
 

   

Abstract - This paper proposed a deep learning model for 

multi-label text classification to effectively manage and utilize 

the network text information and realize the automatic labeling 

of text content. The neural network word vector model GloVe is 

used to obtain the semantic features of the text data. The model 

fusion of recurrent neural network and convolutional neural 

network is performed, and the attention mechanism is 

introduced into BiLSTM to form the BiLSTM_Attention neural 

network model. Experimental results show that the 

BiLSTM_Attention model structure combines the advantages of 

the TextCNN model and can better understand the semantic 

information. The Attention mechanism is more reasonable for 

text feature extraction, so the model focuses on the features that 

contribute more to the text classification task, and the 

classification effect is better. 

Index Terms—Bi-LSTM; Attention; TextCNN; Multi-label  

I. INTRODUCTION 

In the contemporary age of information proliferation, 

individuals are inundated with copious amounts of 

textual information. To efficiently manage this textual data 

and assist individuals in accessing the information they 

require, the demand for text classification technology has 

escalated significantly. Multi-Label Text Classification 

(MLTC) technology has emerged as a pivotal area of 

research, encompassing various applications such as 

information retrieval [1], conversational behavior 

classification [2], topic recognition [3], emotion analysis 

[4], and question-answering systems [5]. 

As a significant and demanding endeavor in Natural 

Language Processing (NLP), MLTC has found extensive 

applications. For instance, a news article may encompass 

various topics simultaneously, such as technology, 

economics, and digital trends. This task involves assigning 

multiple labels to the text, making it more complex than 

single-label text classification. Table I illustrates both 

multi-category text classification and MLTC. 

While multi-label classification is an interesting concept, 

its practical implementation is far from trivial and widely 

explored. The traditional approach to multi-label text 

classification is binary relevance (BR). This method 

transforms a multi-label learning problem into multiple 

(with the same number of categories) binary classification 

problems. 

This method has been developed to stack numerous 

binary classifiers into chains in a certain sequence to 

overcome the limitations of first-order methods employing 

binary classifiers. This method structures the chain 

structure based on information such as prior knowledge 

and label dependencies. Generally, each successive 

classifier is developed from the predictions of its 

predecessor, so establishing a methodology that can 

leverage higher-order label dependencies. However, the 

complicated structure of the classifier chain increases 

exponentially with the quantity of classes. Furthermore, 

the initial predictions are essential, as the chain structure 

establishes captured label dependencies that are 

significantly influenced by preceding predictions. 

   The other category is algorithmic adaptation. Modifying 

typical binary classifiers so that they can be directly utilized 

for multilabel issues. Examples include multi-label k-nearest 

neighbors, multi-label decision trees, and support vector 

machine ranking. However, most algorithmic adaptation 

methods are still inadequate, especially when compared to 

novel approaches based on deep learning, as they are limited 

to modeling first- or second-order label dependencies. 

Currently, common models rely on deep-learning 

classification approaches. In contrast to standard machine 

learning approaches that involve manual feature extraction, 

deep learning enables computers to automatically learn and 

extract features, resulting in resource savings and higher 

performance, displaying exceptional advantages in jobs. 

While existing mainstream approaches effectively address 

feature extraction restrictions and unknown semantic 

linkages, the task of deeply examining global and local 

semantic relationships within text remains unresolved. 

Therefore, there is a compelling need to remedy model 

shortcomings in MLTC tasks and boost classification 

accuracy to permit practical implementations in scenarios 

such as text information categorization. 
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This paper is organized as follows: In the next portion, 

suitable multi-label learning approaches are discussed from 

the literature. In the Methods section, this paper will review 

all the methods applied and introduce two kinds of error 

functions. In addition, this paper will explore the TextCNN 

embedding method, LSTM, which combines attention to 

obtain a representation of the document themes. In the next 

chapter, the paper presents experimental findings. 

Specifically, the paper analyzes (1) the merger of the 

TextCNN parallel and BiLSTM_Attention models. (2) 

performance comparison between eight models. (3) The 

influence of various gamma error function values on model 

outcomes (4) The precision, recall, and F1 of the six models 

mentioned under Micro and Macro in the paper. 

II. LITERATURE REVIEW 

The current state-of-the-art deep learning techniques for 

MLTC primarily involve Recurrent Neural Networks (RNNs), 

Convolutional Neural Networks (CNNs), and attention-based 

models. RNN-based text classification models treat text as a 

sequence of words and derive semantic features by 

considering the structural information in the sequence and the 

interdependence between contexts for downstream classifiers. 

However, conventional RNN models have limitations in 

effectively retaining long text sequences. Among the various 

RNN variants, Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) are the most commonly used model 

architectures designed to capture long-term dependencies 

more effectively. Yang [7] introduced the Sequential 

Generation Model (SGM) model, which utilized a 

Bidirectional Long Short-Term Memory (Bi-LSTM) network 

in the encoder structure and incorporated an out-of-order 

prediction module in the decoder structure to address the error 

accumulation issue resulting from sequential prediction in the 

Seq2Seq model. Concurrently, You[8]  proposed the 

Attention Extreme Multi-Label (XML) model, which 

extracted text semantic features based on the Bi-LSTM 

network, enhanced text semantic features using the attention 

mechanism, and employed the label tree for grouping labels, 

thereby resolving the issue of excessive computation under 

the substantial quantity of labels. 

RNNs are known for their ability to extract temporal 

features, whereas CNNs excel at capturing spatial features 

and local context. Kim [9] introduced a CNN-based text 

classification model (TextCNN) that incorporated a layer of 

multi-scale convolution following the training of word 

vectors based on the Word2Vec model, resulting in promising 

results. Subsequently, Kurata [13] enhanced CNN 

architecture by introducing a hidden layer and initializing the 

neural network using label co-occurrence information, which 

led to improved accuracy in multi-label classification 

compared to random initialization. This marked the first 

instance of incorporating co-occurrence information into a 

CNN. 

Based on tALBERT-CNN, Liu [10] proposed a method for 

multi-text classification. The method uses LDA topic model 

and ALBERT model to obtain topic vectors as well as 

semantic context vectors for each word (document), adopts a 

certain fusion mechanism to obtain deep topics, and extracts 

semantic representations of the documents and multi-label 

features of the text via TextCNN model to train a multi-label 

classifier. Experimental results on a standard dataset show 

that the proposed method is feasible to extract multi-label 

features from documents and outperforms existing state-of-

the-art text classification algorithms using multi-label 

methods. 

Yang [11] designed a convolutional neural network (CNN) 

model based on threshold learning, used a convolutional 

neural network (CNN) as a feature extractor, and introduced 

two threshold learning mechanisms: adaptive threshold (AT) 

and implicit threshold (IT). Among them, AT-CNN uses an 

adaptive threshold to predict the confidence of each label 

based on different classes and uses this confidence as a 

threshold to select positive labels. IT-CNN uses an implicit 

threshold, predicts the number of positive labels in each 

sample, and selects the top k scores from the multi-label 

module as the final category. Method The proposed method 

achieves good results on the multi-label text classification 

task on the MIMIC-III database. AT-CNN and IT-CNN 

models outperform other baseline models in performance and 

run more efficiently. 

Yang [12] proposed optimized Binary Relevance 

combined with the multi-label learning model of 

Convolutional Neural Networks (BR-CNN), this paper uses a 

variety of deep learning architectures including convolutional 

neural networks (CNN), Long Short-Term memory networks 

(LSTM), and Gated Recurrent units (GRU) and optimizes 

their BR transformations. This paper compares the deep 

learning BR method with the MLTC method based on label 

dependency information and the traditional BR method. It is 

found that BR-CNN has superior performance on four 

datasets of AAPD, Reuters-21578, MIMIC-III, and RCV1-v2. 

Lu [13] proposed a CNN-Bi-LSTM-Attention model for 

Chinese short texts. They designed the method to extract the 

meaning of labels, the CNN layer to extract the local semantic 

features of the text, the BiLSTM layer to fuse the context 

features and local semantic features of the text, and the 

attention layer to select the most relevant features for each 

label. Experimental results show that the proposed method is 

effective under the commonly used multi-label evaluation 

metrics. 

In addition to RNNs and CNNs, the study also suggests the 

utilization of Graph Neural Networks (GNNs) and Attention 

to explore relationships among words, documents, or tags for 

acquiring more comprehensive text features. Among the 

various types of GNNs, Graph Convolutional Networks 

(GCNs) and their variations are widely favored due to their 

efficiency and compatibility with other neural networks, 

leading to significant achievements in various applications. 

GCN functions as a convolution operation, leveraging the 

connections between neighboring nodes in the graph structure,  

as well as the dependency syntax tree or word co-occurrence 

information to capture pertinent internal text details. 

Liang [14] proposed representation combines three 

different sources of information, namely the input text itself, 

label-to-text relevance, and label-to-label relevance. A dual 

attention mechanism is used to combine the first two 

information sources, and a graph convolutional network is 

used to extract the third information source, which is then 

used to help fuse the features extracted from the first two 

information sources. Extensive experiments are conducted on 

a public dataset of privacy leak posts on Twitter, and the 
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results show that the proposed privacy leak detection method 

significantly and consistently outperforms other state-of-the-

art methods in all key performance metrics. 

 Wu [15] proposes a multi-perspective contrast model 

(MPCM) based on the Attention mechanism to integrate 

labels and documents, and uses the contrast method to 

enhance the label information semantics and relevance 

perspective of two texts. We introduce contrastive global 

representation learning and positive label representation 

alignment techniques to improve the model's ability to 

perceive accurate labels. Experimental results show that the 

proposed algorithm achieves good results on AAPD and 

RCV1-V2 datasets. 

To perform text classification more effectively, Liu [16] 

introduced a text-label joint attention mechanism. In this 

approach, their proposed representation combines three 

different sources of information, namely the input text itself, 

label-to-text relevance, and label-to-label relevance. A dual 

attention mechanism is used to extract the third information 

source, which is then used to help fuse the features extracted 

from the first two information sources. This model in two 

multi-label classification datasets (AAPD, Reuters-21578) 

demonstrated the superiority over the considered baseline 

methods. 

Gao [17] proposed a label-aware network to obtain label 

relevance and text representation. Since two adjacent labels 

or words in the graph have similar relationships, and the 

structure of the graph is also conducive to the representation 

of labels, a heterogeneous graph is constructed from words 

and labels, and the label representation is learned using MAP-

ath2vec. Each part of the text contributes differently to label 

inference, so bidirectional attention flow is exploited for 

label-aware text representation in two directions: from text to 

label and from label to text. Experimental evaluation shows 

that the proposed method outperforms various baseline 

methods on both offline benchmarks and real online systems. 

Zhao [18] integrated variational continuous label 

distribution learning into MLTC models. This integration 

allows the attention to be directed towards the overall 

distribution of the complete label set, rather than 

concentrating only on specific labels with the highest 

response values. Consequently, this strategy effectively 

addresses the challenge of class imbalance.  

 Li [19] developed an Attention Network incorporating 

external knowledge, label embedding, and a comprehensive 

attention mechanism. Experimental results demonstrate that 

this approach surpasses the current state-of-the-art MLTC 

method. 

III. METHODOLOGY 

In this study, the Bi-LSTM Attention model and 

TextCNN model will be utilized to conduct MLTC 

experiments. The Bi-LSTM model is adept at handling 

sequential structures and can take into account the 

contextual information of the sentence, albeit with a trade-

off in terms of overall processing speed. On the other hand, 

the TextCNN model is agnostic and exhibits a strong 

ability to extract surface-level textual features. TextCNN 

primarily extracts features utilizing a filter window, which 

may limit its long-distance modeling capability and may 

not be sensitive to word order. To address these individual 

limitations, this research proposes the fusion of Bi-LSTM 

with TextCNN. This integration introduces an attention 

mechanism that allows the model to concentrate on text 

features that significantly impact text classification results. 

The model structure diagram is depicted in Fig. 1. 

A. Embedding layer 

This study primarily focuses on the application of 

tokenizers to words, with prominent technologies 

including TF-IDF, word2Vec, GloVe, ELMo, and BERT. 

 
Fig. 1.  Structure of Proposed Model 
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Various tokenizers exhibit different impacts on machine 

learning performance. GloVe offers several advantages 

compared to other word embedding techniques like 

Word2Vec. It excels in semantic and grammatical tasks 

and demonstrates superior ability in capturing linear word 

relationships. Furthermore, GloVe's training procedure is 

relatively simple and enables efficient training on 

extensive corpora. 

B. Attention mechanism 

The attention mechanism [8] serves as a method to 

address the challenge of mimicking human attention in 

swiftly identifying valuable information from a vast 

dataset. Given the constraints posed by computational 

power and optimization algorithms, integrating an 

attention mechanism can enhance the neural network 

model's capacity to manage information overload and 

enhance its information processing capabilities. Within the 

RNN model, this mechanism is employed to address the 

issue of information loss bottleneck resulting from the 

conversion of a lengthy sequence into a fixed-length 

vector (Fig. 2).  

The Bi-LSTM model is employed to extract global 

features from the input data, with a focus on capturing 

semantic information within the text more effectively 

through context information. In the Bi-LSTM model, the 

current hidden layer ht-1 at time t is obtained through a 

weighted sum of the forward hidden layer ht and the 

backward hidden layer ht-1. The calculations are presented 

as follows: 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1)                   (1) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃖⃗𝑡−1)                   (2) 

ℎ𝑡 = 𝑤𝑡ℎ𝑡
⃗⃗  ⃗+𝑣𝑡ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑡 = [ℎ𝑡
⃖⃗ ⃗⃗ ,ℎ𝑡

⃗⃗  ⃗]   (3) 

where 𝑥𝑡 is the input of the current hidden layers; ℎ⃗ 𝑡−1 is the 

forward hidden layer state at time (t-1); ℎ⃖⃗𝑡−1 is the backward 

hidden layer state at time t-1 in Equation (2); 𝑤𝑡  and 𝑣𝑡 are 

the relative weight values of the pre-hidden layer and post-

hidden layer corresponding to BiLSTM at time t, respectively, 

𝑏𝑡  is the bias value of the hidden layer state at time t in 

Equation (3). 

The output matrix 𝑯 = [ℎ1, ℎ2, … , ℎ𝑡] of BiLSTM model 

is fitted into the hidden layer of the attention mechanism to 

obtain the attention initial state matrix 𝑺 = [𝑠1, 𝑠2, … , 𝑠𝑡] . 

According to the importance of each feature in S, a weight is 

assigned to each feature, and the different weight coefficients 

𝑎𝑡 are multiplied and accumulated with their corresponding 

 
Fig.3. Diagram of TextCNN model 

 
Fig. 2.  Attention Mechanism with Bi-LSTM 
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initial state vector in Equation (5). Subsequently, the output 

vector Y of the attention layer is obtained in Equation (6). The 

equation is expressed as follows: 

𝑒𝑡 = tanh (𝑣𝑡𝑆𝑡 + 𝑏𝑡)   (4) 

𝑎𝑡 =
exp (𝑒𝑡)

∑ exp (𝑒𝑖)
𝑡
1

                (5) 

              (6) 

where 𝑣𝑡 is the weight matrix; 𝑏𝑡 is the bias quantity; and 𝑒𝑡 

is the energy value determined by the state vector 𝑠𝑡  in 

Equations (4) and (6). 

The attention mechanism is a technique utilized in 

artificial neural networks to simulate cognitive attention. 

This technique assigns varying weights to different parts 

of the input data, enabling the neural network to 

concentrate on the most crucial aspects of the data. 

Primarily an RNN, it derives the primary meaning of the 

article by understanding the contextual connections within 

the article. LSTM model utilizes gate structures to 

replicate the forgetting and memory processes of the 

human brain, effectively mitigating issues such as gradient 

vanishing or exploding during prolonged sequence 

training. Additionally, the bidirectional LSTM enhances 

information retrieval capabilities. 

In the process of text representation, the output vectors 

of each time step are directly summed and then averaged. 

This approach assumes equal importance for each input 

word in the text, which may not always hold. Proper 

allocation of attention resources is crucial when combining 

these output vectors, requiring different weights to be 

assigned to each vector to prioritize the most relevant 

classification results based on the text vector characteristics. 

The attention mechanism assigns a weight to each vector, 

enabling a weighted average of all output vectors. These 

weights are determined by the contribution of each term to 

the output result of the text content, thereby reducing the 

impact of irrelevant words and enhancing computational 

efficiency. Integrating the attention mechanism into the 

MLTC model can lead to a more comprehensive 

explanation of text features, ultimately improving the 

accuracy of classification results. 

C. TextCNN 

TextCNN represents a traditional text classification 

model. Kim employed various sizes of sliding windows for 

the convolutional pooling operation on the input text 

vector to capture local features of the text sequence for 

aggregation and filtering. Additionally, Kim extracted 

semantic information from the text at various levels of 

abstraction, resulting in a high-level feature vector 

representation of the text. The model's structure is 

illustrated in Fig. 3. 

TextCNN consists of four main components: the 

input layer, convolutional layer, pooling layer, and output 

layer. In this model, for a text input of length n, the 

convolutional layer extracts text features by employing h 

sliding windows of varying sizes to convolve the text input 

vector. The convolutional feature values are generated by 

the convolution kernel at position i. 

𝑆 = 𝑓(𝑤 ⋅ 𝑇𝑖:𝑖+ℎ−1 + 𝑏), 𝑤 ∈ 𝑅ℎ×𝑘            (7) 

Where k is the word vector dimension corresponding to 

each word in the text sequence; w is the convolution kernel 

with dimension size h × k; Ti: i+h-1 is the sliding window 

consisting of row i to row i+h-1 of the input matrix; b is the 

bias parameter; and f is the nonlinear mapping function. 

The pooling layer uses a 1-MaxPool maximum pooling 

strategy to extract the maximum feature value from each 

sliding window. 

𝐶𝑖 = max{𝑆} = max (𝑆1, 𝑆2, … , 𝑆𝑛−ℎ+1)      (8) 

The concatenation layer combines all the pooled 

feature values to obtain the high-level feature vector of the 

text. 

𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑛−ℎ+1], 𝐶 ∈ 𝑅𝑛−ℎ+1          (9) 

Where n is the number of words in the text sequence and C 

is the text feature vector trained by the TextCNN module 

with a-dimension size of i+h-1. After completing the 

convolution pooling operation, the fully connected neural 

network layer is linked to the downstream task to facilitate 

the prediction of text labels. 

If the task involves binary classification, the Softmax 

function is employed as the classification function (Fig. 3). 

For MLTC, the sigmoid function is frequently utilized 

as the activation function for the output layer, while the 

binary Cross-Entropy (BCE) function is employed as the 

loss function. Specifically, the sigmoid activation function 

is applied to each output node in the final classification 

layer. Subsequently, the cross-entropy loss function is 

computed for each output node about its corresponding 

label. The equation can be expressed as follows: 

𝐵𝐶𝐸(𝑥)𝑖 = −𝑦𝑖𝑙𝑜𝑔𝑓𝑖(𝑥) + (1 − 𝑦𝑖)log (1 − 𝑓𝑖(𝑥))] (10) 

where x is the input; C is the number of classification classes; 

i is ranging from [1, C]; and 𝑦𝑖  is the accurate label 

corresponding to the ith category. 

For multi-label classification tasks, the utilization of 

Focal Loss (FL) has been shown to consistently exhibit 

enhanced performance in mitigating classification 

imbalances [20]. FL involves the multiplication of a 

modulating factor to BCE with a tunable focusing 

parameter γ ≥ 0. This approach assigns greater loss weight 

to instances that are challenging to classify, particularly 

those predicted with low probabilities compared to the 

ground truth [21]. In the context of multi-label 

classification, FL can be formally defined as follows: 

𝐿𝐹𝐿 = {
−𝛼(1 − 𝑝𝑖

𝑘)
𝛾
log(𝑝𝑖

𝑘)   𝑖𝑓 𝑦𝑖
𝑘 = 1

−（1 − α）(𝑝𝑖
𝑘)

𝛾
log(1 − 𝑝𝑖

𝑘)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (11) 

where α and γ are the coordinates to control. 

The selected model evaluation metrics include 

accuracy and Micro-F1. The equation for accuracy is given 

as follows: 

Accuray =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (12) 

True Positive (TP) refers to cases where the actual sample 

value is Positive, the sample is input into the prediction 

model, and the model output value is also Positive, 

indicating correct predictions by the classification model. 

True Negative (TN) occurs when the actual sample value 

is Negative, the sample is fed into the prediction model, 

and the model output value is also Negative, representing 
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correct predictions. False Positive (FP) happens when the 

actual sample value is Negative, the sample is fed into the 

prediction model, and the model output value is Positive, 

indicating incorrect predictions. False Negative (FN) 

denotes cases where the actual sample value is Positive, 

the sample is fed into the prediction model, and the model 

output value is Negative. 

In this paper, we use Micro/Macro-F1, 

Micro/Macro-P and Micro/Macro-R as the evaluation 

indicators for performance comparison, which are 

specifically defined as follows: 

𝑀𝑖𝑐𝑟𝑜 − 𝐹1 =
∑ 2𝑇𝑃𝑖

𝐶
𝑖=1

∑ 2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
𝐶
𝑖=1

                           (13) 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
1

𝐶
∑

2𝑇𝑃𝑖

2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝐶
𝑖=1                  （14） 

Where i denotes the ith class label, 𝑇𝑃𝑖 , 𝐹𝑃𝑖, 𝐹𝑁𝑖denote 

the true positive examples, false positive examples, and 

false negative examples, respectively.  

𝑊𝑒𝑖𝑔𝑡ℎ𝑡𝑒𝑑 − 𝐹1 = ∑ 𝑤𝑖
𝐶
𝑖=1 𝐹1𝑖                              (15) 

where 𝑤𝑖 represents the proportion of class i in the total 

sample. 

IV. EXPERIMENT 

This paper divides the corpus into a training set, a 

validation set, and a test set. The training set is utilized for 

model training, the validation set aids in model selection 

and hyperparameter tuning, and the test set assesses the 

model's performance on unseen data (Fig. 4). 

This study conducts experiments using the Rueters-

21578 text classification corpus, comprising 10,788 British 

Reuters financial news texts that are partitioned into 

training and testing documents. The training set consists of 

7,769 records, while the test set comprises 3,019 records. 

The document length ranges from a minimum of 11 words 

to a maximum of 8,459 words, with an average word count 

of 749 words per document. The dataset contains a total of 

90 classes, with each document having a maximum of 15 

labels and a minimum of one label. On average, each 

document is associated with 1.2336 labels. The complete 

dataset is presented in Table II. 

The labels of this dataset are severely imbalanced, and 

Figure 5 shows the number of samples on each label. 

The proposed model was developed using the Python 

language and the Tensorflow+Keras deep learning 

framework. Parameter selection plays a crucial role in 

deep learning models. TextCNN model utilizes three 

filters with sizes 3, 4, and 5. To mitigate overfitting, a 

dropout rate of 0.5 is employed, and the batch size is set 

to 30, which is more appropriate for facilitating the 

convergence of the model's gradient descent. The optimal 

 

 
Fig. 4. Corpus Segmentation model 

 

 
Fig.5.   Distribution Diagram of Labels 

TABLE II 

DATASET DESCRIPTION 

Data and Labels  Number 

Training Data 6215 

Validation Data 1554 

Test Data 3019 

Total labels 90 

Avg label per text 1.2336 
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parameter configurations are outlined in Table III. 

The paper compares word embeddings using 

Word2Vec and GloVe, and models using Binary 

Relevance, Label Powerset, Classifier Chain, TextCNN, 

Bi-LSTM, and Bi-LSTM_Attention. The study concludes 

that combining GloVe word embeddings with 

the TextCNN parallel with the Bi-LSTM_Attention model 

yields the best training and test set results. 

Fig. 6 illustrates the variation in accuracy of six 

models across the training set. This research indicates that 

the Bi-LSTM model has significantly improved during 

training and can acquire global information.  

However, it still exhibits limitations in capturing 

local information. TextCNN demonstrates a faster and 

more stable increase in classification accuracy, providing 

more detailed information in multi-label document text 

classification. Bi-LSTM_Attention model represents an 

enhancement of Bi-LSTM model. Combining it with the 

TextCNN model results in a rapid increase in accuracy 

and demonstrates superior generalization ability on the 

test set. 

It was used in the test set to evaluate the model's 

generalization capability, incorporating various word 

vector embeddings and combining simple models such as 

TextCNN, Bi-LSTM, and Attention with Bi-LSTM. The 

results highlight the following key aspects: 

(1) Bi-LSTM-Attention TextCNN model embedded with 

GloVe outperforms other experimental models, 

demonstrating its effectiveness for MLTC. Specifically, 

the accuracy of the GloVe_TextCNN_Bi-LSTM-

Attention model is 0.0299 and 0.0262 higher than that of 

the standalone TextCNN and Bi-LSTM-Attention models, 

respectively. 

(2)  The experimental results indicate that using FL is 

more advantageous than using BCE within the same model. 

FL prioritizes difficult samples, addressing low 

classification accuracy in categories with fewer samples. 

Importantly, FL improves overall model performance by 

mitigating the issue of imbalanced samples, not just those 

 
Fig. 6. Training Data Accuracies of Six Models 

TABLE III 

PARAMETERS SETTING OF TEXTCNN WITH BILSTM-ATTENTION 

MODEL 

Parameters Values 

Word vector dimension 300 

Max length of article 500 

Filters in TextCNN [3,4,5] 

Dropout 0.5 

Batch size 30 

Epochs 100 

Activate Function Sigmoid 

Loss Focal Loss 

Optimizer Adam 

 

TABLE IV COMPARATIVE RESULTS OF DIFFERENT LEARNING MODELS 

No. Model Accuracy 

1 Tf-idf BinaryRelevance 46.59% 

2 Tf-idf  LabelPowerset 64.80% 

3 Tf-idf  ClassifierChain 46.91% 

4 Vector TextCNN_ 83.87% 

5 Vector BiLSTM     82.68% 

6 Vector TextCNN in parallel 

with BiLSTM  
86.72% 

7 GloVe  TextCNN 84.89% 

8 GloVe  BiLSTM Attention  
85.26% 

9 GloVe TextCNN in parallel 

with BiLSTM Attention 
(Proposed model)  

87.88% 
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with fewer instances. 

(3) This paper not only examined the fundamental 

performance of the six aforementioned models but also 

executed a comparative experiment assessing their 

performance using Binary Cross-Entropy (BCE) and 

Focal Loss on the test set, revealing that Focal Loss 

exhibited superior performance, particularly on datasets 

with significantly imbalanced labels. The outcomes are 

depicted in Figure 7. 

Due to the significant variance in the number of labels 

in the text, a comparative test was conducted using batch 

sizes of 200, 50, and 30. The results indicated that the 

model's accuracy is consistently high when utilizing 

smaller batch sizes. The results are listed in Table V. 

 In this model, FL serves as a balanced loss function to 

enhance classification accuracy, particularly in scenarios 

with a long-tail distribution of label data. Enhancing the 

model's capacity to learn tail label classification, can 

further improve performance. This study coordinated two 

parameters, α, and γ, within the FL framework for control 

purposes. Specifically, α=0.25 and γ=1 were employed to 

optimize results. Table VI compares evaluation metrics for 

varying values of γ=2, 1, and 0.5. 

TABLE VI  MODEL EVALUATION ON MACRO, MICRO, AND WEIGHTED 

model 
Micro Macro weighted 

P R F1 P R F1 P R F1 

TextCNN 89.63% 70.89% 84.14% 51.97% 23.24% 29.61% 85.75% 70.89% 74.69% 

BiLSTM 86.94% 76.23% 85.51% 30.24% 22.69% c 78.77% 76.29% 76.68% 

BiLSTM with 
TextCNN 

92.00% 70.03% 87.19% 49.45% 19.25% 21.60% 86.26% 70.03% 74.30% 

GloVe 

TextCNN 

89.59% 69.42% 82.94% 46.66% 20.80% 26.33% 84.10% 69.42% 73.27% 

GloVe 
BiLSTM 

attention 

87.73% 81.33% 84.61% 48.02% 36.67% 39.66% 84.55% 81.33% 82.10% 

Ours 89.63% 83.89% 86.66% 51.95% 23.24% 32.61% 86.55% 82.23% 82.42% 

 

TABLE VI  MODEL EVALUATION WITH DIFFERENT γ 

 Accuracy F1-micro F1-weigthed F1-sample 

γ=2 86.88% 83.95% 79.73% 82.84% 

γ=1 87.88% 86.66% 82.42% 86.84% 

γ=0.5 86.58% 84.55% 80.76% 83.35% 

 

TABLE V ACCURACY OF DIFFERENT DEEPLEARNING MODELS 

Embed

ding 

model Batch=200 Batch=50 Batch=30 

Vector 

TextCNN_BCE 74.30% 74.96% 83.64% 

TextCNN_Focal 74.89% 75.36% 83.87% 

BiLSTM- BCE 75.49% 74.73% 84.22% 

BiLSTM-Focal 75.79% 79.13% 85.23% 

TextCNN 
BiLSTM_ BCE 

78.17% 75.65% 85.03% 

TextCNN 

BiLSTM_Focal 

77.61% 76.71% 86.72% 

GloVe 

TextCNN_ BCE 73.15% 75.46% 85.33% 

TextCNN _ Focal 75.37% 75.85% 84.89% 

BiLSTM 

Attention_ BCE 

82.61% 83.01% 85.53% 

BiLSTM_Attentio
n_Focal 

81.88% 83.97% 85.26% 

BiLSTM-attention 

TextCNN_ BCE 

83.67% 83.4% 85.96% 

BiLSTM-attention 

TextCNN_Focal 

(Proposed model) 

82.58% 84.80% 87.88% 

 

 
Fig. 7. Test Data Accuracy Across Six Models 
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