performance and meeting market demands
while avoiding instability. This research utilized TEDNN
architecture to predict solar power generation. Three opti-
mization methods GS, BO, and PSO were used to optimize
HPs of regression techniques. The findings revealed that PSO
outperformed other used optimization methods in terms of
optimizing HPs values. Additionally, four regression algo-
rithms including DTR, RFR, GBR, and XgbR combined
with DNN were used to forecast AC power generation.
GBR+DNN and XgbR+DNN achieved optimal results with
R? values of 94.1% and 93.3% respectively. Furthermore,
feature engineering improves performance, and models com-
bined with DNN show significantly better results than their
non-DNN substitutes.
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