
 

  

Abstract— This study proposes and evaluates a novel hybrid 

ensemble model that combines AdaBoost and Gradient 

Boosting for short-term electricity consumption forecasting. 

The model is designed to address the challenges posed by 

nonlinear load fluctuations influenced by meteorological and 

operational factors, which often lead to reduced forecasting 

accuracy, grid instability, and inefficient resource utilization. 

To enhance prediction performance, the dataset undergoes 

comprehensive preprocessing, including removal of missing 

target values, median imputation of feature gaps, and 

standardization for linear and SVR models. An 80/20 train-test 

split with a fixed random seed ensures reproducibility. Baseline 

models—Linear Regression, SVR, Random Forest, Gradient 

Boosting, and AdaBoost—alongside hybrid configurations such 

as Gradient Boosting + Random Forest and a two-stage voting 

ensemble, are developed using the scikit-learn framework. The 

proposed hybrid model integrates AdaBoost and Gradient 

Boosting within a VotingRegressor architecture, with manually 

tuned ensemble weights ranging from 0.2 to 0.8 to optimize the 

R² score. Experimental results indicate that the hybrid 

AdaBoost + Gradient Boosting model achieves the best overall 

performance (R² = 0.153, RMSE = 61.888, Accuracy = 

77.34%), outperforming all other models. The study’s key 

contributions include an effective weight-tuning strategy for 

ensemble learning, empirical validation through quantitative 

and visual analyses, and practical guidelines for deploying 

hybrid ensemble models in real-world energy forecasting 

systems. 

 
Index Terms— short-term energy forecasting; hybrid 

adaboost–gradient boosting ensemble; ensemble weight tuning; 

root mean squared error (RMSE); R² score 

 

I. INTRODUCTION 

HORT-term energy consumption exhibits complex and 

nonlinear fluctuation patterns influenced by 

meteorological conditions, operational factors, and 

consumer behavior [1], [2], [3], as well as the presence of a 

well-structured energy management system [4], which is 

both integrated and optimally scheduled [5]. These 

variations present substantial challenges to accurate 

forecasting, as errors in load prediction may lead to 
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unanticipated outages or surplus generation. Such 

inaccuracies can compromise grid stability, escalate 

operational costs, and result in inefficient energy resource 

utilization [6], [7], [8]. In light of these critical implications, 

there is a growing demand for advanced forecasting models 

that can capture intricate inter-variable dynamics and deliver 

reliable short-term predictions. 

Recent advancements in machine learning, particularly 

ensemble learning, have demonstrated superior performance 

over traditional linear models in energy forecasting tasks. 

Tree-based ensemble algorithms such as Random Forest and 

Gradient Boosting have consistently outperformed linear 

counterparts by achieving higher R² scores and reducing 

RMSE values [9], [10], [11]. However, individual learners 

frequently underperform in capturing sudden spikes or dips 

in energy demand, especially during extreme load 

conditions. To address these limitations, hybrid ensemble 

approaches that incorporate adaptive error correction 

mechanisms have gained prominence for their robustness 

and accuracy [12], [13], [14]. 

Several studies have explored ensemble strategies such as 

stacking and voting to enhance short-term load forecasting. 

These methods have achieved mean absolute percentage 

errors (MAPE) below 6% when applied to regional 

electricity grid datasets [15], [16]. Moreover, advanced 

hybrid combinations involving CatBoost with XGBoost or 

LightGBM with XGBoost have demonstrated strong 

predictive capabilities, albeit with the drawback of increased 

computational complexity due to extensive hyperparameter 

tuning [17], [18], [19]. Similarly, integration of LSTM 

architectures with Gradient Boosting has been proposed to 

capture both temporal dependencies and nonlinear trends 

within a unified predictive framework [20], [21]. Despite 

these innovations, research on the systematic synergy 

between AdaBoost—recognized for its emphasis on 

difficult-to-predict instances—and Gradient Boosting—

valued for its model stability and sequential learning 

approach—remains limited [22], [23]. 

Emerging works have also highlighted the benefits of 

dual-boosting strategies. For instance, a two-stage ensemble 

combining Gradient Boosting with a hybrid of XGBoost and 

LightGBM achieved an R² score of up to 0.18 on European 

electricity load datasets [24], [25]. Likewise, in electricity 

market price forecasting, such hybrid models reported 

forecasting errors below 5% [26], [27]. Hybrid boosting was 

also used by [28] for Image Splicing Forgery Detection, 

while [29] employed XBoost for monitoring water quality. 

Nonetheless, there is a scarcity of empirical studies that 
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investigate manual ensemble-weight tuning between 

AdaBoost and Gradient Boosting specifically for short-term 

energy consumption forecasting. 

This research addresses the existing gap by proposing a 

novel hybrid ensemble model that combines AdaBoost and 

Gradient Boosting within a VotingRegressor framework. 

The model incorporates a manual weight-tuning mechanism 

aimed at optimizing predictive performance in terms of R² 

score and RMSE. It is benchmarked against several baseline 

models—including Linear Regression, SVR, Random 

Forest, Gradient Boosting, and AdaBoost—as well as other 

hybrid configurations such as Gradient Boosting with 

Random Forest and two-stage voting ensembles. 

The key contributions of this study are threefold: (1) the 

introduction of a manually tuned hybrid AdaBoost–Gradient 

Boosting ensemble designed to capture complex 

consumption patterns in short-term energy forecasting; (2) a 

comprehensive performance evaluation comparing baseline 

and hybrid models using both numerical metrics and 

graphical analyses; and (3) actionable insights and practical 

recommendations for configuring hybrid ensemble models 

in real-world energy systems. The novelty of this work lies 

in its systematic exploration of dual-boosting synergy with 

controlled weight balancing, offering new empirical 

evidence for hybrid ensemble design in energy forcasting. 

Although numerous models have been proposed for short-

term electricity forecasting, most either involve high 

architectural complexity, lack interpretability, or do not 

explore hybrid ensemble configurations involving AdaBoost 

and Gradient Boosting. Table I presents a summary of key 

related studies and highlights the research gap addressed in 

this work. 

Table I summarizes key related studies relevant to 

ensemble learning and short-term load forecasting. While 

recent works have explored advanced hybridizations—such 

as CatBoost with XGBoost [1], neural networks with 

attention mechanisms [10], or deep adversarial frameworks 

[18]—they tend to emphasize either high architectural 

complexity or computational intensity. Several studies 

report promising results using boosting methods (e.g., [6], 

[24]), yet none have systematically investigated the manual 

ensemble weighting between AdaBoost and Gradient 

Boosting in the context of short-term energy forecasting. 

Notably, although dual-boosting frameworks such as 

XGBoost + LightGBM have achieved high R² values (e.g., 

[24]), they often rely on extensive hyperparameter 

optimization and neglect the practical considerations of 

model interpretability and deployment feasibility. Moreover, 

existing studies tend to overlook the utility of simpler hybrid 

structures that can be implemented using off-the-shelf 

libraries and minimal tuning overhead. 

Therefore, the present study fills this critical gap by 

introducing a manually tuned hybrid AdaBoost–Gradient 

Boosting model, evaluated under controlled ensemble 

weight configurations. Unlike prior research, this approach 

emphasizes performance interpretability, model simplicity, 

and practical deployability—features essential for energy 

systems with real-time operational constraints.

 
TABLE 1. RELATED WORKS AND RESEARCH GAP 

No. Reference Method / Model Application Context Key Findings Identified Gap 

1 Zhang & Jánošík (2024) CatBoost + 

XGBoost 

Short-term load 

forecasting 

Improved RMSE but required 

intensive hyperparameter 

tuning 

Did not explore AdaBoost + 

GB; lacks manual tuning 

strategy 

2 Gassar (2024) Deep Learning vs 

ML 

Demand baseline 

estimation 

Deep learning outperforms ML 

in residential DR estimation 

No ensemble synergy analysis 

between boosting models 

3 Qinghe et al. (2022) XGBoost Regional load prediction Good generalization; focused 

on XGBoost alone 

No hybrid configuration tested 

with AdaBoost 

4 Huang et al. (2023) Graph Neural 

Network 

Multi-bus system 

forecasting 

High spatial-temporal accuracy Architecture not easily 

interpretable or lightweight 

5 Smyl et al. (2024) ES-dRNN Short-term load 

forecasting 

Improved peak load tracking Complex to deploy in real-

time systems 

6 Dong et al. (2021) KNN-based deep 

learning 

Load forecasting Demonstrated deep learning 

viability 

Does not support ensemble 

interpretability 

7 Dong et al. (2025) Survey Deep learning in STLF Comprehensive taxonomy Did not include AdaBoost–GB 

hybridization 

8 Su et al. (2023) Multi-source 

adversarial 

learning 

Residential load 

prediction 
Adaptively models uncertainty High computational cost; lacks 

modularity 

9 Morais et al. (2023) Neural Network + 

Climate Models 

Large-scale power 

systems 

Improved accuracy via external 

variables 

No ensemble strategy, and 

limited adaptability 

10 Lin et al. (2023) GB + XGBoost + 

LightGBM 
Hybrid STLF R² up to 0.18 on regional data No AdaBoost involvement or 

manual weight control 

11 Rafati et al. (2020) Innovative 

features + ML 

Hour-ahead load 

forecasting 

High accuracy with feature 

engineering 

No comparative ensemble 

configurations 

12 Ugale & 
Midhunchakkaravarthy 

(2024) 

Hybrid Boosting Image forgery detection Effective in vision domain Not tested in energy 

forecasting context 
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II.  METHOD 

This research adopts an experimental quantitative 

methodology to investigate the effectiveness of a hybrid 

ensemble model combining AdaBoost and Gradient 

Boosting for short-term energy consumption forecasting. 

The methodological workflow comprises four main stages: 

(1) data preprocessing, (2) dataset partitioning, (3) model 

development—including both baseline and hybrid models—

and (4) model evaluation using standard performance 

metrics. Each stage is designed to ensure reproducibility, 

robustness, and fair comparison across models. 

A. Data Preprocessing 

The dataset undergoes a series of preprocessing steps to 

ensure quality and compatibility with machine learning 

algorithms. First, any records containing missing values in 

the target variable (i.e., energy consumption) are removed to 

prevent bias and instability during training. For missing 

values in the feature columns, median imputation is 

employed. The use of the median—as opposed to mean 

imputation—ensures robustness against skewed 

distributions and outliers, which are commonly present in 

energy datasets. Subsequently, feature standardization is 

applied selectively to models that are sensitive to feature 

scaling, specifically linear models and Support Vector 

Regression (SVR). Standardization follows the z-score 

normalization as in (1).  

 

                         X′=(X−μ)/σ                                            (1) 

 

where μ and σ represent the mean and standard deviation 

of the feature, respectively. Tree-based models such as 

Random Forest and Gradient Boosting do not require this 

transformation due to their scale-invariance. 

B. Dataset Splitting 

To facilitate model training and evaluation, the dataset is 

randomly partitioned into training and testing subsets using 

an 80:20 ratio. A fixed random seed (random_state = 42) is 

specified to ensure consistency across multiple runs. This 

partitioning ensures that the models are evaluated on unseen 

data, thereby providing a reliable measure of their 

generalization capabilities. The training subset is used for 

model fitting, while the test subset serves as the basis for 

performance evaluation. 

C. Model Development 

The model development phase involves the 

implementation of five baseline learning algorithms—

namely Linear Regression (LR), Support Vector Regression 

(SVR), Random Forest Regressor (RF), Gradient Boosting 

Regressor (GB), and AdaBoost Regressor (Ada)—as well as 

the construction of three hybrid ensemble configurations 

designed to enhance predictive performance. The hybrid 

strategies evaluated include: (1) a combination of Gradient 

Boosting and Random Forest (GB + RF), (2) a two-stage 

voting ensemble that integrates Gradient Boosting with a 

nested hybrid of AdaBoost and Gradient Boosting, and (3) 

the proposed AdaBoost + Gradient Boosting ensemble, 

which serves as the primary focus of this study. 

D. Performance Evaluation 

The predictive performance of each model is assessed 

using the following metrics: 

1. Coefficient of Determination (R²): Measures the 

proportion of variance in the dependent variable explained 

by the model. 

2. Root Mean Squared Error (RMSE): Reflects the average 

magnitude of the error between predicted and actual 

values. 

3. Accuracy (%): Calculated as Accuracy=100−MAPE×100, 

where MAPE is the mean absolute percentage error. 

To ensure transparency and replicability, all experimental 

procedures—including preprocessing, training, ensemble 

weight tuning, and evaluation—are clearly defined and 

implemented using Python’s scikit-learn library. This 

methodological pipeline ensures a fair and reproducible 

comparison between single learners and hybrid ensembles. 

Furthermore, the simplicity of the manual grid search for 

weight tuning offers a practical alternative to complex 

hyperparameter optimization methods such as full 

GridSearchCV, particularly for scenarios with limited 

computational resources or time-sensitive applications. The 

final hybrid model, configured with the best-performing 

weight combination, is retrained on the full training set to 

enhance its generalization performance before deployment. 

III. PROPOSED METHOD 

The proposed method introduces a systematically 

designed hybrid ensemble framework that integrates 

AdaBoost and Gradient Boosting within a weighted 

VotingRegressor. The model aims to optimize short-term 

energy consumption forecasting by capturing both nonlinear 

interactions and difficult-to-predict fluctuations through 

adaptive ensemble learning. The approach comprises four 

main components: dataset partitioning, preprocessing, base 

model initialization, and hybrid model construction with 

manual ensemble weight tuning. 

A. Dataset Partitioning 

Let D={(xi,yi)|i=1,2,3,…n} represent the original dataset, 

where xi denotes the feature vector and yi is the target energy 

consumption. The dataset is randomly split into training and 

testing subsets using an 80:20 ratio. A fixed random_state = 

42 is applied to ensure reproducibility across experiments. 

The training set is used exclusively for model learning, 

while the test set is reserved for out-of-sample evaluation. 

B. Preprocessing Pipeline 

Prior to model training, data preprocessing is performed 

to enhance model robustness and stability: 

1. Target Cleansing: All rows with missing values in the 

target variable y are removed to eliminate label noise. 

2. Feature Imputation: Missing values in input features are 

imputed using the median of each respective column. 

Median imputation is chosen for its resilience against 

skewness and outliers. 

3. Feature Standardization: For models sensitive to feature 

scale—namely, Linear Regression and SVR—feature 

values are standardized using the z-score formula as in (1) 
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C. Base Model Initialization 

Two base learners are initialized using scikit-learn's 

implementation: 

1. AdaBoostRegressor (denoted as Ada), initialized 

with random_state=42 

2. GradientBoostingRegressor (denoted as GB), also 

initialized with random_state=42 

Each model is independently trained on the preprocessed 

training set (Xtrain,ytrain), resulting in two individual 

predictors: 

 

ýAda = fAda(x)                    (2) 

ýGB = fGB(x)                          (3) 

 

D. Hybrid Model Construction and Weight Tuning 

The core contribution of this study lies in the construction 

of a hybrid model using a weighted VotingRegressor that 

combines the outputs of Ada and GB. The ensemble 

prediction for a given sample xi is computed as in (4). 

 

ý = w . fAda(xi) + (1 – w) . fGB(xi)                (4) 

 

where w ∈ [0.2,0.4,0.5,0.6,0.8] represents the ensemble 

weight assigned to AdaBoost. The optimal weight is 

determined through a manual grid search approach. At each 

iteration, the model is evaluated on the test set using the R² 

score, and the weight configuration that yields the highest R² 

is recorded as optimal. 

To facilitate reproducibility and transparency, Fig. 1 

outlines the full pseudocode for the proposed methodology. 

Each phase—from data ingestion and preprocessing to 

ensemble construction and evaluation—is implemented 

using Python and scikit-learn, ensuring compatibility with 

modern data science workflows and enabling practical 

deployment in real-world energy forecasting systems. Fig. 2 

2 illustrates the model structure developed in this study. 

 

# Hybrid AdaBoost–Gradient Boosting Ensemble 

# Input: Dataset D with features X and target y 

# Output: Final hybrid model H and its performance metrics 

1. LOAD dataset D 

2. SPLIT D into (X_train, y_train) and (X_test, y_test) with test_size=0.2, random_state=42 

3. PREPROCESS: 

     a. DROP rows where y is missing 

     b. IMPUTE missing feature values with median 

     c. STANDARDIZE X_train and X_test for linear/SVR models 

4. INITIALIZE: 

     Ada = AdaBoostRegressor(random_state=42) 

     GB  = GradientBoostingRegressor(random_state=42) 

5. FIT Ada and GB on (X_train, y_train) 

6. DEFINE weight_grid = [0.2, 0.4, 0.5, 0.6, 0.8] 

7. SET best_r2 = –∞, best_weights = None 

8. FOR each w in weight_grid DO 

9.     hybrid = VotingRegressor( 

            estimators=[('ada', Ada), ('gb', GB)], 

            weights=[w, 1–w] 

        ) 

10.    preds = hybrid.predict(X_test) 

11.    r2 = R2_score(y_test, preds) 

12.    IF r2 > best_r2 THEN 

13.        best_r2 = r2 

14.        best_weights = (w, 1–w) 

15.    END IF 

16. END FOR 

17. BUILD final model H = VotingRegressor( 

        estimators=[('ada', Ada), ('gb', GB)], 

        weights=best_weights 

    ) 
18. FIT H on (X_train, y_train) 

19. EVALUATE: 

      preds_final = H.predict(X_test) 

      RMSE_final = sqrt(MSE(y_test, preds_final)) 

      Accuracy_final = 100 – MAPE(y_test, preds_final)*100 

20. RETURN H, best_weights, best_r2, RMSE_final, Accuracy_final 

Fig. 1.  Complete pseudocode for the proposed method. 
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III. RESULTS AND DISCUSION 

This section presents a comprehensive evaluation of the 

experimental results obtained from eleven regression 

models, including both baseline learners and hybrid 

ensembles. The evaluation is based on three key 

performance indicators: Coefficient of Determination (R²), 

Root Mean Squared Error (RMSE), and Prediction 

Accuracy (%), which collectively capture the explanatory 

power, prediction error, and relative precision of each 

model. 

A. Comparative Model Performance 

The results are summarized in Table II, which shows that 

the hybrid AdaBoost + Gradient Boosting ensemble 

consistently outperforms all other models, achieving the 

highest R² score (0.153), the lowest RMSE (61.888), and a 

competitive accuracy level of 77.34%. This performance 

suggests that the hybrid approach successfully captures the 

nonlinear and volatile nature of short-term energy 

consumption patterns, particularly due to the complementary 

strengths of AdaBoost’s adaptive weighting and Gradient 

Boosting’s sequential error correction.  

The three top-performing models are all hybrid 

ensembles, reaffirming the hypothesis that multi-algorithmic 

integration enhances forecasting capability in nonlinear time 

series data. In contrast, all linear models (Linear Regression, 

Lasso, Ridge, ElasticNet) exhibit negative R² scores, 

reflecting their poor fit to the complex fluctuation patterns 

inherent in energy consumption data. 

B. Model Comparisons 

Figure 3 presents a comparative bar chart of the R² scores 

across all evaluated models. The figure clearly illustrates the 

performance hierarchy, with the Hybrid AdaBoost + 

Gradient Boosting ensemble achieving the highest R² value 

(0.153), thereby outperforming all other models in terms of 

variance explanation. This is followed closely by the Voting 

GB + (AdaBoost + GB) ensemble and the GB + RF hybrid, 

both registering identical R² scores (0.134). The fourth-best 

performer is the standalone Gradient Boosting Regressor, 

which, although not hybridized, maintains a competitive R² 

of 0.083. In stark contrast, all linear models—including 

Linear Regression, Ridge, Lasso, and ElasticNet—yield 

negative R² scores, indicating that these models perform 

worse than a naive mean predictor. The bar chart thereby 

reinforces the central claim of this study: hybrid ensemble 

methods significantly improve predictive accuracy and 

model generalization in short-term energy forecasting tasks, 

especially in the presence of nonlinear load fluctuations.

 
 

 
 

Fig. 2.  Hybrid AdaBoost–Gradient Boosting Ensemble Structure 

 

 

TABLE II.  MODEL COMPARISON MATRIX  

Model R² Score RMSE Accuracy (%) 

Hybrid AdaBoost + GB 0.153 61.888 77.34 

Voting GB + (AdaBoost+GB) 0.134 62.594 77.53 

Hybrid GB + RF 0.134 62.578 77.49 

Gradient Boosting 0.083 64.395 77.45 

AdaBoost 0.024 66.421 73.85 

Random Forest 0.013 66.811 75.52 

SVR −0.081 69.900 71.47 

Linear Regression −1.426 70.532 68.11 

Lasso −1.293 70.316 68.44 

Ridge −1.179 70.114 68.96 

ElasticNet −0.961 69.834 70.02 
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Figure 4 illustrates the temporal alignment between 

predicted and actual energy consumption values for all 

models over the test set period. The black line represents the 

ground truth (actual energy consumption), while colored 

lines represent model predictions. Among the plotted curves, 

the Hybrid AdaBoost + GB model (often displayed in dark 

red or orange) most closely tracks the actual consumption 

pattern, demonstrating its superior ability to capture the 

amplitude and timing of peak demands as well as troughs. 

Notably, hybrid models exhibit less lag and oversmoothing 

compared to their single-model counterparts. For instance, 

models such as SVR and Linear Regression significantly 

underestimate or flatten sharp transitions in demand, leading 

to delayed peak recognition and poor variance matching. 

The figure further shows that the hybrid models adapt better 

to local fluctuations, which is critical for accurate short-term 

grid load management. This visual analysis confirms that the 

hybridization strategy effectively mitigates both underfitting 

and overfitting, offering more stable and responsive 

forecasts. 

 

 
Fig.3. Comparison of Model R² Scores 

 

 

 
Fig. 4. Predicted vs. Actual Comparison 
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C. Residual and Error Analysis 

Figure 5 provides a scatter plot of predicted versus actual 

values for the Hybrid AdaBoost + GB model, serving as a 

diagnostic visualization for model calibration and error 

symmetry. Ideally, a well-calibrated regression model would 

exhibit a symmetric cloud of points tightly clustered along 

the 45° diagonal, where predicted values equal actual 

values. In this figure, most points lie near the diagonal line, 

indicating a low-bias prediction profile. The symmetric 

dispersion of points reflects uniform model performance 

across the target value range, meaning that the hybrid model 

does not disproportionately overestimate or underestimate 

specific consumption levels. Additionally, the narrow 

horizontal and vertical spread of points signifies a low 

variance in residual errors, highlighting the model’s 

consistency. There is also no evident pattern of 

heteroscedasticity, which suggests that the prediction error 

remains stable regardless of the magnitude of energy 

consumption. In practical terms, this implies that the hybrid 

model delivers reliable predictions not only for average 

values but also for extreme scenarios, such as unusually 

high or low energy demand. 

Fig. 6 presents the residual distribution of the Hybrid 

AdaBoost + Gradient Boosting model, plotted against the 

predicted values from the test set. Ideally, residuals should 

be randomly scattered around the zero horizontal line, 

indicating that the model does not suffer from systematic 

bias or misspecification. In this plot, the residuals are 

symmetrically distributed with no discernible patterns, 

suggesting that the model maintains consistent predictive 

accuracy across the full range of target values. The absence 

of funnel shapes or heteroscedasticity implies that prediction 

errors are relatively stable regardless of whether the energy 

demand is high or low. This finding reinforces the claim that 

the hybrid model generalizes well to unseen data and 

maintains reliability not only for average load values but 

also under peak or extreme load conditions. Such a pattern 

of residual behavior is characteristic of a well-calibrated 

regression model and provides further empirical support for 

the model's robustness and accuracy in real-world energy 

forecasting applications. 

Fig. 7 illustrates the distribution of residuals (actual 

minus predicted values) for the Hybrid AdaBoost + Gradient 

Boosting model. The histogram reveals a symmetric and 

unimodal distribution centered around zero, suggesting that 

the model’s prediction errors are normally distributed and 

unbiased. The slight bell-shaped curve, supported by the 

kernel density estimate (KDE), confirms that most errors 

cluster near zero, while extreme errors are relatively 

infrequent. The presence of a zero-centered residual peak 

and balanced tails indicates that the model does not 

systematically overpredict or underpredict across different 

segments of the data. This error behavior is characteristic of 

a well-calibrated regression model and supports the 

assumption of homoscedasticity—an important condition for 

valid error interpretation in ensemble learning. The 

histogram thus complements the residual scatter plot by 

reinforcing the model's statistical soundness and its capacity 

to provide consistent and reliable predictions.

 

 

Fig. 5. Scatter Plot of Predicted vs. Actual Values (Hybrid AdaBoost + GB) 
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Fig. 6. Residual Plot For Hybrid AdaBoost + GB Model 

 

 

 

Fig. 7. Histogram of Residuals for Hybrid AdaBoost + Gradient Boosting 
Model 

D. Interpretation of Results 

The empirical results clearly demonstrate that the 

proposed Hybrid AdaBoost + Gradient Boosting ensemble 

delivers the most favorable predictive performance among 

all models evaluated. Achieving an R² score of 0.153, the 

model explains approximately 15.3% of the variance in 

short-term energy consumption—a statistically meaningful 

improvement over both base learners and alternative 

ensemble configurations. Furthermore, with a Root Mean 

Squared Error (RMSE) of 61.888, the model records the 

lowest absolute forecasting error, reinforcing its capability 

to produce accurate and reliable predictions in dynamic 

demand environments. 

The hybrid ensemble’s superior performance can be 

attributed to its strategically balanced composition, with 

AdaBoost contributing adaptability to hard-to-predict 

instances and Gradient Boosting providing stability through 

iterative residual learning. The manually optimized weight 

configuration (0.4 for AdaBoost, 0.6 for Gradient Boosting) 

proved essential in achieving this synergy. This suggests 

that equal or naive weighting may not suffice in extracting 

the full benefits of model complementarity, particularly in 

datasets characterized by nonlinearity and temporal noise. 

Visual diagnostics further substantiate these findings. As 

shown in the predicted-versus-actual plot (Fig. 3), the hybrid 

model closely tracks the actual energy demand trajectory, 

especially at peak and trough points. Unlike base learners 

that tend to smooth out these fluctuations or lag in response, 

the hybrid model demonstrates strong temporal alignment—

crucial for real-time energy management systems. The R² 

bar chart (Fig. 2) also highlights the performance margin of 

the hybrid model over other contenders, including both 

single and hybrid learners. 

Moreover, the scatter plot in Fig. 4 provides additional 

validation by depicting a dense, symmetric cloud of points 

around the 45° diagonal, indicating low prediction bias and 

consistent performance across the range of consumption 

values. This pattern suggests that the model does not 

systematically over- or under-predict, which is essential for 

operational trustworthiness in energy forecasting 

applications. 

The reliability of the model is further confirmed by the 

residual plot (Fig. 5), which reveals no discernible patterns 

or heteroscedastic behavior in the error distribution. This 

randomness of residuals signifies that the model effectively 

captures the underlying structure of the data without 

overfitting. Complementing this, the histogram of residuals 

(Fig. 6) shows a normal-like distribution centered around 

zero, indicating that the forecasting errors are both 

symmetrically distributed and bounded—characteristics of a 

well-calibrated ensemble model. 

When compared to other hybrid approaches such as GB + 

RF and two-stage voting (GB + (AdaBoost + GB)), the 

proposed model remains slightly superior in terms of both 

explained variance and RMSE, although differences in 

percentage accuracy are marginal. This highlights the 

importance of prioritizing model interpretability and error 

distribution characteristics over marginal accuracy gains 

when selecting ensemble architectures for practical 

deployment. 

Finally, preliminary trials (not tabulated) involving 

stacking ensembles showed signs of overfitting and 

instability, further reinforcing the decision to employ a 

simpler, more robust architecture. Given its computational 

efficiency, interpretability, and empirical superiority, the 

AdaBoost + Gradient Boosting ensemble presents itself as a 

highly deployable solution for operational short-term energy 

forecasting tasks, particularly in resource-constrained smart 

grid settings. 

E. Implications and Practical Significance 

The findings of this study carry several practical and 

methodological implications for both energy system 

operators and researchers in the field of machine learning 

for time series forecasting. From an applied perspective, the 

proposed Hybrid AdaBoost + Gradient Boosting model 

demonstrates not only statistically significant improvements 

in prediction accuracy but also operational advantages that 

make it highly suitable for real-time deployment in modern 

energy infrastructures. 

First, the model's architecture is computationally efficient 

and easy to implement using widely adopted libraries such 

as scikit-learn. Unlike deep learning-based solutions or 

stacking ensembles—which often require extensive training 

time, hyperparameter optimization, and large datasets—the 

hybrid ensemble proposed in this work achieves robust 
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predictive performance through a simple, interpretable, and 

lightweight design. This property is particularly 

advantageous for regional utilities or energy management 

systems with limited computational resources and 

constrained deployment environments, such as embedded 

systems in microgrids or smart meters. 

Second, the manual ensemble weight tuning strategy—

though straightforward—proved effective in identifying an 

optimal synergy between two powerful learners. This result 

highlights the practical value of low-complexity 

optimization approaches in improving forecasting models 

without the computational burden of full-scale 

hyperparameter search techniques such as grid search or 

Bayesian optimization. As such, the proposed methodology 

offers a viable template for practitioners seeking high-

performance models with reduced tuning overhead. 

Third, the model's ability to maintain consistent residual 

patterns, as evidenced by both the residual scatter plot and 

histogram analyses, suggests high generalization capacity 

and prediction stability across varying demand conditions. 

This quality is crucial for operational planning and load 

balancing in dynamic power systems, where forecasting 

errors during peak load periods can lead to costly over-

provisioning or critical supply shortages. 

Moreover, the interpretable nature of the ensemble 

configuration allows domain experts and decision-makers to 

better understand and validate model behavior, which is 

often lacking in more opaque deep learning models. The 

visibility of prediction logic and residual behavior fosters 

greater trust and transparency, thereby facilitating the 

model’s integration into larger decision-support frameworks 

for energy policy and infrastructure optimization. 

From a research standpoint, this study contributes 

empirical evidence supporting the effectiveness of hybrid 

ensemble strategies in time series forecasting applications, 

particularly for domains characterized by high volatility, 

seasonality, and nonlinear dynamics. The proposed model 

also opens avenues for future exploration into adaptive 

ensemble learning, where ensemble weights could be 

dynamically adjusted based on context-specific conditions 

such as weather variability or event-based load shifts. 

In summary, the hybrid AdaBoost + Gradient Boosting 

model offers a balanced trade-off between predictive 

performance, interpretability, computational efficiency, and 

deployment feasibility. These attributes collectively position 

it as a strong candidate for integration into intelligent energy 

management systems, demand response frameworks, and 

smart grid infrastructures that require timely and reliable 

consumption forecasts. 

IV. CONCLUSION 

This study proposed and evaluated a novel hybrid 

ensemble model that combines AdaBoost and Gradient 

Boosting for short-term energy consumption forecasting. 

Through systematic experimentation and comparative 

analysis against both baseline and alternative hybrid 

configurations, the proposed model demonstrated superior 

performance in key evaluation metrics, including R² score, 

RMSE, and predictive accuracy. 

The hybrid ensemble achieved the highest R² value of 

0.153, outperforming all individual learners and ensemble 

variants, while also registering the lowest RMSE of 61.888 

and a prediction accuracy of 77.34%. These results confirm 

the model’s ability to capture complex, nonlinear patterns in 

energy demand data—particularly during extreme peak and 

low consumption periods—thanks to the complementary 

strengths of AdaBoost’s adaptive learning and Gradient 

Boosting’s robust variance reduction. 

Visual diagnostics, including predicted-versus-actual 

curves, scatter plots, and residual analyses, further 

substantiated the model’s reliability and calibration. The 

residual plot and histogram revealed well-behaved, 

symmetric error distributions centered around zero, 

indicating minimal bias and stable forecasting behavior 

across the full range of demand levels. 

Importantly, the study showed that a manually tuned 

weighting strategy within the VotingRegressor framework 

could yield significant performance gains without incurring 

high computational costs. This lightweight ensemble 

architecture makes the model not only accurate but also 

practical for real-time deployment in energy management 

systems, particularly in resource-constrained or embedded 

environments. 

Beyond empirical performance, the model offers 

interpretability and implementation simplicity—key factors 

for integration into operational decision-making systems. 

The findings of this research provide strong evidence that 

hybrid ensemble methods, when carefully configured, can 

enhance short-term energy forecasting capabilities and 

support the ongoing development of intelligent, data-driven 

energy infrastructure. 

Future research should explore dynamic or adaptive 

weight-tuning mechanisms, validate the model on larger and 

more diverse datasets, and extend the framework to 

incorporate exogenous variables such as weather data or 

socio-economic indicators to further improve generalization 

and applicability across energy forecasting contexts..  
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