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Abstract—— The waste collection system (WCS) is part of
the waste management system (WMS) and is a vital sector
for a prosperous lifestyle and economy, especially in smart
cities. This paper proposes hybrid integrative models of
multi-objective Genetic Algorithms (GA) and Reinforcement
Learning (RL) algorithms, aiming to optimize the waste
collection process by finding the best solutions for routing
problems with excellent tour plans in complex scenarios
that minimize WCS cost while addressing its constraints in
a multi-objective manner. The proposed system consists of
several experiments utilizing hybrid algorithms that integrate
GA and RL to generate synthetic data for experimental
models, addressing specific predefined constraints such as drone
capacity, energy consumption, flight time, flight distance, and
service of all WCLs using a single Unmanned Aerial Vehicle
(UAV). Each of the experiments is also divided into three parts,
including 100, 500, and 1000 WCLs. The study first compares
two hybrid algorithm models of GA and RL. The first proposed
model starts its first phase by synthetic data generation with
GA operations first and then proceeds with RL operations in
the second phase (GARL); and the second model starts the
first phase with RL and then GA in the second phase (RLGA).
Then, two more proposed models that test the GA and RL
performances individually are compared with the results of
the hybrid models’ performances. The performance of hybrid
models is better than that of individual models, while the
GARL hybrid model is found to be the best approach among
all models. It shows a notable improvement in fitness value
and flight time compared to RLGA model, recording higher
performance percentages of 10.04%, and 2.56 % minutes at 100
WCLs; 17.16% and 1.64 % minutes at 500 WCLs; 15.84% and
2.03% minutes at 1000 WCLs. Moreover, compared to the GA
algorithm only, it shows higher performance percentages of
11.05% and 2.27 minutes at 100 WCLs; 22.06% and 4.32
minutes at 500 WCLs; and 26% and 8.1 minutes at 1000
WCLs. In addition, compared to the RL algorithm alone, it
records higher performance percentages of 12.68% and 2.51
minutes at 100 WCLs; 22.55% and 5.62 minutes at 500 WCLs;
and 26.42% and 10.7 minutes at 1000 WCLs. The results of
the proposed hybrid models have also been compared with
the results of other previous studies with similar data sets
and constraints but different approaches, and have shown
significant improvement. Hence, this integrative hybrid model
synergizes the best features of both GA and RL algorithms and
enhances applications in dynamic environments. The model
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achieves a reliable high-performance system under multiple
constraints in complex environments.

Index Terms—Waste collection, waste management system,
Genetic  Algorithm (GA), Reinforcement algorithms
(RL), Unmanned Aerial Vehicles (UAV), Path planning,
multi-objective, hybrid model.

I. INTRODUCTION

HE waste collection system (WCS) is one of the

most promising sectors in the industry and one of the
main systems that should be strengthened and improved.
Many researchers have tried to enhance the WCS through
tackling routing problems and providing solutions in this
area. The WCS is part of the larger process of the waste
management system (WMS). The WCS process comprises
collecting, transporting, and controlling wastes in designated
specific locations. Hence, WCS is suffering from high-cost
operations that stimulate the researchers to investigate
several methods of developing and enhancing the routing
process to reduce the imperfections of traditional WCS. The
traditional system is mainly based on inland waste collection
vehicles and containers. Hence, researchers’ investigations
focus on methods that develop the routing process to manage
and reduce high-cost transportation operations. However,
the system may deal with many challenges and complex
scenarios, including hazardous waste material that requires
immediate attention and quick treatment. To address this
issue, the integration of drone technology into the WCS
becomes very helpful and necessary.
This method improves response time during emergencies
and increases the efficiency of general waste management
by ensuring public safety and environmental protection.
The great demand to improve this sector comes from
its contribution to a high quality of life in smart cities
based on a healthy and clean environment. Hence, when
a developed WCS is established, the effects reduce the
rate of pollution and help decrease the negative impact of
global warming by managing the huge amount of waste
that needs to be controlled. This control process itself is
comprised of several processes, such as recycling and safe
waste incineration, especially biological or hazardous waste
and non-decomposing materials. Industry revenue can be
a challenge due to the high demands of the sector, which
requires to improve immensely to increase profits.
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This paper considers enhancing the WCS with an efficient
model targeting multiple objectives through using a single
drone visiting several waste locations to collect and dispose
of waste at the main central landfill. The proposed model
employs a hybrid approach that integrates two algorithms to
provide a better performance than a single algorithm can
achieve [1l]. Optimization methods and machine learning
(ML) techniques can make a very powerful combination that
can solve complex problems such as routing problems [2].
The model’s process has two phases, the first phase is
employing a genetic algorithm (GA), which determines
its best path and sets it as the initial state for operation
by a machine learning algorithm, namely a Reinforcement
learning algorithm (RL). Therefore, GA in the first phase can
find the near-optimal path that minimizes the computational
time and the cost, hence, handling complex and huge
problems when the fitness function is well constructed.
RL, on the other hand, in phase two, can interact with
the environment very appropriately through achieving an
even better path based on managing a dynamic complex
environment, and handling problems needing multi-objective
solutions with more flexibility. Moreover, integrating GA
with RL can leverage and synergize the supremacy of both
methods [3]].

The proposed model is designed to meet the multi-objective
approach, addressing multiple constraints of WCS using
a single drone. The drone starts its mission and ends
it at the depot, hence collecting all wastes at all waste
collection locations (WCLs) and then disposing of waste
at the disposal location. The drone’s energy consumption
and waste container capacity constraints are first addressed
as the UAV starts its tour with a full drone charge and an
empty waste container to maximize its function in regard to
its flying time and waste loading capacity. The drone returns
to the depot when it is in a depleted condition, where it can
recharge and continue the tour again. Hence, the drone needs
to unload its waste when the waste capacity of the drone
is almost full, or when the power is almost depleted and
needs to be recharged. It should go to the disposal location
to unload the waste and then continue its tour before going to
the depot to recharge. Moreover, it must unload the waste at
the disposal location before the tour ends. All WCLs must be
visited to collect their waste, taking into account the shortest
path distance, even if it passes through the same locations
several times.

The rest of the framework of this paper is organized
as follows. The second section analyzes GA and RL
review papers in several studies that have applied these
methods. The third section describes the research problem
and explains the theory of the proposed solution model. The
fourth section explains in detail the proposed model of the
hybrid GA and RL algorithms as a solution to the problem.
The fifth section shows the experimental results and analysis
of the study. Finally, the last section presents the conclusion
and future work directions.

II. LITERATURE REVIEW

Smart cities rely on intelligent systems, including Al that
improves WCS, which are necessary to operate in any
advanced automated civilization. Developing this aspect of
the system influences various other aspects of this sector,
such as the economy, health, and high quality of life.
Therefore, the researchers investigate improving routing
problems to increase the efficiency of WCS. The scope
of this literature review is divided into two subsections,
including several studies that examine individual and hybrid
methods to address routing challenges.

A. Individual Methods in Routing Problem

Routing problems can be effectively solved using several
methods. One such method is the reinforcement learning
(RL) algorithm, which is well-compatible to dynamic
environments, hence accommodating it to adjust and
fine-tune its parameters during the training phase. This
capability enhances the simple search tasks, particularly in
the Deep Reinforcement Learning (DRL) algorithm, due to
its efficient operation of state-action relationships. RL is
adept at multi-constraint problems, providing multi-objective
solutions and does not require prior data, which makes it
adaptable for complex environments. In one study, DRL [4]]
is applied to address path planning problems for UAVs using
a simulation model known as STAGE Scenario software.
This method handles the situation as a survival mode,
granting the avoidance of enemy attacks in both static and
dynamic modes. The RL framework is employed exclusively
with diverse algorithmic types, such as the Dueling Double
Deep Q-Networks (D3QN) algorithm. In another study
using RL-optimized quadcopter UAVs that consider specific
types of UAVs through a supplementary controller [S;
they thus utilize thus utilizes the DRL algorithm to
solve many problems, such as the Autonomous Motion
Planning (AMP) problem. DRL is powerful in artificial
fields for path planning through tackling static and dynamic
situations, and overcoming complex environmental barriers
by merging with the black hole potential field (BHPF)
to enable agents’ collaboration and obstacle avoidance
[6]. Additionally, deep algorithms such as a double deep
Q-network (DDQN) and DRL optimize UAV routing
with advanced solutions. To obtain information from the
constrained and complex environment and to avoid obstacles,
a Deep Recurrent Q Network (DRQN) [7] emerges with
the Markov decision process and recurrent neural network,
and Convolutional Neural Networks (CNNs) for spatial
feature analysis. This method combines current rewards,
states, and actions to decrease unnecessary exploration.
To address the challenge of dynamic vehicle routing [S8],
a research study employs DRL, which includes neural
network-based temporal difference learning along with the
Markov decision process to solve customer routing issues.
This method shows improvement in the value function and
enabling better re-routing decisions involving the ability
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to switch and insert customer locations. The study also
introduces DRLSA, based on simulated annealing, and
compares its performance with Value Iteration (AVI) and the
Multiple Scenario Approach (MSA). These methodologies
assist in calculating costs based on remaining locations and
time window requirements; henceforth, further expanding
the efficiency of dynamic routing solutions. Moreover, a
plethora of studies have indicated that the GA is one of
the most effective algorithms for solving routing problems
[L]]; specifically in WMSs. In research conducted in the city
of Mecca, Saudi Arabia, GA is applied in WMSs and shows
its capability to improve dynamic routes. The results show
that GA successfully reduces costs profoundly by addressing
multiple objectives, such as consuming less fuel, finding
the shortest path, and spending less computation time.
However, while GA does not always guarantee finding the
optimal path, it constantly identifies the best or near-optimal
routes [9)]. Similar research applying GA in solid waste
management (SWM) systems [10] is conducted, taking into
account factors such as vehicle capacity and time constraints
to improve routing schedules. Furthermore, many WMSs
leverage Internet of Things (IoT) tools within smart city
systems to verify the best routes. A case study conducted
in the Bakirkoy district of Istanbul examines GA’s ability in
path planning, revealing that it is superior to the traditional
methods in optimizing routing solutions [11]. A novel GA
[12] can solve the Inventory Routing Problem (IRP) to
meet different customer requirements within a specified
period based on incorporating a new chromosomal structure
designed to represent solutions efficiently. Another case
study conducted to solve the Asymmetric Capacity Vehicle
Routing Problem (ACVRP) in Istanbul delivery operations
that deliver bread daily using GA to improve delivery
process efficiency shows positive outcomes [13]].

B. Hybrid Methods in Routing Problem

Many studies highlight the benefits of combining different
approaches to synergize the advantages of each approach.
One such study combines machine learning and optimization
algorithms to efficiently improve outcomes in a garbage
management system [14]. This research applies a deep
learning platform known as DenseNetl21, operating it on
an image database sourced from Google Sheets. It groups
images into six discrete garbage sorts, hence achieving a
remarkable accuracy of up to 99.6%. A GA is engaged to
enhance the model by running through four generations to
find the best solution. This model is implemented in mobile
applications that not only detect the type of garbage but also
determine its location using GPS. The system establishes
exceptional performance even with a data transmission delay
of less than one second. Building on the emphasis of
synergy of different algorithms, another study investigates
the enhancement of a machine learning-based model via
the optimization of hyperparameters, which are essential for
model performance [15]. The study suggests a model that
merges RL and GA algorithms. In this setup, the GA takes

actions from RL to generate new generations; the number of
generations is determined by the rewards. The learning rate,
a key hyperparameter, controls the current Q values. As the
GA adjusts the learning rate, RL ensures that its impact on
the learned Q values does not lead to a failure in fitness. The
model is trained using a dataset from the Capacitated Vehicle
Routing Problem (CVRP) benchmark. CVRP is a classical
optimization routing problem that minimizes the total travel
distance based on several constraints under the capacity
condition. When this approach is compared to models with
static parameters, it achieves up to 11% better results while
enhancing population diversity. Li. et al.[16] Compare two
methods, the RL and the GA, specifically in the agricultural
sector. The study focuses on improving drone path planning
by minimizing the Age of Information (Aol), a vital factor
in lowering the amount of outdated data. The findings depict
that while the GA excels at identifying the highest effective
paths, the RL method demonstrates to be more efficient in
achieving the lowest time consumption. Concurrently, these
studies prove the ability of integrated algorithms to solve
complex routing problems successfully and more efficiently.
Kaabi et al. [17]] propose a novel vehicle routing problem
for hazardous waste collection management. The addressed
constraints are the same as in our study, such as drone
capacity, flight time, and distance. Conversely, the method is
used inversely from our proposed method, as it is a two-stage
process with a new linear program called Maximum Waste
in Minimum Time During Each Trip (MWMTT). The first
stage is used to create a tour with the maximum number of
WCLs within the shortest distance, and the second stage is
used to assign tasks to different groups. The data scale used
in that experiment is split into small group cases between
10-40, medium group cases between 41-48, and large group
cases between 49-89. The performance is evaluated based
on a narrow minimum threshold. The research results reveal
various routes that start and end at a depot, and when the
drone is almost out of power or the waste capacity load is
almost full. It travels to the disposal point and then to the
depot, noting that it is unable to recharge until the group
trip is complete. A new route is then started to complete the
remaining locations’ trips. The study of Abdulsattar et al.[18]]
The study has similar constraints to the previous study, and
its main objective is to increase the drone’s payload capacity
and reduce the flight path distance and time. The study
uses a similar dataset to the previous study of MWMTT
and has the same experimental problem. The study adds an
improvement based on the previous study and redefines it as
the improved MWMTT (IMWMTT). These improvements
are shown in two stages; the first stage is to optimize the
group of flights of the UAVs that are recharged only after
completing each group task without the need for frequent
recharging. The second stage is to combine MWMTT with
the Ant Colony Optimization (ACO) algorithm to find the
shortest flight distance and find better routes. This approach
ends the flight sooner if the drone’s capacity load is almost
full; and when it needs to be recharged, it goes to the waste
disposal and then to the depot and thenceforth continues
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to unvisited WCLs. Despite the promising results from
previous studies, there are notable disadvantages associated
with existing approaches, specifically regarding increased
computational time. Additionally, many researchers rely
heavily on simulation environments without validating
their findings through real-world applications or adequately
testing them in complex environments. It is also crucial to
find a balance between exploration and exploitation within
proposed models. In the same context, the exploration is
to explore new solutions, and if it is explored exhaustively,
it could increase training time without efficient outcomes.
On the other hand, if the exploitation focuses on current
knowledge only, it could miss better solutions, since
that of balancing exploration and exploitation could be
a perfect solution. Furthermore, current methods often
fail to adequately address the main challenges associated
with WCSs. Considering these drawbacks, this proposed
work aims to deliver a new valuable insight and proposes
contributions by introducing a combination of optimization
approaches and machine learning methodologies. This
merging intends to improve the model’s effectiveness by
synergizing the strengths of both approaches. Thus, the
relative lack of studies utilizing this approach influences
our proposed study to employ GA and RL algorithms in
WCSs, hence proving the importance of the proposed study.
This proposed study introduces a multi-objective model
that addresses diverse constraints through the integrated
application of GA and RL algorithms. The proposed
integrated model aims to yield feasible solutions, which it
utilizes the optimal path identified by GA as an initial state
for ML algorithms. Hence, the algorithms evaluate their
rewards under the same fitness function constraints. This
approach not only contributes to a deeper understanding of
algorithmic incorporation in WCS but also aims to improve
operational efficiency in the field.

III. PROBLEM DEFINITION AND DESCRIPTION

This paper investigates solving the problem of WCSs using
a single UAV. The system is contingent on collecting waste
from various WCLs, starting and ending at the same depot.
The drone must visit all WCLs. When power runs low, it
must go to the disposal location to unload its waste load
and then return to the depot to recharge before continuing
the tour. Likewise, if the UAV capacity load is nearly full,
it should go to the disposal location to unload the waste
load and then continue the tour. This approach aims to find
the best route with the shortest distance via GA. The UAV
capacity, energy endurance, and flight time are all essential
data for planning effective mission strategies. The problem
optimization graph is modeled based on the graph G(V, A),
where V is the set of nodes, including the depot D, which is
where the drone starts its tour with a full charge and empty
space, and A is the set of edges connecting nodes. The drone
returns when it needs to recharge, finishes the tour, and visits
all N locations of the waste nodes. Each node will be visited
only once and has a positive weight, which is the amount

of waste W collected at a given location. When the drone’s
capacity load is full, it then unloads waste into the disposal
location V' = { NUDUS}, where V denotes a set of all nodes
N, including the depot of the drone D and the waste disposal
location S. Additionally, as A is the set of edges connecting
nodes. Each edge is defined as the distance between nodes
set as i to j with a nonnegative value d;;. A drone traveling
from one place to another consumes a certain amount of
energy, which can be presented by e; ; = r - d;;, where r
denotes the rate of energy consumption. In this state, when
the drone consumes most of the energy, it must return to
depot D to recharge. UAV has a weight capacity of C. In
case it reaches full capacity load, it travels to arrive at a
disposal location S to unload and then finishes the unvisited
waste nodes. The other case is when the energy of the UAV is
almost depleted; then it goes to Depot D to charge. The drone
has a maximum payload capacity that can be represented as
MC' and maximum power capacity M E, while the capacity
constraint must not exceed the payload of the drone. The
UAV requires multiple flights to cover all WCLs with the
shortest distance for the sum of all flights within a certain
time 7. In general, this approach should reduce the total
route distance and hence the cost. The problem is classified
as an NP-hard problem that seeks the optimal or near-optimal
route for visiting specific locations, considering the capacity
constraints related to the amount of waste to be collected
and the drone’s capacity [19]. The main objective of the
model is to determine the most efficient waste collection
route between designated locations that achieves the shortest
path in the shortest time. Additionally, the model ensures
that the volume of waste does not exceed the drone’s cargo
capacity. This means that the WCL cannot have a waste
amount more than the capacity of the drone, so that the
drone collects the waste of the location in one visit and does
not have several visits to the same location to remove the
remaining waste. If it does exceed the drone’s cargo capacity,
the drone unloads the waste at the disposal location and then
continues servicing the remaining WCLs. Once all WCLs
are serviced, the drone returns to the depot. Overall, this
approach aims at minimizing the cost through minimizing
total route fuel consumption, distance, and time. The most
frequently used symbols in the mathematical model are listed
in Table L.

The optimization method includes the main proposed
objectives, which will address several constraints as follows:

1) Set the routing between different locations for a single
drone to start its route from the depot and end at the
same depot after it has fulfilled all waste collection
operations.

2) Find the shortest path within the route mapping plan.
3) Determine the optimum predefined UAV capacity and
flight time limits based on its battery charge limit.

4) Determine the number of tours of the UAV needed to
collect all the waste from all the WCLs.

5) Identify the WCS via the drone’s operation process
steps:

Volume 52, Issue 11, November 2025, Pages 4531-4557



TAENG International Journal of Computer Science

TABLE I: The Mathematical Model Notation

Symbol Notation

G Graph

\% A set of nodes

D A Depot

N Location of the waste node

S Disposal locations

A A set of edges connecting the nodes
dij The distance between the nodes is set as i to j
r Energy consumption rate
MC Maximum load capacity
ME Maximum energy capacity

C Capacity of the drone

o UAV collects all the waste from all the WCLs.

« When the drone energy is almost depleted, it must
go to the disposal and unload the waste load, then
go to the depot to recharge, and then continue the
tour until it finishes servicing all WCLs.

o When the drone reaches its maximum waste load
capacity, it needs to go to the disposal location to
unload the waste, then continue the tour until it
finishes servicing all WCLs.

6) Calculate the efficiency value of the process when
the UAV gives the fitness function of the shortest
route with the least time and energy consumption to
complete the routes.

The model examines the multi-objective improvement in
fitness functions by finding the shortest distance while
collecting the maximum waste amount and consuming less
energy for the entire tour. Fig. [T] Fig. [2] Fig. 3] and Fig. {4
show examples of how the model works within only five
waste locations, the drone operation process.

IV. PROBLEM MODELING

The proposed model is an integration of GA and RL
algorithms. All the details explaining the model process
operations are in the next subsections.

A. Genetic Algorithms

The GA is operated in the first phase of the proposed model.
GA is an efficient search technique that can optimize the
solution based on natural sequenced processes. In the first
operation of the GA, the initial population is randomly
selected considering the energy and capacity constraints. It
comprises several subroutes represented by chromosomes,
and hence each WCL is represented by a gene, as shown in
Fig. E} The subroutes consist of several routes; each route
defines the distance between several WCLs that start from
the depot and end at the disposal point, or it can start from
the disposal point and end at the depot interchangeably.
These paths or routes determine the entire tour. Each path or

tour includes edges representing the distance between two
WCLs, where the differences between each are shown in
Fig. [6| Hence, Algorithm 1 illustrates the initial population
algorithm that initiates routes from the depot. The drone
finishes its route by going to the disposal location for
unloading, returning to the depot for recharge, and then
starting a new route to collect the waste from the remaining
locations. The second operation process is the determination
of the multi-objective fitness function that is required to
satisfy the main constraints, which are to find an appropriate
optimal short tour and to manage the waste load capacity
with UAV energy. To do this, one way is to synchronize
them into a single fitness value, where it is important to
note that all constraints have the same properties. Hence,
the multi-objective fitness function requires more algorithms
to support the main requirements. Algorithm 2 shows the
main component algorithms for the multi-objective fitness
function. The fitness function is given in Equation 1.

Fitness = Cost paths penalty

+ capacity penalty
(1
+ energy penalty

+ Penalty for Uncollected Locations.

1) The Cost paths penalty: Cost paths penalty represents
the total travel distance between the route’s edges of
the WCLs, including the depot and disposal locations.

Cost paths penalty = 1/Calculates the
total distance for all routes (2)

(Euclidean distance).

The above equation indicates that the penalty for cost
paths is calculated by the penalty for the total distance
of the tour, which is calculated using the Euclidean
distance formula shown in equation 3. It compares
the distances to produce the best distance, that is, the
shortest distance. Note that the best cost for each route
is that with the minimum value produced from that
route, hence it is the best cost path. Euclidean distance
[20] is a popular method that is used to calculate the
distance between two points. In our problem, it is used
to calculate the distance between two waste locations

(genes).

Euclidean distance = \/(X2 - X124+ (Y2 —Y7)?
3)
The previous equation indicates the distance between
two genes, which is calculated by finding the
difference in X-coordinates and Y-coordinates, finding
the square of both, then taking the square root of the
sum of both coordinates of the two genes (points) to
find the Euclidean distance results.
2) Capacity penalty: Capacity penalty is used when the
drone’s capacity load exceeds the acceptable load
(waste load limit). When the capacity limitation is
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The tour includes both waste unloading and recharging the UAV. First, the UAV waste load capacity is almost
full and needs to be unloaded. It goes from WCL B to the disposal location (DS) to unload the waste cargo and
then it continues its tour to collect the waste from the remaining WCLs. When UAV charge is almost depleted
when it reaches WCL D during the tour; then recharging is needed. From WCL D it goes to the disposal
location (DS) first to unload the waste cargo and then goes to the Depot (D) for recharging. Then it continues
its tour to collect the waste from the remaining WCLs and after completing serving all the locations, it needs to
dump the waste again in the disposal location (DS) then return to the depot (D) on edge number 10.

%W

Waste location

A

Waste location
D

Fig. 1: Example of a Typical Waste Disposal and Recharging Case.

The UAV waste load capacity is full when it reaches WCL B during the tour; then waste unloading is needed.
From WCL B it goes to the disposal location (DS) to unload the waste cargo. Then it continues its tour to collect
the waste from the remaining WCLs and after completing serving all the locations, it needs to dump the waste
again in the disposal location (DS) then return to the depot (D) on edge number 8.

Waste location

A

Waste location
3

Waste location
D

Fig. 2: Example of a Typical Waste Disposal Case.

violated, the penalty value increases and becomes a It should be noted that total_load represents the total
severely unacceptable condition. Otherwise, a zero weight of all the locations’ waste load per drone
value is added when there is no violation, and the carried, and drone_capacity is the maximum load that
drone’s payload is within the drone’s capacity. a drone can carry at a time. The capacity penalty
ensures that the payload capacity of the drone is not

capacity_penalty = 1/ max(0, |total_load exceeded. If the total weight of the drone’s capacity

) load is less than the maximum waste weight capacity

—drone_capacity|)
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When UAV charge is almost depleted as it reaches WCL C during the tour; then recharging is needed. From WCL C it goes to
the disposal location (DS) first to unload the waste cargo and then goes to the Depot (D) for recharging. Then it continues its
tour to collect the waste from the remaining WCLs and after completing serving all the locations, it needs to dump the waste
again in the disposal location (DS) then return to the depot (D) on edge number 9.

ki

Waste location

A

Waste location
3

Waste location
D

Fig. 3: Example of a Typical Recharging Case.

The tour includes both recharging and emptying the waste. First, When UAV charge is almost depleted when it
reaches WCL B during the tour; then recharging is needed. From WCL B it goes to the disposal location (DS)
first to unload the waste cargo and then goes to the Depot (D) for recharging. Then it continues its tour to
collect the waste from the remaining WCLs. Secondly, the UAV waste load capacity is almost full when it
reaches WCL D and needs to be unloaded. It goes from WCL D to the disposal location (DS) to unload the waste
cargo and then it continues its tour to collect the waste from the remaining WCLs. After completing serving all
the locations, it needs to dump the waste again in the disposal location (DS) then return to the depot (D) on
edge number 10.

Waste location
.

Waste location
3

Waste location
D

Fig. 4: Example of a Typical Recharging and Waste Disposal Case.

of the drone, the penalty will be zero. Otherwise, if it
is equal to or more than the maximum weight, then it
is calculated as the difference between the total_load
and the drone_capacity. Moreover, it uses a Max(0)
to ensure that the penalty value is not negative, which
means that the penalty is only active when the capacity
constraint is violated and the drone’s capacity load is

exceeded. In other words, if the capacity load is less
than or equal to the UAV capacity, the UAV capacity
will equal O; thus, this equation will only be activated
if the load is greater than the UAV capacity. The
important part of the penalty is that the GA guarantees
that solutions that do not violate its constraints are
found.
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3)

4)

5)

gene
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chromosomes

The D indicates Depot, and the S indicates Disposal

Fig. 5: Initial population

Route Edge
{ l I
NMEDDoDaE "'EE0D OpoEgE v
t 1

Tour

The definition of the tour, route, edge.

Fig. 6: The definition of the tour, route, edge

route_distance

flight_time = (5)

drone_speed
The Energy required, as well as the energy consumed
for the disposal route, is indicated as the energy needed
to go to the disposal site and dump off all waste loads.
The amount of accommodated waste represents the
waste load to be dumped at the disposal site. The
available energy is the remaining power in the drone
in a certain location. Additionally, the energy required
[21] to reach the depot refers to the power needed
to go to the depot to recharge. The drone’s energy
consumption is calculated similarly for all locations.
Energy penalty: The energy penalty represents the
energy consumption during UAV operations for the
entire tour, which can be done by summing the total
calculation results of the energy consumed between
each location. Therefore, the drone needs to unload its
cargo for disposal, then go to the depot to recharge,
and then continue to follow up with servicing the
remaining WCLs.

The penalty for Uncollected Locations represents the
penalty for uncollected waste from locations that
are necessary to ensure waste collection from the
entire locations that have waste. It is calculated by
the relation between the absolute count of locations
respecting the unique locations that can be found by
the difference between the total WCLs that the drone
visited and the absolute count of locations to find the
remaining locations that still need to be visited for
waste collection. It is shown in the following equation:

Penalty for Uncollected Locations =
1/(total_waste_locations (6)
—uncollected_locations)

Best Flight time is another efficiency factor that
can be calculated within several functions to check

Start Initialize random population;

for _ in range(population_size) // based on
data processing

do

route =[“depot”] // set depot as
starting route

while loop (unvisited_genes) do

feasible_genes = [];

for gene in unvisited_genes do

distance =
calculate_distance(current_location,
gene);

if distance < remaining_capacity and
distance < remaining_energy=True then

feasible_genes.append((gene,distance))
Itr=all visited_genes

end

if not feasible_genes then

if remaining_capacity =
drone_capacity then

| break;
end
else
‘ UAV goes to disposal;
end
end
end
else

sorted_genes=sorted(feasible_genes)
selected_gene = sorted_genes[by less
distance] ;

remaining_capacity

=int(selected_gene[*“WasteCapacity’]);

remaining_energy = perform _trip

(current _location , selected_gene);

end

else

energy_available < = energy_threshold;
remaining_energy = drone_energy;
UAV goes to disposal;

UAV goes to the depot to recharge;

end

unvisited_genes = [gene for
gene in waste_genes if gene
not in route]

for gene in unvisited_genes do
| route.insert(-1, gene) ;

end

end
route.append(”disposal”)
route.append(”depot”)
print

end
Algorithm 1: Initialize Population Algorithm
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the system’s performance. The first is the flight
time, which calculates the edge time between two
genes (two consecutive locations) as described before,
and another function is the calculation of the route
distance, which iterates over all genes in each edge
and uses the total distance calculated for each edge to
find the shortest time.

Genetic operators are essential components of the GA
process, which aims to enhance the population by exploring
a spectrum of candidate solutions to find optimal or
near-optimal solutions. In this process, the tournament
technique [22]] is applied, which is a very effective method. It
is not complicated and does not require calculating properties
or preservation of variety, which means that even lower
fitness values can be selected, provided that the performance
is well within the tournament. Order crossover (OC), based
on extensive research, is used to solve VRP problems
[23]. The OC system selects a random subset of locations
in the first parent (P1) and the second parent (P2) and
then swaps the subset between P1 and P2. Moreover, in
this research, the exchange mutation and the local search
space are combined. Many works of literature regard the
exchange as a well-known approach to solving many routing
problems because it can provide a diversity of populations
and avoid stagnation in the local optima. The local search
space used for routing problem solutions involves selecting
and swapping two vertices, which can evaluate solutions
and proceed to the next nearest neighbor. The GA process
operations continue until solutions are obtained that achieve
the main objectives of finding the optimal path based on
the shortest distance with respect to capacity and energy
constraints. Additionally, when it reaches the maximum
iteration, the algorithm stops immediately. Furthermore, the
convergence threshold value is used to improve fitness,
comparing the best fitness of the current tour and the
fitness of the previous tour. The algorithm checks the fitness
improvement in subsequent iterations, and when it is below
the convergence value, it is considered that the algorithm
has converged and stops the iterations. At each iteration of
the loop, the current fitness is compared with the previous
one and is evaluated and selected when it is better; hence,
the best solution will be updated. The algorithm continues to
iterate until it reaches the maximum iteration number or falls
below the convergence threshold value, hence terminating
at whichever condition is met first. This method is applied
after each iteration to ensure the best system performance. To
illustrate the model, several techniques are used to overcome
the local optimum, which are discussed in the following
points:

« In the initialization phase, the algorithm starts operating
with a random selection of the population, which can
help the algorithm in considering a way to avoid
local optimization by exploring different regions of the
solution space.

e The shifting of the population before the fitness
evaluation provides population diversity, produces

different combinations of locations (genes), and
changes the order of the routes, which reduces the local
optimum.

o The use of a convergence threshold allows the space
to be explored until certain parameters stop the
convergence to a local optimum.

e The GA parameters are carefully selected based on
a literature review search and using trial-and-error
techniques. The model can adapt to any type of
parameter depending on the type of drone. The
parameters selected in our approach are: the drone
power, which is set to 200KW; the power consumption
is 30W/s; the nominal power consumption is 100W,
which specifies the amount of energy used during any
given operation; the efficiency factor is 0.9, which
defines the efficiency of converting energy into useful
energy; the maximum flight time is 2.5 hours; and the
drone speed is 60 kilometers per hour. Moreover, the
parameters of the GA operators are: tournament size,
which is 5; the Mutation rate is 0.7; the crossover
probability is 0.2; and generation number is 50.

B. The Reinforcement Algorithm

The second phase of the first hybrid approach to managing
WCS is operated by the reinforcement algorithm (RL). In
this part, we examine two different ways of integrating the
GA with the RL algorithm. The next subsections describe
the two ways of integrating GA with RL and how it is set
up in the experiments to result in different outcomes for
comparison in the analysis section.

1) The First method of incorporating the GA with the RL
(GARL): The first scenario of the proposed model is shown
in Fig. [§] for the hybrid integration of GA and RL (GARL).
The RL is a type of [24] machine learning algorithm that
works based on the main idea of trial and error. Agent
actions depend on the current state, which is successively
used in the dynamic environment. Hence, RL learns the
optimal policy to solve the problem based on incremental
rewards. Here, a policy is a mapping plan with an expected
approximate action that takes into account the current state
of the environment, where the appropriate action taken is
the outcome. RL uses an epsilon-greedy policy [25] in
which the action is taken corresponding to the highest Q
value and some random actions exploring other locations.
The rewards are calculated as the accumulation of the total
rewards received from each step of the system obtained by
the optimal RL policy over time. The cumulative reward is
obtained by a gamma discount factor (). For example, if
gamma is less than 1, it means that the agent prefers the
current state over future states. The reward in the model
takes into account all the constraints of the fitness function
of the GA in terms of capacity, energy, and the shortest route
to visit all the WCLs allocated. The Q value is calculated
based on the action and state pairs at each step, and this value
determines the best action/optimal action using Q-Learning.
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Start
Evaluate the population;
Set parameters;

def;

calculate_fitness,_components(solution,total_waste
_locations,drone_capacity,energy_available,energy
_disposal,energy_depot,drone_speed,nominal_power
_consumption,efficiency_factor,flight_duration,get
_site_capacity,calculate_route_distance,calculate
_energy_consumed for each route do
if route_load = get_site_capacity(drone_route)
then

end

Calculate the total load for all distances
Continue

for each route do

if route_load > drone_capacity then

num_of_disposal;

and;

depot_trips;

is

incremented

total_load is decreased by route_load

energy_available = energy_depot

Apply energy_penalty

end

else if energy_available;
S;
energy_threshold
=True then

for each route do

Go to the disposal to empty the
load

Go to the depot to recharge

num_of_disposal;

and;

depot_trips;

is

incremented,;

end

end

end

Energy;

penalty#;
Calculate;

the;

fitness;

based;

on

constraints;
cost_paths_penalty
uncollected_locations_penalty
capacity_penalty

Perform main fitness calculation

end

Algorithm 2: Algorithm of Fitness Functions

The choice of action state depends on the current state and
the Q value, and starts from the initial state, from the best
path output taken from the GA results. Hence, the RL agent
navigates the routing problem by exploring the reward in a
Q table and exploring the expected future rewards for each
step in the loops. Gradually, in the training phase, the highest
Q value is mostly employed to obtain the optimal path; the
training phase is shown in Fig. [/|and Algorithm 4. The main
formulation of RL is explained as follows:

Q(s,a) = Q(s,a) + a - (R + - max

Q) - Qls.0) v
Q(s, a) represents the Q value of a given state and action,
indicating the expected future reward based on both s and
«, which is the learning rate alpha at which the information
determines that the new information overrides the old
information in updates of the Q value. R is the immediate
reward gained from the action in a certain state s. -y is a
discount factor that represents a constant value of future
rewards over time. The max Q(s‘, a) represents the highest
Q value for the next state s and all the corresponding actions
a. This equation describes the convergence that continuously
interacts with the environment by updating the Q values to
the optimal Q values. This approach shows simplicity and is
based on a model-free environment. The reward in the model
takes into account all the constraints of the fitness function
of the GA in terms of capacity, energy, and the shortest path
to visit all the WCLs allocated shown in Algorithm 2. In
the training phase, the highest Q value is used primarily
to obtain the optimal path; the training phase is shown in
Algorithm 3. The main formulation of RL is explained as
follows:

R(s,a) = F(s,a) (8)

R(s, a) represents the reward of action a in a certain state
s, and F(s, a) represents the constraints taken into account
in the fitness function that the state and action are chosen
based on the values of the multi-objective fitness score.

F(s,a) = =10 (FCost + FC + FE+ FU)  (9)

The multi-fitness function can be calculated for all
constraints. FCost represents the total distance of the tour,
which calculates the edge distance between each WCL,
including the depot and disposal sites. FC represents the
capacity constraint, FE is the energy constraint, and FU is
the constraint regarding the UAV obligation to visit all WCLs
during the entire tour. Fitness values give the agent feedback
about the total values of the multi-fitness functions that will
maximize the total reward scores. In other words, these
fitness values correspond to the state s and the appropriate
optimal actions taken. When actions are determined on
the basis of the highest Q-value in each state, considering
constraints such as capacity and energy, the sequence of
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Fig. 7: The RL Process in the Model of Incorporating The GA with The RL (GARL)

these processes produces the best path for WCLs. A capacity
penalty is calculated when the action taken for the next WCL
violates the maximum capacity of the drone. Calculates the
absolute difference between the current space capacity and
the capacity state in the next location and sets -10 as a
penalty value for an overrun capacity change. It is used
to help the RL agent resist the change in maximum UAV
capacity. It is displayed in the following equation:

capacity_penalty(s,a, s') = —10 - (Je(s") — ¢(s)])  (10)
s represents the current state; a is an action for a given state
s; s* is the next state after taking the action; and -10 is a
negative value assigned to the penalty ability. (|c(s") —c(s)|)
is the absolute difference between the maximum capacity of
the next state s‘and the maximum capacity of the current
state s. An energy penalty is calculated when the action taken
for the next location violates the maximum energy of the
drone. Calculate the absolute difference between the energy
of the UAV in the current location and the energy of the UAV
in the next location, and set -10 as the override penalty value
in the energy change to minimize energy consumption. It is
presented in the following equation:

energy_penalty(s,a,s’) = —10- (le(s’) —e(s)])  (11)
s represents the current state; a is the action for a specific
state; and s° is the next state after taking the action; and -10
is a negative value assigned for an energy penalty ability.
(le(s")—e(s)]) will calculate the absolute difference between
the maximum energy of the next state s‘and the maximum

energy of the current state s. For the cost penalty, it is
important to find the shortest path that is added to obtain
the overall rewards. In other words, a cumulative inverse of
the total distance is calculated for all routes, with a lower
penalty assigned for the shorter path and a higher penalty for
the longer path. This is expressed in the following equation:

cost_paths_penalty(s, a, s’) =-10 (1/total_distance(s, a, s’))

(12)
s represents the current state s; a is the action for a given
state; s‘ is the next state; and -10 is a negative value assigned
as a penalty for a longer trip. The agent must visit all the
WCLs in the map plan, gets a penalty if it misses any of
the locations, and can visit the WCLs multiple times when
needed based on the shortest route.

penalty_for_uncollected_locations(s, a, s') = —10
(1/(total_waste_locations — uncollected_locations))

s represents the current state s; a is the action for a given
state; s is the next state; and -10 is a negative value assigned
to the penalty for the remaining waste locations.

2) The second model that incorporates the RL first, then the
GA (RLGA): The second model is to start with operations of
the RL algorithm that can show better adaptation to dynamic
environments, add known data, and exploit them to increase
rewards, as shown in Fig. @L while GA can essentially
explore new potential solutions. Thus, this experiment starts
with the steps of the RL algorithm based on the actions of
the agent interacting with the environment. The RL interacts
with the WCL data and hence starts a Q table of zeros since
it has no knowledge of what the values of these actions are
in any state. The agent starts exploring the environment and
calculating the distances between each WCL to find the best
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Fig. 8: The First Model that Incorporates the GA with the RL (GARL)

path based on the epsilon greedy policy within all constraints
and requirements. It starts collecting the experiment values
and updating the Q matrix based on the rewards received
and the maximum expected future rewards. The process
continues until an optimal policy is found that increases the
reward values. The final tour output is then synchronized
with GA and used as initial data to start within the GA
operations instead of a random population, and it continues
to generate more populations starting from this RL output.
Then it goes through the same GA processes as the GA
operations continue to refine the best RL tour output within

GA process. Fig. 0] shows the hybrid integration of RL and
GA in the second proposed hybrid model.

V. EXPERIMENTATIONS AND RESULTS ANALYSIS

The proposed solution is implemented using Python 3,
Google, and Jupyter; embedded with other libraries such as
numpy, pandas, ga, random, math, copy, seaborn, pyplot,
bese, deep, matplotlib, cluster, partial, plugins, folium, and
ortools. All of these modules provide several functionalities
for efficient optimization, data manipulation, plotting, and
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Start
Initialize necessary variables and parameters
for episode in range(episodes) do
state= env.reset(best_route) # set environment to
get initial state as best route
done = False
episode_reward = 0
for step in range(max_steps) do
# iterates maximum number of steps
action = agent.act(state);
# The agent selects an action based on the
current state
next_state, reward, done = env.move(action);
# environment updates with the chosen
action, producing the next state and reward.
for route in route_list: do
#iterating through each element in the
route_list
if isinstance(route, int) then
route_load = get_site_capacity(route)
total_load += route_load
total_distance + =
calculate_route_distance(route)
num_locations + = 1

continue
end

end
for waypoint in route do

end

#lterating through each waypoint in the route.

Calculate the route_load

Update total_load, total_distance, and
num_locations

if route_load > drone_capacity: then
Go to the disposal site to empty the load

Update the energy_available and calculate
the energy_penalty
if energy_available < energy_threshold

then
remaining_energy = drone_energy

UAV goes to disposal

UAV goes to the depot to recharge
end

end

uncollected_locations=[total_waste_locations;

-num_locations)

capacity_penalty=total_load/(num_disposal_trips
*drone_capacity)

cost_paths_penalty = 1 /total_distance

total_penalty = -10 * (energy_penalty +
capacity_penalty + (1/(uncollected_locations
+ 1)) + cost_paths_penalty);

Update the total reward

total_reward += reward + total_penalty;

end
print

end
Algorithm 3: Training Algorithm

support of advanced scientific computing. This system is
generated on an Intel(R) Core (TM) i7-2670QM CPU laptop
with 2.20 GHz RAM under Microsoft Windows 10 Pro,
uses a compute engine backend (TPU) with RAM 6.12
GB/334.56 GB and disk 16.09 GB/225.33 GB.

Table II shows the experimental parameters for the GA part,
and Table III shows the parameters for the RL part; the same
parameters are used for the three scenario types used in this
study. The values of these parameters can be adapted based
on the types of drones that can be utilized in the actual
system that is eligible for this research.

The experiments use synthetic data, which is employed
to apply a theoretical approach to a problem when there
are insufficient real-world data [26]]. This type of data
is designed to mimic actual data in the real world,
which consists of real WCLs in the Kingdom of Bahrain,
comprising latitude and longitude, with the waste capacity of
each WCL. The specified WCL data are based on the scale
of specific WCLs, not on cities. The process of synthetic
data generation is shown follow:

o The graph nodes are randomly selected within the
borders of the Kingdom of Bahrain in land areas, hence
excluding marine areas.

« The maximum waste capacity of each WCL is set at no
more than 100 kilos and is randomly generated between
10 and 100 kilos.

o The type of waste, drone type, or time limit is not
included in the synthetic data generation to allow
moderation in the model based on real-world WCS
specifications.

o The tour is generated based on several routes and paths
that can be visited more than once if the distance is
shorter.

o The waste capacity and the energy of the drone are
based on the manufacturer’s specifications. They are
taken from the most popular type of drone used in
WMSs and can be modified based on the drone used
in the real world [27]].

The accuracy and size of the data are crucial for producing
reliable and predictable results. Since real WMS data may
not be available, synthetic data becomes an ideal substitute.
In addition, it supports data diversity, which is essential when
real-world data cannot be captured across all scenarios. The
effectiveness of using synthetic data over real-world data in
terms of time and cost advantages is also notable. The data
is utilized to evaluate the proposed model when conducting
the experiments and analyzing the results.

The comparison is based on the specified population size
and the WCL numbers as 100, 500, and 1000 WCLs,
respectively. The GA and RL parameters are fixed and
carefully selected on the basis of trial and error and other
previous studies. The maximum capacity is 500 for each
WCL weighed in kilograms. The speed of the drone is set to
60 km/h; the flight duration is the time consumed during the
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Fig. 9: The second model that incorporates the RL first, then the GA (RLGA)

flight, which is measured in minutes; the power consumed
per second is 30 W/s; the nominal power consumption
is set to 100 W; then the efficiency factor is set to 0.9
indicating the efficiency of the system being used. All these
parameters are taken from the manufacturing data or the
factory specifications [24]. In addition, the drone capacity
is 200K and the drone power is 500W [23]. Table III
shows the parameters of the experiments for RL, where
the parameters change based on the number of data, such
as the number of WCLs and the number of episodes;

therefore, the maximum steps increase as the data increases.
Whereas when the episodes are fixed to 1000 episodes, then
the maximum number of steps is 100 for all the WCLs.
Moreover, the other parameters are fixed, as epsilon is 0.1,
which is the probability of a random action exploring better
possibilities for improved actions by initial exploration with
100%, and this rate decreases with the progression of the
training process until the agent learns its optimal policy.
Epsilon decay is set to 0.995, which reduces by 0.5%, which
is multiplied by this value after each iteration, effectively
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Fig. 10: The RL process in the second model that incorporates the RL first, then the GA (RLGA)

TABLE II: GA Experiments Parameters TABLE III: RL Experiments Parameters

Parameter Value Parameter Value
population size 100,500,1000 epsilon 1.0
drone speed 60 KM/h learning_rate 0.1
energy consumed per second 30 W/s state_size 100, 500, 1000
the nominal power consumption 100 W action_size 100, 500, 1000
efficiency factor 0.9 Exploration Rate 0.5%
drone capacity 200 k Gamma discount factor 0.9
drone energy 500 W epsilon_decay 0.995
tournament size=5 epsilon_min 0.01
converge rate 0.01 max_steps 100,500,1000 locations=100
Number of iterations 1000 episodes 100,500,1000 locations=1000
Mutation rate 0.7
crossover probability 0.2
Generation numbers 50

reducing the exploration over time. The epsilon minimum
parameter is set to 0.01, which means that the exploration
rate will not drop below 1%.

The learning rate is set as 0.1, and its control weight is
based on updating new information and comparing it with
existing data. The higher the value, the faster the exploration
will be, while the lowering of the Q values will lead to
gradual convergence. The discount factor or gamma is set at
0.5%, considering the important influence of future rewards
in decision making, where a value of 0 takes only the current
reward, while a value of 1 takes into account the acquisition
of future rewards. The maximum step is the maximum
number of actions each episode can take, preventing the
agent from falling into an infinite loop. Episodes are the

vital parameter that allows an agent to interact with its
environment to improve its policy through learning. The
size of the state is the number of all possible states of
the environment. The action size is the number of possible
actions the agent can take in the environment.

The study includes four experiments that aim to compare the
performance of algorithms individually or in combination
to meet problem solving objectives. These experiments
are used to find the best fitness values and flight time
among these algorithms within certain constraints. Hence,
these experiments employ algorithms either individually as
individual algorithms GA and RL, or in combination as
hybrid algorithms GARL and RLGA.

Table IV shows the best fitness values and the best flight time
of the models in different sets of WCL numbers among all
four experiments. From the experiments, the first prominent
result is that the GARL approach records better results than
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TABLE IV: Experiments Results

Population waste 100 500 1000

locations

Number of Run 10 times 30 times 50 times

Type of model GA RL GARL RLGA GA RL GARL RLGA GA RL GARL RLGA
Best Fitness 5.34 5.44 4.75 5.28 11.16 11.23 8.69 10.49 15.5 15.52 11.42 13.57
Best Flight Time 42.24 42.48 39.97 41.02 203.5 204.8 199.18  202.5 382.3 384.9 374.2 381.97
Standard deviation for ~ 0.705 0.169 0.173 0.548 0.799 0.176 0.172 0.829 0.787 0.167 0.165 0.8

total route

other approaches in fitness values, recording 4.75, 8.698, and
11.42 for 100, 500, and 1000 WCLs, respectively. Even in
terms of flight time, its score is better than other approaches,
scoring less time, which is recording 39.97 minutes for 100
WCLs, 199.18 minutes for 500 WCLs, and 374.2 minutes
for 1000 WCLs. Secondly, the hybrid RLGA records better
results than both single GA and RL approaches, but not
the hybrid GARL. The fitness values are 5.28, 10.49, and
13.57, for 100, 500, and 1000 WCLs, respectively. The
flight time is 41.02 minutes for 100 WCLs, 202.5 minutes
for 500 WCLs, and 381.97 minutes for 1000 WCLs. The
third experiment that examines GA as a single algorithm
shows that it records better values than the values of the
fourth experiment employing the single RL algorithms. In
demonstration, the GA records a fitness value of 5.34, which
is better than the RL value results, which record 5.44 for
100 WCLs. For 500 WCLs, GA records a fitness value of
11.16, which is better than the RL value result, which records
11.23. Furthermore, for 1000 WCLs, GA records a fitness
value of 15.5, which is better than the RL value result, which
records 15.52. As for flight time, GA records slightly better
than RL, with 42.24 and 42.48 minutes, respectively, for 100
WCLs. For 500 WCLs, GA records 203.5 minutes, which is
better than the result of the RL value, which records 204.8
minutes. And finally, GA records 382.3 minutes, which is
better than the RL value result, which is 384.9 minutes
for 1000 WCLs. In conclusion, hybrid approaches generally
perform better than the algorithms that perform separately.
Moreover, the hybrid approach starting with GA then RL
performs better than the hybrid approach starting with RL in
the first phase, then GA. Additionally, all experiment values
are calculated based on a running average, where for the 100
WCLs set, it takes an average of 10 runs, which comprises
10% of the WCLs number, then for the 500 WCLs set, it
takes an average of 30 runs, which comprises 6% of the
WCLs number, and last for the 1000 WCLs set, it takes
an average of 50 runs, which comprises 5% of the WCLs
number. Hence, this shows an inverse relationship between
the number of WCLs and the average number of runs, where
the more the number of WCLs, the less the average number
of runs is needed. Moreover, those results are presented
clearly in the flow charts in Fig[TT] which demonstrates the
best fitness values among all experiments, and in Fig. [12]
which shows the flight time improvements among all four
experiments.

Table V shows the percentage of improvement when
comparing the proposed hybrid approaches and the single
corresponding algorithms. Performance improvement is
observed to increase successively among the three sets of
WCL numbers using the hybrid approach that integrates
both GA and RL. For the first and best hybrid approach,
the performance of the GARL approach improves over
that of the GA algorithm alone by 11.05%, 22.06%, and
26.32% for the three sets of 100, 500 and 1000 WCLs,
respectively. Moreover, the performance improvement of
the same hybrid algorithm over RL alone also shows
successive improvements with an increasing number of
WCLs, which record 12.68%, 22.55%, and 26.42% for
the three 100, 500, and 1000 WCLs, respectively. The
performance improvement of the proposed hybrid approach
of RLGA also records improvements compared to GA alone
and shows successive improvements with the increase in the
number of WCLs of 1.12%, 6.00%, and 12.45% for the
three 100, 500 and 1000 WCLs, respectively. And when
compared with the RL approach for the three 100, 500,
and 1000 WCLs, it records 2.94%, 6.59%, and 12.56%,
respectively. Maximum improvements are observed with the
best proposed approach, which is GARL. Consequently,
the percentage of performance improvements is highest for
the RLGA hybrid approach compared to the RL algorithm
due to the difference between their highest and lowest
performance efficiency, even compared to GA alone. In
addition, successive improvements with an increase in the
number of WCLs indicate that when the problem is more
complex, the performance efficiency improves, as shown
in the model, where the performance efficiency increases
as the number of WCLs increases. This is demonstrated
in Fig[I3] which shows the performance improvement in
percentages among all scenarios of the proposed hybrid
algorithms compared to the performance of each other and
individual algorithms, GA and RL algorithms alone. In Table
VI, the timing improvements are shown along with the
increase in the number of WCLs from 100 to 1000. When
100 WCLs sets are compared to the GA algorithm, the
GARL is 2.27 minutes better, and when compared to the RL,
it is 2.51 minutes better. For 500 WCLs sets, it improves by
4.32 minutes compared to GA and 5.62 minutes compared
to RL. A similar but also successive improvement for 1000
WCLs sets is improved by 8.1 minutes compared to GA
and by 10.7 minutes compared to RL. This demonstrates
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Fig. 12: Flight Time Values Among All Four Experiments.

that the improvement is greatest when compared to the
performance of the RL algorithm alone, due to its lowest
performance when compared to all other approaches. GA
alone. When comparing GARL with the second proposed
model, RLGA shows a better time improvement of 1.05
minutes for 100 WCLs. The improvement rises to 3.33
minutes for 500 WCLs and increases to 7.7 minutes for 1000
WCLs. Furthermore, the second proposed model, RLGA,
performs better than individual algorithms in terms of timing
at 100 waste locations, with an improvement of 1.22 minutes
compared to GA and an advantage of 1.46 minutes over
RL. For 500 waste locations, RLGA improves the timing
by 1 minute compared to GA and shows a 2.3 minutes

improvement over RL. In the case of 1000 waste locations,
RLGA gains 0.33 minutes over GA and achieves a 2.93
minutes improvement over RL. Moreover, the GARL model
shows high performance based on improvements in the
behavior of the model when it comes to increasing the
number of WCLs. Hence, the higher the number of WCLs,
the better the performance.

To analyze the results further, standard deviation techniques
are used to determine the variation of the data and how
the data is spread out from the average dataset. When the
standard deviation decreases, it means it is close to the
mean of the dataset and indicates the consistency of the
data. On the other hand, when the standard deviation is
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TABLE V: The Experiment’s Percentage of Improvement.

Population waste 100 WCL 500 WCL 1000 WCL
locations
Type of model GARL RLGA GARL RLGA GARL RLGA
The improvement  11.05% 1.12% 22.06% 6.00% 26.32% 12.45%
percentage
compare with
GA
The improvement ~ 12.68% 2.94% 22.55% 6.59% 26.42% 12.56%
percentage
compare with RL
30.00%
26.32% 26.42%
25.00% 22.06% 22.55%
20.00%
15.00% 12.68% 12.45% 12.56%

11.05%

10.00%

5.00%

0.00%

GARL
m Improvement based on GA for 100 locations
m Improvement based on GA for 500 locations
m Improvement based on GA for 1000 locations

2.94%

RLGA
m Improvement based on RL for 100 locations
m Improvement based on RL for 500 locations
m Improvement based on RL for 1000 locations

Fig. 13: Improvement Percentage Among All Algorithms Compared to the Individual Algorithm Performance (GA and RL).

TABLE VI: Experience Improvements Timing Result

Population waste 100 WCL

locations

500 WCL 1000 WCL

Type of model GARL RLGA GARL

RLGA GARL RLGA

GA Time
Comparison
(Min)

2.27 1.22 4.32

1 8.1 0.33

RL Time 2.51 1.46
Comparison
(Min)

5.62

2.3 10.7 293

RLGA
Comparison
(Min)

Time 1.05 - 3.33

larger, it means more variance and the data has more mean
spread than central tendency. The amount of variance affects
the results prediction and accuracy. Table IV illustrates
that the standard deviation shows that the hybrid approach
with GARL scores better than the other hybrid approach,
RLGA, as GARL shows less variance of 0.173,0.172, and
0.165 compared to RLGA variances as 0.548, 0.829, and
0.8 for 100,500, and 1000 WCLs sets, respectively. Thus,
the results show more data consistency and less variability.
RL algorithm, however, has a lower fitness value, which is

recorded as 0.169, 0.176, and 0.167 when compared to GA,
which is recorded as 0.705, 0.799, and 0.787 for 100,500,
and 1000 WCLs, respectively. Hence, comparing GA and RL
algorithms, RL gains better data consistency, although GA
outperforms it in other evaluation variables. Furthermore,
the experiment results of the hybrid proposed methods
are compared with two studies presented in the literature
review section that use similar data sets and address similar
constraints and use other approaches. The first comparative
research used a hybrid ACO [18], and the second research
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used a 2-phase approach, namely Maximum Waste in a
MWMTT [17]. In this study, it is found that GARL scores
better than the RLGA, which shows better results than both
comparative studies that used similar three datasets. Each of
the compared studies calculated the percentage of reduction
in fitness error as an indicator of the equations for the three
datasets, with the experiments’ datasets based on the number
of WCLs. To illustrate this, we take the best fitness of the
comparative study and subtract it from the best fitness of the
proposed model; then divide the value by the best fitness
of the comparative study; and multiply the result by 100
to convert it to a percentage. This calculation reflects the
percentage reduction in fitness error when comparing this
study’s results to the comparative study’s results. However,
these proposed experimental models do not use the same
database used in both comparative research; they just have
the same problem to solve and address similar constraints.
To compare the two studies with our proposed methods,
the best fitness from each comparative study must first be
obtained, along with the percentage of reduction in fitness
error and the best fitness in the comparative studies with
the best fitness from the hybrid experiments of the proposed
model. Table VII and Table VIII show that the proposed
hybrid methods prove to be better approaches to solving
path planning problems than the hybrid ACO method and
the MWMTT method. Moreover, when the number of WCLs
that need to be served increases, the percentage of reduction
in fitness error decreases and vice versa. In general, GARL
has significantly higher performance than other proposed
methods when compared to comparative studies.

To illustrate this, Table VII compares the hybrid (ACO)
system with the proposed hybrid methods. At 100 WCLs,
GARL improves by 81.7%, and RLGA improves by 79.6%
better than the first database used in the compared hybrid
ACO model. Additionally, at the second database, GARL
improves by 82.6%, and RLGA improves by 80.73%. At
the third database, GARL improves by 82.65%, and RLGA
improves by 80.74%. At 500 WCLs, GARL improves by
66.4%, and RLGA improves by 59.5% better than the
first database used in the compared hybrid ACO model.
At the second database, GARL improves by 68.21% and
RLGA by 61.75%. At the third database, GARL improves
by 68.05% and RLGA by 61.45%. Additionally, at 1,000
WCLs, improvements are 55.9% for GARL and 47.7% for
RLGA, better than the first database used in the compared
hybrid ACO model. Improvements with the second database
are 58.35% for GARL and 50.51% for RLGA. Improvements
in the third database are 58.09% for GARL and 50.11%
for RLGA. The percentage of reduction in fitness error for
the first database in the proposed hybrid approach of the
comparative search hybrid (ACO) is 25.9%. The percentage
of reduction in fitness error for the second database in
the proposed hybrid approach of the comparative search
hybrid (ACO) is 27.4%. Furthermore, the percentage of
reduction in fitness error for the third database in the hybrid
approach proposed by the hybrid comparative search (ACO)
is 27.2%. Furthermore, Fig[T4] demonstrates the percentage

of reduction in fitness error in the proposed GARL and
RLGA compared to the first, second, and third data sets
used in the hybrid ACO.

Furthermore, Table VIII compares the results of the method
(MWMTT) with the results of the proposed hybrid methods.
At 100 WCLs, GARL improves by 86.8% and RLGA by
85.4%, better than the first database used in the compared
MWMTT model. Furthermore, in the second database,
GARL improves by 83.79% and RLGA by 81.86%. In the
third database, GARL improves by 77.59% and RLGA by
75.09%. At 500 WCLs, GARL improves by 75.9% and
RLGA by 71.0%, better than the first database used in the
compared MWMTT model. In the second database, GARL
improves by 83.79% and RLGA by 81.86%, respectively.
In the third database, GARL improves by 59.01% and
RLGA by 50.57%. In addition, improvements were recorded
at 1,000 WCL better than the first database used in the
compared MWMTT model, with improvements of 68.4%
for the GARL database and 62.4% for the RLGA database.
Improvements in the second database are 60.55% for the
GARL database and 53.25% for the RLGA database.
Improvements in the third database are 46.17% for the
GARL database and 36.08% for the RLGA database. The
percentage of reduction in fitness error for the first database
in the proposed hybrid approaches is recorded as 36.1
compared to the research approach (MWMTT). Furthermore,
the percentage of reduction in fitness error for the second
database in the hybrid approaches is recorded as 29
compared to the research approach (MWMTT). In addition,
the percentage reduction in fitness error for the third database
in the hybrid approaches is recorded as 21.2 compared
to the research approach (MWMTT). Moreover, Figll3|
presents a flowchart showing the percentage of reduction
in fitness error in each of the different datasets of WCLs
when comparing the proposed hybrid methods and each of
the different datasets used by the MWMTT comparative
research. However, these results may also be affected by
the nature of the dataset and the number of cases used in
the datasets of the comparative researchers. For example,
these datasets contain several locations ranging from 21 to
981, which is less than 1000 WCLs in the proposed model,
which may affect the reliability of the comparison of the
results. The proposed methods are superior to comparable
studies in the following respects:

o The proposed approach includes four models, and
within each, three experiments covering the number
of WCLs (100, 500, and 1000), one depot, and one
waste disposal location. Comparative research with
small cases between 10-40, medium cases 41-48, and
large cases between 49-89.

o Regarding power consumption, the proposed
approaches can lead to better results because the
drone covers more locations in each trip, recharges
when needed, and does not stop early before consuming
all of the drone’s power, as is the case in the compared
studies.
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TABLE VII: The comparison between the research methods (hybrid ACO) and the proposed approaches.

GA Percentage Impro- Impro- Best Impro- Impro- Best Impro- Impro-
dataset reduction vement vement fitness vement vement fitness vement vement
(Number in via via of DS2 via based of DS3 via via
of fitness GARL RLGA. (Hybrid GARL on (Hybrid GARL RLGA
locations) error ACO) RLGA ACO).

of DSI1

(Hybrid

ACO)
100 259 81.7% 79.6% 274 82.6% 80.73% 27.2 82.65% 80.74%
WCL
500 25.9 66.4% 59.5% 274 68.21% 61.75% 27.2 68.05% 61.45%
WCL
1000 25.9 55.9% 47.7% 27.4 58.35% 50.51% 27.2 58.09% 50.11%
WCL

TABLE VIII: The comparison between the research methods (MWMTT) and proposed approaches.

GA Percentage Impro- Impro- Best Impro- Impro- Best Impro- Impro-
dataset reduction vement vement fitness vement vement fitness vement vement
(Number in via via of DS2 via via of DS3 via via
of fitness GARL RLGA (MWMTT) GARL RLGA (MWMTT) GARL RLGA
locations) error

of DS1

(MWMTT)
100 36.1 86.8% 85.4% 29 83.79% 81.86% 21.2 77.59% 75.09%
WCL
500 36.1 75.9% 71.0% 29 83.79% 81.86% 21.2 59.01% 50.57%
WCL
1000 36.1 68.4% 62.4% 29 60.55% 53.25% 21.2 46.17% 36.08%
WCL

e The linear program in comparative studies could not
generate solutions that solve instances with more than
40 locations; hence, the lower bound is used to evaluate
the performance of medium and large size experiments.
Therefore, the results obtained were in line with those
obtained for small instances, which is an obvious
limitation that is overcome in our study approach.

To illustrate more the results for all experiments and
algorithms were run multiple times to take an average based
on WCLs, thus, for 100 WCLs, it was run over 10 times,
Ratio and Proportion. Tables IX and X show the GARL and
RLGA average results. For 500 WCLs, it runs more than 30
times, the ratio and proportion. Fig. [T6]and Fig. [I7] show the
GIRL and RLGA average results. For 1000 WCLs, it runs
over 50 times, Ratio and Proportion. Fig. [I§] and Fig. [T9]
show the GARL and RLGA average results.

Overall, for all the above results, the proposed methods
have been proven to have high reliability with internal and
external validity.

These methods demonstrate the efficiency of algorithmic
modification that can use real-world datasets and integrate
them into the system. Its internal validity comes from the
positive results and the superiority of the outcomes of the
proposed model over the results of the comparative studies
and the achievement of the objectives of this study. Its
external validity comes from its consistency with previous

research, with the possibility of generalizing the result
and applying it to real-world situations. Several physical
factors, such as climate change, wind, take-off, and landing
time, were not considered in this study. In conclusion,
the best proposed model is the one that combines GA
and RL (GARL). When analyzing the algorithm process,
it is noticed that the routes are optimized across a large
number of solution spaces to reach a near-optimal solution.
It can accommodate various constraints to minimize costs
based on minimizing energy consumption, flight time, and
total distance through robust fitness functions. The GA is
highly flexible in adapting to multiple dynamic scenarios
and complex environments, as it can handle large amounts
of data and find logical solutions through parallel processing.
Parallel processing is highly efficient, as it can explore more
solutions simultaneously while accelerating computation and
optimization using large amounts of data. One of the most
notable features of the GA is its ability to avoid local optimal
outcomes and find global optimal outcomes, enabling the
search for better paths in complex environments due to its
reliance on derivatives. The GA consists of more robust
techniques, based on its ability to handle data noise and its
flexibility to change, making it more suitable for real-world
applications. In addition to its ability to handle constraints
multi-objectively, the generalization of the solution is based
on the finding of the best route by GA, which is more reliable
and near optimal. Its outcome population starts as the input
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Fig. 15: The percentage reduction in fitness error that was compared between the proposed hybrid approaches with MWMTT.
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Fig. 16: The Results Obtained for GARL Performance Metrics for 500 WCLs

population in the second phase of the model, producing
better results than the proposed second model, which uses
RL in the first stage and then GA. RL, on the other hand,
can ensure efficiency improvements over time and more
navigation, hence dynamic optimization and adapting to

changes to improve real-time decision making. RL performs
well in complex problems with multiple variables and a
high-dimensional space. Conversely, RL can lead to poor
balance between exploration and exploitation, which can
lead to missed opportunities at certain times or reduced
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Fig. 17: The Results Obtained for RLGA Performance Metrics for 500 WCLs

performance. Furthermore, RL often requires more training  servicing all WCLs.

time and computational resources to produce better results.

Therefore, the results of the proposed model that combines

GA and RL (GARL) are significantly better than those of GA VI. CONCLUSIONS
and RL (RLGA). The figures show the fitness values, which
reflect the balance between all the calculated constraints,
including energy consumption, total distance, capacity, and

This paper proposes multi-objective hybrid models of GA
and RL to solve routing problems using a single UAV.
It aims to enhance WCS by solving its routing problems
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Fig. 18: The Results Obtained for GARL Performance Metrics for 1000 WCLs

in complex scenarios. The proposed models present hybrid
and individual methods of the GA and RL algorithms.
The models are applied using synthetic data, generating
1000  WCL data. Each of the experiments is divided
into three sections, including 100, 500, and 1000 WCLs.
The hypermeters of the experiments are stabilized for all
experiments and are selected based on literature review and
trial-and-error. The first model is GARL, which is divided
into two phases. The first phase starts with GA operations

that leverage initial random population selection based on
a well-constructed fitness function that addresses various
constraints such as UAV capacity and energy endurance
while servicing all WCLs in the shortest tour distance and
time. The second phase of the model operates the RL
algorithm, which is synchronized with GA by taking its
best population outcome as the initial state to generate the
Q matrix in the learning phase. In the second proposed
approach, RLGA, the algorithm’s sequence is reversed,
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Fig. 19: The Results Obtained for RLGA Performance Metrics for 1000 WCLs

hence operating the RL algorithm first and importing its
best tour output to be utilized as the initial population in
GA instead of using a random one. Furthermore, the results
of the two models are used to demonstrate the superiority of
the hybrid approach over individual algorithms of GA and
RL through comparison of the results of the four approaches.
Hence, the results of individual GA and RL algorithms are
used as benchmarks to rank the level of efficiency and
superiority of the two hybrid approaches. Comparisons of
the models’ results are based on fitness values that take

into account the trade-off between several constraints, such
as capacity, energy, flight time, distance, and servicing all
WCLs. The flight time is also calculated as another measure
of the efficiency matrix of the proposed methods. The GARL
gained the highest improvements over all other approaches in
terms of fitness value and flight time. Compared to GA-only
results, it recorded 11.05% and 2.27 minutes in 100 WCLs,
22.06% and 4.32 minutes in 500 WCLs and 26.32% and
8.1 minutes in 1000 WCLs. In addition, its comparison
with the results of RL alone recorded 12.68% and 2.51
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TABLE IX: The Results Obtained for GARL Performance Metrics for 100 WCLs

Metric 1 2 3 4 5 6 7 8 9 10 AVG
Best fitness 4.67 4.89 4.69 4.86 4.73 4.5 4.82 4.75 491 4.7 4.752
Best Flight 41.43 39.54 39.31 39.78 40.23 38.46 40.45 39.4 39.82 41.23 39.965

Time

Standard 0.732 0.3887 0.6161 0.5359 0.7257 0.5009 0.5274 0.5744 0.6921 0.4713 0.57645
deviation

for total

route

TABLE X: The Results Obtained for RLGA Performance Metrics for 100 WCLs

Metric 1 2 3 4 5 6 7 8 9 10 AVG
Best fitness 5.11 5.06 5.12 5.82 523 5.13 5.03 5.21 5.85 522 5.278
Best Flight 41 40.13 41.11 42.31 41.22 41 40.16 41.09 41.07 41.11 41.02

Time

Standard 0.5802 0.407 0.5153 0.6698 0.6003 0.4343 0.4214 0.5013 0.4717 0.8822 0.54835
deviation

for total

route
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