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Gait Phase Recognition based on SVM Classifier
Optimized by Particle Swarm Optimization with
Local Fast Searching Strategy

Fenggang Liu

Abstract—This paper presents an intelligent wearable sensor
data acquisition system used to collect the plantar pressures and
joint angles for the classification of human gait patterns. The
whole system is designed and equipped with two force-sensitive
resistors (FSRs) and three inertial measurement units (IMUs)
for each leg. The sensor data are transmitted via Bluetooth to a
host computer for storage. The support vector machine (SVM)
algorithm is employed to identify the sensor data into the
specific gait patterns. To enhance the performance for SVM
classifying the gait patterns, a local fast search (LFS) strategy is
integrated into the classic particle swarm optimization (PSO)
algorithm for parameter optimization. The LFS strategy
integrates three key mechanisms, including in nonlinear
adaptive inertia weight, performance driven learning factors,
and diversity preserving mutation. For comparative analysis,
three distinct algorithms were developed for gait phase
recognition, such as SMV, PSO-SVM and LFS-PSO-SVM.
Experimental results show that the presented LFS-PSO-SVM
approach exhibits superior performance, and achieves the
highest accuracy in gait phase identification. The study
validates the robustness of the motion data acquired by the
smart collection system and proves the effectiveness of the
proposed algorithm in gait analysis applications.

Index Terms—FSR, IMU, SVM, Local fast search, PSO.

1. INTRODUCTION

ait analysis is a useful tool in computer vision and
humanized robots that focus on classifying the different
body motion patterns, such as swing and stance [1-2]. It has
shown significantly important values due to its ability to aid
various applications, including human action perception,
activity analysis, and control implementation [3]. The study
of gait analysis can contribute to advancing the robots'
cognitive abilities, and enabling them to infer movement
patterns and contextual information. Moreover, it can
enhance our understanding of human dynamics in different
settings, such as industrial automation for robot operation
monitoring, smart manufacturing for predictive maintenance,
healthcare informatics for patient health assessment, and
traffic management for traffic signal optimization [4-6].
Many researchers had showed their interests in gait phase
recognition for their abilities to handle complex dynamic
scenarios. The existing techniques include in artificial neural
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networks [7], bidirectional long short-term memory and deep
neural networks [8], random forests [9], convolutional neural
networks (CNN) [10], multi-task recurrent neural networks
[11], and support vector machines (SVM) [12-14]. Nahian
Rifaat et al presented a new deep neural network architecture
to realize accurate gait recognition with inertial sensors [15].
The gait data are from the OU-ISIR and whuGAIT, and the
features are extracted by CNN. The experimental results
showed that the proposed methods can be used for biometric
systems to benefit the human being. Guo et al introduced a
transferable multi-modal fusion to predict the knee angles
and gait phases by fusing many signals [16]. The experiments
demonstrated that the proposed method can gain a root mean
square error of 0.090 & 0.022 s in knee angle prediction and
a precision of 83.7 & 7.7% in gait phase prediction. Bauman
and Brandon developed a supervised multi-class classifier to
identify the gait phases through inertial measurement units
(IMU) data from the thigh and shank [17]. The aim of this
method was to control the lower limb exoskeleton, and this
proposed classifier gained an accuracy of 97.1% for the lower
limb exoskeleton. Wu et al combined the SVM and finite
state machine (FSM) to classify the gait phases [18]. The
SVM is improved by introducing the K-means clustering to
reduce the model size, and the FSM is used to validate the
prediction and correct the wrong detection. The experimental
results showed that this approach achieved an accuracy of
91.51% in gait phase recognition. The success of these
studies highlights the importance of innovative approaches to
make gait phase recognition more practical and efficient.

On the other side, the optimization methods are usually
utilized to optimize the parameters for these classifiers. Yu et
al. used the particle swarm optimization (PSO) to search the
best SVM model parameters for higher accuracy in gait phase
recognition [19]. Moodi et al. proposed a smart self-adaptive
learning PSO to optimize the SVM model [20]. Cui et al
proposed an adaptive PSO-SVM to addresses the premature
convergence issue during the gait pattern recognition process
[21]. The optimization methods could help find the best
parameters for classifiers, which leads to higher performance.

To identify the gait phases, this paper designed a wearable
system to collect the force and angle data. The measured data
are classified as six gait patterns labeled by detection rules.
The SVM algorithm is selected to identify these gait patterns.
To enhance the performance in gait phase identification, this
study integrates the PSO with local fast search (LFS) strategy
to optimize the SVM parameters. The LFS strategy integrates
three key mechanisms, including in nonlinear adaptive inertia
weight, performance driven learning factors, and diversity
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preserving mutation, which aiming to improve the global
search capability and convergence speed for PSO. The
experimental results show that the proposed LFS-PSO-SVM
gains a high recognition accuracy for gait phase recognition.

II. MATERIALS AND METHOD

A. Design of Intelligent Shoe

As pictured in Figure 1, an intelligent shoe is designed and
mounted with two force sensitive resistors (FSR) and three
IMUs. The FSRs are separately located in the ball and heel
parts in one foot, while the IMUs are bound on the lower
limbs of tight, shank and foot. The FSR is used to measure the
ground contact forces (GCF), while the IMU is to monitor the
joint rotary angle. The sensor data are collected by a signal
acquisition circuit board of STM32 processor powered by a
rechargeable 3.3V battery. The A/D converter and Bluetooth
module are integrated inside the STM32 processor. The
sensor data are digitized by the A/D converter and transferred
by the Bluetooth module into personal computer. The
detailed diagrams are depicted in Figure 2, and the sampling
frequency is 100 Hz.

Fig. 1. Data acquisition system with six IMUs on the lower limb and four
FSRs inside the shoe.

B. Segmentation and Labeling of Gait Patterns

The stance and swing phases are the two main phases in a
typical human walking which is periodic and cyclic. The foot
is touching the ground all the time during the stance phase,
while the entire foot is leaving the ground during the swing
phase. Additionally, the stance phases can be subdivided into
the heel striking (HS), full stance (FS) and heel off (HO),
while the swing phases can also be subdivided into pre-swing
(PS), middle swing (MS) and terminal swing (TS). As shown
in Figure 3, a complete gait cycle consists of the above six

patterns. These phases occur sequentially one after the other,
and each phase lasts for a certain duration.

(a) (b)
FSR

Data Acquisition Board IMU

Packaged IMU

Fig. 2. Sensor data collected by the STM32 processor: (a) The FSRs and
IMU module, (b) The physical diagram of STM32 and internal structure of
IMU module.

Fig. 3. Six phases in a gait cycle.

The stance phase begins when the heel touches the ground
and ends when the ball is ready to leave the ground. The
swing phase starts when the foot totally leaves the ground and
ends when the heel is ready to contact the ground again. The
state of touching or leaving the ground can be judged by
comparing the GCF with a threshold. If the GCF is larger
than the threshold, the state is on-ground. Otherwise, the state
is off-ground. The gait pattern is designated as HS when the
heel is determined to be on-ground state and the ball is
off-ground state. The gait pattern is labeled as FS when the
heel and ball are both determined to be on-ground state. The
gait pattern is designated as HO when the heel is determined
to be off-ground state and the ball is on-ground state. The gait
pattern is designated as swing when both the heel and the ball
are determined to be off-ground state.

Twenty one healthy subjects volunteered to participate in
our experiments. They were asked to wear the shoes to walk
on treadmill for one minutes. As illustrated in Figure 4, the
force and angle data are obtained and filtered by the
Butterworth filter with the cut-off frequency of 10 Hz. The
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data are converted into specific gait patterns by following the
above rules. The stance and its subdivision can be determined
through setting a threshold and corresponding rules. The
subdivision of swing phase can be quantified by the ankle
joint angle. When the entire foot is judged as off-ground state
and the ankle joint angle decreases, this process is determined
as PS. Then, the ankle joint angle decreases to its negative
maximum and starts to increase, this process is MS. Finally,
the ankle joint angle increases to its negative minimum and
begins to decrease, this process is TS.
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Fig. 4. Data of forces and angles and gait phase division through the
detection rules.
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III. GAIT PATTERN RECOGNITION THROUGH SUPPORT
VECTOR MACHINE

In this paper, the SVM classifier is selected to recognize
the gait patterns. The collected data are divided into training
and testing parts. The training data possesses 70% of the
whole data, while the remaining 30% are the testing data. The
SVM model was trained through the training data, and its
parameters are optimized by the PSO algorithm. The gait
patterns are then determined by feeding the testing data into
the SVM model with the optimal parameters. Lastly, by

comparing the identified results with the labeled ones, the
recognition rate can be calculated. The flow diagram of PSO
optimizing SVM is depicted in Figure 5.

A. Support Vector Machine

The basic idea of SVM classifier is to utilize a nonlinear
transformation to translate the vector (i.e., the sensor data) to
a high-dimensional space, and then select a kernel function to
solve the optimal linear classification surface in the new
high-dimensional space. It is a great challenge to compute the
feature spaces mapping the low-dimensional input space to
the high-dimensional feature space due to the rapid rise of the
spatial dimension. The k-class optimization problem can be
characterized that it is tackled by specifying the relaxation
variable &= (&1, &, ..., ém) and training simultaneously with a
single objective function.

PR
mlnT+ C;fi
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where b is the bias, w is the vector of weights, m is the
number of slack variables, and C is a positive constant. « is a
constant coefficient. This problem is translated into the input
space for computation by the optimum classification surface
SVM, which use the kernel functions to yield the decision
function.

f(x)= sgn{znl via; K(x;-x)+b° 2)

i=1

where a; is the Lagrange multiplier. There are two training
sample sets.

D:{(xiayi”?:laxi eXc Ry EYQ{_LI}»} )

where 7 is the training sample vector's dimension, while -1
and 1 stand for the category numbers. The distance between
any point on the two samples and the classification surface is
higher than or equal to 1. The ideal classification surface
wx+b=0 is found in order to accurately categorize the two
patterns. The SVM uses a nonlinear transformation that
depends on the kernel function to accomplish complex
operations in low dimensional space and determine the best
classification surface in high dimensional space.

B. Particle Swarm Optimization (PSO) Algorithm

The PSO is an algorithm for iterative optimization, which
can handle a wide range of optimization issues. The particle
position, velocity, and fitness are their primary attributes. The
aim is to find the maximum or minimum value for the fitness,
and the global optimal solution is found by adjusting the
particle's position and velocity during the search process. In
each iteration, the particles’ position and velocity would be
updated through the following equation.
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where wo is the inertia weight. The flying velocity is
indicated as v;j(#+1), the position is written as x;;(#+1), the
individual optimal solution for the i-th particle is pij, and the
global optimal solution is p,;. The individual and global
extreme positions are represented by the factors ¢; and c».
The random numbers distributed in the interval [0,1] are
denoted by 1 and 2.

C. Local Fast Search-Particle Swarm Optimization

With the usage of an adjustable search step size, the local
fast search (LFS) strategy is presented to increase the
searching efficiency of PSO. While the enormous step size of
the PSO algorithm can effectively search on a broad scale, it
will not be able to search for the global optimal solution when
used to high-dimensional extremum issues. In the meantime,
the global search accuracy for the best solution will also be
greatly impacted by the step size decay rate. Therefore, an
LFS strategy is created to swiftly search the possible global
optimal solution area such that the algorithm can still jump
out of the local optimum, minimize the effect of step size on
parameter optimization, and improve the search accuracy.
This proposed LFS strategy consists of three key mechanisms,
such as nonlinear performance driven learning factors,
adaptive inertia weight and diversity preserving mutation,
which are described detailedly in the following.

(1) Performance driven learning factors

The primary goal of the LFS strategy is to determine a
local search step size, and lock the step size in the current
iteration. The adaptive attenuation of the step size is finished
in the LFS, and the local search step size is unique to the LFS.
Therefore, in order to improve the search results for PSO, a
new variable ¢ is presented.

a0

Sty =S (1 -1) (5)

where ao, bo, and y are constants and their sizes influence
the decay rate of J. Meanwhile, ¢ is the number of LFS
iteration, while m is the maximum number of LFS iteration,
which must be chosen such that search speed and accuracy
are balanced. The range of 1 is given between 0 and 1. The
initial value 6(0) is an independent variable that is
independently attenuated. The Equation (5) in the local quick
search section also has to be modified in the manner
described below.
v (E+ D) =wov, () +ei(p; ; — X () + e (pg ; — X, (1) 6
x; (t+ ) =x, () +5(0)v; (1) ©

The inclusion of a weighting strategy with randomly
selecting wo values makes the effect of the particles' historical
speed on the current speed random.

(2) Nonlinear adaptive inertia weight

First, if the best point is approached early in the evolution,
the random w may produce a relatively small value of wo,
which would speed up the algorithm's convergence.
Alternatively, if the best point cannot be found at the
beginning of the algorithm, the linear decreasing of wo makes
the algorithm converge less than the best point, and the
random generation of wo can overcome this limitation. The
weight would eventually drop as the fitness progressively
declined to haste the algorithm's convergence. The random
weigh can be described as follow.

Tt )1-(1+0.5(1-D,))

max (7)

Wo (t) = [Wmax - (Wmax ~ Whin )(

Iy
D, = NZM std(x')

where D; is the population diversity measured by position
variance, and x, denotes the i-th dimension coordinates of
all particles at iteration ¢. The quadratic term accelerates early

exploration, while the diversity term D; dynamically balances
exploitation when population converges.

(3) Diversity preserving mutation.

Meanwhile, the c¢1 and ¢ are updated through dynamic
adjustment mechanism, which can be described in the
following.

2.8
S

2.5
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N )

c)=cy-(1+0.1-
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where cio and ¢ are the initial values for ¢; and ca.
x! indicates the stagnation status, which can be written in the
following.

©)

5t = {1, () = f(pbest))
0, others

where f(*) is the function to compute the fitness. This
adaptation method increases the cognitive learning ability for
stagnant particles in order to enhance the social learning for
progressing particles.

The proposed LFS strategy implements the enhancements
sequentially in each iteration for PSO. The first step is to
calculate diversity metric D;. The second step 2 is to update
the wo, c1 and c2. The third step is to perform the velocity and
position updating. The last step is to update the local and
global best positions. The synergistic integration establishes
an adaptive balance between global exploration and local
exploitation throughout the optimization process.

D. LFS-PSO-SVM model

The parameters selection is extremely important for SVM
model in gait phase recognition. The parameters C and y in
SVM model are optimized by the proposed LFS-PSO, and
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the whole structure is established in Figure 6. The flow of
LFS-PSO optimizing SVM are described in below. The first
step is to initialize the particles (i.e., C and y), population and
set the algorithm parameters. The second step is to update the
velocity and particle according to the LFS strategy. The third
step is to run the SMV with new particles. The best particles
are gained until the iteration reaches its maximum value.

Initialize C and y for
SVM

v

» Update the velocity

¢ LEFS

Update C and y for
SVM

v

Run SVM with new C and y

<

< maximum iterations ?

| Better C and y for SVM |

End
Fig. 6. Flow chart of LFS-PSO optimizaing SVM

IV. RESULTS

A. Selection of SVM parameters

The penalty factor C and kernel function parameter y for
the SVM model are determined through the empirical
technique. By loading C=2 and y = 1 into the SVM model, the
training data are used to find the best hyperplane for
classification. Then, the testing data are input into the trained
hyperplane and identified as specific gait patterns. All kernel
functions are tested to obtain the recognition accuracy, and
Table I displays the results. It can be found that the SVM
model with the polynomial or RBF kernel functions obtained
higher recognition accuracies compared with the others. The
RBF kernel function is finally chosen because it performs
better in response time than the polynomial kernel function.

TABLE I
RECOGNITION RESULTS OF DIFFERENT KERNEL FUNCTION

Kenel Function  Parameter  Accuracy Response time
Polynomial C=2,vy=1 94.73% 15s
RBF C=2,y=1 94.39% 05s
Linear C=2,vy=1 90.90% 0.5s
Sigmoid C=2,y=1 58.91% ls

The PSO algorithm is used to optimize the parameters C
and y, and the particle dimension is set to be 2. In order to
gain accurate results and train the SVM fast, the population
size is given to be 20, the maximum iteration number is
assigned to be 100, and the local (i.e., c1) and global (i.e., c2)
acceleration factors are set to be 1.5 and 1.7, respectively.

For the proposed LFS-PSO, cio and c2 are both 2, Wy is
set to be 0.9, and wyin is given to be 0.4. Moreover, ao and bo
in Equation (5) are both set to be 0.2, y is 0.8, and m is the
maximum iteration number 100.

As shown in Figure 7, the proposed LFS-PSO can achieve
higher fitness than the original PSO in gait phase recognition.
Moreover, the LFS-PSO costs about 30 times to realize stable
fitness, while the PSO needs 47 times. The results shows that
the LFS-PSO can enhance the search speed and achieve
higher performance in gait phase recognition.

100%

80% d
LFS-PSO

60%

fitness

40%
20%

0
0 20 40 60 80 100

iteration
Fig. 7. Fitness for two methods.

B. Result analysis of gait phase recognition

As shown in Figure 8, the collected data are transformed
into specific gait patterns according to the above-mentioned
labeling rules. Then, the data are classified as specific gait
patterns based on the SVM model. It can be clearly found that
the identified gait patterns are recognized as the correct ones
at most of the time. However, there still exist some wrong
identifications. To overcome this problem, the optimization
methods are used to find the best parameters for SVM model
to gain a higher accuracy.

TABLE II
GAIT PHASE RECOGNITION RESULTS FOR ALL SUBJECTS
SVM PSO-SVM LFS-PSO-SVM
No.  Precisio Recall Precisi Recall Precisio Recall
n on n
1 89.79%  88.26%  92.67%  92.96%  93.68%  94.52%
2 89.43%  90.65%  94.59%  92.95%  9391%  94.53%
3 89.40%  91.89%  94.92%  92.35%  94.74%  95.45%
4 91.60%  92.67%  94.59%  94.60%  94.24%  95.38%
5 90.73%  88.64%  93.80%  92.47%  96.69% = 94.93%
6 90.64%  90.84%  94.18%  91.44%  94.72%  94.13%
7 89.43%  90.34%  93.18%  94.12%  93.73%  95.43%
8 91.55%  88.05% 94.97%  92.55%  96.61%  94.59%
9 90.86%  89.68%  92.75%  91.96%  96.91%  94.05%
10 90.05%  88.81%  94.74%  92.61%  94.75%  95.81%
11 90.53%  91.97%  92.73%  91.38%  93.44%  95.62%
12 90.20%  89.55%  93.47%  91.52%  94.03%  94.65%
13 89.22%  90.64%  94.50%  94.76%  94.63%  94.86%
14 89.71%  88.82%  95.12%  94.82%  9537%  94.76%
15 89.37%  91.11%  92.32%  93.30%  94.04%  93.62%
16 89.55%  89.31% 95.71% 91.23%  95.41%  93.90%
17 89.71%  91.27%  95.10%  91.93%  95.84%  94.41%
18 90.25%  91.44%  93.94%  92.41%  93.88%  93.69%
19 89.14%  91.74%  93.74%  94.28%  93.46%  95.53%
20 91.70%  90.25%  93.78%  91.06%  94.18%  93.58%
21 91.83%  88.41% 93.22% 91.17%  94.27%  93.67%
avg  90.22%  90.21%  94.01%  92.66%  94.69%  94.62%

Volume 52, Issue 11, November 2025, Pages 4478-4485



TAENG International Journal of Computer Science

(a) 1000

GCF from the Ball

— GCF from the Heel
Z ~
§ \‘\ \‘\ .’l \\ 7]
S i / ;A i
l‘ E l‘ g ‘I -
'\ Vs \ i \ /
- Hip Joint Angle . Ankle Joint Angle
(b) %D 0l N Knee Joint Angle e N g
2 50
3 1O \ 2
s 60 ! \W; N ‘\ ’ N \s
-80 Identified cai
eniilied gait patterns Labeled gait patterns

(c)

gait pattern

0 1 2 3
Fig. 8. Results of gait pattern recognition through SVM model.

Twenty-one subjects volunteered to participate in our
experiments, and the gait phase recognition results for them
are listed in Table II. A large number of experiments can
explain the problem. The original SVM gains an average
precision of 90.22% and an average recall of 90.21%. The
PSO-SVM realizes an average precision of 94.01% and an
average recall of 92.66%. The proposed LSF-PSO-SVM
acquires an average precision of 94.69% and an average
recall of 94.62%. The experiments indicate that the proposed
methods obtain the highest results in terms of precision and
recall.

The results of SVM, PSO-SVM, and LFS-PSO-SVM
models are pictured in Figure 9, Figure 10 and Figure 11 in
the forms of confusion matrix. The proposed LFS-PSO-SVM
gains the highest accuracy in clarifying the gait phases of HS,
PS, MS and TS, while the PSO-SVM achieves the best in
identification of HO and PS phases. The quantitative results
are listed In Table IIL. In terms of overall performance, the
LFS-PSO-SVM model exhibits the highest average
performance, and achieve an average recall of 95.11% and an
average precision of 94.31%, surpassing both the SVM and
PSO-SVM models. The PSO-SVM model also gain an
average recall 94.04% and precision of 94.62% compared to
the average recall 91.14% and precision 91.72% from the
original SVM.
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Fig. 9. Classification confusion matrix of the SVM model.
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Fig. 10. Classification confusion matrix of the PSO-SVM model.
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Fig. 11. Classification confusion matrix of the LFS-PSO-SVM model.

Among all gait phases, the HO phase consistently realizes
the highest classification performance across all models, and
the LFS-PSO-SVM model achieves a recall of 97.93% and a
precision of 98.45% in HO phase classification. Conversely,
the TS phase gains the worst results, and the LFS-PSO-SVM
model achieve a recall of 91.79% and a precision of 86.68%.
Despite notable improvements over the original SVM, the TS
phase continues to exhibit the lowest performance metrics,
indicating room for further optimization.

We compared our work with other studies in gait phase
recognition as shown in Table IV. The References [19] and
[22] are both to classify four types of gait patterns. The
Reference [22] gained a higher recall than the proposed
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method in this paper, but reached a lower precision. The
Reference [23] is to identify six types of gait patterns which
are different from the ones in this paper. Moreover, the
Reference [23] acquired a higher recall compared to the
proposed method in this paper, but reached a lower precision.
The results indicate that the presented approach gains the
highest precision and shows convincing competitiveness in
the field of gait phase classification.

TABLE III
CLASSIFICATION CONFUSION MATRIX OF THE THREE MODELS.
SVM PSO-SVM LFS-PSO-SVM

Gait Recall Precr‘,llsm Recall Precr‘,llsm Recall Precrtllslo
HS 9137% 93.98%  94.65%  95.94% 94.8% 95.93%
FS 91.15% 91.55%  95.02%  95.04%  94.62%  95.66%
HO 97.19% 97.13%  98.05%  98.42% 97.93%  98.45%
PS 88.02%  87.52%  92.13%  91.12%  93.61%  90.98%
MS  96.34% 96.35%  97.44%  97.56%  97.89%  98.13%
TS 86.27%  80.31%  90.42% 86.17%  91.79%  86.68%

TABLE IV

COMPARISON WITH OTHER STUDIES.

References Classifier Gait Number  Recall ~ Precision
K. Liu [22] LSTM-CNN Four 95.29% 95.03%
F. L. Yu[23] CNN-GRU Six 94.51% 93.22%
L. Yu[19] PSO-SVM Four 94.16% 95.06%
this paper LFS-PSO-SVM Six 94.30% 95.10%

V. DISCUSSION

The proposed LFS-PSO-SVM model shows significant
advancements in gait phase classification. This model
achieves the highest average precision, which could indicate
its robustness and reliability in gait phase classification tasks.
This model demonstrates its ability to handle complex gait
patterns such as HS, PS and TS, and exhibits balanced
performance across all phases exceeding 90% in terms of
recall and precision. This balance is critical for real-world
applications where both false positives and false negatives
must be minimized.

Future work could focus on extracting more useful features,
particularly for the TS phase. Incorporating temporal, spatial,
and kinematic features may help improve the classification
accuracy. Combining LFS-PSO with deep learning methods
could leverage the strengths of both traditional machine
learning and deep learning to improve the performance for
complex phase like TS.

VI. CONCLUSION

This paper introduced a wearable sensor collection system
which measured the pressure and angle information for gait
pattern classification. After data acquisition and preprocess,
the data are input into the SVM model to recognize the gait
patterns. The LFS strategy is integrated with the PSO to
optimize the SVM parameters for higher performance. The
experimental results showed that the LFS-PSO-SVM model
gains a significant advancement in gait phase classification,
and achieves superior performance and robustness compared
to traditional SVM and PSO-SVM approaches. Specifically,
the average precision increases from 90.22% to 94.69%,
while the average recall improves from 90.21% to 94.62%.

However, challenges such as the classification of TS phase
highlight areas for future improvement. By addressing these
limitations through enhanced feature engineering, advanced
optimization techniques, and hybrid model architectures, the
LFS-PSO-SVM framework can be further refined to achieve
even greater accuracy in real-world scenarios.

REFERENCES

[1] H. T. T. Vu, D. Dong, H. L. Cao, T. Verstraten, D. Lefeber, B.
Vanderborght, and J. Geeroms, "A Review of Gait Phase Detection
Algorithms for Lower Limb Prostheses," Sensors, vol. 20, no. 14, pp.
3972, 2020.

[2] M. H. Khan, M. S. Farid, and M. Grzegorzek, "A Comprehensive
Study on Codebook-Based Feature Fusion for Gait Recognition," Inf.
Fusion, vol. 92, pp. 216-230, 2022.

[31 J. Song, A. Zhu, Y. Tu, H. Mao, and X. Zhang, "Adaptive Neural
Fuzzy Reasoning Method for Recognizing Human Movement Gait
Phase," Robotics and Autonomous Systems, vol. 153, p. 104087, 2022.

[4] Y.J. Castano-Pino, M. C. Gonzalez, V. Quintana-Pena, J. Valderrama,
B. Munoz, J. Orozco, and A. Navarro, "Automatic Gait Phases
Detection in Parkinson Disease: A Comparative Study," Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., pp. 798-802, 2020.

[51 M. Milovic, G. Farias, S. Fingerhuth, F. Pizarro, G. Hermosilla, and D.
Yunge, "Detection of Human Gait Phases Using Textile Pressure
Sensors: A Low Cost and Pervasive Approach," Sensors, vol. 22, no. 8,
p. 2825,2022.

[6] E. Alijanpour and D. M. Russell, "Gait Phase Normalization Resolves
the Problem of Different Phases Being Compared in Gait Cycle
Normalization," J. Biomech., vol. 173, p. 112253, 2024.

[7] S.-H. Yan et al., "Gait Phase Detection by Using a Portable System and
Artificial Neural Network," Medicine in Novel Technology and
Devices, vol. 12, p. 100092, 2021.

[8] Z. Zhang et al., "Gait Phase Recognition of Lower Limb Exoskeleton
System Based on the Integrated Network Model," Biomedical Signal
Processing and Control, vol. 76, p. 103693, 2022.

[97 M. Lee, J.-H. Lee, and D.-H. Kim, "Gender Recognition Using
Optimal Gait Feature Based on Recursive Feature Elimination in
Normal Walking," Expert Systems with Applications, vol. 189, p.
116040, 2022.

[10] U. Martinez-Hernandez, M. I. Awad, and A. A. Dehghani-Sanij,
"Learning Architecture for the Recognition of Walking and Prediction
of Gait Period Using Wearable Sensors," Neurocomputing, vol. 470,
pp. 1-10, 2022.

[11] C.F.Martindale et al., "Wearables-Based Multi-Task Gait and Activity
Segmentation Using Recurrent Neural Networks," Neurocomputing,
vol. 432, pp. 250-261, 2021.

[12] W. Teufl et al., "Automated Detection and Explainability of
Pathological Gait Patterns Using a One-Class Support Vector Machine
Trained on Inertial Measurement Unit Based Gait Data," Clinical
Biomechanics, vol. 89, p. 105452, 2021.

[13] B. Vidya and P. Sasikumar, "Gait Based Parkinson’s Disease
Diagnosis and Severity Rating Using Multi-Class Support Vector
Machine," Applied Soft Computing, vol. 113, p. 107939, 2021.

[14] J. Zheng et al., "PSO-SVM-Based Gait Phase Classification During
Human Walking on Unstructured Terrains: Application in
Lower-Limb Exoskeleton," Proc. Inst. Mech. Eng. Part C: J. Mech.
Eng. Sci., vol. 233, no. 19-20, pp. 7144-7154, 2019.

[15] N. Rifaat, U. K. Ghosh, and A. Sayeed, "Accurate Gait Recognition
with Inertial Sensors Using a New FCN-BiLSTM Architecture,"
Computers and Electrical Engineering, vol. 104, p. 108428, 2022.

[16] Z. Guo, H. Zheng, H. Wu, J. Zhang, G. Zhou, and J. Long,
"Transferable Multi-Modal Fusion in Knee Angles and Gait Phases for
Their Continuous Prediction," J. Neural Eng., vol. 20, no. 3, 2023.

[17] V.V.Bauman and S. C. E. Brandon, "Gait Phase Detection in Walking
and Stairs Using Machine Learning," J. Biomech. Eng., vol. 144, no. 12,
p- 121007, 2022.

[18] Lie Yu, Pengzhi Mei, and Lei Ding, "Gait Pattern Recognition through
Force Sensor Platform based on XGBoost Model and Harris' Hawks
Optimization," IAENG International Journal of Applied Mathematics,
vol. 55, no. 1, pp118-125, 2025.

[19] Lie Yu, Gaotong Hu, Lei Ding, Na Luo, and Yong Zhang, "Gait Pattern
Recognition based on Multi-sensors Information Fusion through
PSO-SVM Model," Engineering Letters, vol. 32, no. 5, pp974-980,
2024.

[20] M. Moodi, M. Ghazvini, and H. Moodi, "A Hybrid Intelligent
Approach to Detect Android Botnet Using Smart Self-Adaptive

Volume 52, Issue 11, November 2025, Pages 4478-4485



TAENG International Journal of Computer Science

Learning-Based PSO-SVM," Knowl.-Based Syst., vol. 222, p. 106988,
2021.

[21] Y. Cui et al., "Scale-Up Prediction of Supercritical CO2 Circulating
Fluidized Bed Boiler Based on Adaptive PSO-SVM," Powder Technol.,
vol. 419, p. 118328, 2023.

[22] L. Kun, Y. Liu, S. Ji, C. Gao, S. Z. Zhang, and J. Fu, "A Novel Gait
Phase Recognition Method Based on DPF-LSTM-CNN Using
Wearable Inertial Sensors," Sensors, vol. 23, no. 13, pp5905, 2023.

[23] F. L. Yu, J. B. Zheng, L. Yu, H. Xiao, Q. Chen and D. Zhang,
"Transition Motion Pattern Classification for Lower Limb Exoskeleton
in Stair Scenes based on CNN and GRU," Journal of Mechanics in
Medicine and Biology, vol. 24, no. 10, pp2350085, 2024.

Volume 52, Issue 11, November 2025, Pages 4478-4485



	I.INTRODUCTION
	II.MATERIALS AND METHOD
	A.Design of Intelligent Shoe
	B.Segmentation and Labeling of Gait Patterns

	III.GAIT PATTERN RECOGNITION THROUGH SUPPORT VECTOR MA
	A.Support Vector Machine
	B.Particle Swarm Optimization (PSO) Algorithm
	C.Local Fast Search-Particle Swarm Optimization
	D.LFS-PSO-SVM model

	IV.RESULTS
	A.Selection of SVM parameters
	B.Result analysis of gait phase recognition

	V.DISCUSSION
	VI. CONCLUSION
	REFERENCES



