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Abstract—The anti-corrosion coating of pipeline systems, as
a key infrastructure in cities and industries, is affected by
various environmental factors during long-term use, resulting
in pipeline corrosion and safety hazards. To improve the
accuracy and reliability of failure assessment of pipeline
anti-corrosion coatings, this study proposes a backpropagation
neural network framework that integrates Monte Carlo
simulation and improved particle swarm optimization. This
framework generates a dataset covering multidimensional
random parameters, such as corrosion depth and pipe
diameter, through the Monte Carlo method, quantifying the
nonlinear evolution law of corrosion. The dynamic inertia
weight and genetic crossover operator optimization particle
swarm algorithm are designed to enhance the global search
ability and classification accuracy of the neural network. The
experiment showed that the Monte Carlo simulation reduced
the error to 0.5% after 106 iterations, and the prediction error
of deep corrosion failure probability was only 0.47%. The
improved model achieved a precision of 97.2% and a recall of
97.1% on the test set, which was 12.2% higher than the
traditional backpropagation neural network. The risk level
classification correlation coefficient R was greater than 0.99.
This framework enhances the accuracy and classification
reliability of pipeline failure risk assessment through
data-driven and intelligent optimization collaboration,
providing technical support for the full lifecycle safety
management of corroded pipelines.

Keywords—Monte Carlo; Pipeline corrosion; BPNN; Grade
classification

. INTRODUCTION

he pipeline network system is a key infrastructure for
modern cities and industrial production, and its safe
operation is related to energy transmission, water supply
stability, and production continuity. However, under
long-term service, the Anti-corrosion Coating of the Pipeline
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Network (ACCPN) is susceptible to performance
degradation and failure due to the coupling effects of
multiple factors such as soil chemical properties, microbial
activity, stray currents, and fluctuations in operating
conditions, leading to corrosion and perforation of the
pipeline body. Even more, it can lead to serious
consequences such as environmental pollution, production
interruptions, and secondary disasters. Therefore, accurately
and efficiently assessing the risk of ACCPN failure is of
crucial practical significance for developing preventive
maintenance  strategies, optimizing asset lifecycle
management, and ensuring the safe operation of
infrastructure [1]. The traditional ACCPN failure assessment
method mainly relies on empirical formulas, deterministic
models, and on-site detection data. Although these methods
can provide preliminary diagnosis, they often expose
shortcomings such as insufficient accuracy and weak
generalization ability when facing multi-parameter
uncertainty, nonlinear evolution, and time-varying
characteristics of corrosion processes under complex
working conditions [2]. The Monte Carlo method, as a
numerical simulation technique based on probability
statistics, can quantify the spatiotemporal evolution of
pipeline failure probability by constructing a random
distribution model of input parameters and combining a
large number of repeated sampling and simulation
calculations [3]. Back Propagation Neural Network (BPNN)
constructs a functional relationship from input parameters to
output results by simulating the nonlinear mapping
mechanism of human brain neurons. After training with
historical data, the model can quickly classify the failure
risk level of pipelines based on real-time detection of
corrosion defect length, depth, and other features [4]. To
achieve an accurate assessment of ACCPN failure state, this
study uses Monte Carlo Simulation (MCS) to generate a
dataset covering multidimensional random parameters,
quantifying the nonlinear effects of corrosion kinetics. A
BPNN model based on dynamic weight optimization is
designed to achieve intelligent classification of failure risk
levels.

The innovation of the research lies in proposing a BPNN
framework that integrates an improved MCS and Particle
Swarm Optimization (PSO) algorithm for ACCPN failure
assessment. By introducing a power-law model to describe
the nonlinear time-varying characteristics of corrosion depth,
and using nonlinear inertia weights and genetic crossover
operators to optimize PSO, the global search capability of
BPNN is enhanced. The contribution lies in the construction
of a high-precision and highly robust comprehensive
evaluation system, which provides a reference basis for the
full lifecycle risk assessment of ACCPN.
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1. RELATED WORKS

In recent years, the corrosion failure assessment of
pipeline systems has gradually integrated stochastic
modeling and data-driven methods. MCS has become a core
tool for reliability analysis due to its high tolerance for
parameter uncertainty. Hou et al. proposed a framework
based on MCS to evaluate the reliability of pipeline
networks under earthquakes, taking into account spatial
parameters such as peak ground velocity and pipe wall
thickness. The redundancy of pipeline network topology
would affect the evaluation of spatial correlation on
connectivity reliability, and networks with high redundancy
would overestimate reliability by ignoring spatial correlation
[5]. Lin et al. used MCS of random corrosion distribution
and Euler beam theory to construct a pipe soil interaction
model for studying the effect of pitting corrosion on the
buckling of submarine pipelines. Different corrosion
distribution patterns, even with the same parameters, could
lead to differentiated buckling displacement and strength
attenuation [6]. Zhao et al. proposed a source term
estimation method based on an improved Gaussian plume
model and UAV laser methane sensing for natural gas
pipeline leak detection. This method could synchronously
locate the location and rate of leakage. Simulation
verification showed that its accuracy was affected by the
forward model and data reliability, and the inversion
accuracy could be improved through prior information
optimization [7]. Proenca et al. proposed an analytical
model based on compressed wave and Rayleigh wave paths
to simplify the location of water network leaks, and
combined it with MCS parameter uncertainty analysis.
Parameterized research showed that the maximum error of
dual wave joint positioning was 15 cm, which improved the
accuracy by 27.4% compared to a single wave path [8].

BPNN utilizes its powerful nonlinear mapping and
self-learning capabilities to predict and evaluate pipeline
states. Wu et al. proposed a hybrid model built on improved
WOA and BPNN to improve the accuracy of pipeline
damage identification. The model was optimized through a
adaptive coefficients and random optimal replacement
strategy. This model had a relative error of less than 2.2% in
locating and predicting the degree of damage to fixed
pipelines at both ends, and its overall performance was
better than the comparative model [9]. Yin et al. designed a
cold finger experiment to analyze the effects of temperature,
shear force, and other parameters on diesel wax deposition
pollution during sequential transportation of finished oil
pipelines in cold regions. The BPNN prediction of
deposition rate was optimized using the bald eagle search
algorithm. The sedimentation rate increased with the
increase of oil temperature and wax content, and the
accuracy and generalization ability were effectively verified
[10]. Sun et al. conducted experiments to accurately predict
the roughness coefficient of sediment containing drainage
pipes by measuring parameter changes under different
sediment thicknesses, flow rates, and slopes, and optimized
BPNN using genetic algorithms. BPNN and the improved
model have increased the coefficient of determination by
3.47% and 3.99% compared to the traditional formula, and
reduced the MAE by 41.18% and 47.06% [11]. Xiao et al.
predicted the liquid holdup of wet gas pipelines and used
grey relational analysis to screen seven input parameters,

including pipe diameter and inclination angle, to construct a
tuna swarm algorithm to optimize the BPNN model. The
average absolute percentage errors of upward, downward,
and horizontal pipelines were 5.32%, 10.19%, and 4.80%,
with R=exceeding 0.99 [12].

In summary, existing Monte Carlo methods mostly focus
on a single corrosion model, such as linear or static
distribution, and fail to fully consider the nonlinear changes
in corrosion rate over time and multi-parameter coupling
effects, resulting in significant long-term prediction bias. In
addition, BPNN relies on the traditional gradient descent
method, which is prone to getting stuck in local optimal
solutions due to the influence of initial weights, especially
for predicting high-risk samples with insufficient accuracy.
Therefore, this study proposes an evaluation framework that
integrates MCS and PSO-BPNN. This framework accurately
describes the nonlinear growth of corrosion depth through a
power law model. At the same time, it introduces a PSO
algorithm with nonlinear inertia weights and genetic
crossover operators to optimize BPNN, improve the model's
generalization performance, and ultimately achieve accurate
classification of corrosion failure risk.

I1l.  METHODS AND MATERIALS

A. Simulation of failure probability distribution of anti
corrosion coating based on Monte Carlo method

ACCPN failure assessment needs to take into account
both parameter uncertainty and corrosion dynamic evolution
characteristics. Traditional deterministic methods can easily
lead to prediction bias due to neglecting statistical
distribution and temporal dependence. Therefore, this study
constructs a failure probability simulation framework based
on the Monte Carlo method. The basic idea of MCS is to use
random numbers to simulate the input variables of a system,
and calculate the system's output based on the values of
these input variables. By repeating this process extensively,
the distribution of output results can be obtained. For the
failure assessment of ACCPN, the failure probability P
calculated based on Monte Carlo is shown in equation (1)
[13].

p=limP{n(A, A, A)<A}=FIE ()

In equation (1), h() is the predictive model for the

critical pressure of pipe rupture. (A, A,,--+,A,) isasample
dataset generated through independent random sampling
that conforms to the statistical characteristics of the failure
variable. F and E are the number of data and the total
number of sample data that are less than or equal to the

safety threshold. P{:} is the probability of event h()

occurring. As the sample size approaches infinity, Monte
Carlo accurately estimates this probability value through a
large number of random simulations [14]. The probability
prediction process of Monte Carlo method is shown in
Figure 1.

In Figure 1, when using the Monte Carlo method to
predict the probability of pipeline failure, the Pipeline
Failure Pressure (PEP) is used as the target variable, and
related parameters such as pipe diameter and corrosion
depth are determined. Afterwards, based on historical data
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and engineering experience, reasonable probability
distributions are set for these parameters, and the total
number of simulations is determined. Subsequently, it enters
the loop simulation phase, randomly selecting a set of data
from the probability distribution of each parameter and
substituting it into the critical state function for pipeline
rupture failure calculation to determine whether the pipeline
has failed. When the number of simulations reaches the
preset total, the failure probability of the pipeline is
calculated by the ratio of the number of failures to the total
number of simulations. Due to the fact that the target
variable in MCS is the critical pressure for pipe rupture, i.e.,
the failure pressure, this study mainly focuses on the failure
risk assessment of this pressure. This study uses the
Norwegian Classification Society standard F101 to solve
and predict the PEP networks. The mathematical model of
this standard is shown in equation (2) [15].

Calculate the critical state
of failure h(A)

Determine the target
variables and parameters

A
Determine the probability
distribution and the
number of simulations

F=0,i=1 J i=i+1

\fl

Generate random Numbers
to simulate

A 4

if h(A)<0, F=F+1

o _dm
_,,_ t
F, UD—t —dm
tQ )

In equation (2), F, represents the PEP. t and T are

the pipe wall thickness and pipe service life. L(T) denotes
a function of the relationship between corrosion length and
time. D is the pipe diameter, U is the ultimate tensile
strength, d(T) is a function of the relationship between

corrosion depth and time, and Q is the coefficient of
expansion. In this model, the failure pressure has significant
time-dependent characteristics, so the randomness of
corrosion parameters can be ignored in probabilistic
reliability assessment, and conservative evaluation results
can be predicted based on corrosion defects. Although
cathodic protection, organic coatings, and other protective
measures are commonly used in engineering to slow down
the corrosion process, the corrosion inhibition effect of such
protective measures will significantly weaken in areas where
macroscopic defects have already formed in the pipe body.
Therefore, reasonable simplification should be made in the
modeling of corrosion evolution [16]. The depth variation of
corrosion defects on the pipe wall follows a power function

constitutive relationship, as shown in equation (3).

d(T)= AT -T)
LT 3
L(T) = Li +T

In equation (3), T, and T, are the times when the
pipeline experiences longitudinal and transverse corrosion.
L; is the initial length of the corrosion defect. 4 and 7
are corrosion growth coefficients, which are determined
based on historical data and characterize the variation of
corrosion depth over time. AT is the detection time
interval. To make the predicted PEP closer to the actual
situation, this study introduces a variable error between the
actual value and the predicted value of the failure pressure,
and corrects the failure pressure obtained from MCS. The

corrected failure pressure Fp' is shown in equation (4).
F =F +M(0,0°)+7n &

In equation (4), F. is the predicted value of failure

pressure. M represents a variable with a variance of o2,
a mean of 0, and follows a normal distribution, while 77 is
the average error of failure pressure prediction. The
probability of pipeline failure is determined by the actual
values of pipeline working pressure and PEP. The condition
for pipeline rupture and failure is when the PEP is lower
than the working pressure inside the pipeline. This study
defines the critical state as equation (5).

h(A)=F, P,

5
I:’W:%[gxsf><Xf><Yf><Zf ®)

In equation (5), P, is the working pressure inside the
pipeline. € is the yield strength of the material. X;, Y,
and Z; are temperature, joint, and line coefficients, all

with values of 1. S; is the safety factor, taken as 0.8.

According to the statistical characteristics of pipeline
corrosion failure cases and structural reliability theory, the
probability of pipeline failure can be simulated by
comparing the pipeline working pressure and PEP [17]. The
probability classification of pipeline failure risk is shown in
Figure 2.

In Figure 2, the probability of pipeline failure is divided
into four risk levels. When the failure probability ranges
from 0% to 25%, 25% to 50%, 50% to 75%, and 75% to
100%, the failure risk levels are low, medium, high, and
extremely high, respectively. After determining the risk
probability distribution, it is necessary to determine the
variable data for MCS. This study is based on the
engineering experience data range of pipeline geometric
features and material properties, combined with the key
parameters required for the fracture pressure prediction
model. A sample dataset covering key parameters such as
pipe diameter size, pipe wall thickness, operating time, and
material strength is randomly generated for MCS. Table 1
shows the types of pipeline distribution and variable
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In equation (6), H, and H,; are the number of output

parameters and input parameters. H, is the number of

neurons in the hidden layer. The output features are the four
failure risk levels of the pipeline. Each hidden layer and
output layer establishes weight connections with all nodes of
the previous layer, thereby achieving efficient integration
and nonlinear mapping of cross-layer features. When
constructing the network structure, the middle layer neurons
use the Sigmoid function to provide a stable gradient
backpropagation path for the feedforward signal processing
mechanism. The output layer is configured with a Purelin
linear activation function to ensure that the final output of
the network is not constrained by the amplitude of nonlinear
transformations [18]. Due to the use of gradient descent for
training in traditional BPNN, it is susceptible to the
influence of thresholds and weights generated by random
initialization, resulting in the algorithm falling into local
optima and poor generalization [19]. To address this issue,
this study introduces an optimized PSO algorithm to
improve BPNN. The search process of the optimized PSO is
shown in Figure 4.

/-
o

TABLE 1
PIPELINE VARIABLE PARAMETERS AND DISTRIBUTION TYPES
- . Distribution Standard Mean
Pipeline variable L
type deviation value
Yield strength Log - normal
&/MPa distribution 235 480
Operating pressure Gumbel
Pw/MPa maximum 0.65 5
Defect initial length Log - normal
Li/mm distribution 57.65 95.2
Pipeline diameter Normal
D/mm distribution 1202 620
Ultimate tensile Log - normal
strength o/MPa distribution 74.67 524
Pipeline wall Normal
thickness t/mm distribution 0.35 73

B. Prediction of pipeline failure risk level based on
improved BPNN

The purpose of predicting the risk level of pipeline failure
is to quantify the comprehensive impact of multidimensional
parameters such as corrosion defects and pipe performance,
classify pipeline risk levels, and provide a basis for
accurately formulating maintenance strategies. BPNN can
effectively correlate multi-parameter inputs with failure risk
outputs through nonlinear mapping and self-learning
capabilities. To achieve accurate classification of pipeline
risks and reasonable division of failure risk levels, this study
uses the dataset generated in the MCS to train a BPNN.
1,000 sets of data are selected from the dataset for the
construction of a risk level prediction model. The structure
of the failure risk prediction model based on BPNN is
displayed in Figure 3.

In Figure 3, the input layer of the BPNN model includes
six input feature parameters, including pipeline working
pressure, pipe diameter, corrosion defect length, and depth.
According to the empirical formula of equation (6) and
through repeated experiments, the final number of hidden
layers is set to 2, with 6 neurons per layer.

H,= 21/Hi+ H, (6)

Very high risk

Hidden layer I=2,i, ,=6 Output layer i=4

Input layer i=6
Figure 3 Structure of failure risk prediction model based on BPNN
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Figure 4 Search process of PSO algorithm

In Figure 4, in the optimized PSO algorithm, non-linear
decreasing weights are used instead of the traditional linear
decreasing strategy, as shown in equation (7).

_ I ><(Wmax _Wmin)
Imax (7)

|
Wiax— (Wmax_wmin) X ( I )2
max

W=
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Figure 5 Flow of BPNN algorithm improved by PSO algorithm

In equation (7), | and I, represent the current and

maximum iteration counts. is the inertia weight. W,

w
and W,;, are their minimum and maximum values. In this

strategy, a dynamic inertia weight adjustment strategy is
adopted to achieve multi-stage search optimization. In the
initial stage, particles are given higher velocity vectors,
allowing them to quickly traverse potential optimal regions
during the global exploration phase of the solution space. As
the Number of Iterations (Nol) increases, the inertia weight
is dynamically adjusted through a nonlinear decay function,
guiding the particle swarm to gradually enter the local
search stage, where the search range exponentially shrinks
to the neighborhood of the current optimal solution. When
the preset maximum Nol is reached, the particle swarm
mainly relies on individual cognition and social cognition
components in the velocity update equation, and searches
within the optimal solution neighborhood with the minimum
inertia weight. In addition, to ensure the diversity of the
population in the later stage of the algorithm, this study
introduces the crossover operator in the algorithm, as shown
in equation (8) [20].

sx=(1—a)*gx(2)+a*gx() (8)
In equation (8), @ is a random number, a<[0,1]. sx

and 9X are the positions of the child and parent particles.
The speed of offspring is shown in equation (9).

(9@ +v2))igv
v +av(2)]

©)

In equation (9), SV and 9V are the positions of the
child particles and the parent particles. At each iteration,
particles select from the current population based on the
crossover probability to construct a matching pool. Two
particles are randomly paired to generate an equal quantum
particle set. This offspring particle replaces the parent
individuals with lower fitness through non-dominated
sorting, thereby enhancing population diversity [21]. The
improved BPNN algorithm flow of PSO is shown in Figure
5.

In Figure 5, after determining the structure of BPNN, the
particle swarm parameters are initialized. The position of
each particle is decoded into the weight and threshold of the
neural network, and then input into the training dataset to
calculate the prediction error as the fitness value of the
particle. The historical optimal position of each particle and
the optimal position of the current population are recorded,
and the inertia weight is updated according to a nonlinear
decreasing strategy. In the initial stage, it is necessary to
maintain a large value to enhance global search capability,
and gradually reduce it in the later stage to refine local
search. Combining individual optimality, global optimality,
and dynamic weights, the velocity and position of particles
are updated according to PSO rules. The crossover operator
of the genetic algorithm is introduced to randomly select
particles for pairing, generate offspring particles to enhance
population diversity, and replace low fitness parents with
non-dominated sorting. If the maximum Nol is reached, the
globally optimal weight and threshold will be output.
Otherwise, it will return to step 2 to continue iterative
optimization. The optimized weights and thresholds are
loaded into BPNN to complete model training and
ultimately used for predicting pipeline failure risk levels.

IV. RESULTS

A. Analysis of the effect of Monte Carlo method

To verify the accuracy and convergence of the Monte
Carlo method in predicting the failure probability of
ACCPN, this study is based on the F101 model and sets the
corrosion depth ratio d/t to two typical operating conditions
of 0.2 and 0.8. Meanwhile, the performance of Monte Carlo
is compared with Latin Hypercube Sampling (LHS) and
First-Order Second Moment method (FOSM) in different
performance dimensions. The experimental parameters
cover typical engineering values such as a pipe diameter of
500mm and a wall thickness of 8mm. Figure 6 shows the
impact of MCS iterations on failure probability prediction.
Figures 6 (a) and (b) show the variation of failure
probability and simulation error with the number of
simulations.

In Figure 6 (a), as the number of MCSs increases from
10° to 109, the failure probabilities at different corrosion
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depths show a convergence characteristic of fluctuating first
and then gradually stabilizing. Among them, the failure
probability fluctuation range of deep corrosion defects with
d/t=0.8 reaches 9% at low frequency (10° times), while it
stabilizes at 93.81%=0.5% after increasing the simulation
frequency to 10° times. The shallow corrosion defect with

d/t=0.2 has less random interference and converges to 13.32%

after 10° simulations, indicating that the deeper the
corrosion depth, the higher the number of simulations
required for convergence. In Figure 6 (b), the absolute error
of MCS significantly decreases with increasing simulation

© o0
fOO 0o -Co_~Pc00cCo0000
(@) -0 @00 0~"0
1% 0 @ ©

100
80

60 © Deep corrosion (d/t=0.8)

A Light corrosion (d/t=0.2)
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Failure probability (%)

(4, 44 VI IVVIVIVIVVVIVVIVA
0 | | | | | |
1x10° 5x10° 1x10* 5x10* 1x10° 5x10° 1x10°
Simulation times
(a) Failure probability varies with
the number of simulations

Relative error (%)

times. When the number of simulations increases from 10°
to 109, the absolute error of deep corrosion defects decreases
from 9.52% to 0.47% at d/t=0.8, and from 4.83% to 0.14%
at d/t=0.2. This indicates that the Monte Carlo method can
compress errors to within #0.5% through 10° simulations,
making it suitable for high-reliability evaluation of deeply
corroded pipelines. Figure 7 compares the predictive
performance of different methods. Figure 7 (a) compares the
failure probabilities of different corrosion models, and
Figure 7 (b) compares the prediction errors of different
simulation methods.

10

—

A —a— Deep corrosion (d/t=0.8)
8 Light corrosion (d/t=0.2)
6
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4
2

I I I I
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Simulation times
(b) Simulation error as a function
of the number of simulations

Figure 6 Monte Carlo influence of simulation times on failure probability prediction
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Figure 7 Comparison of prediction performance of different methods
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Service Time (years)

(b) Comparison of prediction errors of different
simulation methods
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TABLE 2
MONTE CARLO VERIFICATION OF THE COMPREHENSIVE ADVANTAGES OF THE METHOD IN F101 MODEL

Monte Carlo Method

Comparison Dimension

Traditional Methods (LHS/FOSM)

Experimental/Reference Value

Parameter Sensitivity

Distribution Robustness

Computational
Efficiency

Model Adaptability

d/t=0.6, D=500mm, t=8mm
Failure Probability: 65.4%30.5%

Corrosion Depth (Log-Normal) Failure
Probability: 65.4%20.5%
Corrosion Depth (Uniform)
Failure Probability: 65.1%0.6%

10”75 simulations: 120s
Error: 40.5%

Power-Law Corrosion (a=0.78)
Failure Probability: 98.1%30.5%
Linear Model (k=0.05)
Failure Probability: 85.3%+2.1%

LHS: 65.4%=3.2%
FOSM: 68.1%=7.5%

LHS (Uniform): 65.1%43.1%
FOSM (Fixed Mean): 67.9%=7.2%

LHS (10”4 simulations): 60s, +3.2%
FOSM (Analytical): 5s, #7.5%

LHS (Power-Law): 98.1%%3.7%
FOSM (Power-Law): 92.4%=8.3%

Experimental: 64.9%1.5%

Theoretical: 65.2%

Experimental: 97.6%1.8%
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In Figure 7 (a), the failure prediction probability based on
the Monte Carlo method combined with the power-law
model is 98.1% at 40 years of service, significantly higher
than the linear model and two analytical solutions. Its
nonlinear growth trend accurately captures the acceleration
effect of corrosion depth, while the analytical solution
suffers from systematic bias due to neglecting parameter
distribution. The linear model assumes a constant corrosion

rate, and the long-term prediction error accumulates to 5.2%.

In Figure 7 (b), the absolute error of the Monte
Carlo+power-law model remains below 0.5% and does not
increase with service time, while the FOSM error increases
from 2.5% to 8.3% over 40 years due to the failure of
linearization assumptions. This validates the advantages of
Monte Carlo in nonlinear and high-dimensional parameter
scenarios. Table 2 presents the comprehensive advantage
verification results of the Monte Carlo method in the F101
model.

In Table 2, the Monte Carlo method demonstrates
multidimensional advantages in the F101 model. The
sensitivity analysis of its parameters shows that its
prediction error (#0.5%) is reduced by more than 85%
compared to traditional methods, LHS (23.2%) and FOSM
(%7.5%), and is highly consistent with experimental data
(64.9%+1.5%). In terms of distribution robustness, the
difference in failure probability under different parameter

——— Research model

distribution assumptions is only 0.3%, proving its
insensitivity to input distribution. In terms of computational
efficiency, Monte Carlo completes 10° simulations in 120
seconds and achieves an error of #0.5%, balancing speed
and reliability requirements. In terms of model adaptability,
the prediction error of Monte Carlo combined with a
nonlinear power-law model (20.5%) is reduced by 94%
compared to FOSM (28.3%), which verifies its ability to
handle complex dynamic corrosion scenarios.

B. Performance analysis of improved BPNN

BPNN can effectively correlate multi-parameter inputs
with failure risk level outputs through nonlinear mapping
and self-learning capabilities. To verify the performance of
the improved BPNN model in pipeline failure risk
classification, this study compares the performance of
traditional BPNN, Extratrees, and Random Forest based on
1,000 sets of data generated by Monte Carlo (training set:
test set=8:2). The maximum Nol is 400 rounds. PSO adopts
a nonlinear inertia weight (0.9—0.4) and a genetic crossover
operator (crossover probability 0.7). Figure 8 shows the
performance of different algorithms in the training set.
Figures 8 (a) and (b) show the variation curves of precision
and recall of each algorithm with the Nol.

——— Research model

— ——- Extratrees — ——- Extratrees
Random Forest Random Forest
BPNN BPNN
100 100
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Figure 8 Variation curve of precision and recall rate of different algorithms in the training set
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TABLE 3

FAILURE PROBABILITY PREDICTION RESULTS UNDER MULTI-PARAMETER COUPLING

Corrosion Ambient Soil resistivity Failure probability Error of Relative Experimental
growth rate o temperature T/<C p/Q'm (MC-PSO-BPNN) traditional BPNN improvement rate verification value

0.6 25 10 58.2%0.3% 8.70% 15.00% 57.9%+.2%

0.6 35 5 65.4%20.4% 9.30% 14.20% 64.8%+.5%

0.8 25 5 89.7%20.2% 12.10% 13.50% 89.2%+.0%

0.8 35 10 94.5%40.3% 13.60% 14.40% 94.1%+.3%

In Figure 8 (a), in the training set, the precision of the
research method rapidly increases with the increase of
iteration times and stabilizes at over 98.5% after the 100th
round, significantly higher than other methods. This
indicates that the nonlinear weight optimization strategy
effectively improves the model's ability to recognize
positive class samples. Figure 8 (b) shows that the improved
model converges to 97.5% after the 150th round, which is
2.4% to 5.7% higher than traditional BPNN (convergence
value of 90.9%), Extratrees (convergence value of 89.0%),
and Random Forest (convergence value of 92.3%). This
indicates that it can more comprehensively capture actual
failure risk samples and avoid missed detections. Figures 9
(@) and (b) show the variation of precision and recall rates of
four algorithms in the test set with the Nol.

In Figure 9 (a), in the test set, the precision of the research
method remains at 97.2% after 200 iterations, while the
precision of traditional BPNN, Extratrees, and Random
Forest decreases to 85.0%, 87.7%, and 89.9%. This
indicates that the PSO algorithm enhances the model's
generalization ability and reduces overfitting through
dynamic weight adjustment and crossover operators. Figure
9 (b) further shows that the recall rate of the research
method on the test set is 97.1%, a decrease of only 0.4%
compared to the training set, which is much smaller than the
other three methods, verifying its stability under different
data distributions. The regression analysis of the
classification results of the research method in the training
and testing sets is shown in Figure 10.

In Figure 10 (a), in the training set, the predicted risk
level of pipeline failure by the research method is highly
consistent with the actual risk level, and the slope of the
fitted line is close to 1 (Output=0.99*Target+0.015), with a
correlation coefficient of R=0.994. This indicates that the
model can accurately map the nonlinear relationship
between input parameters and risk levels, with a mean
square error of 0.017 in the range of low risk (Level 1) to
extremely high risk (Level 4), verifying its strong fitting

ability during the training phase. In Figure 10 (b), in the test
set, the fitting equation between the predicted results of the
research  method and the true  values s
Output=1xTarget+0.042. The data points are densely
distributed near the diagonal, and the R value remains above
0.991 (R=0.991). Therefore, the research method
significantly improves the accuracy and stability of risk
level prediction through dynamic weight optimization and
crossover operator enhancement, with a tight error
distribution and no systematic bias.

To validate the proposed model's adaptability to
complex multi-parameter coupled scenarios, this study
employs a controlled variable method to design three
representative operating conditions: corrosion growth rates
0=0.6 (moderate corrosion rate) and 0=0.8 (high corrosion
rate), ambient temperatures T=25°C (ambient temperature)
and T=35°C (high-temperature), and soil resistivity p=5Q-m
(high-corrosive environment) and p=10Q'm (moderately
corrosive environment). Through a full-factorial design,
multi-parameter coupled scenarios are constructed. The
model predictions are compared with field experimental
verification values (based on three-year corrosion
monitoring data from X70 steel pipelines at a northeastern
oilfield). The results are presented in Table 3.

In Table 3, the prediction error of the MC-PSO-BPNN
model under multi-parameter coupling conditions remains
below 40.4%, and the maximum deviation from
experimental verification values is only 0.6%, which is not
affected by parameter combinations. In contrast, traditional
BPNN models are unable to capture the nonlinear
interactions between parameters. As the corrosion rate and
environmental corrosiveness increase, the error will
significantly increase (up to 13.6%). The proposed model
demonstrates a stable relative improvement rate of
13.5%-15.0%, effectively validating its high precision and
strong adaptability in complex operating conditions.
Particularly in extreme scenarios with 0=0.8 (high corrosion
rate), T=35°°C (high temperature), and p=10°Q-'m
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(moderate corrosivity), the model accurately captures
accelerated corrosion effects with 99.6% agreement with
experimental values. This model further demonstrates the
critical importance of multi-parameter coupling analysis in
enhancing result significance.

To further validate the advantages of the proposed
framework, this study conducts a systematic comparative
analysis by selecting representative advanced methodologies
from recent literature (References [9], [10], and [12]). All
methods are executed using the same dataset generated
through MCS for identical tasks, with each method
employing either its original literature-reported optimal
parameter configurations or default recommended settings.
The comparative results are presented in Table 4.

TABLE4
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS
Method Precision Recall F1-Score  Accuracy

(%) (%) (%) (%)

MC-PSO-BPNN
(This study) 97.2 97.1 97.15 97.3
IWOA-BPNN [9] 92.5 91.8 92.15 92.7
BES-BPNN [10] 90.0 89.5 89.75 90.2
TSO-BPNN [12] 93.8 92.7 93.25 935

As shown in Table 4, the research method

outperformed the comparison model with 97.3% accuracy.
Its precision (97.2%) and recall rate (97.1%) increased by
4.4 percentage points compared to the second-best
TSO-BPNN model, while the F1 score (97.15%) further
demonstrated balanced performance advantages. This
validates the effectiveness of the integrated Monte Carlo
data generation and improved PSO optimization mechanism.
On one hand, the power-law model-based MC simulation
generated high-fidelity datasets that accurately captured the
nonlinear time-varying characteristics of corrosion depth.
On the other hand, the PSO algorithm incorporating
dynamic inertia weights and genetic crossover operators
significantly enhanced BPNN's weight search efficiency
through a dual-phase optimization strategy combining initial
global exploration with subsequent local fine-tuning. This
approach effectively overcame the common limitation of
traditional intelligent algorithms like whale/owl/schoolfish

optimization, which are prone to getting trapped in local
optima. The results of the robustness test and computational
efficiency comparison of each method for noisy data are
shown in Table 5.

Table 5 presents a comprehensive comparison of the
models' performance in noise resistance and computational
efficiency. In terms of noise resistance, MC-PSO-BPNN
achieves an accuracy rate of 95.6% under 5% Gaussian
noise and maintains 92.3% accuracy even at 10% noise
levels, outperforming IWOA-BPNN by 6.7% and 8.8%.
This superiority over BES-BPNN and TSO-BPNN stems
from the high-fidelity dataset generated through Monte
Carlo methods and the enhanced robustness of the improved
PSO model. Regarding efficiency, the model trained on
1,000 datasets requires only 38.6 s, representing a 31.9%
reduction compared to the slowest BES-BPNN. With a
single prediction time of 0.72 ms and memory consumption
of 128 MB, it significantly outperforms all comparison
models. Balancing precision with real-time engineering
requirements, this framework demonstrates practical value
in complex data environments. To verify the
MC-PSO-BPNN framework's advantages in risk prediction
accuracy, cost-effectiveness, and timeliness for practical
engineering applications, this study selects 72 corrosion
defect points on the X70 steel gathering pipeline network
(total length 82 km) at a northeastern China oilfield as
experimental subjects. Input parameters are obtained
through high-precision ultrasonic thickness gauges for
corrosion depth ratio measurement and pressure sensors for
operational pressure recording. Pipeline age is verified
against construction records, with calibration based on a
comprehensive analysis of actual leakage and maintenance
records from the past three years. Three senior engineers
independently evaluate the benchmark using identical
parameters and grading standards. The experimental process
undergoes double-blind  testing  (separating  model
predictions from human evaluations), with time data
averaged over 10 replicates on Intel Xeon/RTX 6000
platforms. Comprehensive performance and benefit analyses
of the engineering case validation are presented in Table 6.

TABLE 5
EVALUATION OF MODEL NOISE RESISTANCE AND COMPUTATIONAL EFFICIENCY

Evaluation Index MC-PSO-BPNN IWOA-BPNN BES-BPNN TSO-BPNN
Accuracy under 5% Gaussian noise 95.60% 88.90% 87.20% 90.80%
Accuracy under 10% Gaussian noise 92.30% 83.50% 81.70% 85.40%
Training time (1000 datasets) 38.6s 52.4s 56.7s 47.9s
Single prediction time 0.72ms 1.15ms 1.28ms 0.96ms
TABLE 6

COMPREHENSIVE PERFORMANCE AND BENEFIT ANALYSIS OF REAL-WORLD CASE VALIDATION

Evaluation Dimension Specific Metric

MC-PSO-BPNN Model Traditional Manual Assessment

Overall Accuracy 97.2% 80.6%
Recall Rate for High-Risk (Level 3-4) 100% 82.1%
Technical Performance Specificity for Low-Risk (Level 1-2) 96.2% 78.6%
F1-Score (Macro) 97.1% 79.8%
Kappa Coefficient 0.961 0.702
Missed Detection for Extreme-Risk (Level 4) 0/5 1/5
Decision Reliability Misjudgments (Medium—High Risk) 2 11
Prediction Confidence (Avg.) 92.7% 68.4%
Emergency Repair Cost (10* Yuan) 280 320
Economic Indicators Planned Maintenance Cost (10* Yuan) 98 150
Losses from Misjudgment (10* Yuan) 12 86
Total Cost (10* Yuan) 390 556
Timeliness Single-Point Risk Assessment Time 0.8 ms 45 min
Full Network Scan Time (82km) 18 sec 7 days
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As shown in Table 6, the MC-PSO-BPNN model
demonstrates stable performance in practical engineering
applications. In terms of technical performance, the model
achieved an overall accuracy rate of 97.2%, representing a
16.6 percentage point improvement over manual evaluation
(80.6%). Notably, the recall rate for high-risk samples
(Level 3-4) reached 100% (compared to manual evaluation
at 82.1%), with a Kappa consistency coefficient of 0.961,
indicating high reliability in classification results. Regarding
decision reliability, the model accurately identified all five
extremely high-risk points (with one missed by manual
evaluation), while maintaining only 2 cases of misjudgment
for medium-to-high risks (compared to 11 manual cases).
The average prediction confidence of 92.7% significantly
outperformed the manual evaluation's 68.4%. Economically,
the model reduced emergency maintenance costs by 400,000
yuan and minimized production suspension losses from
misjudgments by 740,000 yuan, achieving total operational
cost savings of 1.66 million yuan (a 29.9% reduction). In
terms of assessment efficiency, single-point evaluation took
0.8 milliseconds, while a comprehensive scan of the 82km
pipeline network required merely 18 seconds. These results
demonstrate the framework's practical value in risk
identification accuracy, decision stability, and engineering
application efficiency.

V. CONCLUSION

To improve the accuracy of ACCPN failure assessment,
this study generated a multidimensional random parameter
dataset through MCS and combined it with a power-law
model to describe the nonlinear time-varying characteristics
of corrosion depth. An improved PSO-BPNN model was
designed, incorporating nonlinear inertia weights and
genetic crossover operators to optimize neural network
weights and enhance global search capabilities. In the
experiment, the Monte Carlo method reduced the error to
0.5% after 10° iterations, which improved the precision by
over 85% compared to the traditional method (LHS/FOSM).
The improved PSO-BPNN model achieved a precision of
97.2% and a recall rate of 97.1% on the test set, which was
12.2% higher than the traditional BPNN (85.0% precision).
The prediction error of failure probability for deep corrosion
(d/t=0.8) was only 0.47%, and the correlation coefficient of
risk level classification was R>0.99, which verified the high
accuracy and stability of the model under complex working
conditions. The proposed fusion framework significantly
improved the accuracy of pipeline failure risk assessment
(error<0.5%) and classification reliability (accuracy>97%),
providing data-driven decision support for preventive
maintenance of corroded pipelines. The risk level
classification in this study did not take into account the
impact of pipeline topology on failure propagation. Future
research will introduce graph neural networks to model
network topology associations and enhance system-level
risk assessment capabilities.
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