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Abstract—A ccurate maximum-power-point tracking (MPPT)
is crucial for photovoltaic (PV) systems under rapid variations
in irradiance and temperature. This study proposes an improved
Ivy algorithm (IIVY) incorporating reverse-learning population
initialization, an adaptive growth factor, and Lévy-flight updates
to enhance diversity, accelerate convergence, and avoid local
optima. Evaluated on the CEC-2017, CEC2020 andCEC2022
benchmark, IIVY achieves top-ranking mean performance
across 29 functions in both 50- and 100-dimensional scenarios.
Embedded into a MATLAB/Simulink-based single-diode PV
MPPT controller under step irradiance transitions (1000 —
700 — 400 W m~2), ITVY increases harvested energy by 6.53%,
4.59%, 7.73%, and 13.26% compared to IVY, PSO, BAT, and
GA, respectively. It also reduces settling times to 0.15-0.25 s
and power fluctuations by up to 78%. These findings highlight
IIVY as an efficient and robust real-time MPPT solution for
advanced PV converters.

Index  Terms—Ivy Algorithm, Photovoltaic Arrays,
Maximum-Power-Point Tracking, Meta-heuristic Optimisation.

I. INTRODUCTION

ITH the continuous growth of global energy demand
and the increasing depletion of fossil energy sources,
the proportion of renewable energy in the energy structure
has been increasing, further accelerating the transition to
clean energy. Currently, renewable energy has accounted for
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26.3% of the global energy mix, with hydropower accounting
for 15.8%, wind energy for 5.3%, solar energy for 2.7%,
and the remaining renewable energy sources accounting for
2.5% [1]. By diversifying the energy structure, solar, wind,
and biomass not only effectively reduce greenhouse gas
emissions, but also significantly improve energy security.
Among them, solar PV power generation has attracted much
attention due to its cleanliness, sustainability, and decreasing
cost. The structure of PV systems is relatively simple and
economically sound, and as of 2019, the cumulative global
installed PV capacity has reached 627 GW, with a new
installed capacity of 115 GW in that year [2]. However,
the output power of PV arrays is significantly affected by
light intensity and ambient temperature, and in order to fully
utilize PV resources under different operating conditions,
MPPT technology has become the key to improving system
power generation efficiency [3]. Since the maximum power
point changes with external conditions, and the PV I-V curve
may have multiple peaks under complex operating conditions
such as partial shading, the MPPT algorithm needs to have
a strong global optimization capability.

Conventional MPPT methods, such as the perturbation
observation (P&O) [4] and incremental conductance (IC) [5]
methods, although variously improved and fused, usually
only show a high level of efficiency under conditions
of uniform and slowly varying irradiance distribution and
show high efficiency. Under complex conditions such as
partial shading, multi-directional light changes, or sudden
temperature changes, such methods are prone to fall into
local optimization, thus missing the global MPPT [6].
To solve the optimization problem under multi-peak I-V
curves, intelligent optimization algorithms based on the
principle of meta-heuristics have been gradually introduced
into PV MPPT control, such as Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and Bat Algorithms
(BAT) [7]. These algorithms achieve large-scale exploration
of the solution space by simulating population behavior
or natural evolutionary mechanisms, and possess strong
global search capability with the ability to jump out
of the local optimum, and thus can achieve excellent
performance in highly nonlinear and nonconvex PV system
optimization problems. However, these intelligent algorithms
usually require a large amount of computational resources
during the iterative process, resulting in relatively slow
convergence, especially in real-time embedded photovoltaic
control systems, where computational delays can directly
affect the energy capture efficiency [8]. In response to rapidly
changing meteorological conditions, current studies generally
agree that a balance should be struck between tracking
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accuracy and computational speed [9]. One feasible way is
to combine intelligent optimization algorithms with classical
MPPT methods, using the fast response advantage of the
latter complemented by the global optimization capability of
the former, so as to achieve a more stable performance under
dynamic working conditions [10, 11]. In addition, the digital
twin technology that has emerged in recent years offers
new possibilities for monitoring and optimization of PV
systems [12]. By constructing a virtual model that is highly
consistent with the physical system, digital twins can not
only realize real-time state mirroring but also combine with
predictive control strategies to adjust the MPPT operating
parameters in advance, thus enhancing the system’s adaptive
capability and reducing hardware dependence [13].

With the continuous development of technology
and the growing demand for higher energy conversion
efficiency [14], the combination of intelligent optimization
algorithms and MPPT technology has become an important
way to improve the performance of PV systems [15].
It has been shown that meta-heuristics such as GA [16]
and PSO [17] are excellent in global optimization and
tracking performance in variable environments, but their
high computational overheads and slow convergence
speeds limit their application in real-time PV control. To
overcome these limitations, the Ivy optimization algorithm
(IVY) [18], proposed in recent years, shows potential for
application in MPPT by virtue of its simple mathematical
structure and strong global search capability. However,
under high-dimensional optimization and complex dynamic
conditions, IVY is prone to problems such as premature
convergence and falling into a local optimum, which affects
the accurate location of the global MPPT [19] under the
rapidly changing conditions of light and temperature. To
address the above deficiencies, this study proposes an
improved IVY algorithm, which dynamically adjusts the
algorithm parameters according to environmental changes
by introducing an adaptive mechanism to enhance global
search capability and improve tracking accuracy. In addition,
the algorithm also combines a hybrid meta-heuristic strategy
with a real-time adaptive control method to further enhance
the robustness and stability, which results in a better
performance in dealing with the PV MPPT problem with
high-dimensional, nonlinear, and multi-peak characteristics.
The improved IVY, when integrated with the MPPT control
strategy, not only achieves faster convergence speed and
higher localization accuracy but also effectively improves
the solar energy conversion efficiency under transient and
steady state conditions, providing an efficient and reliable
control scheme for the next generation of high-performance
PV systems.

The main contributions of this study are:

(1) Development of IIVY, an enhanced IVY integrating
reverse-learning initialization, adaptive growth factors, and
Lévy-flight updates to significantly boost search efficacy and
convergence performance.

(2) Validation of IIVY through extensive comparisons
against eight benchmark algorithms using CEC-2017
functions. Experimental outcomes and statistical analyses
confirm superior performance across diverse optimization
scenarios.

(3) Successful deployment of IIVY in MPPT tasks,

demonstrating substantial improvements over traditional
algorithms (PSO, GA, BAT, IVY). Results illustrate
enhanced tracking precision, faster convergence, and reduced
power fluctuations under dynamic irradiance conditions.

The remainder of this paper is organized as follows.
Section II outlines the fundamental principles of the original
IVY algorithm. Section III presents the proposed IIVY
algorithm, including its novel initialization, update strategies,
and adaptive mechanisms. Section IV reports the results of
benchmark experiments on the CEC 2017, CEC 2020, and
CEC 2022 test suites, followed by statistical analyses and
comparisons with other meta-heuristic algorithms. Section
V demonstrates the application of IIVY to MPPT in
photovoltaic systems under dynamic irradiance conditions.
Finally, Section VI concludes the study and discusses
possible directions for future research.

II. BASIC PRINCIPLE OF THE IVY

The IVY algorithm proposed by Mujtaba Gha et al. (2024)
models the adaptive and biologically inspired growth strategy
of natural climbing plants: first gradually spreading widely
and horizontally across the ground surface, then rapidly
ascending upward toward sunlight once reliable structural
support is eventually found, thereby significantly accelerating
overall development. The algorithm -carefully quantifies
growth rates through mathematical differential equations
and also incorporates relevant experimental data. It further
realistically simulates cooperative path optimization among
individual plants based on spatial proximity and ecologically
categorizes diverse climbers according to complex real-time
environmental conditions.

o Plants that thrive indoors but perform poorly outdoors.
o Climbing plants well adapted to natural outdoor
environments.

A. IVY Mathematical Model

The IVY algorithm mimics the main phases of ivy growth:
initial expansion, vertical ascent, and continuous spread.
Conceptually, IVY can be divided into three stages:

Step 1: Direct population growth in an orderly fashion.

Step 2: Grow toward the light source.

Step 3: Continuously spread and evolve.

At the start, a cluster of ivy trees represents candidate
solutions to the optimization task. Each tree’s location in the
search space is defined by its position vector, and its growth
rate is computed. Individuals are ranked by fitness from best
to worst.

Positions are iteratively adjusted based on fitness values
(the objective function). As individuals move toward the light
source, the collective population converges toward the global
optimum. The mathematical model of IVY is detailed below.

Initialization: N,,, and D denote the population size
and number of decision variables, respectively. For the ivy
population, we define = (Ii,..., 1., In,,), Where
1 =1,2,..., Npop. Initial positions are generated as:

- Imin) (1)

where ¢ denotes the ¢-th individual, rand is uniformly
distributed over [0, 1], and I, Imax are the lower and upper
bounds.

I; = Iyin + 1and(1, D) - (Ipax
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Search and exploration: The IVY growth process is
described in three steps.

Step 1: Orderly population growth. IVY expands by
following sunlight. Its growth rate GG, is modeled as:

dG,(t

) o 6,(0) - 0(Gu0) @
where G, is the growth rate, and v, ¢ represent parameters
capturing deviations in rate and direction. The discrete-time
update is:

AG,,(t+ 1) =rand® - (N(1,D) - AG,(t)) 3)

where rand is uniformly sampled from [0, 1], rand® denotes
a random variable with PDF 1/(2/z), and N(1,D) is a
D-dimensional vector with standard normal components.
Step 2: Growth toward light. Inspired by ivy climbing
supports (e.g., walls or trees) to reach light, the algorithm
simulates competition and improvement by referencing
nearby neighbors selected by fitness. For the sorted
population T = [I1, ... I?], with Tpes = I*:
I;—h IZ = IJS7
I = 4)
I; I; = It
Movement toward light is given by:
=1L+ |N(1,D)|-(I;; — I;) + N(1,D) - AG,, (5)
with
Ii/(lmax - Imin)» Iter = 1a
AG,, = ©)
rand® - (N(1,D) - AG,,), Tter > 1.

where |N(1, D)| denotes the elementwise absolute value of
the normal vector.

Step 3: Spread and evolution. Once I; moves toward
its nearest neighbor I;;, it proceeds to refinement. Here, I;
follows Iy, expressed as:

I7® = Iyes + (rand(1, D) + N(1, D)) - AG,, @)
The updated growth rate is:
AG?:W = Iznew ) (Imax - Imin) ®)

Survivor selection: Horlacher and Bauer [18] examined
stage-dependent light requirements. In early stages, stronger
absorption is needed; later, less. The algorithm mimics
“upward climbing” and “lateral expansion”: if an individual’s
fitness is below a threshold proportional to f(Ipes)
(controlled by 8 = W), it expands laterally (Eq. 5);
otherwise, it climbs upward (Eq. 7). At each iteration,
previous individuals I and new candidates I™ are combined
and ranked by fitness to form I™/S. The best Nyop
individuals are retained for the next generation.

III. THE PROPOSED IIVY

The basic IVY shows superior performance on complex
optimization problems but faces practical limitations due
to inefficient search, difficulty reconciling convergence
speed and accuracy, and a tendency to fall into local
optima (premature convergence) caused by loss of
population diversity in multi-peak function optimization. To
address these shortcomings, three enhancements have been
developed.

A. Create a New Initialization Population Formula

The random initial population of traditional IVY is prone
to uneven distribution and poor diversity in high-dimensional
complex problems, leading to weak global search and
premature convergence. To overcome this, we integrate the
inverse learning principle to optimize population generation.
By generating symmetric solution points, this strategy
significantly improves the diversity and quality of the
initial population, ensures wider search coverage, and
effectively avoids local optima, thus laying a highly efficient
foundation for subsequent optimization. This ultimately
achieves significant improvements in convergence speed and
solution accuracy, as shown in Eq. (9):
I = Iin + rand(1, D) - (Inax

i — 1, min) -1 % (9)
where D is the problem dimension, and I, and Iy,x are
the lower and upper bound vectors of each dimension. A
random matrix with the same population size and problem
dimensions introduces randomness in generating inverse
solutions. The initial and inverse populations are combined,
fitness is calculated for each individual, and the top N
individuals with higher fitness are selected as the final initial
population.

B. New Position Update Formula

The IVY algorithm is prone to local optimization and
lacks an effective escape mechanism, leading to weak global
search, slow convergence, and difficulty improving accuracy
in later stages. To overcome these limitations, this paper
introduces a position update strategy based on Lévy flights.
The heavy-tailed distribution characteristic of Lévy flights
allows for long-distance jumps during the search, enhancing
the algorithm’s global exploration capability and increasing
the probability of escaping local optima. Simultaneously, this
strategy maintains population diversity, preventing premature
convergence. By promoting a balanced exploration of the
solution space, the algorithm avoids excessive focus on local
regions, thereby improving optimization search performance.
As shown in Eqgs. (11) and (12), the Lévy flight update
rule dynamically adjusts the search path, enabling efficient
exploration of the solution space, ultimately improving
overall optimization performance.

001w

" TP 1o

where L is the Lévy step generated according to the
properties of the Lévy distribution. u is a random variable
following a normal distribution, u ~ N(0,0?); v is also
normally distributed, v ~ N(0,1); S is a parameter
of the Lévy distribution, usually 5 € (1,2), controlling
step-size characteristics. The factor 0.01 is a scaling factor
to adjust the step size for specific problems. The updating
method introduces an adaptive convergence factor that can
dynamically adjust the growth vector according to:

I;lf:w :Il+ |N(17D)‘ : (Im *Iz) +N(17D) Ale +La

if f(I;) < f(Ivest) (11)

I'® = Ihes - (rand(1, D) + N (1, D)) - AG,,,

it F(L) > floew) (12)
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C. New Formula for Updating G,

The standard IVY uses a fixed update rule for the growth
rate, which cannot adapt to the requirements of different
optimization stages. In the early phase, its global search
ability is limited, and initialization often fails to achieve
full exploration. In later stages, the algorithm is prone
to stagnation in local optima, preventing discovery of the
best solution. These shortcomings reduce efficiency and
contribute to premature convergence. To address this, an
adaptive convergence factor is introduced that adjusts the
step size dynamically according to the stage of the search.
At the beginning, a larger step size supports wide global
exploration and increases diversity. As iterations progress, the
step size gradually decreases, enabling fine local refinement,
improving accuracy, and reducing the risk of falling into local
traps. This adaptive adjustment both accelerates convergence
and prevents premature stagnation. The formulation is given
in Eq. (14), where the factor changes at each iteration to
balance exploration and exploitation.

1
T 14k -exp(—ky-t)’

w=15 (14)

where k1 = 1 and ko = 0.1 are adjustable parameters that
control the variation of the convergence factor, and ¢ is the
current iteration index.

AGYY =rtand® - (N(1,D) - AG,,) - w (13)

The overall procedure is illustrated in Fig. 1.

Initialtion the population I and the
growth rate G, using Eq.(1) and (9).
v

{ Select the member [j;. I

The improvement
methods for IVY

Vo= oy

Update the position of
individual ivy using

Eq.(11).
j——ri]

[ Compute the value of B . |

Update the position of’
individual ivy using
Eq.(12).
|
J

—

Y
Use survivor selection to generate
new and better population.

Update the position of population
using the Levy flight strategy.

Calculate the new growth rate Gv
by Eq.(13).

\
Iter<Maxlter \
o The improvement

methods for IVY

End

Fig. 1: The flowchart of IIVY.

IV. RESULTS OF EXPERIMENT AND STATISTICAL
ANALYSIS

A. Benchmark Functions

To comprehensively evaluate algorithm performance, three
authoritative benchmark test suites are adopted: CEC
2017 [19], CEC 2020 [20], and CEC 2022 [21]. These cover
problems of varying complexity and characteristics, allowing
a thorough assessment in terms of convergence speed, ability
to escape local optima, adaptability to complex landscapes,
and effectiveness in global search.

The CEC 2017 set includes four categories: F1-F3
test convergence speed, F4-F10 evaluate the ability to
escape local optima, F11-F20 examine adaptability to
complex landscapes, and F21-F30 assess performance on
composite functions. CEC 2020 is divided into four types
as well: single-peak (F1), multi-peak (F2-F4), hybrid
(F5-F7), and combinatorial (F8—F10), designed to evaluate
convergence speed, robustness against multi-peak local traps,
and adaptability to hybrid and combinatorial problems.
CEC 2022 also contains four categories: single-peak
(F1), multi-peak (F2-F5), hybrid (F6-F8), and combined
(F9-F12). These functions emphasize algorithm stability
in dynamic environments, global search efficiency, and
adaptability to dynamic or composite problems. The
multidimensional classification provided by these test suites
enables a systematic evaluation of generalization capability
and robustness under diverse conditions of problem scale,
complexity, and dynamics.

B. Comparison with Other Algorithms

Using the above benchmark sets, a comprehensive
comparison is conducted between the improved IVY (IIVY),
the basic IVY, and eight other widely used optimization
algorithms. To ensure fairness, all algorithms are run
with standardized parameter settings, which are detailed
in Table I. The experiments are performed in 20-, 50-,
and 100-dimensional spaces, thereby increasing the level of
challenge and providing a closer approximation to real-world
complex optimization scenarios.

The evaluation metrics include mean, standard deviation,
best value, and rank. These important and widely
used indicators together offer a more complete and
comprehensive picture of performance across different
functions, thoroughly covering convergence rate, accuracy,
stability, and robustness. Results are clearly summarized in
Tables III and VIII. For more detailed and in-depth analysis,
one or two carefully chosen representative functions are
selected from each category in the three benchmark sets,
mainly focusing on convergence behavior and noticeable
changes in population diversity. These detailed outcomes are
finally presented in Tables IV, V, VI, and VIL

The convergence curves and diversity dynamics, shown in
Fig. 2 and Fig. 3, provide an intuitive, and comprehensive
demonstration of algorithm behavior during the entire
iterative optimization process. The detailed experimental
findings strongly indicate that IIVY consistently and reliably
escapes undesirable local optima much more effectively
than the baseline IVY while still successfully maintaining
higher population diversity, thereby effectively avoiding
premature convergence and steadily achieving significantly
higher overall optimization efficiency.
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TABLE I
PARAMETER SETTINGS OF COMPARISON ALGORITHMS

No. Name Parameter Settings Literature ~ Publication Year
1 PIO Ncl = 210 (map factor), Nc2 = 90 (guideline factor) [22] 2014
2 O0OA [ is between 1 and 2 [23] 2023
3 AO a=0.1,8=01r1=10 [24] 2021
4 HHO Eyg is between 1 and 2, 8 = 1.5 [25] 2019
5 COA =15 [26] 2023
6 GA pc = 0.6, pm = 0.3 [16] 1999
7 PSO c1=12,¢c2=12,w=0.7 [17] 1995
8 VY 31 is between 1 and 1.5 [18] 2024
9 vy ki=1,ke=0.1,8=15 / /
TABLE II
FORMANCE OF COMPARISON ALGORITHMS ON CEC2017
D =50 D =100
Name Mean Std Best Mean Std Best
(B/S/W) (B/S/W) (B/S/W) Rank (B/S/W) (B/S/IW) (B/S/W) Rank
PIO 0/0/1 4/0/6 0/0/0 6 0/2/6 5/3/3 0/0/0 6
OOA 0/0/6 2/1/1 0/0/0 7 0/0/7 1771 0/0/0 8
AO 0/172 1/0/3 0/0/1 5 1/0/0 2/1/1 0/0/0 5
HHO 2/1/4 173717 1/0/6 4 1/0/4 1/0/14 1/0/0 4
COA 0/1/77 1/5/3 0/1/4 7 0/0/7 3/1/3 0/0/1 7
GA 0/1/77 1/0/1 0/0/0 8 0/0/8 0/0/1 0/0/0 9
PSO 6/10/4 5/8/3 7/8/6 3 2/14/10 1/2/12 5/5/18 3
vy 0/11/10 0/5/4 1/12/11 2 2/12/10 3/0/4 4/16/8 2
vy 21/5/3 14/71 20/8/1 1 24/3/2 13/5/0 19/8/2 1
TABLE III
THE WILCOXON TEST BETWEEN 1IVY AND OTHER ALGORITHMS ON CEC2017 BENCHMARK FUNCTIONS (50-D AND 100-D).
Dimension
IIVY vs D =50 D =100
p-Value Rt R~ +=/- p-Value Rt R~ +=1-
PIO 3.61E-04 0.00 435.00 29/0/0 5.75E-06 0.00 435.00 29/0/0
OO0A 4.57E-02 0.00 435.00 29/0/0 1.81E-06 0.00 435.00 29/0/0
AO 2.60E-05 0.00 435.00 29/0/0 7.16E-06 0.00 435.00 29/0/0
HHO 2.98E-02 58.00 377.00 28/0/1 8.50E-05 2.00 433.00 28/0/1
COA 6.40E-04 0.00 435.00 29/0/0 2.29E-05 0.00 435.00 29/0/0
GA 2.01E-06 0.00 435.00 29/0/0 1.77E-06 0.00 435.00 29/0/0
PSO 1.45E-01 110.00 335.00 22/0/7 5.82E-02 99.00 336.00 22/0/7
VY 1.27E-02 14.00 421.00 28/1/0 3.03E-02 67.00 368.00 25/0/4
Mean Value 3.34E-02 22.75 412.25 27.9/0.1/1 1.10E-02 21.00 414.00 27.5/0.1/1.5
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TABLE IV
SUMMARY OF INDICATIORS MEAN, STD, BEST AND RANK. RESULTS FOR THE CLASSIC CEC2017 BENCHMARK FUCTIONS (50-D)
f(x) Index PIO O0A AO HHO COA GA PSO I\'A' vy
f1 Mean  5.0467E+07 4.0720E+06 1.3641E+09 1.9665E+05 8.9469E+05 1.0045E+11 4.2407E+10 4.3082E+03 3.8899E+03
Std 1.3110E+07 2.3629E+06 5.3791E+08 2.6273E+05 1.1299E+06 3.8826E+09 7.1478E+09 6.3049E+03 3.5388E+03
Best  3.1725E+07 1.5259E+06 5.7839E+08 4.4219E+04 4.0069E+04 9.1459E+10 2.7998E+10 1.0051E+02 5.6110E+02
Rank 6 5 7 3 4 9 8 2 1
f3 Mean  1.0903E+05 1.2964E+05 6.7132E+04 3.8944E+04 1.2831E+05 1.9604E+05 1.4848E+05 4.3568E+04 4.4604E+04
Std 1.3495E+04 1.6664E+04 1.3571E+04 8.9288E+03 1.2966E+04 1.7387E+04 8.2905E+03 1.1641E+04 1.1351E+04
Best  8.2552E+04 1.0461E+05 3.9045E+04 2.1757TE+04 9.6936E+04 1.6306E+05 1.2890E+05 2.5138E+04 2.6585E+04
Rank 5 7 4 1 6 9 8 2 3
fs Mean  8.0126E+02 7.1736E+02 8.0796E+02 7.9673E+02 6.3588E+02 1.1693E+03 1.0697E+03 6.3275E+02 5.5655E+02
Std 2.7971E+01 3.0554E+01 5.4872E+01 3.1221E+01 2.0849E+01 2.2951E+01 2.1705E+02 5.6397E+01 1.4449E+01
Best  7.3971E+02 6.4211E+02 7.0205E+02 7.3979E+02 5.7611E+02 1.1064E+03 1.0172E+03 5.9651E+02 5.3283E+02
Rank 6 4 7 5 3 9 8 2 1
f7 Mean  1.1945E+03 1.0522E+03 1.1964E+03 1.2991E+03 9.0583E+02 1.9156E+03 1.7023E+03 9.3761E+02 8.0530E+02
Std 5.6633E+01 5.6900E+01 7.0695E+01 1.3064E+02 3.6210E+01 4.5012E+01 9.4896E+01 6.4798E+01 1.2994E+01
Best 1.0868E+03 9.8468E+02 1.0877E+03 1.1607E+03 8.4510E+02 1.8338E+03 1.4963E+03 8.4211E+02 7.8365E+02
Rank 5 4 6 7 2 9 8 3 1
fo Mean  1.5959E+04 9.5070E+03 1.0826E+04 1.0608E+04 1.9005E+03 3.6806E+04 2.8414E+04 1.3676E+03 9.1268E+02
Std 1.8104E+03 3.2895E+03 4.0149E+03 2.4563E+03 6.8929E+02 2.0277E+03 2.6945E+03 5.1135E+02 1.5790E+01
Best 1.1115E+04 4.5223E+03 5.9037E+03 6.1102E+03 1.3813E+03 3.1611E+04 2.4197E+04 9.8130E+02 9.0054E+02
Rank 7 4 6 5 3 9 8 2 1
f11 Mean  1.9807E+04 2.6645E+04 1.1012E+04 5.6072E+03 2.7469E+04 5.0626E+04 1.8999E+03 9.2607E+03 3.6600E+03
Std 4.6519E+03 2.4977E+03 2.0934E+03 1.2258E+03 1.7478E+03 1.7894E+04 3.6436E+02 4.5057E+03 7.7584E+02
Best 1.1548E+04 1.9335E+04 7.1507E+03 3.7623E+03 2.0812E+04 2.5298E+04 1.4436E+03 4.5961E+03 1.7391E+03
Rank 6 7 5 3 8 9 1 4 2
f13 Mean  4.9943E+09 5.1097E+10 3.5435E+09 6.4052E+08 5.2569E+10 1.4034E+10 1.6378E+08 7.6530E+08 4.2959E+05
Std 1.3731E+09 1.4151E+09 1.9964E+09 9.5127E+08 1.4348E+10 1.0525E+10 5.2650E+08 1.2413E+09 1.8906E+05
Best 1.3173E+09 1.4511E+09 1.9964E+09 3.3169E+07 1.3947E+10 8.8489E+08 3.3452E+04 3.5613E+07 1.9829E+05
Rank 6 7 8 3 9 5 1 4 2
fiz Mean  6.1213E+03 1.4526E+04 4.1340E+03 3.9491E+03 1.3519E+04 8.1612E+07 8.0310E+03 1.8787E+04 5.4691E+03
Std 5.5117E+02 1.6664E+04 3.7257E+02 3.9438E+02 1.0235E+04 9.8102E+32 3.4174E+02 7.7956E+02 3.6593E+02
Best  4.9498E+03 5.2482E+03 3.4684E+03 3.2360E+03 5.2587E+03 4.1205E+34 2.4833E+02 2.7897E+03 2.7816E+03
Rank 7 8 5 4 9 6 1 3 2
f21 Mean  3.0026E+03 3.1902E+03 2.8901E+03 2.9969E+03 3.2893E+03 3.4067E+03 2.6793E+03 2.5505E+03 2.4803E+03
Std 4.3910E+01 9.6283E+01 7.3532E+01 6.5456E+01 8.1169E+01 1.1544E+02 1.0742E+01 7.8800E+01 3.8323E+01
Best  2.9274E+03 3.0002E+03 2.7177E+03 2.8639E+03 3.1501E+03 3.1964E+03 2.5557E+03 2.4120E+03 2.4238E+03
Rank 6 7 4 5 8 9 3 1 2
fo3 Mean  3.5685E+03 4.5822E+03 3.7600E+03 4.1353E+03 4.5422E+03 4.3169E+03 3.5243E+03 3.0680E+03 2.9386E+03
Std 5.7172E+01 1.7445E+02 1.8975E+02 2.0459E+02 1.8668E+02 2.7398E+02 1.6463E+02 1.0219E+02 6.5287E+01
Best  3.4448E+03 4.1997E+03 3.4361E+03 3.7407E+03 4.2619E+03 3.8184E+03 3.2616E+03 2.8601E+03 2.8205E+03
Rank 5 8 4 6 9 7 3 2 1
fos Mean  1.4850E+04 1.5886E+04 6.0873E+04 4.9780E+03 1.5871E+03 2.3342E+04 3.6963E+04 4.1397E+04 3.2217E+03
Std 1.4353E+03 1.5914E+03 6.4950E+02 5.2466E+02 1.2522E+02 7.0300E+03 3.6108E+03 7.2551E+03 3.6311E+03
Best 1.1862E+04 1.3021E+04 4.8404E+04 4.0126E+03 1.3457E+04 1.1761E+04 3.1803E+03 3.3330E+03 3.1614E+03
Rank 7 8 5 4 9 6 2 3 1
far Mean  4.3958E+03 8.0670E+03 4.8415E+03 5.5012E+03 6.9768E+03 6.2836E+03 3.8762E+03 4.1006E+03 3.2000E+03
Std 1.9958E+02 9.5494E+02 3.3459E+02 8.0167E+02 1.0021E+03 6.4330E+02 1.7140E+02 4.4841E+02 1.4392E+02
Best  3.9412E+03 6.1150E+03 4.1443E+03 4.4232E+03 5.0176E+03 5.2348E+03 3.4328E+03 3.6181E+03 3.2000E+03
Rank 4 9 5 6 7 8 2 3 1
fa9 Mean  8.7530E+03 7.9452E+04 9.1174E+03 8.5613E+03 1.8054E+03 9.9107E+03 5.1992E+03 6.2448E+03 4.6064E+03
Std 7.8202E+02 8.8033E+04 1.6900E+03 1.7632E+03 2.5486E+03 2.7181E+03 5.4582E+02 2.2384E+03 2.7296E+02
Best  7.1985E+02 8.2193E+03 6.4534E+02 6.1688E+03 1.8452E+05 7.1146E+03 6.6403E+02 4.7553E+03 3.9563E+03
Rank 7 8 5 4 9 6 2 3 1
f30 Mean  1.4274E+09 8.1016E+09 3.6485E+08 2.5031E+08 7.6478E+09 1.8561E+08 3.3622E+07 4.1096E+08 5.8912E+07
Std 4.2075E+09 3.0707E+09 1.7875E+08 1.0194E+07 2.2515E+09 1.6281E+08 1.5654E+07 8.3501E+08 4.5926E+07
Best  6.7678E+08 1.7077E+09 1.4324E+08 8.9476E+07 3.1963E+09 3.4717E+08 1.5363E+07 1.0833E+07 1.0531E+07
Rank 7 8 5 4 9 6 3 2 1
Total Rank 179 202 154 124 207 214 105 81 39
Final Rank 6 7 5 4 8 9 3 2 1
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TABLE V

SUMMARY OF INDICATORS MEAN, STD, BEST, AND RANK. RESULTS FOR CLASSIC CEC2017 BENCHMARK FUNCTIONS (100-D)

f(x) Index PIO OO0A AO HHO COA GA PSO vy vy

f1 Mean  2.6497E+11 2.7330E+11 1.2987E+11 9.8517E+10 2.7240E+11 5.1887E+10 6.5130E+04 6.6021E+04 4.9345E+04
Std 1.6886E+10 9.8163E+09 1.1567E+10 1.0147E+10 1.5039E+10 5.6418E+09 1.4889E+04 3.1173E+04 1.0327E+04
Best  2.2939E+11 2.5310E+11 1.0900E+11 7.4334E+10 2.1405E+11 3.9900E+11 3.8031E+03 3.1764E+04 3.1674E+04
Rank 7 8 5 4 6 9 3 2 1

fa Mean  4.9578E+05 4.5597E+05 2.5760E+05 3.6150E+05 3.5930E+05 9.0638E+04 6.1122E+05 6.8509E+05 3.4288E+05

Std 2.1652E+05 1.0797E+05 1.0275E+05 1.5132E04 1.8742E+05 9.9415E+04 9.4176E+05 2.2487E+04 1.4128E+05
Best  3.6664E+05 3.5163E+05 3.3119E+05 3.0886E+05 3.2319E+05 7.1696E+05 3.8635E+05 3.6407E+05 3.1258E+05
Rank 7 5 4 1 3 9 8 6 2
fe Mean  7.1724E+02 7.1326E+02 6.9411E+02 6.925E+02 7.1225E+02 7.5780E+02 6.7129E+02 6.5732E+02 6.4815E+02
Std 3.8910E+00 3.8832E+00 4.9031E+00 3.0546E+00 4.0871E+00 9.5691E+00 5.9275E+00 9.3101E+00 1.1225E+00
Best  7.0879E+02 7.0284E+02 6.8365E+02 6.8686E+02 7.0012E+02 7.3500E+02 6.5875E+02 6.3279E+02 6.1596E+02

Rank 7 8 4 5 6 9 3 2 1
fs Mean  2.6566E+03 2.9582E+03 2.2288E+03 2.9107E+03 2.6005E+03 3.3665E+03 1.8436E+03 1.8959E+03 1.6833E+03
Std 6.5244E+01 5.1316E+01 8.2426E+01 3.1551E+01 4.2598E+01 1.9789E+02 8.9003E+01 9.7668E+01 8.7891E+01
Best  2.5309E+03 2.4812E+03 2.0555E+03 2.0778E+03 2.5128E+03 3.0446E+03 1.6234E+03 1.6723E+03 1.5222E+03

Rank 8 6 4 5 7 9 2 3 1
fio Mean  3.3185E+04 3.3652E+04 2.7569E+04 2.5748E+04 3.2525E+04 3.3435E+04 1.9159E+04 1.7721E+04 1.9683E+04
Std 6.1542E+02 7.9490E+02 2.1556E+03 1.1975E+02 9.7051E+02 1.2357E+02 1.5533E+02 1.7058E+02 5.5942E+03
Best  3.1809E+04 3.0479E+04 2.3839E+04 2.3915E+04 2.9478E+04 2.9559E+04 1.6881E+04 1.4631E+04 1.4550E+04

Rank 9 8 4 5 6 7 3 2 1
fi2 Mean  1.0394E+11 2.0948E+11 5.8718E+10 3.9622E+10 2.0560E+11 2.7543E+11 1.2241E+10 1.9062E+10 6.2568E+08
Std 2.0461E+10 1.5052E+10 1.0345E+09 9.3260E+09 2.1552E+10 5.2277E+10 8.7277E+09 2.3049E+10 1.6038E+08
Best  6.9962E+11 1.7646E+11 3.5151E+10 2.4961E+10 1.5524E+11 1.7386E+10 2.5566E+10 2.6364E+09 3.3679E+08

Rank 6 9 5 4 7 8 2 3 1
f1a Mean  8.8048E+07 9.9349E+07 3.0020E+07 1.3707E+07 8.8570E+07 1.8201E+08 3.5110E+06 1.4215E+07 6.3485E+06
Std 2.3208E+07 4.0705E+07 9.4977E+06 4.8786E+06 3.6197E+08 1.4135E+08 2.6212E+06 7.1414E+06 2.1418E+06
Best  4.2960E+07 3.2231E+07 1.2043E+07 5.8057E+06 1.1742E+07 3.7174E+07 6.5856E+05 4.8174E+06 2.2440E+06

Rank 9 7 6 4 5 8 1 3 2
fie Mean  1.5046E+04 2.6264E+04 1.3321E+04 1.1550E+04 2.4496E+04 2.4858E+03 7.5315E+03 7.3112E+03 6.2721E+03
Std 1.0681E+03 3.0251E+03 1.6622E+03 1.5223E+03 3.7997E+03 4.7964E+03 7.9562E+02 8.1185E+02 5.9000E+02
Best 1.2738E+04 2.0228E+04 1.0276E+03 8.6533E+03 1.8845E+04 1.7772E+03 5.8925E+03 5.4659E+03 5.2082E+03

Rank 6 9 5 4 8 7 3 2 1
f20 Mean  8.2377E+03 7.6751E+03 6.4688E+03 6.4049E+03 7.7675E+03 8.6745E+03 5.5172E+03 5.8045E+03 5.3456E+03

Std 3.0318E+02 4.3168E+02 5.9770E+02 5.3071E+02 5.3914E+02 4.9126E+02 6.6819E+02 6.5227E+02 5.3028E+02
Best  7.4826E+03 6.6732E+03 5.0689E+03 5.0161E+03 6.5262E+03 7.6470E+03 4.0903E+02 4.5775E+03 4.2703E+03
Rank 8 7 5 4 6 9 1 3 2
fo2 Mean  3.5758E+04 3.7423E+04 2.9805E+04 2.8777E+04 3.5059E+04 3.6802E+04 2.1972E+04 2.1632E+04 2.1324E+04
Std 7.4037E+02 7.9047E+03 1.7049E+03 1.4743E+02 8.3540E+02 1.2981E+03 1.5170E+03 1.0902E+03 4.7400E+03
Best  3.4411E+04 3.2747E+04 2.5455E+04 2.6587E+04 3.3085E+04 3.3838E+04 1.9028E+04 1.8453E+04 4.0657E+03
Rank 9 6 4 5 7 8 3 2 1
foa Mean  6.1947E+03 1.3074E+04 7.1484E+03 8.3454E+03 1.0339E+03 1.2248E+04 6.2070E+03 4.6193E+03 4.3851E+03
Std 2.5633E+03 7.4782E+02 5.3331E+02 4.7512E+02 6.9710E+02 1.0855E+03 4.0684E+02 3.9142E+02 1.1662E+03
Best  5.8865E+03 1.1579E+04 6.4486E+03 7.1330E+03 8.9907E+03 1.0436E+04 5.5340E+03 4.1640E+03 3.8680E+03
Rank 4 9 5 6 7 8 3 2 1
f26 Mean  5.0727E+04 5.3445E+04 3.7013E+04 3.4415E+04 5.3312E+04 6.5220E+04 2.8238E+04 3.0058E+04 1.6509E+04
Std 9.0344E+03 2.3713E+03 1.9690E+03 2.2797E+03 1.9981E+03 9.0535E+03 2.8621E+03 3.5859E+03 5.8710E+03
Best  3.0321E+04 4.6845E+04 3.4097E+04 3.0140E+04 4.9606E+04 4.7137E+04 2.2396E+04 2.1881E+04 6.5347E+03
Rank 5 7 6 4 9 8 3 2 1
fas Mean  3.3257E+04 3.0249E+04 1.8305E+04 1.3476E+04 3.0695E+04 5.1806E+04 1.1543E+04 9.7394E+03 3.3000E+03
Std 8.6426E+02 1.1511E+03 1.7212E+03 1.3412E+03 1.3412E+03 7.6391E+03 1.7887E+03 2.3776E+03 1.9574E+04
Best  3.0715E+04 2.6408E+04 1.5335E+04 2.7073E+04 2.7073E+04 3.5203E+04 8.5376E+03 6.3169E+03 3.3000E+03
Rank 8 6 5 4 7 9 3 2 1
f30 Mean  9.1010E+09 4.4392E+10 8.7221E+09 3.6434E+09 4.4258E+10 4.5982E+10 7.6979E+08 1.9125E+09 4.4282E+07
Std 2.6316E+09 5.5663E+09 2.8446E+09 1.6706E+09 7.4825E+09 1.4081E+10 7.4087E+08 1.6865E+09 4.0248E+07
Best  4.7095E+09 2.8498E+10 2.6907E+09 1.5497E+09 2.5661E+10 2.2207E+10 5.6972E+07 2.6404E+08 9.8039E+06

Rank 6 9 5 4 8 7 2 3 1
Total Rank 189 217 147 127 209 232 77 66 41
Final Rank 6 8 5 4 7 9 3 2 1
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TABLE VI
SUMMARY OF INDICATORS MEAN, STD, BEST AND RANK. RESULTS FOR CLASSIC CEC2022 BENCHMARK FUNCTIONS (50-D)
f(x) Index PIO OO0A AO HHO COA GA PSO vy vy
f1 Mean  9.3759E+10 1.1436E+11 2.1269E+10 5.1947E+09 1.1339E+11 1.1962E+11 7.7279E+09 2.5333E+09 1.0204E+07
Std 1.5264E+10 7.8285E+09 3.2847E+09 1.5853E+09 9.5890E+09 2.7287E+10 5.4783E+09 4.0990E+09 2.3834E+06
Best  6.4766E+10 9.6053E+10 1.5848E+10 2.8694E+09 9.3580E+10 7.0049E+10 1.5348E+09 1.1685E+08 6.7925E+06
Rank 6 9 5 4 8 7 3 2 1
fa Mean  4.3747E+06 1.1163E+07 8.5935E+04 1.0880E+04 1.1154E+07 2.9328E+06 9.6396E+03 6.8918E+03 1.9534E+03
Std 2.3925E+06 4.3153E+06 4.7794E+04 8.1445E+03 3.7820E+06 3.0374E+06 1.3965E+04 1.5106E+04 7.1071E+00
Best  1.2105E+06 4.5624E+06 2.1255E+04 3.2101E+03 5.0150E+06 1.2838E+05 2.2600E+03 2.0217E+03 1.9375E+03
Rank 7 8 5 4 9 6 3 2 1
fe Mean  2.7867E+03 3.9559E+03 3.7880E+03 5.7485E+03 9.1278E+03 5.1524E+03 5.0545E+03 9.7035E+03 6.9314E+03
Std 2.4925E+02 4.4559E+02 4.2792E+02 5.2990E+02 1.5852E+03 6.2163E+02 6.4053E+02 1.7355E+03 4.4166E+02
Best  6.0844E+03 7.3581E+03 3.7409E+03 3.8309E+03 5.9244E+03 4.6010E+03 2.9908E+03 3.2426E+03 2.2455E+03
Rank 8 9 4 5 6 7 2 3 1
fs Mean  1.6528E+04 1.6706E+04 1.3150E+04 1.2059E+04 1.6888E+04 1.7165E+04 1.0053E+04 1.0789E+04 7.9224E+03
Std 1.8627E+03 4.1661E+02 8.6388E+02 8.9774E+02 5.0251E+02 9.0245E+02 1.1319E+03 9.7155E+02 2.6307E+03
Best  9.1786E+03 1.5763E+04 1.1202E+04 9.8941E+03 1.6159E+04 1.4439E+04 7.1181E+03 8.4741E+03 2.3174E+03
Rank 4 7 6 5 9 7 2 3 1
f1o Mean  1.4384E+04 1.6344E+04 4.6934E+03 3.7764E+03 1.5944E+04 1.9612E+04 3.6417E+03 3.4244E+03 3.1459E+03
Std 6.1542E+02 7.9490E+02 2.1556E+03 1.1975E+02 9.7051E+02 1.2357E+02 1.5533E+02 1.7058E+02 5.5942E+03
Best  3.1809E+04 3.0479E+04 2.3839E+04 2.3915E+04 2.9478E+04 2.9559E+04 1.6881E+04 1.4631E+04 1.4550E+04
Rank 9 8 4 5 6 7 3 2 1
Total Rank 34 41 24 23 38 34 13 12 5
Final Rank 7 9 5 4 8 6 3 2 1
TABLE VII
SUMMARY OF INDICATORS MEAN, STD, BEST AND RANK. RESULTS FOR CLASSIC CEC2022 BENCHMARK FUNCTIONS (20-D)
f(x) Index PIO O0A AO HHO COA GA PSO vy vy
f1 Mean  2.7740E+04 5.4786E+04 6.1955E+04 2.2832E+04 4.1295E+04 8.2669E+04 6.5520E+03 4.8544E+04 2.4780E+04
Std 7.2716E+03 1.9484E+04 2.6060E+04 8.2846E+03 1.0269E+04 2.2502E+04 5.1785E+03 1.2641E+04 1.0825E+04
Best  1.7548E+04 2.7120E+04 2.7675E+04 7.8581E+03 2.6306E+04 3.2822E+04 7.8886E+02 2.5085E+04 8.6876E+03
Rank 3 6 7 9 5 8 1 4 2
f3 Mean  6.4514E+02 6.7375E+02 6.4251E+02 6.6131E+02 6.7930E+02 7.0246E+02 6.3052E+02 6.0986E+02 6.0024E+02
Std 7.5110E+00 1.3204E+01 7.6556E+00 9.1668E+00 9.4241E+00 1.4958E+01 1.1484E+01 1.2329E+01 5.1922E-01
Best  6.3135E+02 6.4159E+02 6.2965E+02 6.3279E+02 6.4956E+02 6.7497E+02 6.1125E+02 6.0001E+02 6.0004E+02
Rank 5 7 4 6 8 9 3 1 2
f5 Mean  4.3003E+03 3.3646E+03 2.6171E+03 2.9935E+03 3.4345E+03 1.8577E+03 1.8577E+03 2.3650E+03 2.3724E+03
Std 9.4769E+02 3.0200E+02 4.1706E+02 3.8044E+02 4.4104E+02 9.4316E+02 6.6412E+02 1.2076E+02 2.0352E+02
Best  2.4375E+03 2.7269E+03 1.5126E+03 2.1198E+03 2.5750E+03 1.0359E+03 1.0326E+03 2.0420E+03 1.5707E+03
Rank 7 9 4 6 8 1 2 5 3
fr Mean  2.1560E+03 2.1974E+03 2.1285E+03 2.1824E+03 2.1841E+03 2.2547E+03 2.1412E+03 2.1506E+03 2.0676E+03
Std 2.7634E+01 4.0307E+01 2.3497E+01 4.9523E+01 4.1579E+01 7.3641E+01 5.7697E+01 6.8895E+01 3.3325E+01
Best  2.1038E+03 2.1283E+03 2.0827E+03 2.1102E+03 2.1094E+034 2.1473E+03 2.0381E+03 2.0682E+03 2.0292E+03
Rank 5 8 4 7 6 9 2 3 1
fo Mean  2.5996E+03 3.6238E+03 2.5983E+03 2.5481E+03 3.2815E+03 2.7231E+03 2.4943E+03 2.4868E+03 2.4759E+03
Std 3.8975E+01 3.8476E+02 4.4460E+01 4.6707E+01 2.6089E+02 1.0039E+02 1.9968E+01 4.1605E+00 1.9669E+00
Best  2.5419E+03 3.0380E+03 2.5198E+03 2.4927E+03 2.8073E+03 2.5952E+03 2.4808E+03 2.4809E+03 2.4731E+03
Rank 6 9 5 4 8 7 2 3 1
Total Rank 26 39 24 32 35 34 10 16 9
Final Rank 5 9 4 6 7 8 2 3 1
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TABLE VIII
THE WILCOXON TEST BETWEEN IIVY AND OTHER ALGORITHMS ON CEC2020 AND CEC2022 BENCHMARK FUNCTIONS (20-D AND 50-D)
Dimension
VY vs CEC2020 CEC?2022
p-Value Rt R~ +=/- p-Value Rt R~ +=/-
PIO 3.62E-11 0.00 55.00 10/0/0 6.03E-02 22.00 56.00 700/5
0O0A 3.02E-11 0.00 55.00 10/0/0 8.97E-04 1.00 77.00 11/0/1
AO 1.34E-09 0.00 55.00 10/0/0 4.68E-02 9.00 69.00 9/0/3
HHO 1.36E-07 0.00 55.00 10/0/0 8.73E-02 3.00 75.00 10/0/2
COA 3.05E-11 0.00 55.00 10/0/0 3.90E-03 1.00 77.00 11/0/1
GA 3.02E-11 0.00 55.00 10/0/0 6.12E-04 1.00 77.00 11/0/1
PSO 8.30E-02 14.00 41.00 7/0/3 1.36E-01 16.00 62.00 8/0/4
VY 7.61E-05 2.00 53.00 9/0/1 7.57E-02 3.00 75.00 10/0/2
Mean Value 1.19E-02 2.00 53.00 9.5/0/0.5 5.15E-02 7.00 71.00 9.6/0/2.4
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Fig. 2: The boxplots in 50-D and 100-D for a subset of CEC2017 functions ( f1, f5, fio and fag).
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Fig. 3: The convergence curves in 50-D and 100-D for a subset of CEC2017 functions (f4, fs, fie and fa1).

Statistical analysis results (see Table III and Table VIII)
on widely used and authoritative benchmark suites CEC2017,
CEC2020, and CEC2022 further strongly confirm the overall
and consistent performance advantage of the IIVY algorithm.
In Table III (CEC2017, D = 50 vs. D = 100), the
detailed and comprehensive comparisons of IIVY with
PIO [22], OOA [23], AO [24], HHO [25], COA [26],
GA [16], PSO [17], and the basic IVY [18] very clearly
show that most obtained p-values from Wilcoxon’s rank-sum
test are far well below the strict 0.05 threshold, strongly
indicating that the performance differences are indeed highly
statistically significant for the great majority of considered
test functions. At the same time, the observed Rt values
for several compared algorithms are very close to zero,
while the corresponding R~ values approach the maximum
possible level, meaning that IIVY consistently and reliably
outperforms on almost all tested functions and therefore
exhibits a clear, strong, and convincing competitive edge.
This demonstrated superiority steadily holds consistently in
both medium (D = 50) and high (D = 100) dimensions,
thereby convincingly demonstrating excellent robustness
across different dimensional scales.

In Table VIII (CEC2020 vs. CEC2022), the dominance of

IIVY remains evident. The p-values for most comparisons
again fall below 0.05 on both test suites, while the R
and R~ distributions are heavily skewed in favor of IIVY.
For example, in the CEC2022 benchmarks, R* values
for IIVY against some algorithms remain in the low
single digits, whereas the corresponding R~ values exceed
70, highlighting its adaptability and strong global search
capability on more challenging problems.

Taken together, the results in Table III and Table VIII
indicate that IIVY maintains consistent advantages across
different dimensions and demonstrates strong generalization
across benchmark sets and problem categories. These
findings show that IIVY achieves high accuracy and
efficiency on diverse, complex optimization tasks and holds
promising potential for practical applications.

V. APPLICATION OF MPPT FOR PHOTOVOLTAIC
SYSTEMS

A. Solar Model Building

In PV power generation systems, PV modules serve
as the core component, converting sunlight directly into
electrical energy through the photovoltaic effect. The
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conversion process is highly sensitive to environmental
conditions, particularly solar irradiance and temperature.
Irradiance mainly determines the PV current magnitude,
while temperature primarily influences parameters such as
open-circuit voltage [9]. Accurate estimation of PV array
output current, voltage, and power therefore requires explicit
consideration of these two variables [14].

To evaluate the combined effects of irradiance and
temperature on PV output—and to address the dynamic
optimization requirements of MPPT algorithms [27]—this
work employs the single-diode equivalent circuit model.
The model incorporates series resistance (Rs) and shunt
resistance (Rsp) to capture ohmic losses, enabling a realistic
representation of module behavior. This approach allows
dynamic performance analysis and provides closed-form
expressions for key variables. MPPT plays a critical role
by continuously adjusting the operating point of the PV
system to achieve maximum available power under changing
conditions [28].

H]
Y Y \Loul
1 ph RS
]1) J ]sh
Rsh I/out J/ [”] RL

Fig. 4: Equivalent circuit of the solar cell diode model.

In Fig. 4, I,;, denotes the photo-generated current, Ip is
the diode current, and I, is the current through Rgp. R
represents the series resistance, Ry, the load resistance, and
U and [ are the terminal voltage and current. From Fig. 4,
the PV cell output current I,,; is given as:

Tout :Iph_ID — I (15)

where I, is the photocurrent, Ip the diode current, and I,
the shunt branch current. As described in [14], I,; can be

expressed as a function of irradiance G and temperature 7

In = Ipno + s - (T — Tp)] (16)

G
Go |
where G is irradiance, 7' is ambient temperature, and fis. iS
the short-circuit current temperature coefficient. Ip,;0 and Tp
denote the standard test condition values, with Tj typically
25°C.

The diode current is defined as:

Vou Iou 'Rs
Ip=1Iy-exp (“Lt> 1 A7)

a

where I is the diode reverse saturation current, V,,,; is the

terminal voltage, R, is the series resistance, and a is the

thermal voltage factor:

_ Ng-A-k-T
q

with A the diode ideality factor, Ns; the number of

series-connected cells, £ the Boltzmann constant (1.381 x
10723 J/K), and ¢ the electron charge (1.602 x 10719 C).

a (18)

The parallel current I, is described as [27]:

— Vout + Rs i Iout (19)

[(5) (1))

where Ig¢, is the short-circuit current, Voc the open-circuit
voltage, and E, the bandgap energy of the material.

As noted in [10], the current-voltage (I-V) characteristics
can be obtained by sweeping voltage values to compute
the current response. The power-voltage (P-V) curve is then
derived from P = V - I [29]. Figure 5 illustrates the I-V
characteristics of the PV module, with the MPP marked,
showing how MPPT varies with irradiance and temperature.

3000 -
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Fig. 5: I-U characteristic curve of PV cell with constant T
and varying S
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Fig. 6: P-U characteristic curve of PV cell with constant T
and varying S

The P-V curve is further analyzed in Fig. 6. The results
highlight that MPPT is strongly influenced by fluctuating
irradiance, typically caused by unpredictable weather.
This variability creates a dynamic optimization challenge
requiring continuous MPPT adaptation. The simulation
conditions used for Figs. 5 and 6 are: temperature 25°C and
irradiance values of 1000 W/m2, 700 W/m2, and 400 W/m?2.
These results clearly demonstrate that environmental changes
directly affect maximum power output, emphasizing the need
for robust MPPT algorithms.

B. Maximum Power Point Tracking

Assuming the MPP varies with temperature and irradiance,
dynamic optimization is necessary. As noted in [29],
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DC/DC converters adjust impedance to regulate power, with
control parameters depending on topology. Duty cycle and
conversion ratio are discussed in [30], while [31] relates
these to equivalent resistance and PV terminal voltage. MPPT
controllers are essential under dynamic conditions [32]. The
P&O method adjusts duty cycle to reach the maximum power
point, combining simplicity with low cost. The improved
IVY-based MPPT algorithm offers better efficiency, MPP
localization, and faster response under irradiance changes,
reducing stabilization time.

C. MPPT Application Based on IIVY

To evaluate the effectiveness of MPPT algorithms, a case
study was implemented in MATLAB/Simulink, with the
system topology shown in Fig. 7.

lPV »— ..
PV system T T B N
EEE |y e ko
Vo = c——= H v
Ipv — PWM
MPPT — .
va — Conversion

@

Fig. 7: Selected topology for the case study.

PV arrays: To capture a broad, diverse, and
comprehensive range of realistic photovoltaic operating
scenarios, the irradiance conditions were systematically,
carefully, and consistently varied during the controlled
experimentation process. Three representative, practically
meaningful, and frequently encountered levels were
specifically selected: high (1000 W/m?2, clear sky conditions),
medium (700 W/m?, moderately cloudy conditions), and low
(400 W/m?, heavily overcast weather). These deliberately
chosen and well-defined conditions therefore provide
reliable, realistic, and convincing coverage of PV system
operation under diverse, typical, and naturally occurring
real-world weather patterns.

Solar Irradiance

1000 1
800 1
‘g
B 600 r 1
400 +
0 1 2 3

Time (s)

Fig. 8: Irradiance profile used for high power simulations

Besides irradiance and temperature, the specific
configuration of the PV array also strongly and
directly influences the overall dynamic system behavior.
Important parameters such as the number of series/parallel
interconnected modules, the module power ratings, and
the intrinsic electrical properties together determine the
actual output power, operational efficiency, stability, and
transient dynamic response. To ensure higher accuracy and
reliability, this study explicitly specifies the detailed PV
array characteristics, including precise electrical ratings
(e.g., Voo, Isc), design specifications, and interconnection
structure information.

TABLE IX
CONVERTER PARAMETERS

Parameter Value
Input voltage 725V
Switching frequency 10 kHz

Duty cycle 3.5%
Inductance 3 uH
Capacitance 408 pF
Load resistance 2.69 Q

Output power 209.48 kW

Output voltage 750 V
Output current 2793 A

TABLE X
PV ARRAY SIMULATION PARAMETERS

Parameter Value
Maximum power 213.15 W
Cells per module 60

Voc 363V
Isc 7.84 A
Vvpp 29V
Ivpp 735 A
Temp. coefficient of Voo -0.33%/°C
Temp. coefficient of Isc 0.102%/°C
I, 7.8495 A
Io 9.9124E-11 A
Diode ideality factor 0.9386
Rsp, 340.283 Q
Rs 0.41237 Q
Parallel strings 38
Series strings 25

Results:The improved IIVY algorithm was thoroughly
benchmarked against four widely used and well-established
MPPT methods under the MATLAB/Simulink simulation
environment. The diverse test cases deliberately included
abrupt irradiance variations and sudden load perturbations,
thereby allowing a more systematic and comprehensive
evaluation of transient response, steady-state tracking
precision, overall accuracy, and robustness against multiple
external disturbances. The corresponding detailed results
and performance comparisons are clearly shown in Figs. 9
and 10.

Volume 52, Issue 11, November 2025, Pages 4507-4521



TAENG International Journal of Computer Science

300 800
.‘ATW"""\""I T
ey \ g ll.\uvnv P.v'ﬁ.
L BAT 700} """’\" it
250 A il
- PSO -
< < 600}
= / T
T 200 o4
5 W 2
2| V
150 28 NAAAS 7401\ 7200 P
VY —
. 2.2 400+ ' “ ‘
7 lhh
oy N
VY = 035040045 <O T50 135 "8 26 27 28
00 05 10 15 20 25 30 00 05 10 15 20 25 30
Time(s) Time(s)
——Ref——IIVY——IVY——BAT——GA——PSO| |——Re——IIVY——IVY——BAT—— GA—— PS(|

(a) Current harvested over time under different irradiance conditions. (b) Voltage harvested over time under different irradiance conditions.

Fig. 9: Voltage, and current harvested over time under different irradiance conditions.
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Fig. 10: Power harvested over time under different
irradiance conditions.

The IIVY algorithm was tested at irradiance levels
of 1000, 700, and 400 W/m?, with ambient temperature
fixed at 25°C. Results indicate rapid convergence, with the
maximum power point reliably tracked within 0.15-0.25 s,
significantly improving response speed. During sudden
irradiance changes, IIVY adapts quickly, showing lower
overshoot and reduced oscillations compared to other
methods. Current ripple was also notably suppressed,
minimizing power loss and component stress. Power stability
improved markedly: fluctuations decreased by approximately
17% at 1000 W/m?, by 20% at 400 W/m?, and by up to 78%
under highly variable conditions. These results confirm the
adaptability and robustness of IIVY under diverse operating
scenarios.

VI. CONCLUSION

In this paper, an improved IIVY algorithm is proposed
to address the problems of the traditional IVY algorithm,
such as the lack of initial population diversity, weak local
search ability, and fixed convergence step. It consists of
three strategies: optimizing the initial population generation
through inverse learning to improve the population diversity
and global search ability; introducing the Lévy flight update
strategy to enhance the ability of the algorithm to jump out of
the local optimum and maintain the search equilibrium; and
adopting the adaptive convergence factor and dynamically
adjusting the step size to balance the global exploration and
the local exploitation, so as to improve the convergence speed
and the solution accuracy.

First, the experimental results (Table IV and Table
V) on 30 low- and high-dimensional benchmark functions
show that IIVY significantly outperforms eight representative
optimization algorithms, including PIO, OOA, AO, COA,
HHO, and the original IVY, in all dimensions and problem
types. In the low-dimensional case, IIVY ranks first on 20
functions and second on 8 functions; in the high-dimensional
case, it ranks first on 19 functions and second on 8§
functions. Visualization comparisons (Fig. 2 and Fig. 3)
further validate its advantages in convergence speed, global
search capability, and jumping out of local optima. The
statistical test results (Table III) also prove that IIVY
significantly outperforms the comparison algorithms at the
significance level of 0.05 and obtains the best average
ranking in Friedman’s test, highlighting its robustness and
wide applicability. Secondly, in PV MPPT applications, [IVY
demonstrates fast convergence (0.15-0.25 s), low tracking
error, low current fluctuation, and 17%—-78% reduction
in output power fluctuation under different irradiance
(1000/700/400 W/m?) and 25°C conditions. 78% of the
output power fluctuation. The experimental results show
that the algorithm is able to lock the maximum power
point stably and efficiently when the irradiance changes
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rapidly, with excellent dynamic response and robustness,
which significantly improves the energy capture efficiency
and operational stability of the photovoltaic system.

Future

research can further explore the extended

application of IIVY in practical engineering scenarios
such as multi-objective optimization, hybrid energy storage
scheduling, microgrid control, etc., in order to give full play
to its optimization potential.
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