

Abstract— In agricultural production, accurately detecting

wheat ears is critical for assessing crop yields and monitoring
growth, among other key aspects. The traditional manual
detection of wheat ears has the disadvantages of inefficiency,
inaccuracy, and non-sustainability. This situation cannot adapt
to the development needs of intensive and precise modern
agricultural production. This work introduces an enhanced
RT-DETR-based model for wheat ear recognition to improve
accuracy in addressing these difficulties. The model
incorporates a space-to-depth layer and a non-stride
convolutional layer into the backbone network, improving its
ability to capture subtle features in wheat ear images. This
improvement enables the model to infer the complete shape of
occluded wheat ears, thereby improving its ability to identify
overlapping targets. Furthermore, the model replaces the
convolution operations in the hybrid encoder with a Context
Guided Block, introducing a context-guided mechanism that
enhances feature learning and effectively distinguishes wheat
ears from complex backgrounds. According to the
experimental findings, the model has notable benefits in terms
of detection accuracy. The optimized model obtains 93.5%,
54.5%, 91.2%, and 89.0% in terms of AP50, AP50-95, precision,
and recall, respectively, according to evaluation results on the
Global Wheat Dataset. This study can effectively meet the
requirements of high precision and reliability of wheat spike
detection in agricultural production, which offers robust
assistance for intelligent planting monitoring and large-scale
agricultural output management.
Index Terms—Wheat ear detection; RT-DETR model;

space-to-depth layer; Context Guided Block

I. INTRODUCTION
ITH the escalating threat to food security posed by
global population growth and climate change, it has

become particularly important to improve the accuracy of
yield and yield forecasts for major food crops such as wheat
[1]. The accurate recognition of wheat ears serves as a direct
indicator for evaluating wheat yield, which is essential for

Manuscript received August 28, 2024; revised November 10, 2024.
This work is supported by Natural Science Foundation of Shandong

Province in China (ZR2022MF349, ZR2020MF076); New Twentieth Items
of Universities in Jinan (2021GXRC049).
J.Q. Pan is a postgraduate student of School of Information Science and

Engineering, Shandong Normal University, Jinan 250358, China
(1660256685@qq.com);
S.T. Song is an associate professor of School of Information Science and

Engineering, Shandong Normal University, Jinan 250358, China
(Corresponding author, e-mail: sutao.song@sdnu.edu.cn);

Y.J. Guan is a postgraduate student of School of Information Science
and Engineering, Shandong Normal University, Jinan 250358, China
(1399973427@qq.com)

W.K. Jia is an associate professor of School of Information Science and
Engineering, Shandong Normal University, Jinan 250358, China
(Corresponding author, phone: +86-531-86181755; fax:
+86-531-86181750; e-mail: jwk_1982@163.com)

informing agricultural production strategies and optimizing
resource allocation [2]. Traditional methods for wheat ear
detection predominantly rely on manual visual assessments,
which are not only time-consuming and labor-intensive but
also constrained by individual differences in expertise,
thereby limiting the accuracy of the results and complicating
the demands for large-scale and high-precision yield
measurements [3]. Artificial Intelligence-based Visual
Computing Technology Evolution presents a viable way to
recognize images automatically [4]. However, there are
substantial technological obstacles to efficient target
detection and counting because of the high density
distribution of wheat ears and the varied backgrounds
inherent in real contexts [5].
Research on object detection techniques in densely

populated scenes can provide valuable approaches for
detecting wheat ears, especially considering the challenges
posed by their dense distribution, occlusion, and overlapping
during the growth process. He et al. [6] proposed the
Hierarchical-NMS algorithm to address limitations of
existing NMS and Soft-NMS algorithms in dense pedestrian
detection, Effectively reducing the number of false positives
and missing detections in dense situations. Improved non
maximum suppression (NMS) can effectively solve the
inter-target occlusion problem, however, this can easily lead
to NMS incorrectly suppressing the candidate frames of
different objects instead of their center frames when there is
a dense concentration of targets with severe occlusion [7].
Wang et al. [8] utilized a novel bounding box regression loss
that was specifically developed for crowded environments to
achieve more robust localization. Although this exclusion
loss function has shown effective results in pedestrian
detection, it has been less frequently applied to dense
agricultural scenarios, where many approaches rely on data
augmentation for handling dense target detection. Du et al.
[9] tackled the issue of dense clustering of small pests in
field environments by employing cluster data generation,
thereby extending the training dataset to enable the model to
accurately identify regions with densely distributed target
clusters. Data augmentation improves model robustness in
dense detection by increasing sample diversity, but
performing data augmentation operations requires additional
computational resources and may limit the speed of the
model [10]. Numerous scholars have responded to the
challenges of dense detection by improving feature
extraction and feature fusion techniques. Liu et al. [11]
proposed an enhanced YOLOv5 model, which significantly
improved the detection of densely distributed small fruits in
citrus orchards through the introduction of a Coordinated
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Attention Module (CA [12]) and Bidirectional Feature
Pyramid Network (BiFPN [13]). Additionally, Wen et al.
[14] proposed the ST-YOLO model, integrating depthwise
separable convolution with the Swin Transformer
architecture to enhance target recognition in complex
environments, demonstrating exceptional performance in
agricultural applications such as tea bud detection and
highlighting its potential for dense object detection scenarios.
In dense and complex environments, the aforementioned
research effectively enhanced the precision and resilience of
dense object detection by modifying the NMS algorithm,
data enhancement, and feature extraction technology. This
solution resolved the issues of overlooked and false
detections that are common in traditional methods.
The continuous advancement of dense detection

technology has significantly influenced the specialized field
of wheat ear detection, with numerous studies successfully
applying innovative target detection algorithms that greatly
enhance detection efficiency and accuracy. In early
two-stage detection methods, Li et al. [15] explored the
Faster R-CNN [16] for quantifying the density of spikes per
unit area (SN) in wheat, demonstrating that this image
recognition technique is applicable for genetic study on
wheat SN. Although two-stage detection methods can yield
high-precision results, they still exhibit computational
redundancy in subsequent detection stages due to their
inherent two-step strategy. Conversely, algorithms for
one-stage identification, like those in the YOLO family,
streamline the process by directly predicting object classes
and locations within images, thereby significantly enhancing
detection speed [17]. Wen et al. [18] introduced BiFPN,
focus loss and attention module based on RetinaNet [19] to
obtain a wheat spike detection and counting for
SpikeRetinaNet, which achieved a mAP50 metric of 0.9262
on the Global Wheat Spike Detection (GWHD) dataset. The
single-stage method has obvious advantages in inference
speed, but in the localization and detection of small targets,
it is prone to a high false detection rate due to the high
number of densely generated candidate frames [15], while
the anchorless frame detection network does not need to
preset the anchor frame parameters in the detection and
directly forecasts the location of the key point of the
bounding box during the regression stage to further
minimize the constraints of the predefined conditions [20].
Wang et al. [21] developed an anchor-free technique for
detecting wheat ears with the attention-based ObjectBox
[22], which significantly improves detection accuracy
through enhanced feature connectivity, feature map fusion,
and an optimized non-maximum suppression algorithm. The
self-attention mechanism of Transformer [23] technology
captures global dependencies, introducing new possibilities
and substantial enhancements to wheat ear detection in
complex environments. Zhou et al. [24] introduced a wheat
ear detection network employing Transformer architecture,
integrating multi-window features and a feature pyramid
network for extracting multi-scale features and
implementing efficient self-attention, thereby enhancing the
efficacy of wheat ear recognition under intricate field
circumstances.
While existing models demonstrate high accuracy in

wheat target detection, recognizing wheat ears at varying
scales remains challenging, particularly when dealing with
small targets and limited data availability for these small
targets. This study introduces an enhanced method for
detecting wheat ears with the Real-Time Detection
Transformer (RT-DETR [25]) model. RT-DETR retains the
strengths of the DETR model [26] in handling complex
image scenes, making it better suited for the demands of
agricultural monitoring. The main contributions of this study
include:
(1) To mitigate the information loss resulting from the

stride-2 depthwise separable convolution during feature
extraction, a space-to-depth layer and a non-stride
convolutional layer are incorporated to modify the spatial
dimensions of feature maps. This approach maintains high
spatial resolution while improving processing efficiency and
accuracy, enabling better handling of overlapping region
details.
(2) To tackle the challenges presented by complex

backgrounds in wheat field detection, the convolution
operations within the hybrid encoder are replaced with
Context Guided Blocks (CGBlocks). This adjustment
enhances the ability to learn contextual information, thereby
improving effectiveness in managing background
complexity during wheat ear detection.
(3) Even with a limited amount of data for small-scale

targets, the model can still achieve high detection accuracy,
indicating that it possesses strong generalization capabilities
and robustness, thereby enabling effective detection of
wheat ears in complex environments.

II. METHODS

The growing conditions and environment of wheat ears
make target detection difficult. Accurate detection of wheat
ears can furnish dependable data support for agricultural
production, allowing agriculturists and administrators to
make more informed decisions based on actual crop growth
conditions. This study enhanced the RT-DETR model to
augment the accuracy of wheat target identification. The
RT-DETR model is an end-to-end real-time object detection
model based on the Transformer architecture. The optimized
model still has the same architecture as the original model:
backbone network, hybrid encoder, and Transformer
decoder with auxiliary prediction head. First, the
space-to-depth layer (SPD-Conv [27]) module is
incorporated into the backbone network to augment the
ability to capture intricate details in wheat ear images, hence
enhancing the recognition of overlapping targets. In addition,
by replacing the convolution operation in the hybrid encoder
with the Context Guided Block(CG Block [28]), a context
guided mechanism is implemented to further augment the
effect of feature learning and effectively distinguish between
wheat ear targets and complex backgrounds. Figure 1
exhibits the architecture of the wheat detection algorithm
with these adjustments, demonstrating the optimization of
its structure and enhancement of performance.

A. Feature Extraction Network
In wheat ear detection, the feature extraction network is

essential for automatically identifying and extracting
important characteristics of wheat ears from the input
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images, including shape, size, color, and texture. These
features are essential for subsequent classification,
localization, and analysis, particularly in automated and
precision agriculture, where accurate detection of wheat ears
can significantly enhance the efficiency of crop evaluation
and processing.
1) Backbone Network
The backbone of RT-DETR uses HGNet-v2 for feature

extraction, and the overall structure consists of a
Stemmodule and multiple HGblock modules. The backbone
network performs detailed feature processing and gradual
refinement of the image through four main stages. The first
stage of the backbone starts with the input layer HGStem,
which performs preliminary feature extraction on the
original wheat ear image and increases the channel count
from 32 to 48. Afterwards, the channel count was augmented
to 128 by HGBlock to enhance image detail acquisition. The
second stage uses Depthwise Separable Convolution
(DWConv [29]) for spatial downsampling and expands the
features from 96 to 512 channels through HGBlock, thereby
increasing the details and complexity of the feature map.
The third stage further employs DWConv to downsample to
a deeper 1024 channels, followed by complex feature
integration and enhancement through three HGBlocks with
different configurations to ensure effective learning and
extraction of high-level features. In the final stage, DWConv
is used for subsampling again, and finally, a large-capacity
HGBlock is used to upgrade the features to 2048 channels to

capture the most complex environmental information and
object semantic information, providing support for
high-precision wheat image understanding and detection.
In the real environment where wheat is cultivated, the

dense growth that occurs among the ears in the wheat field
can easily cause the detection algorithm to mistake the
features of neighboring ears together, which in turn triggers
the problems of misdetection and omission. Within the
original framework of the RT-DETR model, the backbone
network utilizes DWConv with a stride of 2 to shrink the
spatial size of the feature map, all while concurrently
enhancing the feature depth. This approach may lead to the
omission of essential spatial details, especially when
processing intricate images of wheat ears requiring
high-resolution accuracy.
2) SPD Module
To mitigate the information loss induced by DWConv, the

SPD-Conv module is implemented to modify the spatial
dimensions of the feature map. By setting the stride of
DWConv is altered to 1, thereby preventing the spatial size
of the feature map from diminishing through convolution.
SPD-Conv initially executes a space-to-depth convolution

process, partitioning the feature map X into several
sub-feature maps{��,�}. The cutting approach involves
acquiring several sub-feature maps by sampling the main
feature map at predetermined intervals based on the
designated scale map. Each sub-feature map is created by
downsampling the original feature map. Eq.1 is the

Fig.1 Framework diagram of enhanced wheat ear detection model using RT-DETR
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sub-feature sequence cut out at the scale:
�0,0 = �[0: �: �����, 0: �: �����] ,
�1,0 = �[1: �: ����� , 0: �: �����],

⋯,
������−1,0 = �[����� − 1: �: �����, 0: �: �����];

(1)

Where Eq. 1 indicates that the original feature map X starts
from the upper left corner (i.e. the starting index is 0,0) and
selects it every S pixels until the multiple of scale is reached
to form the first sub-feature graph f0,0 . And so on, until
fscale−1,0, the feature map X starts at the position where it is
offset by scale-1 pixels in the row direction, forming the last
sub-feature map fscale−1,0.The same process is applied to the
column direction as well, and Eq. 2 denotes denotes the
change in the feature map along the column direction:

�0,1 = � 0: �: �����, 1: �: ����� ,
�1,1 = � 1: �: �����, 1: �: ����� ,

⋯,
������−1,1 = � ����� − 1: �: �����, 1: �: ����� ;

⋮
�0,�����−1 = �[0: �: ����� , ����� − 1: �: �����],
�1,1−����� = �[1: �: �����, 1 − �����: �: �����] ,

⋯,
������−1,�����−1 = �[����� − 1: �: �����, ����� − 1: �: �����];

(2)

f0,1 represents the production process of the next
subfeature map that begins after 1 pixel shift in the column
direction. And so on until fscale−1,scale−1, which is where the
original feature map X begins with a scale-1 pixel shift in
both row and column directions, forming the final subfeature
map.
A non-strided (i.e., stride 1) convolutional layer operation

is incorporated following the SPD feature transformation
layer. This convolutional layer has �2 filters, where �2 <
�����2�1 , and further transforms the intermediate feature
map �,( �

�����
, �
�����

, �����2�1) into �''( �
�����

, �
�����

, �2) .
Non-strided convolution is used in order to preserve as much
discriminative feature information as possible.
Figure 2 shows the process of processing an intermediate

feature map X of any size using interval sampling with a
scale of 2, resulting in four sub-feature maps �0,0, �1,0, �0,1

and �1,1 , each of which has the shape of ( �
2
, �
2
, �1) . To

create a new feature map �'( �
2
, �
2
, 4�1), all sub-feature maps

are concatenated along the channel axis. Then �''( �
2
, �
2
, �2)

is obtained by doing a non-strided convolution using �2
filters.
In dealing with dense wheat ear detection scenarios,

especially when the targets are small and closely arranged, it
becomes crucial to maintain high spatial resolution
information. This is because excessive downsampling may
cause the details of small objects to be blurred, making these
objects difficult to be accurately identified and localized in
deep networks. The integration of the SPD-Conv module
into the backbone network not only improves the
recognition of small objects but also ensures the
maintenance of high spatial resolution while enhancing
processing efficiency and accuracy, further meeting the
detection requirements in complex environments.

B. Feature Fusion Network
The wheat spike detection network optimized based on

RT-DETR model handles multi-scale features through
hybrid encoders at the neck, especially in processing wheat
spike targets at different scales, and subsequently realizes
feature fusion among different scales to improve the
performance of wheat spike detection. The hybrid encoder in
the neck comprises two components: the Attention-based
Intra-scale Feature Interaction (AIFI [25]) module and the
CNN-based Cross-scale Guided Feature-fusion Module
(CGFM).
1) Feature Fusion
The hybrid encoder receives the extracted high-level

features of wheat ears from the feature extraction network,
commencing with the alteration of the channel numbers in
the feature map through 1×1 convolution, and subsequently
employing AIFI and Repeated 3×3 Convolution (RepC3) to
augment feature representation.The AIFI module performs
self-attention operations on high-level features and
processes among features within the same scale, thereby
helping subsequent modules to better detect and recognize
wheat ears in images. The convolutional layer in the
CNN-based Cross-scale Feature-fusion Module ( CCFM

Fig. 2. SPD-Conv structure diagram when Scale is 2
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[25] ) in the neck hybrid encoder may not be able to fully
capture and utilize local and global contextual information
when processing images. In the intricate and dynamic
context of the wheat field, precisely distinguishing the wheat
ears from other background elements proves challenging.
Consequently, GC Block is incorporated into the CCMF
module to create the CGFM module.
In CGMF, the amalgamation of up-sampling and

down-sampling processes with element-wise concatenation
(Concat) enables multi-scale feature fusion. This enables the
model to effectively consolidate information from various
regions and hierarchical levels of detail within the image.
The hybrid encoder with CG Block enhances the detection
capability of at diverse scales and improves the information
fusion efficiency of low-level and high-level characteristics
via route aggregation, enabling the model to more
effectively identify and locate wheat ears in images.
2) Context Guided Block Module
To reliably recognize wheat ears in intricate backgrounds

amid varying lighting conditions, the model can
comprehend and incorporate this contextual information to
boost the precision and resilience of detection. This paper
introduces a context-guided mechanism by replacing the
Conv operation in the CCFM module with a Context Guided
Block and names this module CGMF to address the
background complexity problem in the wheat ear dataset.
CG Block consists of local feature extractor ���� ( ∗ ),

surrounding context extractor ����(∗), joint feature extractor
����(∗), and global context extractor ����(∗). The structural
framework is shown in Figure 3. First, the initial feature map
X undergoes an initial convolution process, followed by
batch normalization and the application of a PReLU
activation function for feature conversion and
downsampling, which can be expressed as:

����� = �����(��(����(�))) (3)

Where, ���� denotes the convolution process, using a 3×3
convolution kernel with a stride of 2. Subsequently, local
feature extraction is executed, and channel-wise convolution
is applied to the subsampled feature map ����� to derive
local feature ����. The above operation formula is as follows:

���� = ����(�����) (4)

In parallel, the surrounding context feature extraction ����

is performed, and ����� is also processed by channel-wise
convolution with dilation rate to control the size of the
receptive field for capturing surrounding context features:

���� = ����(�����) (5)

Then perform joint feature extractor ���� to fuse local
feature extractor ���� and surrounding context extractor ����
in the channel dimension to guarantee that the model
understands the data of each pixel or local area, and also
understand the relationship between these regions in the
overall context, and through batch normalization and
PReLU activation function:

���� = �����(��(���� ⊕ ����)) (6)

Where ⊕ represents feature fusion (channel splicing). The
integrated features are dimensionalized using a 1×1
convolution layer to minimize the parameter count and
computational complexity:

���� = �������(����) (7)

Finally, global feature modulation is carried out in order
to amplify significant features and reduce the significance of
less significant features:

���� = ���� ∙ �(��(�������(����))) (8)

Where, σ denotes the Sigmoid function, utilized to produce
the important weight for each channel in the feature graph,
AvgPool represents the adaptive average pooling procedure,
whereas FC signifies the fully connected layer.
The ���� and ���� extractors employ channel convolution

to cut computational expenses across channels without
compromising accuracy. The Conv operation in the hybrid
encoder of the RT-DETR model is substituted with the CG
Block , wh ich fa c i l i t a t e s suc ce s s fu l fu s i ng and
downsampling of the input feature map while enhancing the
efficiency of the model in leveraging local and global
information. This he lps the model to enhance its
comprehension of the semantic information and contextual
linkages within the image, so more efficiently differentiating
the connections between the wheat ear target and the
intricate background. Give the model greater insight into the
contextual linkages and semantic content of images so that it
can discriminate between complicated backdrops and wheat
ear targets more successfully. By reducing the amount of
network parameters, this replacement can significantly

Fig. 3. CG Block structure diagram
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Fig.4. Decoder structure diagram

increase the detection performance and generalization
capacity while also increasing its operational efficiency.

C. Decoder
The decoder section of the wheat ear detection network

optimized based on the RT-DETR model adopts the
standard Transformer Decoder structure, consisting of
multiple Transformer decoding layers, which are used to
process input features and generate the final prediction
results. By stacking multiple decoding layers, the model can
gradually extract and organize features to achieve more
accurate wheat ear detection.
Employ IoU-aware Query Selection to select a

predetermined quantity of image characteristics as the initial
object query for the decoder. It is important to take into
account both the features with elevated categorization scores
and their IoU scores when doing object queries. The model
chooses features with elevated classification and IoU
metrics to initialize decoder queries. This can reduce the
selection of prediction boxes that have high classification
scores but poor alignment with the real bounding boxes.
Lastly, the object query is repeatedly optimized by the
decoder with auxiliary prediction head to produce boxes and
confidence scores. Figure 4 illustrates the decoder
framework diagram:

D. Loss
The loss function in the RT-DETR model is composed of

multiple components, including classification loss( ���� ) ,
bounding box regression loss ( ���� ) and Generalized
Intersection over Union Loss [30] (�����). The overall loss
function of the model is presented as Eq. 9:

�(�� , �) = �1���� + �2���� + �3����� (9)

where �1 =1, �2 =5 and �3 =2, denoting the weights of
classification loss, bounding box localization loss, and
bounding box overlap loss. By adjusting these weights, it is
possible to influence the focus of the model during the

learning process. Specifically, when �1=1, it indicates that
the weight of the classification loss is relatively small,
primarily because the targets in this scenario are relatively
homogeneous. If the categorization loss weights are too high,
the model may focus too much on the correctness of the
category and ignore the accuracy of the location. Therefore,
the weight of the categorization loss is set to a smaller value
to balance it with the other losses. The value of �2=5reflects
a greater emphasis on the precision of bounding box
localization during the optimization process. This is because
the cost of errors in object location prediction is typically
higher, especially in high-precision object detection tasks.
Therefore, assigning a higher weight to the bounding box
loss encourages the model to more effectively learn the
accurate prediction of object locations. The value of �3 =2 is
slightly higher than the classification loss but lower than the
bounding box loss. This is because GIoU acts mainly on the
optimization of the overlap of bounding boxes rather than
the direct bounding box position or size. Therefore, while it
helps to improve positioning accuracy, its role needs to be
synergistic with the bounding box loss and not
overemphasized, as this can cause the model to deviate from
the correct adjustment of the bounding box position during
the optimization process.
In the wheat ear target detection model, since the target

detection category is only wheat ears, the classification task
is a binary classification problem, that is, detecting wheat
ears and background. The wheat target detection model may
successfully reduce background interference and increase
wheat target recognition accuracy by employing Focal Loss,
particularly in scenes with a complex background and few
wheat ears.The loss function is shown in Eq. 10:

���� = ����� ����(��) =− ��(1 − ��)� log (��) (10)
Where �� is the probability that the model predicts the
correct category, �� is a balancing factor that controls the
proportion of positive and negative samples to cope with
category imbalance, and � is a focusing factor that adjusts
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the loss contribution of difficult and easy samples.
The bounding box regression loss quantifies the

coordinate discrepancy between the predicted box and the
actual box, employing the Mean Absolute Error (MAE) loss,
which is determined by averaging the absolute deviations
between the predicted and real values, thereby assessing the
divergence between the predictions of the model and the true
outcomes. The loss function is represented in Eq. 11:

���� =
1
�

�=1

�

��� − �� (11)�

Where ��� represents the anticipated bounding box
coordinates, while �� denotes the actual bounding box
coordinates of the i-th target.
The Generalized Intersection over Union Loss (GIoU

Loss) enhances bounding box regression by incorporating
the notion of enclosing boxes, hence overcoming the
deficiency of IoU in generating gradients when the predicted
box lacks overlap with the ground truth box. The loss
function is shown in Eq. 12:

����� = 1 −
����(��� ∩ ��)
����(��� ∪ ��)

+
����(∁) − ����(��� ∪ ��)

����(∁)
(12)

Where ∁ denotes the minimal enclosing rectangle that
contains both the expected and actual bounding boxes,
���� (��� ∩ ��) indicates the region of overlap between the
anticipated and real bounding boxes, and ���� (��� ∪ ��) is
the area of their union.
The structure of the loss function allows for simultaneous

optimization of bounding box localization and object
classification during training. By integrating scores, it
strengthens the consistency between classification and
localization for positive samples, thereby enhancing overall
detection performance and facilitating a deeper
understanding and learning of the content within images.

III. RESULTS AND ANALYSIS

A. Dataset
The dataset was derived from the Global Wheat Head

Dataset (GWHD2021) [31] and consisted of 3,499 RGB
images (1024×1024 pixels), totaling 162,154 ears. These
wheat images originate from various areas. Owing to
varying shoot ing angles and light ing condit ions ,

( a ) Similar colors ( b ) Overlapping targets ( c ) complicated background

( c ) Backlight ( d ) Frontlight ( e ) Shadow occlusion

Fig.5. Characteristics of global wheat ear data
TABLE I

THE NUMBER OF WHEAT EARS OF DIFFERENT SIZES IN THE WHEAT EAR RECOGNITION DATA SET

Dataset Class Images Instances

Target Amount

Small Medium Large

(0<area<322) (322<area<962) (962<area)

Train Set wheat 2,799 129,856 1,568（1.20%） 106,541(82.05%) 21,747(16.75%)

Test Set wheat 700 32,298 491(1.52%) 26,685(82.62%) 5,122(15.86%)
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Fig.6. Left: Learning Rate Value Curve.
Right: Loss Value Curve.

Fig.7. P-R curve of model training

there exists variation and complexity in the datasets due to
varying wheat growth periods, distribution densities, and ear
sizes. The GWHD2021 dataset is split at random into a
training subset of 2,799 images and a validation subset
consisting of 700 images, maintaining an 8:2 ratio. A portion
of the wheat image is depicted in Figure 5.
According to the definition of coco data set, The target

area smaller than 32×32 pixels is designated as a small target;
the target area ranging from 32×32 to 96×96 pixels is
classified as a medium target; the target area exceeding
96×96 pixels is referred to as a large target. Additionally, the
quantity of wheat ears of varying sizes in the wheat ear
recognition dataset is enumerated. In the training set of
2,799 photographs, there are a total of 129,856 wheat ear
targets based on their proportion in the images. A total of
1,568 (1.20%) wheat ears were identified as small targets,
106541 (82.05%) as medium targets, and 21,747 (16.75%)
as giant targets; In the test set of 700 photos, there are a total
of 32,298 targets, with 491 (1.52%) wheat ears identified as
small targets, 26,685 (82.62%) wheat ears identified as
medium targets, and 5,122 (15.86%) wheat ears identified as
large targets.

B. Experimental setup and model optimization strategies
The experiments involved in this paper are mainly configured

with Ubuntu 16.04 LTS operating system and Intel® Xeon(R)
Silver 4214R CPU @ 2.40GHz × 45. Running on 10GB GPU

NVIDIA GeForce RTX 3080 and V11.4 CUDA, all models
use Python version 3.8 and Pytorch version 1.12. The model
components were constructed by MMdetection v2.2.0
learning library.
In this experiment, all images were resized to 640×640 for

input to the network to standardize the criteria. This research
establishes an initial learning rate of 0.0001 to optimize
network parameters and minimize the loss function, utilizing
Adaptive Moment Estimation with Weight-decay (AdamW)
to facilitate the training process. The adaptive learning rate
mechanism and weight decay strategy of AdamW contribute
to enhancing training stability and preventing overfitting,
while effectively accommodating the optimization needs of
complex network structures. The graph depicting learning
rate fluctuations is presented in Figure 6. Left, where the
three parameter groups (pg0, pg1, and pg2) follow different
learning rate adjustment strategies. The most obvious
feature is reflected in pg0, which has a high initial learning
rate and decays rapidly to near zero in early iterations. In
contrast, the learning rates of pg1 and pg2 remained
relatively stable in the initial stages and tended to remain
constant and low after the decline. This learning rate strategy
facilitates a balance between convergence velocity and final
model correctness, particularly in intricate training tasks,
and effectively mitigates issues such as gradient vanishing
or explosion.
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Combined with the characteristics of AdamW optimizer,
the model is trained after 72 epochs, and set the batch size to
4, the momentum parameter to 0.9, and the weight decay
coefficient to 0.0001. These optimization methodologies
afford the model sufficient time and chance to assimilate the
data features, enabling it to attain high detection accuracy
during a reduced training epoch and exhibit robust
generalization capability, so successfully mitigating the risk
of underfitting. Figure 6 Right illustrates the training loss
curve of the improved RT-DETR model on the dataset,
utilizing the specified parameters. The rapid decrease in
GIoU Loss and Box Loss reflects a significant improvement
in the ability to predict bounding boxes, while the relatively
smoother decline in classification loss highlights the
inherent complexity of the category classification task. As
training proceeds, the loss functions converge gradually and
the overall performance of the model stabilizes.

C. Evaluation metrics
This research use precision (P) and recall (R) as criteria

for assessing model performance. The corresponding
formulas are presented in Eq. 13 and Eq. 14:

� = ��
�� + ��

∙ 100% (13)

� = ��
�� + ��

∙ 100% (14)
In Eq. 15, TP denotes the quantity of actual wheat ears
accurately identified as such by the model, signifying the
true positive instances where the wheat ear targets are
correctly recognized by the model. FP denotes the quantity
of background or non-wheat areas erroneously classified as
wheat ears by the model. FN denotes the quantity of actual
wheat ears that the model could not identify, signifying the
overlooked wheat ear targets. Figure 7 illustrates the
Precision-Recall (P-R) curve throughout the model training
procedure.

�� = 0
1 �(�)��� (15)

For the GWHD2021 dataset, the model evaluates only one
category, so the AP itself represents the overall performance
of the model on that particular task, with the same concept as
calculating the mean of multiple categories (mAP), where
the mean accuracy and mean average precision are
calculated as follows.
This study establishes an IoU threshold range from 0.5 to

0.95, utilizing a step size of 0.05, resulting in a total of 10
thresholds. The mean value of these thresholds is used as the
evaluation metric, Average Precision (AP). Simultaneously,
101 recall points are selected within the range of [0, 0.01, ...,
1], and the corresponding precision values are averaged to
obtain the average precision under the 0.5 and 0.75

thresholds. In addition to introducing the two metrics AP50
and AP75, the average accuracies of the small-scale,
mesoscale, and large-scale targets are defined as APs, APm
and APl, respectively, to better illustrate the detection
performance of wheat ears at various sizes; Accordingly, the
Average Recall for small-scale, mesoscale, and large-scale
objects is defined as ARs, ARm, and ARl, respectively.
Finally, the number of parameters is also employed as a
gauge to thoroughly assess the complexity of the model.

D. Ablation experiment
This study conducts ablation experiments to rigorously

assess the effectiveness of the SPD-Conv and CG Block
modules. The SPD-Conv module is initially incorporated
into the baseline model, followed by a comparative
examination of detection outcomes on the worldwide wheat
dataset, both prior to and subsequent to its deployment.
Subsequently, the CG Block module is added for further
comparison.
A stepwise introduction strategy is adopted to explore the

differential impacts of various modules on object detection
performance in depth. The baseline model RT-DETR attains
an accuracy of 90.5%, a recall rate of 87.5%, an AP50 of
91.9%, and an AP50-95 of 50.7%, as presented in Table 2.
Upon incorporating the SPD-Conv module into the
backbone network, the accuracy, recall rate, AP50, and
AP50-95 improved by 0.2%, 1.4%, 1.1%, and 2.8%,
respectively, in comparison to the previous version. The
precision and AP50 were significantly enhanced to 90.7%
and 93%, respectively, indicating an overall improvement in
performance, particularly in the AP50 and AP50-95 metrics,
which suggests that this module has strengthened detection
capability. When the convolution operation in the neck of
the network is replaced with the CG Block, the accuracy,
recall rate, AP50, and AP50-95 improve by 0.2%, 3.0%, 0.5%,
and 2.7%, respectively, compared to the previous model.
Although the recall rate increases to 90.5%, the AP50
experiences a slight decrease to 92.4%. When both the
SPD-Conv and CG Block modules are integrated
simultaneously with the baseline model, the performance
metrics reach their optimal levels: an accuracy of 91.2%, a
recall rate of 89.0%, an AP50 of 93.5%, and an AP50-95 of
54.5%. These results indicate that the effective synergy
between these two modules significantly enhances object
detection performance.
This report presents the findings of the ablat ion

experiment to allow for a more direct comparison of the
influence of each module on the detection outcomes. The
visualization results are presented in Figure 8. The yellow
highlighted box denotes the misidentified region ,

TABLE II
ABLATION EXPERIMENT RESULTS

Model SPD-Conv CG Bolock Precision Recall AP50 Ap50-95

RT-DETR

— — 90.5 87.5 91.9 50.7

√ — 90.7 88.9 93 53.5

— √ 90.7 90.5 92.4 53.4

√ √ 91.2 89.0 93.5 54.5
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Fig.8. Comparison of visualization results of ablation experiments
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the blue-highlighted box signifies the overlooked target.
As illustrated in Figure 8, the baseline model exhibits

insensitivity to identifying wheat ears in overlapping areas,
cluttered backgrounds, and along the edges of images,
resulting in instances of missed detections. The
implementation of the SPD-Conv module mitigates the
problem of missing detections in the model. However, due to
an excessively strong learning capability, non-wheat ear
regions are misidentified as wheat ears, leading to
occurrences of false detections. When the CG Block module
is introduced in isolation, the model still encounters missed
detection issues under overlapping and complex background
conditions, although there are significant improvements
compared to the baseline model. Furthermore, when both
modules are applied to the model, the optimized version
demonstrates enhanced accuracy in detecting wheat ears in
overlapping areas, complex backgrounds, and along the
edges of images, without any instances of false detections.
This presents compelling proof that the proposed model in
this research can proficiently execute wheat ear detection,
thus enabling precise assessments of wheat output.

E. Comparative experiments
This research chooses the most sophisticated object

detection algorithms for comparison in order to better
examine effectiveness of the model in identifying wheat ears.
The comparative experiments and those conducted in this
study are executed in an identical environment, with
parameter settings aligned with the model presented herein
to guarantee the integrity of the comparative analysis. The
comparative models include two-stage object detector Faster
R-CNN, single-stage object detector Retinanet, single-stage
anchor free box algorithm FoveaBox [32], YOLOX for
lightweight backbone networks in the YOLO series [33],
image classification models Swin Transformer [34] and
Pyramid Vision Transformer [35] under the Transformer
architecture. Table 3 illustrates the detection efficacy of each
model employed in the comparative experiment.
The experimental findings shown in Table 3 distinctly

illustrate the performance of each model on the GWHD2021
dataset. The optimized model derived from RT-DETR
surpasses other leading methodologies in this investigation.

Specifically, the average accuracy of the model is 93.5% at
an IoU threshold of 0.5, and 56.2% as the IoU threshold is
increased to 0.75. The GWHD2021 dataset comprises 2,799
training sets and 700 validation sets, featuring 1,568
small-scale targets in the training set, which constitutes
1.2% of the total, and 491 small-scale targets in the
validation set, representing 1.52% of that set. The
proportions of these scales are detailed in Table 1. Due to the
insufficient amount of small-scale wheat ear data, the model
is inadequately trained for small-scale targets, resulting in
lower detection accuracy. The AP values for small-scale
targets in the comparative tests are often low, whereas the
improved RT-DETR model consistently exhibits high
detection accuracy, suggesting that the optimized model
possesses superior generalization capability and robustness
in small-scale target detection tasks. The optimized model
achieves Average Recall Scores (ARS), Average Recall
Metrics (ARM), and Average Recall Levels (ARL) of 29.7%,
58.9%, and 65.3%, respectively, all of which surpass the
performance of the other comparative models.
Considering the parameter count, the optimized model

has a parameter count of 38.94M. Because of the
characteristics of RT-DETR model its Transformer
architecture itself, such as the self-attention mechanism and
the multi-head attention mechanism which require a large
number of weight matrices, large-scale input embedding and
positional encoding, these designs result in the RT-DETR
model possessing a substantial number of parameters.
Notwithstanding the numerous covariates in the RT-DETR
model, the optimized version displays formidable detection
proficiency regarding accuracy and recall, particularly
showcasing substantial interference resistance and
robustness while addressing objects of varying scales.
Overall, the optimized RT-DETR model demonstrates
superior results across each evaluation metric on the
GWHD2021 dataset. Figure 7 demonstrates the comparison
of the detected images.
The optimized RT-DETR model outperforms seven other

classic models on the Global Wheat Spike Detection dataset.
As illustrated in Figure 8, the optimized model can
accurately detect wheat ears without any instances of missed

TABLE III
DETECTION RESULTS OF FIELD WHEAT EARS BY CLASSIC AND ADVANCED DETECTION MODELS

Model AP50 AP75 AP50-95 APS APM APL ARS ARM ARL Params/M

Faster R-CNN 89.6 47.9 48.8 11.2 47.9 55.7 13.1 54.0 61.2 41.34

Retinanet 85.5 48.0 47.9 3.7 46.9 56.8 3.7 52.8 62.3 36.33

FoveaBox 91.5 47.3 49.4 10.7 48.8 55.5 13.2 56.1 61.4 36.24

YOLOX 90.6 45.8 47.8 14.1 47.5 54.2 26.6 55.7 60.4 8.93

Swin-Transformer 85.5 47.6 47.7 3.0 46.7 56.9 2.8 52.7 62.6 36.82

Pyramid Vision
Transformer

85.3 46.2 46.9 2.8 46.2 55.2 2.7 52.4 61.5 21.33

RT-DETR 91.9 50.1 50.7 16.2 48.6 55.0 1.6 14.5 55.7 32.78

Ours(Improved RT-DETR) 93.5 56.2 54.4 22.2 52.0 59.4 29.7 58.9 65.3 38.94
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detections or false positives. In contrast, Faster R-CNN is
prone to false positives in scenarios with a high degree of
overlap among wheat ears; RetinaNet encounters missing
detections and occasional false positives in peripheral areas;
FoveaBox exhibits false detections in overlapping and
complex scenes; YOLOX also encounters false positives
under dense conditions; Swin Transformer is susceptible to
missed detections in overlapping and complex backgrounds,
as well as false positives due to shadow occlusion; similarly,
the Pyramid Vision Transformer model shows missed

detections under dense and shadow conditions. Enlarge
specific areas of the wheat ear images to more clearly
illustrate the detection performance differences between the
comparison images and the model results, as depicted in
Figure 10. The red box highlights the complex regions in the
original image, the blue box signifies the detection outcomes
of the comparison model, while the yellow box indicates the
outcomes of detection of the improved RT-DETR model. It
is evident that in crowded, obstructed, and darkened
situations, the comparison model shows missed detections

Swin Transformer

Pyramid Vision Transformer

RT-DETR

Improved RT-DETR

Fig 9 Comparison of detection images of global wheat ear data set (yellow box marks the misdetection area; blue box marks the missed detection target)
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Fig.10. Detail image of wheat ear detection in comparative experiment

with fewer anchor boxes and erroneous detections with more
anchor boxes. In contrast, the model developed in this study
attains precise detection grounded on the actual conditions
of the wheat ears. Overall, the optimized RT-DETR model
demonstrates exceptional detection performance across
various complex environment.

IV. CONCLUSION
This study optimizes the RT-DETR model using the

GWHD2021 dataset to address the target identification issue
caused by the complicated growth environment and dense
growth state among wheat ears, which significantly
increases the accuracy of target recognition of wheat ears.
On the one hand, this paper proposes to introduce the
SPD-Conv module in the backbone network part to
strengthen the ability of capturing spatial details of the
features and make up for the loss of information in the
backbone due to DWConv, so as to better detect the
overlapping part. On the other hand, the Conv operation in
the hybrid encoder part is replaced with Context Guided
Block to strengthen the connection between contexts, hence
improving the exactness of wheat ear detection in intricate
conditions and augmenting the generalization ability of the
model.
The optimized RT-DETR model presented in this study

effectively achieves accurate detection of wheat targets with
a model accuracy of 91.2% and an AP50 of 93.5%. Relative
to other sophisticated target detection models, the approach
presented in this paper sustains elevated accuracy. which can
help farmers to know the yield of wheat field in time and
provide accurate data support for agricultural production,
thus promoting the development of agriculture. Although
the higher parameter count of the model restricts its
deployment and application in resource-constrained
environments, the improved feature extraction and

implementation of advanced detection algorithms
significantly boost the effectiveness of small target detection,
overcoming the shortcomings of traditional methods in
identifying small targets. Future research must achieve the
lightweighting of the target detection model while
maintaining precision in detection, to acknowledge the
extensive utilization of target detection technology in
agriculture and to advance the progression of precision
agriculture.

REFERENCES
[1] Curtis T, Halford NG. Food security: the challenge of increasing

wheat yield and the importance of not compromising food safety.
Annals of Applied Biology, 2014, 164(3):354-372.

[2] Zhou X, Zheng H, Xu X, et al. Predicting grain yield in rice using
multi-temporal vegetation indices from UAV-based multispectral and
digital imagery. ISPRS Journal of Photogrammetry and Remote
Sensing, 2017, 130: 246-255.

[3] Xu X, Li H, Yin F, et al. Wheat ear counting using K-means clustering
segmentation and convolutional neural network. PlantMethods, 2020,
16: 1-13.

[4] Tian H, Wang T, Liu Y, et al. Computer vision technology in
agricultural automation —a review. Information Processing in
Agriculture, 2019, 7(1): 1-19.

[5] Sadeghi-Tehran P, Virlet N, Ampe E, et al. DeepCount: in-field
automatic quantification of wheat spikes using simple linear iterative
clustering and deep convolutional neural networks. Frontiers in Plant
Science, 2019, 10:1176.

[6] He H, Li Z, Tian G, et al. Towards accurate dense pedestrian detection
via occlusion-prediction aware label assignment and hierarchical-
NMS. Pattern Recognition Letters, 2023, 174: 78-84.

[7] Fu B, Li W, Sun Y, et al. Correlated NMS: establishing correlations
between dense predictions of remote sensing images. IEEE
International Geoscience and Remote Sensing Symposium. IEEE,
2023: 6153-6156.

[8] Wang X, Xiao T, Jiang Y, et al. Repulsion loss: Detecting pedestrians
in a crowd. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018: 7774-7783.

[9] Du J, Liu L, Li R, et al. Towards densely clustered tiny pest detection
in the wild environment. Neurocomputing, 2022, 490: 400-412.

[10] Shorten C, Khoshgoftaar T M. A survey on image data augmentation
for deep learning. Journal of Big Data, 2019, 6(1): 1-48.

IAENG International Journal of Computer Science

Volume 52, Issue 3, March 2025, Pages 705-719

 
______________________________________________________________________________________ 



[11] Liu X, Li G, Chen W, et al. Detection of dense Citrus fruits by
combining coordinated attention and cross-scale connection with
weighted feature fusion. Applied Sciences, 2022, 12(13): 6600.

[12] Hou Q, Zhou D, Feng J. Coordinate Attention for Efficient Mobile
Network Design. 2021, 10.48550/arXiv.2103.02907.

[13] Tan M, Pang R, Le QV. EfficientDet: Scalable and efficient object
detection. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 2020.

[14] Wen X, Yao Y, Cai Y, et al. A Lightweight ST-YOLO based model
for detection of tea bud in unstructured natural environments. IAENG
International Journal of Applied Mathematics, vol. 54, no. 3, pp
342-349, 2024.

[15] Li L, Hassan M A, Yang S, et al. Development of image-based wheat
spike counter through a Faster R-CNN algorithm and application for
genetic studies. The Crop Journal, 2022, 10(5): 1303-1311.

[16] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural
information processing systems, 2015, 28: 91-99.

[17] Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: A survey.
Proceedings of the IEEE, 2023, 111(3): 257-276.

[18] Wen C, Wu J, Chen H, et al. Wheat spike detection and counting in
the field based on SpikeRetinaNet. Frontiers in Plant Science, 2022,
13: 821717.

[19] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object
detection. Proceedings of the IEEE international conference on
computer vision. 2017: 2980-2988.

[20] Law H, Deng J. Cornernet: Detecting objects as paired keypoints.
Proceedings of the European conference on computer vision (ECCV).
2018: 734-750.

[21] Wang M, Sun K, Guo A. Wheat ear detection using anchor-free
ObjectBoxmodel with attention mechanism. Signal, Image and Video
Processing, 2023, 17(7): 3425-3432.

[22] Zand M, Etemad A, Greenspan M. Objectbox: From centers to boxes
for anchor-free object detection. European Conference on Computer
Vision, 2022: 390-406.

[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need.
Advances in neural information processing systems, 2017, 30.

[24] Zhou Q, Huang Z, Zheng S, et al. A wheat spike detection method
based on Transformer. Frontiers in Plant Science, 2022, 13: 1023924.

[25] Zhao Y, Lv W, Xu S, et al. Detrs beat yolos on real-time object
detection[J]. arXiv preprint arXiv:2304.08069, 2023.

[26] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection
with transformers. European conference on computer vision, 2020:
213-229.

[27] Sunkara R, Luo T. No more strided convolutions or pooling: A new
CNN building block for low-resolution images and small objects.
Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2022: 443-459.

[28] Wu T, Tang S, Zhang R, et al. Cgnet: A light-weight context guided
network for semantic segmentation. IEEE Transactions on Image
Processing, 2020, 30: 1169-1179.

[29] Zhang P, Lo E, Lu B. High performance depthwise and pointwise
convolutions on mobile devices. Proceedings of the AAAI
Conference on Artificial Intelligence. 2020, 34(04): 6795-6802.

[30] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over
union: A metric and a loss for bounding box regression. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019: 658-666.

[31] David E, Serouart M, Smith D, et al. Global wheat head dataset 2021:
more diversity to improve the benchmarking of wheat head
localization methods. arXiv preprint arXiv:2105.07660, 2021.

[32] Kong T, Sun F, Liu H, et al. Foveabox: Beyound anchor-based object
detection. IEEE Transactions on Image Processing, 2020, 29:
7389-7398.

[33] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430, 2021.

[34] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision
transformer using shifted windows. Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021: 10012-10022.

[35] Wang W, Xie E, Li X, et al. Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021:
568-578

IAENG International Journal of Computer Science

Volume 52, Issue 3, March 2025, Pages 705-719

 
______________________________________________________________________________________ 


	I.INTRODUCTION
	II.METHODS
	A.Feature Extraction Network
	B.Feature Fusion Network
	C.Decoder
	D.Loss

	III.RESULTS AND ANALYSIS
	A.Dataset
	B. Experimental setup and model optimization strateg
	C.Evaluation metrics
	D.Ablation experiment
	E.Comparative experiments

	IV.CONCLUSION
	REFERENCES



