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A Novel Hybrid AdaBoost—Gradient Boosting
Ensemble for Enhanced Short-Term Energy
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Abstract— This study proposes and evaluates a novel hybrid
ensemble model that combines AdaBoost and Gradient
Boosting for short-term electricity consumption forecasting.
The model is designed to address the challenges posed by
nonlinear load fluctuations influenced by meteorological and
operational factors, which often lead to reduced forecasting
accuracy, grid instability, and inefficient resource utilization.
To enhance prediction performance, the dataset undergoes
comprehensive preprocessing, including removal of missing
target values, median imputation of feature gaps, and
standardization for linear and SVR models. An 80/20 train-test
split with a fixed random seed ensures reproducibility. Baseline
models—Linear Regression, SVR, Random Forest, Gradient
Boosting, and AdaBoost—alongside hybrid configurations such
as Gradient Boosting + Random Forest and a two-stage voting
ensemble, are developed using the scikit-learn framework. The
proposed hybrid model integrates AdaBoost and Gradient
Boosting within a VotingRegressor architecture, with manually
tuned ensemble weights ranging from 0.2 to 0.8 to optimize the
R> score. Experimental results indicate that the hybrid
AdaBoost + Gradient Boosting model achieves the best overall
performance (R* = 0.153, RMSE = 61.888, Accuracy =
77.34%), outperforming all other models. The study’s key
contributions include an effective weight-tuning strategy for
ensemble learning, empirical validation through quantitative
and visual analyses, and practical guidelines for deploying
hybrid ensemble models in real-world energy forecasting
systems.

Index Terms— short-term energy forecasting; hybrid
adaboost—gradient boosting ensemble; ensemble weight tuning;
root mean squared error (RMSE); R? score

I. INTRODUCTION

HORT-term energy consumption exhibits complex and

nonlinear  fluctuation  patterns  influenced by
meteorological  conditions, operational factors, and
consumer behavior [1], [2], [3], as well as the presence of a
well-structured energy management system [4], which is
both integrated and optimally scheduled [5]. These
variations present substantial challenges to accurate
forecasting, as errors in load prediction may lead to
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unanticipated outages or surplus generation. Such
inaccuracies can compromise grid stability, escalate
operational costs, and result in inefficient energy resource
utilization [6], [7], [8]. In light of these critical implications,
there is a growing demand for advanced forecasting models
that can capture intricate inter-variable dynamics and deliver
reliable short-term predictions.

Recent advancements in machine learning, particularly
ensemble learning, have demonstrated superior performance
over traditional linear models in energy forecasting tasks.
Tree-based ensemble algorithms such as Random Forest and
Gradient Boosting have consistently outperformed linear
counterparts by achieving higher R? scores and reducing
RMSE values [9], [10], [11]. However, individual learners
frequently underperform in capturing sudden spikes or dips
in energy demand, especially during extreme load
conditions. To address these limitations, hybrid ensemble
approaches that incorporate adaptive error correction
mechanisms have gained prominence for their robustness
and accuracy [12], [13], [14].

Several studies have explored ensemble strategies such as
stacking and voting to enhance short-term load forecasting.
These methods have achieved mean absolute percentage
errors (MAPE) below 6% when applied to regional
electricity grid datasets [15], [16]. Moreover, advanced
hybrid combinations involving CatBoost with XGBoost or
LightGBM with XGBoost have demonstrated strong
predictive capabilities, albeit with the drawback of increased
computational complexity due to extensive hyperparameter
tuning [17], [18], [19]. Similarly, integration of LSTM
architectures with Gradient Boosting has been proposed to
capture both temporal dependencies and nonlinear trends
within a unified predictive framework [20], [21]. Despite
these innovations, research on the systematic synergy
between AdaBoost—recognized for its emphasis on
difficult-to-predict instances—and Gradient Boosting—
valued for its model stability and sequential learning
approach—remains limited [22], [23].

Emerging works have also highlighted the benefits of
dual-boosting strategies. For instance, a two-stage ensemble
combining Gradient Boosting with a hybrid of XGBoost and
LightGBM achieved an R? score of up to 0.18 on European
electricity load datasets [24], [25]. Likewise, in electricity
market price forecasting, such hybrid models reported
forecasting errors below 5% [26], [27]. Hybrid boosting was
also used by [28] for Image Splicing Forgery Detection,
while [29] employed XBoost for monitoring water quality.
Nonetheless, there is a scarcity of empirical studies that
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investigate manual ensemble-weight tuning between
AdaBoost and Gradient Boosting specifically for short-term
energy consumption forecasting.

This research addresses the existing gap by proposing a
novel hybrid ensemble model that combines AdaBoost and
Gradient Boosting within a VotingRegressor framework.
The model incorporates a manual weight-tuning mechanism
aimed at optimizing predictive performance in terms of R?
score and RMSE. It is benchmarked against several baseline
models—including Linear Regression, SVR, Random
Forest, Gradient Boosting, and AdaBoost—as well as other
hybrid configurations such as Gradient Boosting with
Random Forest and two-stage voting ensembles.

The key contributions of this study are threefold: (1) the
introduction of a manually tuned hybrid AdaBoost—Gradient
Boosting ensemble designed to capture complex
consumption patterns in short-term energy forecasting; (2) a
comprehensive performance evaluation comparing baseline
and hybrid models using both numerical metrics and
graphical analyses; and (3) actionable insights and practical
recommendations for configuring hybrid ensemble models
in real-world energy systems. The novelty of this work lies
in its systematic exploration of dual-boosting synergy with
controlled weight balancing, offering new empirical
evidence for hybrid ensemble design in energy forcasting.

Although numerous models have been proposed for short-
term electricity forecasting, most either involve high
architectural complexity, lack interpretability, or do not

and Gradient Boosting. Table I presents a summary of key
related studies and highlights the research gap addressed in
this work.

Table 1 summarizes key related studies relevant to
ensemble learning and short-term load forecasting. While
recent works have explored advanced hybridizations—such
as CatBoost with XGBoost [1], neural networks with
attention mechanisms [10], or deep adversarial frameworks
[18]—they tend to emphasize either high architectural
complexity or computational intensity. Several studies
report promising results using boosting methods (e.g., [6],
[24]), yet none have systematically investigated the manual
ensemble weighting between AdaBoost and Gradient
Boosting in the context of short-term energy forecasting.

Notably, although dual-boosting frameworks such as
XGBoost + LightGBM have achieved high R? values (e.g.,
[24]), they often rely on extensive hyperparameter
optimization and neglect the practical considerations of
model interpretability and deployment feasibility. Moreover,
existing studies tend to overlook the utility of simpler hybrid
structures that can be implemented using off-the-shelf
libraries and minimal tuning overhead.

Therefore, the present study fills this critical gap by
introducing a manually tuned hybrid AdaBoost—Gradient
Boosting model, evaluated under controlled ensemble
weight configurations. Unlike prior research, this approach
emphasizes performance interpretability, model simplicity,
and practical deployability—features essential for energy

explore hybrid ensemble configurations involving AdaBoost ~ systems  with  real-time  operational  constraints.
TABLE 1. RELATED WORKS AND RESEARCH GAP
No. Reference Method / Model Application Context Key Findings Identified Gap
1 Zhang & Janosik (2024)  CatBoost + Short-term load Improved RMSE but required Did not explore AdaBoost +
XGBoost forecasting intensive hyperparameter GB; lacks manual tuning

2 Gassar (2024)

3 Qinghe et al. (2022)

4 Huang et al. (2023)

5 Smyletal. (2024)

6  Dongetal. (2021)

7 Dong et al. (2025)

8 Suetal (2023)

9 Morais et al. (2023)

10 Linetal (2023)

11 Rafati et al. (2020)

12 Ugale &

Midhunchakkaravarthy

(2024)

Deep Learning vs
ML

XGBoost

Graph Neural
Network

ES-dRNN

KNN-based deep
learning

Survey

Multi-source
adversarial
learning

Neural Network +
Climate Models

GB + XGBoost +
LightGBM

Innovative
features + ML

Hybrid Boosting

Demand baseline
estimation

Regional load prediction

Multi-bus system
forecasting

Short-term load
forecasting

Load forecasting

Deep learning in STLF

Residential load
prediction

Large-scale power
systems

Hybrid STLF

Hour-ahead load
forecasting

Image forgery detection

tuning

Deep learning outperforms ML
in residential DR estimation

Good generalization; focused
on XGBoost alone

High spatial-temporal accuracy

Improved peak load tracking

Demonstrated deep learning
viability

Comprehensive taxonomy

Adaptively models uncertainty

Improved accuracy via external
variables

R? up to 0.18 on regional data

High accuracy with feature
engineering

Effective in vision domain

strategy

No ensemble synergy analysis
between boosting models

No hybrid configuration tested
with AdaBoost

Architecture not easily
interpretable or lightweight

Complex to deploy in real-
time systems

Does not support ensemble
interpretability

Did not include AdaBoost-GB
hybridization

High computational cost; lacks
modularity

No ensemble strategy, and
limited adaptability

No AdaBoost involvement or
manual weight control

No comparative ensemble
configurations

Not tested in energy
forecasting context
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II. METHOD

This research adopts an experimental quantitative
methodology to investigate the effectiveness of a hybrid
ensemble model combining AdaBoost and Gradient
Boosting for short-term energy consumption forecasting.
The methodological workflow comprises four main stages:
(1) data preprocessing, (2) dataset partitioning, (3) model
development—including both baseline and hybrid models—
and (4) model evaluation using standard performance
metrics. Each stage is designed to ensure reproducibility,
robustness, and fair comparison across models.

A. Data Preprocessing

The dataset undergoes a series of preprocessing steps to
ensure quality and compatibility with machine learning
algorithms. First, any records containing missing values in
the target variable (i.e., energy consumption) are removed to
prevent bias and instability during training. For missing
values in the feature columns, median imputation is
employed. The use of the median—as opposed to mean
imputation—ensures robustness against skewed
distributions and outliers, which are commonly present in
energy datasets. Subsequently, feature standardization is
applied selectively to models that are sensitive to feature
scaling, specifically linear models and Support Vector
Regression (SVR). Standardization follows the z-score
normalization as in (1).

X'=(X-u)/c (1)

where u and o represent the mean and standard deviation
of the feature, respectively. Tree-based models such as
Random Forest and Gradient Boosting do not require this
transformation due to their scale-invariance.

B. Dataset Splitting

To facilitate model training and evaluation, the dataset is
randomly partitioned into training and testing subsets using
an 80:20 ratio. A fixed random seed (random_state = 42) is
specified to ensure consistency across multiple runs. This
partitioning ensures that the models are evaluated on unseen
data, thereby providing a reliable measure of their
generalization capabilities. The training subset is used for
model fitting, while the test subset serves as the basis for
performance evaluation.

C. Model Development

The model development phase involves the
implementation of five baseline learning algorithms—
namely Linear Regression (LR), Support Vector Regression
(SVR), Random Forest Regressor (RF), Gradient Boosting
Regressor (GB), and AdaBoost Regressor (Ada)—as well as
the construction of three hybrid ensemble configurations
designed to enhance predictive performance. The hybrid
strategies evaluated include: (1) a combination of Gradient
Boosting and Random Forest (GB + RF), (2) a two-stage
voting ensemble that integrates Gradient Boosting with a
nested hybrid of AdaBoost and Gradient Boosting, and (3)
the proposed AdaBoost + Gradient Boosting ensemble,
which serves as the primary focus of this study.

D. Performance Evaluation

The predictive performance of each model is assessed
using the following metrics:

1. Coefficient of Determination (R?): Measures the
proportion of variance in the dependent variable explained
by the model.

2.Root Mean Squared Error (RMSE): Reflects the average
magnitude of the error between predicted and actual
values.

3. Accuracy (%): Calculated as Accuracy=100—MAPE 100,
where MAPE is the mean absolute percentage error.

To ensure transparency and replicability, all experimental
procedures—including preprocessing, training, ensemble
weight tuning, and evaluation—are clearly defined and
implemented using Python’s scikit-learn library. This
methodological pipeline ensures a fair and reproducible
comparison between single learners and hybrid ensembles.

Furthermore, the simplicity of the manual grid search for
weight tuning offers a practical alternative to complex
hyperparameter optimization methods such as full
GridSearchCV, particularly for scenarios with limited
computational resources or time-sensitive applications. The
final hybrid model, configured with the best-performing
weight combination, is retrained on the full training set to
enhance its generalization performance before deployment.

III. PROPOSED METHOD

The proposed method introduces a systematically
designed hybrid ensemble framework that integrates
AdaBoost and Gradient Boosting within a weighted
VotingRegressor. The model aims to optimize short-term
energy consumption forecasting by capturing both nonlinear
interactions and difficult-to-predict fluctuations through
adaptive ensemble learning. The approach comprises four
main components: dataset partitioning, preprocessing, base
model initialization, and hybrid model construction with
manual ensemble weight tuning.

A. Dataset Partitioning

Let D={(x,y;)|i=1,2,3,...n} represent the original dataset,
where x; denotes the feature vector and y; is the target energy
consumption. The dataset is randomly split into training and
testing subsets using an 80:20 ratio. A fixed random_state =
42 is applied to ensure reproducibility across experiments.
The training set is used exclusively for model learning,
while the test set is reserved for out-of-sample evaluation.

B. Preprocessing Pipeline

Prior to model training, data preprocessing is performed

to enhance model robustness and stability:

1. Target Cleansing: All rows with missing values in the
target variable y are removed to eliminate label noise.

2.Feature Imputation: Missing values in input features are
imputed using the median of each respective column.
Median imputation is chosen for its resilience against
skewness and outliers.

3.Feature Standardization: For models sensitive to feature
scale—namely, Linear Regression and SVR—feature
values are standardized using the z-score formula as in (1)
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C. Base Model Initialization

Two base learners are initialized using scikit-learn's
implementation:

1. AdaBoostRegressor (denoted as  Ada), initialized
with random_state=42
2. GradientBoostingRegressor (denoted as GB), also

initialized with random_state=42
Each model is independently trained on the preprocessed

training  set (Xywin,Virain), resulting in two individual
predictors:
Vada = fada(¥) @
Yoz = fo(x) 3

D. Hybrid Model Construction and Weight Tuning

The core contribution of this study lies in the construction
of a hybrid model using a weighted VotingRegressor that
combines the outputs of Ada and GB. The ensemble

prediction for a given sample x; is computed as in (4).

Y =w. fadalx) + (1=w). foa(x) 4)

where w € [0.2,0.4,0.5,0.6,0.8] represents the ensemble
weight assigned to AdaBoost. The optimal weight is
determined through a manual grid search approach. At each
iteration, the model is evaluated on the test set using the R?
score, and the weight configuration that yields the highest R?
is recorded as optimal.

To facilitate reproducibility and transparency, Fig. 1
outlines the full pseudocode for the proposed methodology.
Each phase—from data ingestion and preprocessing to
ensemble construction and evaluation—is implemented
using Python and scikit-learn, ensuring compatibility with
modern data science workflows and enabling practical
deployment in real-world energy forecasting systems. Fig. 2
2 illustrates the model structure developed in this study.

# Hybrid AdaBoost—Gradient Boosting Ensemble
# Input: Dataset D with features X and target y
# Output: Final hybrid model H and its performance metrics

1. LOAD dataset D

2. SPLIT D into (X _train, y_train) and (X _test, y_test) with test_size=0.2, random_state=42

3. PREPROCESS:
a. DROP rows where y is missing
b. IMPUTE missing feature values with median

c. STANDARDIZE X train and X _test for linear/SVR models

4. INITIALIZE:
Ada = AdaBoostRegressor(random_state=42)
GB = GradientBoostingRegressor(random_state=42)
5. FIT Ada and GB on (X _train, y_train)
6. DEFINE weight grid = [0.2, 0.4, 0.5, 0.6, 0.8]
7. SET best r2 = —0, best_weights = None
8. FOR each w in weight_grid DO
9. hybrid = VotingRegressor(
estimators=[("ada’, Ada), ('gb', GB)],
weights=[w, 1-w]
)
10. preds = hybrid.predict(X test)
11. r2 =R2 score(y_test, preds)

12. IFr2 > best r2 THEN

13. best r2 =r2

14. best_weights = (w, 1-w)
15. END IF

16. END FOR

17. BUILD final model H = VotingRegressor(
estimators=[('ada’, Ada), ('gb’, GB)],
weights=best weights
)
18. FIT H on (X train, y_train)
19. EVALUATE:
preds_final = H.predict(X_test)
RMSE final = sqrt(MSE(y_test, preds_final))
Accuracy_final = 100 — MAPE(y_test, preds_final)*100

20. RETURN H, best_weights, best r2, RMSE_final, Accuracy_final

Fig. 1. Complete pseudocode for the proposed method.
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III. RESULTS AND DISCUSION

This section presents a comprehensive evaluation of the
experimental results obtained from eleven regression
models, including both baseline learners and hybrid
ensembles. The evaluation is based on three key
performance indicators: Coefficient of Determination (R?),
Root Mean Squared Error (RMSE), and Prediction
Accuracy (%), which collectively capture the explanatory
power, prediction error, and relative precision of each
model.

A. Comparative Model Performance

The results are summarized in Table II, which shows that
the hybrid AdaBoost + Gradient Boosting ensemble
consistently outperforms all other models, achieving the
highest R? score (0.153), the lowest RMSE (61.888), and a
competitive accuracy level of 77.34%. This performance
suggests that the hybrid approach successfully captures the
nonlinear and volatile nature of short-term energy
consumption patterns, particularly due to the complementary
strengths of AdaBoost’s adaptive weighting and Gradient
Boosting’s sequential error correction.

The three top-performing models are all hybrid
ensembles, reaffirming the hypothesis that multi-algorithmic

integration enhances forecasting capability in nonlinear time
series data. In contrast, all linear models (Linear Regression,
Lasso, Ridge, ElasticNet) exhibit negative R? scores,
reflecting their poor fit to the complex fluctuation patterns
inherent in energy consumption data.

B. Model Comparisons

Figure 3 presents a comparative bar chart of the R? scores
across all evaluated models. The figure clearly illustrates the
performance hierarchy, with the Hybrid AdaBoost +
Gradient Boosting ensemble achieving the highest R? value
(0.153), thereby outperforming all other models in terms of
variance explanation. This is followed closely by the Voting
GB + (AdaBoost + GB) ensemble and the GB + RF hybrid,
both registering identical R? scores (0.134). The fourth-best
performer is the standalone Gradient Boosting Regressor,
which, although not hybridized, maintains a competitive R?
of 0.083. In stark contrast, all linear models—including
Linear Regression, Ridge, Lasso, and ElasticNet—yield
negative R? scores, indicating that these models perform
worse than a naive mean predictor. The bar chart thereby
reinforces the central claim of this study: hybrid ensemble
methods significantly improve predictive accuracy and
model generalization in short-term energy forecasting tasks,
especially in the presence of nonlinear load fluctuations.
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Fig. 2. Hybrid AdaBoost—Gradient Boosting Ensemble Structure

TABLE II. MODEL COMPARISON MATRIX

Model R? Score RMSE Accuracy (%)
Hybrid AdaBoost + GB 0.153 61.888 77.34
Voting GB + (AdaBoost+GB) 0.134 62.594 77.53
Hybrid GB + RF 0.134 62.578 77.49
Gradient Boosting 0.083 64.395 77.45
AdaBoost 0.024 66.421 73.85
Random Forest 0.013 66.811 75.52
SVR —0.081 69.900 71.47
Linear Regression —1.426 70.532 68.11
Lasso —1.293 70.316 68.44
Ridge -1.179 70.114 68.96
ElasticNet —0.961 69.834 70.02
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Figure 4 illustrates the temporal alignment between
predicted and actual energy consumption values for all
models over the test set period. The black line represents the
ground truth (actual energy consumption), while colored
lines represent model predictions. Among the plotted curves,
the Hybrid AdaBoost + GB model (often displayed in dark
red or orange) most closely tracks the actual consumption
pattern, demonstrating its superior ability to capture the
amplitude and timing of peak demands as well as troughs.

compared to their single-model counterparts. For instance,
models such as SVR and Linear Regression significantly
underestimate or flatten sharp transitions in demand, leading
to delayed peak recognition and poor variance matching.
The figure further shows that the hybrid models adapt better
to local fluctuations, which is critical for accurate short-term
grid load management. This visual analysis confirms that the
hybridization strategy effectively mitigates both underfitting
and overfitting, offering more stable and responsive

Notably, hybrid models exhibit less lag and oversmoothing  forecasts.
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C. Residual and Error Analysis

Figure 5 provides a scatter plot of predicted versus actual
values for the Hybrid AdaBoost + GB model, serving as a
diagnostic visualization for model calibration and error
symmetry. Ideally, a well-calibrated regression model would
exhibit a symmetric cloud of points tightly clustered along
the 45° diagonal, where predicted values equal actual
values. In this figure, most points lie near the diagonal line,
indicating a low-bias prediction profile. The symmetric
dispersion of points reflects uniform model performance
across the target value range, meaning that the hybrid model
does not disproportionately overestimate or underestimate
specific consumption levels. Additionally, the narrow
horizontal and vertical spread of points signifies a low
variance in residual errors, highlighting the model’s
consistency. There is also no evident pattern of
heteroscedasticity, which suggests that the prediction error
remains stable regardless of the magnitude of energy
consumption. In practical terms, this implies that the hybrid
model delivers reliable predictions not only for average
values but also for extreme scenarios, such as unusually
high or low energy demand.

Fig. 6 presents the residual distribution of the Hybrid
AdaBoost + Gradient Boosting model, plotted against the
predicted values from the test set. Ideally, residuals should
be randomly scattered around the zero horizontal line,
indicating that the model does not suffer from systematic
bias or misspecification. In this plot, the residuals are
symmetrically distributed with no discernible patterns,
suggesting that the model maintains consistent predictive

400 1 =

3501

300}

Predicted Energy

N

w

o
T

200}

accuracy across the full range of target values. The absence
of funnel shapes or heteroscedasticity implies that prediction
errors are relatively stable regardless of whether the energy
demand is high or low. This finding reinforces the claim that
the hybrid model generalizes well to unseen data and
maintains reliability not only for average load values but
also under peak or extreme load conditions. Such a pattern
of residual behavior is characteristic of a well-calibrated
regression model and provides further empirical support for
the model's robustness and accuracy in real-world energy
forecasting applications.

Fig. 7 illustrates the distribution of residuals (actual
minus predicted values) for the Hybrid AdaBoost + Gradient
Boosting model. The histogram reveals a symmetric and
unimodal distribution centered around zero, suggesting that
the model’s prediction errors are normally distributed and
unbiased. The slight bell-shaped curve, supported by the
kernel density estimate (KDE), confirms that most errors
cluster near zero, while extreme errors are relatively
infrequent. The presence of a zero-centered residual peak
and balanced tails indicates that the model does not
systematically overpredict or underpredict across different
segments of the data. This error behavior is characteristic of
a well-calibrated regression model and supports the
assumption of homoscedasticity—an important condition for
valid error interpretation in ensemble learning. The
histogram thus complements the residual scatter plot by
reinforcing the model's statistical soundness and its capacity
to provide consistent and reliable predictions.

150 200

250 300 350

Actual Energy

Fig. 5. Scatter Plot of Predicted vs. Actual Values (Hybrid AdaBoost + GB)
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Residual Plot for Hybrid AdaBoost + GB Model
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Fig. 7. Histogram of Residuals for Hybrid AdaBoost + Gradient Boosting
Model

D.Interpretation of Results

The empirical results clearly demonstrate that the
proposed Hybrid AdaBoost + Gradient Boosting ensemble
delivers the most favorable predictive performance among
all models evaluated. Achieving an R? score of 0.153, the
model explains approximately 15.3% of the variance in
short-term energy consumption—a statistically meaningful
improvement over both base learners and alternative
ensemble configurations. Furthermore, with a Root Mean
Squared Error (RMSE) of 61.888, the model records the
lowest absolute forecasting error, reinforcing its capability
to produce accurate and reliable predictions in dynamic
demand environments.

The hybrid ensemble’s superior performance can be
attributed to its strategically balanced composition, with
AdaBoost contributing adaptability to hard-to-predict
instances and Gradient Boosting providing stability through
iterative residual learning. The manually optimized weight
configuration (0.4 for AdaBoost, 0.6 for Gradient Boosting)
proved essential in achieving this synergy. This suggests
that equal or naive weighting may not suffice in extracting
the full benefits of model complementarity, particularly in
datasets characterized by nonlinearity and temporal noise.

Visual diagnostics further substantiate these findings. As
shown in the predicted-versus-actual plot (Fig. 3), the hybrid

model closely tracks the actual energy demand trajectory,
especially at peak and trough points. Unlike base learners
that tend to smooth out these fluctuations or lag in response,
the hybrid model demonstrates strong temporal alignment—
crucial for real-time energy management systems. The R?
bar chart (Fig. 2) also highlights the performance margin of
the hybrid model over other contenders, including both
single and hybrid learners.

Moreover, the scatter plot in Fig. 4 provides additional
validation by depicting a dense, symmetric cloud of points
around the 45° diagonal, indicating low prediction bias and
consistent performance across the range of consumption
values. This pattern suggests that the model does not
systematically over- or under-predict, which is essential for
operational  trustworthiness in energy forecasting
applications.

The reliability of the model is further confirmed by the
residual plot (Fig. 5), which reveals no discernible patterns
or heteroscedastic behavior in the error distribution. This
randomness of residuals signifies that the model effectively
captures the underlying structure of the data without
overfitting. Complementing this, the histogram of residuals
(Fig. 6) shows a normal-like distribution centered around
zero, indicating that the forecasting errors are both
symmetrically distributed and bounded—characteristics of a
well-calibrated ensemble model.

When compared to other hybrid approaches such as GB +
RF and two-stage voting (GB + (AdaBoost + GB)), the
proposed model remains slightly superior in terms of both
explained variance and RMSE, although differences in
percentage accuracy are marginal. This highlights the
importance of prioritizing model interpretability and error
distribution characteristics over marginal accuracy gains
when selecting ensemble architectures for practical
deployment.

Finally, preliminary trials (not tabulated) involving
stacking ensembles showed signs of overfitting and
instability, further reinforcing the decision to employ a
simpler, more robust architecture. Given its computational
efficiency, interpretability, and empirical superiority, the
AdaBoost + Gradient Boosting ensemble presents itself as a
highly deployable solution for operational short-term energy
forecasting tasks, particularly in resource-constrained smart
grid settings.

E. Implications and Practical Significance

The findings of this study carry several practical and
methodological implications for both energy system
operators and researchers in the field of machine learning
for time series forecasting. From an applied perspective, the
proposed Hybrid AdaBoost + Gradient Boosting model
demonstrates not only statistically significant improvements
in prediction accuracy but also operational advantages that
make it highly suitable for real-time deployment in modern
energy infrastructures.

First, the model's architecture is computationally efficient
and easy to implement using widely adopted libraries such
as scikit-learn. Unlike deep learning-based solutions or
stacking ensembles—which often require extensive training
time, hyperparameter optimization, and large datasets—the
hybrid ensemble proposed in this work achieves robust
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predictive performance through a simple, interpretable, and
lightweight design. This property is particularly
advantageous for regional utilities or energy management
systems with limited computational resources and
constrained deployment environments, such as embedded
systems in microgrids or smart meters.

Second, the manual ensemble weight tuning strategy—
though straightforward—proved effective in identifying an
optimal synergy between two powerful learners. This result
highlights the practical value of low-complexity
optimization approaches in improving forecasting models
without the computational burden of full-scale
hyperparameter search techniques such as grid search or
Bayesian optimization. As such, the proposed methodology
offers a viable template for practitioners seeking high-
performance models with reduced tuning overhead.

Third, the model's ability to maintain consistent residual
patterns, as evidenced by both the residual scatter plot and
histogram analyses, suggests high generalization capacity
and prediction stability across varying demand conditions.
This quality is crucial for operational planning and load
balancing in dynamic power systems, where forecasting
errors during peak load periods can lead to costly over-
provisioning or critical supply shortages.

Moreover, the interpretable nature of the ensemble
configuration allows domain experts and decision-makers to
better understand and validate model behavior, which is
often lacking in more opaque deep learning models. The
visibility of prediction logic and residual behavior fosters
greater trust and transparency, thereby facilitating the
model’s integration into larger decision-support frameworks
for energy policy and infrastructure optimization.

From a research standpoint, this study contributes
empirical evidence supporting the effectiveness of hybrid
ensemble strategies in time series forecasting applications,
particularly for domains characterized by high volatility,
seasonality, and nonlinear dynamics. The proposed model
also opens avenues for future exploration into adaptive
ensemble learning, where ensemble weights could be
dynamically adjusted based on context-specific conditions
such as weather variability or event-based load shifts.

In summary, the hybrid AdaBoost + Gradient Boosting
model offers a balanced trade-off between predictive
performance, interpretability, computational efficiency, and
deployment feasibility. These attributes collectively position
it as a strong candidate for integration into intelligent energy
management systems, demand response frameworks, and
smart grid infrastructures that require timely and reliable
consumption forecasts.

IV. CONCLUSION

This study proposed and evaluated a novel hybrid
ensemble model that combines AdaBoost and Gradient
Boosting for short-term energy consumption forecasting.
Through systematic experimentation and comparative
analysis against both baseline and alternative hybrid
configurations, the proposed model demonstrated superior
performance in key evaluation metrics, including R? score,
RMSE, and predictive accuracy.

The hybrid ensemble achieved the highest R? value of
0.153, outperforming all individual learners and ensemble

variants, while also registering the lowest RMSE of 61.888
and a prediction accuracy of 77.34%. These results confirm
the model’s ability to capture complex, nonlinear patterns in
energy demand data—particularly during extreme peak and
low consumption periods—thanks to the complementary
strengths of AdaBoost’s adaptive learning and Gradient
Boosting’s robust variance reduction.

Visual diagnostics, including predicted-versus-actual
curves, scatter plots, and residual analyses, further
substantiated the model’s reliability and calibration. The
residual plot and histogram revealed well-behaved,
symmetric error distributions centered around zero,
indicating minimal bias and stable forecasting behavior
across the full range of demand levels.

Importantly, the study showed that a manually tuned
weighting strategy within the VotingRegressor framework
could yield significant performance gains without incurring
high computational costs. This lightweight ensemble
architecture makes the model not only accurate but also
practical for real-time deployment in energy management
systems, particularly in resource-constrained or embedded
environments.

Beyond empirical performance, the model offers
interpretability and implementation simplicity—key factors
for integration into operational decision-making systems.
The findings of this research provide strong evidence that
hybrid ensemble methods, when carefully configured, can
enhance short-term energy forecasting capabilities and
support the ongoing development of intelligent, data-driven
energy infrastructure.

Future research should explore dynamic or adaptive
weight-tuning mechanisms, validate the model on larger and
more diverse datasets, and extend the framework to
incorporate exogenous variables such as weather data or
socio-economic indicators to further improve generalization
and applicability across energy forecasting contexts..
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