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Abstract—The anti-corrosion coating of pipeline systems, as 

a key infrastructure in cities and industries, is affected by 

various environmental factors during long-term use, resulting 

in pipeline corrosion and safety hazards. To improve the 

accuracy and reliability of failure assessment of pipeline 

anti-corrosion coatings, this study proposes a backpropagation 

neural network framework that integrates Monte Carlo 

simulation and improved particle swarm optimization. This 

framework generates a dataset covering multidimensional 

random parameters, such as corrosion depth and pipe 

diameter, through the Monte Carlo method, quantifying the 

nonlinear evolution law of corrosion. The dynamic inertia 

weight and genetic crossover operator optimization particle 

swarm algorithm are designed to enhance the global search 

ability and classification accuracy of the neural network. The 

experiment showed that the Monte Carlo simulation reduced 

the error to 0.5% after 106 iterations, and the prediction error 

of deep corrosion failure probability was only 0.47%. The 

improved model achieved a precision of 97.2% and a recall of 

97.1% on the test set, which was 12.2% higher than the 

traditional backpropagation neural network. The risk level 

classification correlation coefficient R was greater than 0.99. 

This framework enhances the accuracy and classification 

reliability of pipeline failure risk assessment through 

data-driven and intelligent optimization collaboration, 

providing technical support for the full lifecycle safety 

management of corroded pipelines. 
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I.  INTRODUCTION 

he pipeline network system is a key infrastructure for 

modern cities and industrial production, and its safe 

operation is related to energy transmission, water supply 

stability, and production continuity. However, under 

long-term service, the Anti-corrosion Coating of the Pipeline 
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Network (ACCPN) is susceptible to performance 

degradation and failure due to the coupling effects of 

multiple factors such as soil chemical properties, microbial 

activity, stray currents, and fluctuations in operating 

conditions, leading to corrosion and perforation of the 

pipeline body. Even more, it can lead to serious 

consequences such as environmental pollution, production 

interruptions, and secondary disasters. Therefore, accurately 

and efficiently assessing the risk of ACCPN failure is of 

crucial practical significance for developing preventive 

maintenance strategies, optimizing asset lifecycle 

management, and ensuring the safe operation of 

infrastructure [1]. The traditional ACCPN failure assessment 

method mainly relies on empirical formulas, deterministic 

models, and on-site detection data. Although these methods 

can provide preliminary diagnosis, they often expose 

shortcomings such as insufficient accuracy and weak 

generalization ability when facing multi-parameter 

uncertainty, nonlinear evolution, and time-varying 

characteristics of corrosion processes under complex 

working conditions [2]. The Monte Carlo method, as a 

numerical simulation technique based on probability 

statistics, can quantify the spatiotemporal evolution of 

pipeline failure probability by constructing a random 

distribution model of input parameters and combining a 

large number of repeated sampling and simulation 

calculations [3]. Back Propagation Neural Network (BPNN) 

constructs a functional relationship from input parameters to 

output results by simulating the nonlinear mapping 

mechanism of human brain neurons. After training with 

historical data, the model can quickly classify the failure 

risk level of pipelines based on real-time detection of 

corrosion defect length, depth, and other features [4]. To 

achieve an accurate assessment of ACCPN failure state, this 

study uses Monte Carlo Simulation (MCS) to generate a 

dataset covering multidimensional random parameters, 

quantifying the nonlinear effects of corrosion kinetics. A 

BPNN model based on dynamic weight optimization is 

designed to achieve intelligent classification of failure risk 

levels. 

The innovation of the research lies in proposing a BPNN 

framework that integrates an improved MCS and Particle 

Swarm Optimization (PSO) algorithm for ACCPN failure 

assessment. By introducing a power-law model to describe 

the nonlinear time-varying characteristics of corrosion depth, 

and using nonlinear inertia weights and genetic crossover 

operators to optimize PSO, the global search capability of 

BPNN is enhanced. The contribution lies in the construction 

of a high-precision and highly robust comprehensive 

evaluation system, which provides a reference basis for the 

full lifecycle risk assessment of ACCPN. 

T 
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II.  RELATED WORKS 

In recent years, the corrosion failure assessment of 

pipeline systems has gradually integrated stochastic 

modeling and data-driven methods. MCS has become a core 

tool for reliability analysis due to its high tolerance for 

parameter uncertainty. Hou et al. proposed a framework 

based on MCS to evaluate the reliability of pipeline 

networks under earthquakes, taking into account spatial 

parameters such as peak ground velocity and pipe wall 

thickness. The redundancy of pipeline network topology 

would affect the evaluation of spatial correlation on 

connectivity reliability, and networks with high redundancy 

would overestimate reliability by ignoring spatial correlation 

[5]. Lin et al. used MCS of random corrosion distribution 

and Euler beam theory to construct a pipe soil interaction 

model for studying the effect of pitting corrosion on the 

buckling of submarine pipelines. Different corrosion 

distribution patterns, even with the same parameters, could 

lead to differentiated buckling displacement and strength 

attenuation [6]. Zhao et al. proposed a source term 

estimation method based on an improved Gaussian plume 

model and UAV laser methane sensing for natural gas 

pipeline leak detection. This method could synchronously 

locate the location and rate of leakage. Simulation 

verification showed that its accuracy was affected by the 

forward model and data reliability, and the inversion 

accuracy could be improved through prior information 

optimization [7]. Proenca et al. proposed an analytical 

model based on compressed wave and Rayleigh wave paths 

to simplify the location of water network leaks, and 

combined it with MCS parameter uncertainty analysis. 

Parameterized research showed that the maximum error of 

dual wave joint positioning was 15 cm, which improved the 

accuracy by 27.4% compared to a single wave path [8]. 

BPNN utilizes its powerful nonlinear mapping and 

self-learning capabilities to predict and evaluate pipeline 

states. Wu et al. proposed a hybrid model built on improved 

WOA and BPNN to improve the accuracy of pipeline 

damage identification. The model was optimized through a 

adaptive coefficients and random optimal replacement 

strategy. This model had a relative error of less than 2.2% in 

locating and predicting the degree of damage to fixed 

pipelines at both ends, and its overall performance was 

better than the comparative model [9]. Yin et al. designed a 

cold finger experiment to analyze the effects of temperature, 

shear force, and other parameters on diesel wax deposition 

pollution during sequential transportation of finished oil 

pipelines in cold regions. The BPNN prediction of 

deposition rate was optimized using the bald eagle search 

algorithm. The sedimentation rate increased with the 

increase of oil temperature and wax content, and the 

accuracy and generalization ability were effectively verified 

[10]. Sun et al. conducted experiments to accurately predict 

the roughness coefficient of sediment containing drainage 

pipes by measuring parameter changes under different 

sediment thicknesses, flow rates, and slopes, and optimized 

BPNN using genetic algorithms. BPNN and the improved 

model have increased the coefficient of determination by 

3.47% and 3.99% compared to the traditional formula, and 

reduced the MAE by 41.18% and 47.06% [11]. Xiao et al. 

predicted the liquid holdup of wet gas pipelines and used 

grey relational analysis to screen seven input parameters, 

including pipe diameter and inclination angle, to construct a 

tuna swarm algorithm to optimize the BPNN model. The 

average absolute percentage errors of upward, downward, 

and horizontal pipelines were 5.32%, 10.19%, and 4.80%, 

with R² exceeding 0.99 [12]. 

In summary, existing Monte Carlo methods mostly focus 

on a single corrosion model, such as linear or static 

distribution, and fail to fully consider the nonlinear changes 

in corrosion rate over time and multi-parameter coupling 

effects, resulting in significant long-term prediction bias. In 

addition, BPNN relies on the traditional gradient descent 

method, which is prone to getting stuck in local optimal 

solutions due to the influence of initial weights, especially 

for predicting high-risk samples with insufficient accuracy. 

Therefore, this study proposes an evaluation framework that 

integrates MCS and PSO-BPNN. This framework accurately 

describes the nonlinear growth of corrosion depth through a 

power law model. At the same time, it introduces a PSO 

algorithm with nonlinear inertia weights and genetic 

crossover operators to optimize BPNN, improve the model's 

generalization performance, and ultimately achieve accurate 

classification of corrosion failure risk. 

 

III.  METHODS AND MATERIALS 

A. Simulation of failure probability distribution of anti 

corrosion coating based on Monte Carlo method 

ACCPN failure assessment needs to take into account 

both parameter uncertainty and corrosion dynamic evolution 

characteristics. Traditional deterministic methods can easily 

lead to prediction bias due to neglecting statistical 

distribution and temporal dependence. Therefore, this study 

constructs a failure probability simulation framework based 

on the Monte Carlo method. The basic idea of MCS is to use 

random numbers to simulate the input variables of a system, 

and calculate the system's output based on the values of 

these input variables. By repeating this process extensively, 

the distribution of output results can be obtained. For the 

failure assessment of ACCPN, the failure probability p  

calculated based on Monte Carlo is shown in equation (1) 

[13]. 

 

 1 2lim ( , , , ) /n n
n

p P h A A A A F E
→

=  =       (1) 

 

In equation (1), ( )h   is the predictive model for the 

critical pressure of pipe rupture. 1 2( , , , )nA A A  is a sample 

dataset generated through independent random sampling 

that conforms to the statistical characteristics of the failure 

variable. F  and E  are the number of data and the total 

number of sample data that are less than or equal to the 

safety threshold. P   is the probability of event ( )h   

occurring. As the sample size approaches infinity, Monte 

Carlo accurately estimates this probability value through a 

large number of random simulations [14]. The probability 

prediction process of Monte Carlo method is shown in 

Figure 1. 

In Figure 1, when using the Monte Carlo method to 

predict the probability of pipeline failure, the Pipeline 

Failure Pressure (PEP) is used as the target variable, and 

related parameters such as pipe diameter and corrosion 

depth are determined. Afterwards, based on historical data 
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and engineering experience, reasonable probability 

distributions are set for these parameters, and the total 

number of simulations is determined. Subsequently, it enters 

the loop simulation phase, randomly selecting a set of data 

from the probability distribution of each parameter and 

substituting it into the critical state function for pipeline 

rupture failure calculation to determine whether the pipeline 

has failed. When the number of simulations reaches the 

preset total, the failure probability of the pipeline is 

calculated by the ratio of the number of failures to the total 

number of simulations. Due to the fact that the target 

variable in MCS is the critical pressure for pipe rupture, i.e., 

the failure pressure, this study mainly focuses on the failure 

risk assessment of this pressure. This study uses the 

Norwegian Classification Society standard F101 to solve 

and predict the PEP networks. The mathematical model of 

this standard is shown in equation (2) [15]. 

 

Determine the probability 

distribution and the 

number of simulations

N

Determine the target 

variables and parameters

Calculate the critical state 

of failure h(A)

F=0,i=1

Generate random Numbers 

to simulate

if h(A) 0，F=F+1

i E？

P=F/E

Y

i=i+1

 

Figure 1 Monte Carlo probability prediction process of the method 
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In equation (2), pF  represents the PEP. t  and T  are 

the pipe wall thickness and pipe service life. ( )L T  denotes 

a function of the relationship between corrosion length and 

time. D  is the pipe diameter,   is the ultimate tensile 

strength, ( )d T  is a function of the relationship between 

corrosion depth and time, and Q  is the coefficient of 

expansion. In this model, the failure pressure has significant 

time-dependent characteristics, so the randomness of 

corrosion parameters can be ignored in probabilistic 

reliability assessment, and conservative evaluation results 

can be predicted based on corrosion defects. Although 

cathodic protection, organic coatings, and other protective 

measures are commonly used in engineering to slow down 

the corrosion process, the corrosion inhibition effect of such 

protective measures will significantly weaken in areas where 

macroscopic defects have already formed in the pipe body. 

Therefore, reasonable simplification should be made in the 

modeling of corrosion evolution [16]. The depth variation of 

corrosion defects on the pipe wall follows a power function 

constitutive relationship, as shown in equation (3). 

 

1
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i
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T

 = −

 −
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 

             (3) 

 

In equation (3), 1T  and 2T  are the times when the 

pipeline experiences longitudinal and transverse corrosion. 

iL  is the initial length of the corrosion defect.   and   

are corrosion growth coefficients, which are determined 

based on historical data and characterize the variation of 

corrosion depth over time. T  is the detection time 

interval. To make the predicted PEP closer to the actual 

situation, this study introduces a variable error between the 

actual value and the predicted value of the failure pressure, 

and corrects the failure pressure obtained from MCS. The 

corrected failure pressure 
pF   is shown in equation (4). 

 

( )20,p rF F M  = + +             (4) 

 

In equation (4), rF  is the predicted value of failure 

pressure. M  represents a variable with a variance of 2 , 

a mean of 0, and follows a normal distribution, while   is 

the average error of failure pressure prediction. The 

probability of pipeline failure is determined by the actual 

values of pipeline working pressure and PEP. The condition 

for pipeline rupture and failure is when the PEP is lower 

than the working pressure inside the pipeline. This study 

defines the critical state as equation (5). 

 

( )

2

p w

w f f f f

h A F P

t
P S X Y Z

D







= −

=   



          (5) 

 

In equation (5), wP  is the working pressure inside the 

pipeline.   is the yield strength of the material. fX , fY , 

and fZ  are temperature, joint, and line coefficients, all 

with values of 1. fS  is the safety factor, taken as 0.8. 

According to the statistical characteristics of pipeline 

corrosion failure cases and structural reliability theory, the 

probability of pipeline failure can be simulated by 

comparing the pipeline working pressure and PEP [17]. The 

probability classification of pipeline failure risk is shown in 

Figure 2. 

In Figure 2, the probability of pipeline failure is divided 

into four risk levels. When the failure probability ranges 

from 0% to 25%, 25% to 50%, 50% to 75%, and 75% to 

100%, the failure risk levels are low, medium, high, and 

extremely high, respectively. After determining the risk 

probability distribution, it is necessary to determine the 

variable data for MCS. This study is based on the 

engineering experience data range of pipeline geometric 

features and material properties, combined with the key 

parameters required for the fracture pressure prediction 

model. A sample dataset covering key parameters such as 

pipe diameter size, pipe wall thickness, operating time, and 

material strength is randomly generated for MCS. Table 1 

shows the types of pipeline distribution and variable 
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parameters. 
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Figure 2 Pipeline failure risk level 

 
TABLE 1  

PIPELINE VARIABLE PARAMETERS AND DISTRIBUTION TYPES 

Pipeline variable 
Distribution 

type 

Standard 

deviation 

Mean 

value 

Yield strength 

ε/MPa 

Log - normal 

distribution 
23.5 480 

Operating pressure 

Pw/MPa 

Gumbel 

maximum 
0.65 7.5 

Defect initial length 
Li/mm 

Log - normal 
distribution 

57.65 95.2 

Pipeline diameter 

D/mm 

Normal 

distribution 
120.2 620 

Ultimate tensile 

strength υ/MPa 

Log - normal 

distribution 
74.67 524 

Pipeline wall 
thickness t/mm 

Normal 
distribution 

0.35 7.3 

 

B. Prediction of pipeline failure risk level based on 

improved BPNN 

The purpose of predicting the risk level of pipeline failure 

is to quantify the comprehensive impact of multidimensional 

parameters such as corrosion defects and pipe performance, 

classify pipeline risk levels, and provide a basis for 

accurately formulating maintenance strategies. BPNN can 

effectively correlate multi-parameter inputs with failure risk 

outputs through nonlinear mapping and self-learning 

capabilities. To achieve accurate classification of pipeline 

risks and reasonable division of failure risk levels, this study 

uses the dataset generated in the MCS to train a BPNN. 

1,000 sets of data are selected from the dataset for the 

construction of a risk level prediction model. The structure 

of the failure risk prediction model based on BPNN is 

displayed in Figure 3. 

In Figure 3, the input layer of the BPNN model includes 

six input feature parameters, including pipeline working 

pressure, pipe diameter, corrosion defect length, and depth. 

According to the empirical formula of equation (6) and 

through repeated experiments, the final number of hidden 

layers is set to 2, with 6 neurons per layer. 

 

02h iH H H= +                 (6) 

 

In equation (6), 0H  and iH  are the number of output 

parameters and input parameters. hH  is the number of 

neurons in the hidden layer. The output features are the four 

failure risk levels of the pipeline. Each hidden layer and 

output layer establishes weight connections with all nodes of 

the previous layer, thereby achieving efficient integration 

and nonlinear mapping of cross-layer features. When 

constructing the network structure, the middle layer neurons 

use the Sigmoid function to provide a stable gradient 

backpropagation path for the feedforward signal processing 

mechanism. The output layer is configured with a Purelin 

linear activation function to ensure that the final output of 

the network is not constrained by the amplitude of nonlinear 

transformations [18]. Due to the use of gradient descent for 

training in traditional BPNN, it is susceptible to the 

influence of thresholds and weights generated by random 

initialization, resulting in the algorithm falling into local 

optima and poor generalization [19]. To address this issue, 

this study introduces an optimized PSO algorithm to 

improve BPNN. The search process of the optimized PSO is 

shown in Figure 4. 
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Figure 3 Structure of failure risk prediction model based on BPNN 
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Figure 4 Search process of PSO algorithm 
 

In Figure 4, in the optimized PSO algorithm, non-linear 

decreasing weights are used instead of the traditional linear 

decreasing strategy, as shown in equation (7). 
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Figure 5 Flow of BPNN algorithm improved by PSO algorithm 

 

In equation (7), I  and maxI  represent the current and 

maximum iteration counts. w  is the inertia weight. maxw  

and minw  are their minimum and maximum values. In this 

strategy, a dynamic inertia weight adjustment strategy is 

adopted to achieve multi-stage search optimization. In the 

initial stage, particles are given higher velocity vectors, 

allowing them to quickly traverse potential optimal regions 

during the global exploration phase of the solution space. As 

the Number of Iterations (NoI) increases, the inertia weight 

is dynamically adjusted through a nonlinear decay function, 

guiding the particle swarm to gradually enter the local 

search stage, where the search range exponentially shrinks 

to the neighborhood of the current optimal solution. When 

the preset maximum NoI is reached, the particle swarm 

mainly relies on individual cognition and social cognition 

components in the velocity update equation, and searches 

within the optimal solution neighborhood with the minimum 

inertia weight. In addition, to ensure the diversity of the 

population in the later stage of the algorithm, this study 

introduces the crossover operator in the algorithm, as shown 

in equation (8) [20]. 

 

( ) (1 2) 1( )sx a gx a gx= −  +             (8) 

 

In equation (8), a  is a random number, [0,1]a  . sx  

and gx  are the positions of the child and parent particles. 

The speed of offspring is shown in equation (9). 

 

( )( ) ( )

( ) (

2

1 )

1

2

gv gv gv
sv

gv gv

+ 
=

+

∣ ∣

∣ ∣
            (9) 

 

In equation (9), sv  and gv  are the positions of the 

child particles and the parent particles. At each iteration, 

particles select from the current population based on the 

crossover probability to construct a matching pool. Two 

particles are randomly paired to generate an equal quantum 

particle set. This offspring particle replaces the parent 

individuals with lower fitness through non-dominated 

sorting, thereby enhancing population diversity [21]. The 

improved BPNN algorithm flow of PSO is shown in Figure 

5. 

In Figure 5, after determining the structure of BPNN, the 

particle swarm parameters are initialized. The position of 

each particle is decoded into the weight and threshold of the 

neural network, and then input into the training dataset to 

calculate the prediction error as the fitness value of the 

particle. The historical optimal position of each particle and 

the optimal position of the current population are recorded, 

and the inertia weight is updated according to a nonlinear 

decreasing strategy. In the initial stage, it is necessary to 

maintain a large value to enhance global search capability, 

and gradually reduce it in the later stage to refine local 

search. Combining individual optimality, global optimality, 

and dynamic weights, the velocity and position of particles 

are updated according to PSO rules. The crossover operator 

of the genetic algorithm is introduced to randomly select 

particles for pairing, generate offspring particles to enhance 

population diversity, and replace low fitness parents with 

non-dominated sorting. If the maximum NoI is reached, the 

globally optimal weight and threshold will be output. 

Otherwise, it will return to step 2 to continue iterative 

optimization. The optimized weights and thresholds are 

loaded into BPNN to complete model training and 

ultimately used for predicting pipeline failure risk levels. 

 

IV.  RESULTS 

A. Analysis of the effect of Monte Carlo method 

To verify the accuracy and convergence of the Monte 

Carlo method in predicting the failure probability of 

ACCPN, this study is based on the F101 model and sets the 

corrosion depth ratio d/t to two typical operating conditions 

of 0.2 and 0.8. Meanwhile, the performance of Monte Carlo 

is compared with Latin Hypercube Sampling (LHS) and 

First-Order Second Moment method (FOSM) in different 

performance dimensions. The experimental parameters 

cover typical engineering values such as a pipe diameter of 

500mm and a wall thickness of 8mm. Figure 6 shows the 

impact of MCS iterations on failure probability prediction. 

Figures 6 (a) and (b) show the variation of failure 

probability and simulation error with the number of 

simulations. 

In Figure 6 (a), as the number of MCSs increases from 

103 to 106, the failure probabilities at different corrosion 
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depths show a convergence characteristic of fluctuating first 

and then gradually stabilizing. Among them, the failure 

probability fluctuation range of deep corrosion defects with 

d/t=0.8 reaches 9% at low frequency (103 times), while it 

stabilizes at 93.81%±0.5% after increasing the simulation 

frequency to 105 times. The shallow corrosion defect with 

d/t=0.2 has less random interference and converges to 13.32% 

after 105 simulations, indicating that the deeper the 

corrosion depth, the higher the number of simulations 

required for convergence. In Figure 6 (b), the absolute error 

of MCS significantly decreases with increasing simulation 

times. When the number of simulations increases from 103 

to 106, the absolute error of deep corrosion defects decreases 

from 9.52% to 0.47% at d/t=0.8, and from 4.83% to 0.14% 

at d/t=0.2. This indicates that the Monte Carlo method can 

compress errors to within ±0.5% through 106 simulations, 

making it suitable for high-reliability evaluation of deeply 

corroded pipelines. Figure 7 compares the predictive 

performance of different methods. Figure 7 (a) compares the 

failure probabilities of different corrosion models, and 

Figure 7 (b) compares the prediction errors of different 

simulation methods. 
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Figure 6 Monte Carlo influence of simulation times on failure probability prediction 
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Figure 7 Comparison of prediction performance of different methods 

 

TABLE 2  
MONTE CARLO VERIFICATION OF THE COMPREHENSIVE ADVANTAGES OF THE METHOD IN F101 MODEL 

Comparison Dimension Monte Carlo Method Traditional Methods (LHS/FOSM) Experimental/Reference Value 

Parameter Sensitivity 
d/t=0.6, D=500mm, t=8mm 

Failure Probability: 65.4%±0.5% 
LHS: 65.4%±3.2% 

FOSM: 68.1%±7.5% 
Experimental: 64.9%±1.5% 

Distribution Robustness 

Corrosion Depth (Log-Normal) Failure 
Probability: 65.4%±0.5%  

Corrosion Depth (Uniform) 
Failure Probability: 65.1%±0.6% 

LHS (Uniform): 65.1%±3.1% 

FOSM (Fixed Mean): 67.9%±7.2% 
Theoretical: 65.2% 

Computational 
Efficiency 

10^5 simulations: 120s 
Error: ±0.5% 

LHS (10^4 simulations): 60s, ±3.2% 
FOSM (Analytical): 5s, ±7.5% 

/ 

Model Adaptability 

Power-Law Corrosion (α=0.78) 

Failure Probability: 98.1%±0.5% 

Linear Model (k=0.05) 
Failure Probability: 85.3%±2.1% 

LHS (Power-Law): 98.1%±3.7% 

FOSM (Power-Law): 92.4%±8.3% 
Experimental: 97.6%±1.8% 
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In Figure 7 (a), the failure prediction probability based on 

the Monte Carlo method combined with the power-law 

model is 98.1% at 40 years of service, significantly higher 

than the linear model and two analytical solutions. Its 

nonlinear growth trend accurately captures the acceleration 

effect of corrosion depth, while the analytical solution 

suffers from systematic bias due to neglecting parameter 

distribution. The linear model assumes a constant corrosion 

rate, and the long-term prediction error accumulates to 5.2%. 

In Figure 7 (b), the absolute error of the Monte 

Carlo+power-law model remains below 0.5% and does not 

increase with service time, while the FOSM error increases 

from 2.5% to 8.3% over 40 years due to the failure of 

linearization assumptions. This validates the advantages of 

Monte Carlo in nonlinear and high-dimensional parameter 

scenarios. Table 2 presents the comprehensive advantage 

verification results of the Monte Carlo method in the F101 

model. 

In Table 2, the Monte Carlo method demonstrates 

multidimensional advantages in the F101 model. The 

sensitivity analysis of its parameters shows that its 

prediction error (±0.5%) is reduced by more than 85% 

compared to traditional methods, LHS (±3.2%) and FOSM 

(±7.5%), and is highly consistent with experimental data 

(64.9%±1.5%). In terms of distribution robustness, the 

difference in failure probability under different parameter 

distribution assumptions is only 0.3%, proving its 

insensitivity to input distribution. In terms of computational 

efficiency, Monte Carlo completes 105 simulations in 120 

seconds and achieves an error of ±0.5%, balancing speed 

and reliability requirements. In terms of model adaptability, 

the prediction error of Monte Carlo combined with a 

nonlinear power-law model (±0.5%) is reduced by 94% 

compared to FOSM (±8.3%), which verifies its ability to 

handle complex dynamic corrosion scenarios. 

 

B. Performance analysis of improved BPNN 

BPNN can effectively correlate multi-parameter inputs 

with failure risk level outputs through nonlinear mapping 

and self-learning capabilities. To verify the performance of 

the improved BPNN model in pipeline failure risk 

classification, this study compares the performance of 

traditional BPNN, Extratrees, and Random Forest based on 

1,000 sets of data generated by Monte Carlo (training set: 

test set=8:2). The maximum NoI is 400 rounds. PSO adopts 

a nonlinear inertia weight (0.9→0.4) and a genetic crossover 

operator (crossover probability 0.7). Figure 8 shows the 

performance of different algorithms in the training set. 

Figures 8 (a) and (b) show the variation curves of precision 

and recall of each algorithm with the NoI. 
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Figure 8 Variation curve of precision and recall rate of different algorithms in the training set 
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Figure 9 Variation curve of precision and recall rate of different algorithms in the test set 
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Figure 10 Regression analysis of classification results 

 
TABLE 3 

FAILURE PROBABILITY PREDICTION RESULTS UNDER MULTI-PARAMETER COUPLING 

Corrosion 

growth rate α 

Ambient 

temperature T/°C 

Soil resistivity 

ρ/Ω·m 

Failure probability 

(MC-PSO-BPNN) 

Error of 

traditional BPNN 

Relative 

improvement rate 

Experimental 

verification value 

0.6 25 10 58.2%±0.3% 8.70% 15.00% 57.9%±1.2% 

0.6 35 5 65.4%±0.4% 9.30% 14.20% 64.8%±1.5% 

0.8 25 5 89.7%±0.2% 12.10% 13.50% 89.2%±1.0% 
0.8 35 10 94.5%±0.3% 13.60% 14.40% 94.1%±1.3% 

 

In Figure 8 (a), in the training set, the precision of the 

research method rapidly increases with the increase of 

iteration times and stabilizes at over 98.5% after the 100th 

round, significantly higher than other methods. This 

indicates that the nonlinear weight optimization strategy 

effectively improves the model's ability to recognize 

positive class samples. Figure 8 (b) shows that the improved 

model converges to 97.5% after the 150th round, which is 

2.4% to 5.7% higher than traditional BPNN (convergence 

value of 90.9%), Extratrees (convergence value of 89.0%), 

and Random Forest (convergence value of 92.3%). This 

indicates that it can more comprehensively capture actual 

failure risk samples and avoid missed detections. Figures 9 

(a) and (b) show the variation of precision and recall rates of 

four algorithms in the test set with the NoI. 

In Figure 9 (a), in the test set, the precision of the research 

method remains at 97.2% after 200 iterations, while the 

precision of traditional BPNN, Extratrees, and Random 

Forest decreases to 85.0%, 87.7%, and 89.9%. This 

indicates that the PSO algorithm enhances the model's 

generalization ability and reduces overfitting through 

dynamic weight adjustment and crossover operators. Figure 

9 (b) further shows that the recall rate of the research 

method on the test set is 97.1%, a decrease of only 0.4% 

compared to the training set, which is much smaller than the 

other three methods, verifying its stability under different 

data distributions. The regression analysis of the 

classification results of the research method in the training 

and testing sets is shown in Figure 10. 
In Figure 10 (a), in the training set, the predicted risk 

level of pipeline failure by the research method is highly 

consistent with the actual risk level, and the slope of the 

fitted line is close to 1 (Output=0.99*Target+0.015), with a 

correlation coefficient of R=0.994. This indicates that the 

model can accurately map the nonlinear relationship 

between input parameters and risk levels, with a mean 

square error of 0.017 in the range of low risk (Level 1) to 

extremely high risk (Level 4), verifying its strong fitting 

ability during the training phase. In Figure 10 (b), in the test 

set, the fitting equation between the predicted results of the 

research method and the true values is 

Output=1×Target+0.042. The data points are densely 

distributed near the diagonal, and the R value remains above 

0.991 (R=0.991). Therefore, the research method 

significantly improves the accuracy and stability of risk 

level prediction through dynamic weight optimization and 

crossover operator enhancement, with a tight error 

distribution and no systematic bias. 

To validate the proposed model's adaptability to 

complex multi-parameter coupled scenarios, this study 

employs a controlled variable method to design three 

representative operating conditions: corrosion growth rates 

α=0.6 (moderate corrosion rate) and α=0.8 (high corrosion 

rate), ambient temperatures T=25℃ (ambient temperature) 

and T=35℃ (high-temperature), and soil resistivity ρ=5Ω·m 

(high-corrosive environment) and ρ=10Ω·m (moderately 

corrosive environment). Through a full-factorial design, 

multi-parameter coupled scenarios are constructed. The 

model predictions are compared with field experimental 

verification values (based on three-year corrosion 

monitoring data from X70 steel pipelines at a northeastern 

oilfield). The results are presented in Table 3. 

In Table 3, the prediction error of the MC-PSO-BPNN 

model under multi-parameter coupling conditions remains 

below ±0.4%, and the maximum deviation from 

experimental verification values is only 0.6%, which is not 

affected by parameter combinations. In contrast, traditional 

BPNN models are unable to capture the nonlinear 

interactions between parameters. As the corrosion rate and 

environmental corrosiveness increase, the error will 

significantly increase (up to 13.6%). The proposed model 

demonstrates a stable relative improvement rate of 

13.5%-15.0%, effectively validating its high precision and 

strong adaptability in complex operating conditions. 

Particularly in extreme scenarios with α=0.8 (high corrosion 

rate), T=35°℃ (high temperature), and ρ=10°Ω·m 
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(moderate corrosivity), the model accurately captures 

accelerated corrosion effects with 99.6% agreement with 

experimental values. This model further demonstrates the 

critical importance of multi-parameter coupling analysis in 

enhancing result significance. 

To further validate the advantages of the proposed 

framework, this study conducts a systematic comparative 

analysis by selecting representative advanced methodologies 

from recent literature (References [9], [10], and [12]). All 

methods are executed using the same dataset generated 

through MCS for identical tasks, with each method 

employing either its original literature-reported optimal 

parameter configurations or default recommended settings. 

The comparative results are presented in Table 4. 

 
TABLE 4  

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS 

Method 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

MC-PSO-BPNN 

(This study) 
97.2 97.1 97.15 97.3 

IWOA-BPNN [9] 92.5 91.8 92.15 92.7 
BES-BPNN [10] 90.0 89.5 89.75 90.2 

TSO-BPNN [12] 93.8 92.7 93.25 93.5 

 

As shown in Table 4, the research method 

outperformed the comparison model with 97.3% accuracy. 

Its precision (97.2%) and recall rate (97.1%) increased by 

4.4 percentage points compared to the second-best 

TSO-BPNN model, while the F1 score (97.15%) further 

demonstrated balanced performance advantages. This 

validates the effectiveness of the integrated Monte Carlo 

data generation and improved PSO optimization mechanism. 

On one hand, the power-law model-based MC simulation 

generated high-fidelity datasets that accurately captured the 

nonlinear time-varying characteristics of corrosion depth. 

On the other hand, the PSO algorithm incorporating 

dynamic inertia weights and genetic crossover operators 

significantly enhanced BPNN's weight search efficiency 

through a dual-phase optimization strategy combining initial 

global exploration with subsequent local fine-tuning. This 

approach effectively overcame the common limitation of 

traditional intelligent algorithms like whale/owl/schoolfish 

optimization, which are prone to getting trapped in local 

optima. The results of the robustness test and computational 

efficiency comparison of each method for noisy data are 

shown in Table 5. 

Table 5 presents a comprehensive comparison of the 

models' performance in noise resistance and computational 

efficiency. In terms of noise resistance, MC-PSO-BPNN 

achieves an accuracy rate of 95.6% under 5% Gaussian 

noise and maintains 92.3% accuracy even at 10% noise 

levels, outperforming IWOA-BPNN by 6.7% and 8.8%. 

This superiority over BES-BPNN and TSO-BPNN stems 

from the high-fidelity dataset generated through Monte 

Carlo methods and the enhanced robustness of the improved 

PSO model. Regarding efficiency, the model trained on 

1,000 datasets requires only 38.6 s, representing a 31.9% 

reduction compared to the slowest BES-BPNN. With a 

single prediction time of 0.72 ms and memory consumption 

of 128 MB, it significantly outperforms all comparison 

models. Balancing precision with real-time engineering 

requirements, this framework demonstrates practical value 

in complex data environments. To verify the 

MC-PSO-BPNN framework's advantages in risk prediction 

accuracy, cost-effectiveness, and timeliness for practical 

engineering applications, this study selects 72 corrosion 

defect points on the X70 steel gathering pipeline network 

(total length 82 km) at a northeastern China oilfield as 

experimental subjects. Input parameters are obtained 

through high-precision ultrasonic thickness gauges for 

corrosion depth ratio measurement and pressure sensors for 

operational pressure recording. Pipeline age is verified 

against construction records, with calibration based on a 

comprehensive analysis of actual leakage and maintenance 

records from the past three years. Three senior engineers 

independently evaluate the benchmark using identical 

parameters and grading standards. The experimental process 

undergoes double-blind testing (separating model 

predictions from human evaluations), with time data 

averaged over 10 replicates on Intel Xeon/RTX 6000 

platforms. Comprehensive performance and benefit analyses 

of the engineering case validation are presented in Table 6. 

 
TABLE 5 

EVALUATION OF MODEL NOISE RESISTANCE AND COMPUTATIONAL EFFICIENCY 

Evaluation Index MC-PSO-BPNN IWOA-BPNN BES-BPNN TSO-BPNN 

Accuracy under 5% Gaussian noise 95.60% 88.90% 87.20% 90.80% 
Accuracy under 10% Gaussian noise 92.30% 83.50% 81.70% 85.40% 

Training time (1000 datasets) 38.6s 52.4s 56.7s 47.9s 

Single prediction time 0.72ms 1.15ms 1.28ms 0.96ms 

 
TABLE 6 

COMPREHENSIVE PERFORMANCE AND BENEFIT ANALYSIS OF REAL-WORLD CASE VALIDATION 

Evaluation Dimension Specific Metric MC-PSO-BPNN Model Traditional Manual Assessment 

Technical Performance 

Overall Accuracy 97.2% 80.6% 

Recall Rate for High-Risk (Level 3-4) 100% 82.1% 

Specificity for Low-Risk (Level 1-2) 96.2% 78.6% 

F1-Score (Macro) 97.1% 79.8% 

Kappa Coefficient 0.961 0.702 

Decision Reliability 

Missed Detection for Extreme-Risk (Level 4) 0/5 1/5 

Misjudgments (Medium→High Risk) 2 11 

Prediction Confidence (Avg.) 92.7% 68.4% 

Economic Indicators 

Emergency Repair Cost (10⁴ Yuan) 280 320 

Planned Maintenance Cost (10⁴ Yuan) 98 150 

Losses from Misjudgment (10⁴ Yuan) 12 86 

Total Cost (10⁴ Yuan) 390 556 

Timeliness 
Single-Point Risk Assessment Time 0.8 ms 45 min 

Full Network Scan Time (82km) 18 sec 7 days 
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As shown in Table 6, the MC-PSO-BPNN model 

demonstrates stable performance in practical engineering 

applications. In terms of technical performance, the model 

achieved an overall accuracy rate of 97.2%, representing a 

16.6 percentage point improvement over manual evaluation 

(80.6%). Notably, the recall rate for high-risk samples 

(Level 3-4) reached 100% (compared to manual evaluation 

at 82.1%), with a Kappa consistency coefficient of 0.961, 

indicating high reliability in classification results. Regarding 

decision reliability, the model accurately identified all five 

extremely high-risk points (with one missed by manual 

evaluation), while maintaining only 2 cases of misjudgment 

for medium-to-high risks (compared to 11 manual cases). 

The average prediction confidence of 92.7% significantly 

outperformed the manual evaluation's 68.4%. Economically, 

the model reduced emergency maintenance costs by 400,000 

yuan and minimized production suspension losses from 

misjudgments by 740,000 yuan, achieving total operational 

cost savings of 1.66 million yuan (a 29.9% reduction). In 

terms of assessment efficiency, single-point evaluation took 

0.8 milliseconds, while a comprehensive scan of the 82km 

pipeline network required merely 18 seconds. These results 

demonstrate the framework's practical value in risk 

identification accuracy, decision stability, and engineering 

application efficiency. 

 

V.  CONCLUSION 

To improve the accuracy of ACCPN failure assessment, 

this study generated a multidimensional random parameter 

dataset through MCS and combined it with a power-law 

model to describe the nonlinear time-varying characteristics 

of corrosion depth. An improved PSO-BPNN model was 

designed, incorporating nonlinear inertia weights and 

genetic crossover operators to optimize neural network 

weights and enhance global search capabilities. In the 

experiment, the Monte Carlo method reduced the error to 

0.5% after 106 iterations, which improved the precision by 

over 85% compared to the traditional method (LHS/FOSM). 

The improved PSO-BPNN model achieved a precision of 

97.2% and a recall rate of 97.1% on the test set, which was 

12.2% higher than the traditional BPNN (85.0% precision). 

The prediction error of failure probability for deep corrosion 

(d/t=0.8) was only 0.47%, and the correlation coefficient of 

risk level classification was R>0.99, which verified the high 

accuracy and stability of the model under complex working 

conditions. The proposed fusion framework significantly 

improved the accuracy of pipeline failure risk assessment 

(error≤0.5%) and classification reliability (accuracy>97%), 

providing data-driven decision support for preventive 

maintenance of corroded pipelines. The risk level 

classification in this study did not take into account the 

impact of pipeline topology on failure propagation. Future 

research will introduce graph neural networks to model 

network topology associations and enhance system-level 

risk assessment capabilities. 
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