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Abstract—This research focuses on discovering new theorems
regarding dominating sets in graphs, specifically on P,>F> and
mP,, and their application in designing planting patterns for
forecasting NPK nutrient needs in crops. The dominating set is
a concept in graph theory that plays a crucial role in optimizing
various systems, including agriculture. By utilizing planting
patterns optimized through dominating set theory, this study
proposes a Graph-Assisted Long Short-Term Memory (LSTM)
model—an adaptation inspired by the Graph-Based LSTM
(GLSTM) framework. Unlike conventional GLSTM models
that integrate graph adjacency structures directly into LSTM
layers, our method applies graph theory as a preprocessing
step to determine optimal sensor placement. The selected
dominator nodes then serve as inputs to a standard LSTM
model, enabling efficient multivariate time-series forecasting of
NPK requirements. The results show that this integration not
only reduces the number of sensors needed for data collection
but also improves the accuracy of nutrient forecasting, with
the best Mean Squared Error (MSE) value of 0.00053. This
approach offers a novel hybrid framework with the potential to
enhance agricultural efficiency and productivity through more
optimal resource utilization.

Index Terms—Dominating set, LSTM, precision agriculture,
time series forecasting.

I. INTRODUCTION

Ominating set is one of the important topics in graph

theory. Let G be a connected graph of order n with
vertex set V(G) and edge set E(G) [1], [2], [3]. A set of
vertices D is called a dominating set for a graph G if every
vertex is either in D or adjacent to a vertex in D [4], [5].
Formally, the vertex set D C V(G) is a dominating set of
graph G if for every vertex z € V(G) \ D, there exists at
least one vertex u € D such that x ~ u, where the notation
x ~ u means that vertex = is adjacent to vertex u [6].
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The minimum cardinality of a dominating set in graph G is
called the domination number and is denoted by v(G) [7],
[8], [9]. Ore et al. defined the dominating set as a subset
D of V(G) for a graph G. Other definitions of dominating
sets have also been proposed, such as those by Chartrand,
Lesniak, and Haynes et al. Among various definitions, the
most commonly accepted is that a set of vertices D C V
in a graph G = (V, E) is a dominating set if every vertex
v € V'\ D is adjacent to at least one vertex in D.

The domination number v(G) is the minimum number
of vertices in a dominating set of G [10], [11]. Many
researchers have studied this topic. For example, Booth and
Johnson [12] investigated dominating sets in chordal graphs,
while Bertossi [13] studied them in split and bipartite graphs.
Roifah and Dafik [14] explored dominating sets in special
types of graphs, such as complete, cycle, and path graphs.
Further studies can be found in [15], [16], [17], [18], [19].

Dominating sets have practical applications in various
fields, including agriculture. One such application is in
cropping patterns, which involve the efficient arrangement
of crops to meet specific objectives. Factors such as planting
rates, crop spacing, and crop management are central to
cropping pattern design [20]. For optimal plant growth and
productivity, fertilizers such as NPK (Nitrogen, Phosphorus,
and Potassium) must be used efficiently [21]. This not
only promotes healthy plant development but also mitigates
environmental issues such as soil and water pollution.
Therefore, advanced and accurate forecasting techniques are
essential for determining appropriate NPK requirements.
This study employs deep learning techniques, specifically
Long Short-Term Memory (LSTM), a branch of machine
learning that excels in sequential data prediction [22].

LSTM is an advanced variant of the Recurrent Neural
Network (RNN), designed to overcome issues like the
vanishing gradient problem and loss of historical information
during training [23]. It can capture both short-term and
long-term dependencies in data, making it well-suited for
time series modeling. The LSTM architecture includes three
core gates—forget gate, input gate, and output gate—that
regulate the flow of information. These gates allow the
network to discard irrelevant information and retain essential
patterns, thus enhancing accuracy and learning efficiency. In
contrast to traditional RNNs that rely solely on functions
like tanh, LSTM offers a more robust architecture capable
of capturing long-term relationships [24].

The versatility of LSTM models has been demonstrated
in numerous domains, achieving state-of-the-art performance
in various predictive tasks. For example, hybrid models
combining LSTM and ARIMA have improved prediction
accuracy for stock prices [24]. In agriculture, LSTM has
shown promise in managing water resources and forecasting
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nutrient requirements for crops, especially for NPK [25].
In engineering, LSTM has been utilized to estimate
the axial compression capacity of CCFST columns [26].
Moreover, Attention-GRU models have introduced attention
mechanisms for tasks like predicting NOx emissions in
thermal power plants [27]. Additional studies highlight the
importance of parameter tuning in LSTM, especially when
working with small datasets, to achieve optimal model
performance [28].

The novelty of this study lies in the integration of
dominating set theory for optimal sensor placement with
a multivariate LSTM model for nutrient prediction. Unlike
prior works on Graph-based LSTM (GLSTM) which
integrate graph adjacency structures into neural network
computations [29], our approach utilizes dominating set
theory as a preprocessing step to select representative input
points for training a conventional LSTM. This hybrid setup
is herein referred to as a Graph-Assisted LSTM. Based on
the stated motivations, the proposed research questions are:

1) What are the dominating set and domination number
for the graphs P, > F3 and mP,? These graphs
are used in the planting design to determine optimal
locations for placing NPK sensors.

2) How can LSTM be used for NPK forecasting? The aim
is to identify the optimal time to reapply NPK so that
crops do not suffer from nutrient deficiencies.

II. METHOD

This research employs both analytical and experimental
methods. The analytical component uses a deductive
mathematical approach to establish the theoretical
foundation, while the experimental component involves
simulations using computer programming [30], [31].
Nitrogen level forecasting is conducted using the Long
Short-Term Memory (LSTM) method. Additionally, the
planting process is modeled using dominating set theory to
determine optimal sensor placement.

A. Dominating Set

The following definitions related to dominating set
theory are used to construct theorems for determining the
domination number.

Definition 1: A set D C V(G) is called a dominating set
of graph G if every vertex in V(G) \ D is adjacent to at
least one vertex in D. The minimum cardinality of such a
set is called the domination number, denoted by ~(G). If a
dominating set has cardinality v(G), it is called a v-set [32],
[33].

The following theorem provides a lower bound that
supports the derivation of new domination numbers in the
context of planting design graphs.

Theorem 1: Let G be any graph. Then,

p
R | @ -2

where p is the number of vertices and A(G) is the maximum
degree of the graph.

B. Long Short-Term Memory (LSTM)

This study also examines the application of dominating
set theory in conjunction with time series forecasting using
Long Short-Term Memory (LSTM). The architecture used in
this study is illustrated in Fig. 1.
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Fig. 1: LSTM model architecture.

Several steps are required in this architecture to optimize
performance. The mathematical formulation of the LSTM
algorithm is outlined below.

1) Forget Gate: The first step in the LSTM unit is to
determine which information should be removed from the
memory cell. This is achieved using the forget gate, which
applies a sigmoid activation function:

fi=o (Wf : [h;ﬂ + bf)

where f; is the forget gate vector at time ¢, o is the sigmoid
activation function, Wy is the weight matrix, h;_; is the
previous hidden state, x; is the current input, and by is the
bias term.

2) Input Gate: Next, the input gate determines what new
information will be stored in the cell state. It consists of
two components: a sigmoid function and a candidate value

generator.
’it =0 (WL . |:ht_1:| + bL>
Tt

ét = tanh <WC . l:h;_l] + bc)
t

where 4, is the input gate vector, Cy is the candidate cell
state, W; and W are weight matrices, and b; and bo are
bias terms.

3) Update Cell State: The updated cell state C; is
computed by combining the effects of the forget gate and
the input gate:

Cy = fr+ Ciy +1iy % Cy
where Cy_; is the previous cell state.
4) Output Gate: Finally, the output gate determines the
next hidden state:

hi—q

%:dwy[$]+m

t

hy = oy x tanh(Cy)

where o; is the output gate vector, h; is the hidden state
output, W, is the weight matrix, and b, is the bias.
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C. Data and Setup

The dataset used in this study was obtained from Kaggle
and consists of second-order time-series data for three
variables: nitrogen (N), phosphorus (P), and potassium (K).
These variables were measured on 25 plants over 400
days, with measurements recorded every 12 hours. Data
normalization was performed using the min-max method to
ensure uniformity.

The dataset was divided into three subsets: training data
(70%), validation data (15%), and testing data (15%). The
LSTM model was trained on the training set and validated
to determine optimal hyperparameters. The final model
configuration includes two LSTM layers with approximately
100 neurons, a learning rate of 0.001, a batch size of 64,
a dropout rate of 0.3, an Adam optimizer, a time step
sequence of 10, and a mean squared error (MSE) as the loss
function. All computations and simulations were conducted
using Google Colab.

III. RESULT AND DISCUSSION
A. Implementation of Dominating Set Theory

Dominating set theory is applied in this study to determine
optimal sensor placement within a farmland. This strategic
placement enables efficient and accurate data collection while
minimizing the number of required sensors. In this section,
we present proofs of the domination number for the graph
P, > F5 and the graph mP,. These theorems are used to
establish the minimum number of sensors needed for nutrient
monitoring.

Theorem 2: Let G be a graph isomorphic to P, > Fo.
Then, the domination number of P, > F, is v(G) =n — 1.

Proof: Let P, > F, be a connected graph with
vertex set V(P, > F2) = {w;,z;,yk, 2 1 < ¢ <
n,1 < j,k,1 < n — 1}, and edge set E(P, > Fp) =
{uiu,;+1, Uiqy Ui 1 T4, TiYiy TiRiy Yi 2 - 1 S 7 S n — 1}

The graph contains 4n—3 vertices and 6(n—1) edges. The
maximum degree in P, > F5 is 4. To construct a minimal
dominating set, we examine the neighborhood structure of
the graph. By selecting one vertex from each F» subgraph,
we ensure that every non-dominating vertex is adjacent to at
least one vertex in the dominating set. Thus, (P, > F) >
n— 1.

Conversely, since the highest degree occurs at vertices
{u; :2<i<n-—1}and {z; : 1 < i < n—1}, we
select {x; : 1 < i < n — 1} as the dominating set D. It is
easy to verify that all vertices u;, yx, and z; are adjacent to
at least one vertex in D, implying v(P, > F3) <n — 1.

Since both bounds are equal, we conclude that (P, >
F3) =n— 1. The example of dominating set of P> F5 can
be seen in Fig. 2. [ |

Theorem 3: Let G be a disjoint union of path graphs
denoted by mP,,. Then, the domination number of mP, is
(@) =m(5].

Proof: Let mP,, be a disjoint union of m path graphs,
each of length n. The vertex set is defined as V(mP,) =
{vij :1 <4< n1 < j < m}, and the edge set is
E(mPn) = {’Ui’jvi+17j 01 S 1 S n — ].,1 S ] S m}
The graph has nm vertices and m(n — 1) edges.

Since the paths are disjoint, the domination number of
mP, is simply the sum of the domination numbers of each

[ 4 4 @ @ @
Vi Vo Vi Vi Vs
@ @ . 4 @ @
Viz Vo V3o Vo Vs
@ @ 4 4 @
Vis Va3 Vi Va3 Vs3

Fig. 3: (a) 3Py, (b) v(3P;) =6

path. The domination number for a single path P, is Fﬂ,
thus the domination number for m disjoint paths is m | % |.
The example of dominating set of 3P, can be seen in Fig.
3. ]

Theorem 4: Let G be a graph isomorphic to P, > S,,.
Then, v(G) = n.

Proof: Let P, > S,, be a connected graph with vertex
set V(P, > Sy) ={z;1<i<ntU{z;;;1<i<n, 1<
j < m} and edge set E(P, > S,,) = {ziz;;;1 < i <
n,1<j<mlU{zzit1;1 <i<n}

The graph contains mn+n vertices and mn-+n—1 edges.
The maximum degree in P, > S, is n 4+ 2. To construct
a minimal dominating set, we examine the neighborhood
structure of the graph. By selecting one vertex from each
S, subgraph, we ensure that every non-dominating vertex is
adjacent to at least one vertex in the dominating set. Thus,
7(P77, > Sm) Z n.

Conversely, since the highest degree occurs at vertices
{z;;1 < i < n}, we select {z;;1 < ¢ < n} as the
dominating set D. It is easy to verify that all vertices x; ;
are adjacent to one vertex in D, implying v(P,, > Sp,) < n.

Since both bounds are equal, we conclude that (P, >
Sm) =n for n > 2 and m > 3. The example of dominating
set of P, >> .S, can be seen in Fig. 4. [ |

X110 X2 X13 X071 X2 Xo3 X371 X32 X33 Xy1 Xy2 Xy3

NAA A

Fig. 4: ’y(P4 > 53) =4

Theorem 5: Let G be a graph isomorphic to P, > Fry,.
Then, v(G) = n.

Proof: Let P,, > F'ry, be a connected graph with vertex
set V(P, > Frp) = {z51 <@ < npU{y 2,1 <
i < n,1 < j < m} and edge set E(P, > Fry,) =
{xiyi,j,xizi’j;l <i<nl << g < m} @] {yi,jzi’j;l <
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1 <n,1 <j<m}U{r;z,11;1 <i<n}

The graph contains 2mn + n vertices and 3mn +n — 1
edges. The maximum degree in P, > Fry, is 2n + 2.
To construct a minimal dominating set, we examine the
neighborhood structure of the graph. By selecting one
vertex from each F'r,, subgraph, we ensure that every
non-dominating vertex is adjacent to at least one vertex in
the dominating set. Thus, v(P, > Fr,,) > n.

Conversely, since the highest degree occurs at vertices
{z;;1 < i < n}, we select {z;;1 < i < n} as the
dominating set D. It is easy to verify that all vertices
yi,; and z;; are adjacent to one vertex in D, implying
v(P, > Fry,) < n.

Since both bounds are equal, we conclude that (P, >
Fry,,) =nforn > 2and m > 2. The example of dominating
set of P, > F'ry, can be seen in Fig. 5. [ |

Z Y2 Zy4 Yoo
yl,lwzl,z yz,lwzz,z Vi
Xy Xy

Flg 5: ’}/(Pg I>F’I°2):3

Theorem 6: Let G be a graph isomorphic to P, > C,,.

n, for m =3
Then, 7(G) = { 2[5 + [ 5], form =4
n[ %], for m > 5.

Proof: Let P, > C}, be a connected graph with vertex
set V(P, > Cp) = {z:;51 <1 <n,1<j < m}and
edge set E(P, > Cp,) = {x;jxij41;1 <i<n,1 <5<
m—1}U{z;12im; 1 <i<n}U{z;1mi411;1 <i<n-1}.
The graph contains mn vertices and mn + n — 1 edges.

Untuk membuktikan teorema ini, kita akan membagi
pembuktian menjadi beberapa kasus yaitu kasus saat m =
3,m =4, dan m > 5.

Case 1. m = 3.

To construct a minimal dominating set, we examine the
neighborhood structure of the graph. By selecting one vertex
from each C's subgraph, we ensure that every non-dominating
vertex is adjacent to at least one vertex in the dominating set.
Thus, v(P, > C3) > n.

Conversely, since the highest degree occurs at vertices
{z;1;1 < i < n}, we select {z;1;1 < ¢ < n} as
the dominating set D. It is easy to verify that all vertices
z;2 and x; 3 are adjacent to one vertex in D, implying
v(P, > C3) <n.

Since both bounds are equal, we conclude that (P, >
Cp)=nforn>2and m=3.

Case 2. m = 4.
To construct a minimal dominating set, we examine the
neighborhood structure of the graph. By selecting two
vertices from each odd-indexed C; subgraph and one vertex
from each even-indexed C; subgraph, we ensure that every
non-dominating vertex is adjacent to at least one vertex in
the dominating set. Thus,

(P> Cy) > 2 [ﬂ + PJ .

3 2

Next, we will prove the upper bound of v(P,, > Cy) by

defining a dominating set D. We define D = {z; 1, %;3;1 =

1 (mod 2),1 <i<n}U{x;3;¢=0 (mod 2),2 <i<n}.
It is easy to verify that all vertices V (P, > C;) — D are
adjacent to one vertex in D, implying

n

esc <324 2]

Since both bounds are equal, we conclude that (P, >
Cm) =v(Pa>Cy) <2[2] + |2] forn >2and m = 4.
The example of dominating set of P, > Cy can be seen in
Fig. 6.

X] 3 X5 3 X33 X43
X1,1 X1 X3,1 Xy1

Fig. 6: ’)/(P4 > 04) =6

Case 3. m > 5.

To construct a minimal dominating set, we examine the
neighborhood structure of the graph. We know that P, > C,,
is is a graph obtained by taking one copy of P, and |V (P,)]
copies of Cy, and grafting the i—th copy of C,, at the vertex
xp to the 21-th vertex of P,. v(Cp) = [%]. So we have
Y(Py > Cyn) = n [ 2] for n > 2 and m > 5.

Next, we will prove the upper bound of v(P,, > C,,) by
defining a dominating set D. We define D = {xi’j; 1< <
n,j =1 (mod 3),1 < j < m}. It is easy to verify that all
vertices V (P, > Cy,,) — D are adjacent to one vertex in D,
implying

Y(P, > Ch) <n {%-‘ .

Since both bounds are equal, we conclude that (P, >

Crm) =n 2] forn > 2 and m > 5.
|

Precision agriculture has become an increasingly important
topic, as it enables farmers to make informed decisions
regarding agricultural strategies. In this study, the proposed
model leverages a structured dataset to recommend optimal
cropping patterns that minimize the number of NPK sensors
required for monitoring. An example of horizontal farming
implementation is depicted in Fig. 7, where the planting
pattern is modeled using the graph Py > F.

In this graph, each vertex represents a crop. By
applying dominating set theory, seven dominator vertices are
identified, each representing a crop that will be equipped
with a sensor. Forecasting of N, P, and K nutrient levels is
then conducted specifically for these dominator vertices.

B. Implementation of LSTM

Assuming that each dominator on the farm has been
identified, the following input data can be used

_Jos
Tt = 0.1
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Fig. 7: The Illustration of Horizontal Farming using
Dominating Set

1) Weight and Bias Initialization: Assume we have two
units in the LSTM layer. So, we will have the following
weight and bias matrix:

0.1 0.2 o1 0.3 0.4
Wr= (03 04, bf:[o'l}, W,= 105 06|,
0.5 0.6 ' 0.7 0.8
04 05
by = {82] Wr= 106 07|, b= [g'ﬂ
' 0.8 0.9 '

Initialize the state of the hidden cells and outputs:

0.0 0.0
Ci1= [0.0] = [0.0]

2) Steps of LSTM:
a. Calculate forget gate f;:

fe=0W;y - [ht—1,2] + by)

01 02
=003 04 [8'8}“0.1]
05 0.6 L
0.12 0.5300
=010.26| = |0.5650
0.4 0.5987

b. Calculate the input gate i;:

it = O'(Wi . [h‘t—17xt] + bz)

0.2 0.3
=004 05 -{0'0] + [0'2}

06 07 0.0 0.2
0.25 0.5622
=0 (0.39| = |0.5960
0.53 0.6293

c. Calculate the new candidate value C;:

Cy = tanh(W, - [hy—1, x¢] + be)

0.3 0.4
=tanh [0.5 0.6 -[0'0] + [0'3}

07 08 0.0 0.3
0.35 0.3366
= tanh [0.56| = [0.5086
0.77 0.6293

d. Update cell state C;:
Ci = fy * Cr1 + i+ Cy

0.5300 0.0 0.5622 0.3366
= 10.5650| x 0'0 + 10.5960| = [0.5086
0.5987 e 0.6293 0.6479

[0.1892

= 10.3033

0.4076

e. Calculate output gate oy:

or =0 (W - [hi1, 4] + bo)

0.4 0.5 o
=006 0.7 o]+ [04]
0.0
0.8 0.9
0.45 0.6106
=0 [0.71| = [0.6700
0.97 0.7252

f. Calculate output hy:
hi = o4 x tanh(C})

0.6106 0.1892
= [0.6700 0.3033
0.7252 0.4076

0.1142
0.1974
0.2805

* tanh

0.6106
= [0.6700
0.7252

0.1871
0.2948
0.3866

In this study, a Graph-Assisted Long Short-Term Memory
(LSTM) model is utilized to forecast future values in
a multivariate time series, specifically nutrient levels in
agricultural soil. The “graph-assisted” aspect refers to the use
of dominating set theory as a preprocessing step to determine
optimal sensor placements. Only the sensor locations
identified as dominator nodes are used as input sources for
the LSTM model, thereby reducing data dimensionality and
optimizing input relevance.

The forecasting performance of the LSTM depends on
several key processes. The first step involves analyzing the
characteristics or patterns within the time series data, such
as trends, seasonality, and noise, all of which significantly
influence the model’s predictive capability. In this study, the
nutrient time series (nitrogen, phosphorus, and potassium)
exhibit seasonal patterns, as the concentration levels in the
soil tend to decrease approximately every ten days.

After the pattern analysis, the dataset is divided into three
subsets: training, validation, and testing. A larger proportion
is allocated to the training set to enable the model to learn
more effectively from the available data, thus improving its
generalization and forecasting accuracy. The integration of
dominating set theory ensures that the input fed into the
LSTM model is both representative and optimized, aligning
with the objectives of precision agriculture and resource
efficiency.

Before implementing the LSTM model, it is essential to
assess the correlation between the features to be predicted.
Correlation is a statistical metric used to quantify the
strength and direction of the relationship between two
or more variables. The correlation results for nitrogen
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TABLE I: Correlation Value of N, P, K Features

N P K
N 1.000 0985 0.989
P 0985 1.000 0.987
K 0989 0.987 1.000

(N), phosphorus (P), and potassium (K) are presented in
Table I. As shown, the correlation between N and P
is approximately 0.985, indicating a very strong positive
relationship. Similarly, the correlation between N and K is
about 0.989, while that between P and K is approximately
0.987, both also representing strong positive associations.
These results suggest that increases in one nutrient level are
likely to coincide with increases in the others. Overall, the
high correlation coefficients (close to 1) confirm that the
three features tend to move together over time. Following
this analysis, the prediction process using the LSTM model
is conducted.

Furthermore, the construction of sequential data for LSTM
input is commonly referred to as a time step, which
represents the number of previous time intervals used to
predict the next value in a time series. In this study, the term
time step is equivalent to the window size, which defines the
length of historical data observed for forecasting. A window
size of 5 is utilized, meaning the model makes predictions
based on the five previous time steps.

The proposed model consists of three main components:
an input layer, an LSTM layer, and two dense layers. The
input layer serves as the entry point and specifies the shape
of the input data. In this case, the input shape is (5,3),
indicating a time window of 5 steps with 3 features (N, P,
and K).

The LSTM layer, as the core component of the model,
processes the sequential data and captures long-term
dependencies. This layer contains 20 LSTM units, each
responsible for learning temporal patterns from the input
sequences.

The model includes two dense layers: a hidden dense layer
and an output dense layer. The hidden dense layer comprises
10 fully connected units activated by the ReLU (Rectified
Linear Unit) function, which introduces non-linearity into
the model. The output dense layer has 3 units, each
corresponding to a predicted value for N, P, and K.
This layer uses a linear activation function, suitable for
continuous-valued outputs typically required in forecasting
tasks.

In summary, the model receives input data with a shape of
(5,3), processes it through the LSTM and dense layers, and
generates numerical predictions with an output dimension of
3.

The training process is carried out using the training
and validation datasets to evaluate model performance. Key
hyperparameters used include activation functions (ReLU
and linear), number of epochs, learning rate, and optimizer.
In this study, variations in the number of epochs and LSTM
units were tested to identify the optimal configuration.

After training and validation, the model was evaluated
using the testing dataset. Among the tested configurations,
the best result was achieved with 150 epochs and 20 LSTM
units. The model was tested on 50 data points representing

15% of the total dataset allocated for testing. The results
indicate that the model effectively captured the underlying
patterns, with predicted values closely aligning with the
actual data, demonstrating high forecasting accuracy.

Multivariate forecasting of nitrogen (N), phosphorus (P),
and potassium (K) content was performed using the LSTM
model, configured with a window size of 5, 20 neurons, and
150 training epochs. This configuration yielded a low training
error of 0.00053, indicating high model accuracy. A window
size of 5 corresponds to forecasting nutrient values five days
ahead. The prediction results for the dominator node X2
closely followed the actual data trend, which exhibited a
consistent downward pattern. This alignment is illustrated
by the four predicted data points shown in Fig. 8.

To evaluate the effectiveness of the proposed model, a
comprehensive performance comparison was conducted
against several benchmark  approaches, including
LSTM-ARIMA [24], conventional LSTM [18], CNN-LSTM
[20], and Attention-GRU [27]. The comparison results are
presented in Table II. Across all performance metrics—Root
Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Accuracy, and the coefficient of determination
(R?)—the Graph-Assisted LSTM consistently outperformed
the other methods. In particular, it achieved the lowest
RMSE (4.5938) and MAE (3.8235), as well as the highest
accuracy (0.8335) and R? value (0.7253). These results
demonstrate the superiority of our approach in forecasting
and monitoring NPK nutrient requirements in crops,
validating the effectiveness of incorporating dominating set
theory for optimized sensor input selection. A visualization
comparing the proposed method with other models is
presented in Fig. 9.

Advanced models such as Gated Recurrent Unit (GRU)
and Temporal Fusion Transformer (TFT) emerge as close
competitors to LSTM, exhibiting relatively low RMSE
values and demonstrating the ability to capture long-term
dependencies in sequential data. However, both models still
fall short of the final performance achieved by the proposed
Graph-Assisted LSTM, which consistently yields the lowest
RMSE and MAE values, along with the highest accuracy
and R? across all evaluated metrics. This improvement is
attributed to the integration of dominating set theory, which
effectively selects the most representative and informative
sensor locations—reducing noise and redundancy in the input
space—before training the LSTM. In contrast, traditional
statistical models such as Auto-Regressive Integrated Moving
Average (ARIMA) and Support Vector Regression (SVR)
display significantly higher error values, highlighting their
limited capacity to handle nonlinearities and complex
temporal dynamics inherent in multivariate agricultural
datasets.

Additionally, their convergence behavior is slower and less
stable, as observed from the training loss curves, which
contrasts with the smoother and more consistent declines
demonstrated by the advanced deep learning methods. The
graphical comparison further reinforces the robustness of
the Graph-Assisted LSTM model, as its RMSE steadily
decreases across epochs, reflecting its strong generalization
and learning efficiency. These results underscore the
importance of combining graph-theoretic optimization with
deep learning, positioning the proposed model as a superior
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Fig. 8: NPK Forecasting Result for 5 Days Ahead on Dominator X2

TABLE II: The Comparison of Graph-Assisted LSTM with Other Methods

Metric LSTM [18] CNN-LSTM [20] LSTM-ARIMA [24] Attention-GRU [27]  Graph-Assisted LSTM (Our Work)
RMSE 8.2030 6.7632 5.4038 5.0251 4.5938
MAE 6.0362 5.4523 4.2103 3.9856 3.8235
Accuracy 0.4836 0.6745 0.7832 0.8123 0.8335
R2 0.1623 0.5732 0.6891 0.7123 0.7253

solution for forecasting nutrient requirements in precision
agriculture.

The integration of dominating set theory and Long
Short-Term Memory (LSTM) in this research is formulated
as a Graph-Assisted LSTM framework, presenting a novel
and practical approach to optimizing precision agriculture
systems. Rather than modifying the internal structure
of the LSTM, this approach leverages graph-theoretic
principles—specifically,  dominating  set  theory—to
preprocess spatial data and select a minimal yet
representative subset of sensor nodes. Based on the
established theorems and graph configurations (P, > I, and
m£P,), the minimal number of dominator nodes is identified,
leading to an efficient placement strategy. This optimization
is not only mathematically valid but also impactful in
reducing hardware costs and energy consumption in field
implementations.

Furthermore, the forecasting accuracy achieved by the
Graph-Assisted LSTM model demonstrates strong predictive
capabilities, achieving a minimum Mean Squared Error
(MSE) of 0.00053. When compared to other state-of-the-art
models such as ARIMA, SVR, GRU, and TFT, the
Graph-Assisted LSTM outperformed all in terms of RMSE,
MAE, Accuracy, and R2. These quantitative metrics are

supported by visual comparisons in Fig. 9 and the
summary in Table II, reinforcing the statistical and practical
significance of the model.

In real-world applications, this hybrid integration
has direct implications for sustainable agriculture. By
minimizing sensor deployment while improving prediction
precision, the proposed method contributes to better nutrient
management, reduced environmental impact, and increased
crop productivity. Additionally, the strong correlation
among N, P, and K variables supports the robustness of
the multivariate forecasting model in learning temporal
dependencies effectively, especially when informed by
graph-theoretic input optimization.

IV. CONCLUSIONS

In this study, we investigated the dominating sets of
the graphs P, > Fu, mP,, P, > Sy, P, > Fry,, and
P, > C,,, and successfully determined the exact values
of their domination numbers «(G). It is important to note
that determining the domination number is generally a
computationally challenging task, particularly for graphs of
unbounded order, as it belongs to the class of NP-hard
problems.
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Building upon these theoretical foundations, we proposed

The Diagram of Comparison LSTM with Other Methods
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Fig. 9: The Diagram of Comparison LSTM with Other Methods

a novel Graph-Assisted Long Short-Term Memory (LSTM)

framework that integrates graph-theoretic optimization with

deep learning for forecasting soil nutrient levels, specifically
nitrogen (N), phosphorus (P), and potassium (K). In this

framework, dominating set theory is employed to identify
the most efficient sensor placements, thereby reducing input

dimensionality and enabling a more focused and informative

data representation for time-series modeling. The selected

dominator nodes serve as inputs to a multivariate LSTM
model trained to predict nutrient levels over time.

Experimental

[8

[t}

results demonstrated the  superior

performance of the Graph-Assisted LSTM, with the
best configuration (150 training epochs and 20 LSTM

units) achieving a minimum mean squared error (MSE)

[9]

of 0.00053. This confirms the model’s ability to capture

temporal dependencies effectively while maintaining high

(10]

prediction accuracy and resource efficiency. The integration

of graph-theoretic input selection and LSTM forecasting not

[11]

only enhances computational performance but also supports

sustainable precision agriculture by minimizing sensor usage
without compromising predictive quality.

[12]

[13]

For future work, we propose several open research

directions: (i) identifying dominator structures in other graph
classes and characterizing their properties; (ii) integrating

[14]

[15]

adaptive graph models that evolve based on field dynamics;
and (iii) extending the current framework toward multivariate

time-series

[16]

forecasting using hybrid architectures that

combine LSTM with Graph Neural Networks (GNN) to

further improve performance in complex spatio-temporal

(171

domains.
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