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Abstract—The type-2 picture fuzzy set represents an exten-
sion of Cuong’s picture fuzzy set, where the aggregation opera-
tor is pivotal in aggregating the type-2 picture fuzzy information
provided by decision makers. The Heronian mean not only takes
into account the interrelationships among attribute values, but
also considers the correlation between input arguments and
themselves. Therefore, in order to aggregate type-2 picture
fuzzy information more effectively, we put forward the Hero-
nian mean under the type-2 picture fuzzy environment with
the help of operations on type-2 picture fuzzy numbers. In this
paper, the geometric Heronian mean operator in the classical
category is extended to the type-2 picture fuzzy geometric
Heronian mean aggregation operator and the type-2 picture
fuzzy weighted geometric Heronian mean operator. Various
fundamental properties of these operators, such as idempotency,
monotonicity, and boundedness, are investigated. Additionally,
a novel multiple attribute decision-making approach based on
the type-2 picture fuzzy weighted geometric Heronian mean
operator is introduced. Finally, an illustrative example of
evaluating and selecting the best financial products to reduce
risks for risk reduction in the type-2 picture fuzzy environment
is given to demonstrate the usefulness and effectiveness of the
developed method. After that, the comparative analysis with
other techniques is utilized to demonstrate the consistency and
superiority of the recommended approach.

Index Terms—Tyep-2 picture fuzzy set, Aggregation operator,
Heronian mean operator, MADM.

I. INTRODUCTION

THE multiple attribute decision making (MADM) tech-
nology is a complex decision-making process that eval-

uates and selects an optimal and reliable scheme based on
specific criteria or attributes. During the MADM process, de-
cision makers need to analyze and evaluate different schemes
according to their individual preferences, so as to choose the
most appropriate option. However, the MADM process often
encounters many complexities and challenges, with a major
problem being the presence of incomplete and redundant
information. Particularly when dealing with human opinions
and subjective judgments, this uncertainty becomes more
pronounced. Decision makers may have to navigate through
vague, uncertain, and even conflicting information to arrive
at the most favorable decision. To tackle the ambiguity and
uncertainty inherent in human opinions, Zadeh introduced the
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concept of fuzzy sets [1]. In the fields of artificial intelligence
and data processing, fuzzy sets serve as a crucial mathe-
matical tool for handling cases with unclear or ambiguous
boundaries. Essentially, fuzzy sets allow the membership of
elements to a set with different degrees, rather than the binary
inclusion of traditional set theory. This methodology proves
particularly useful for dealing with inaccurate and uncertain
information, such as human language or opinions.

However, in many real-world applications, it is also neces-
sary to consider the degree of non-membership, which quan-
tifies the extent to which an element does not belong to a set.
To address this, Atanassov [2] proposed intuitionsitic fuzzy
sets by introducing a second parameter, the non-membership
degree, denoted as ν(x), which also ranges from 0 to 1.
As an extension of traditional fuzzy sets, the intuitionistic
fuzzy set defines membership and non-membership degrees
for each element in the universe of discourse, such that
for any element x, 0 ≤ µ(x) + ν(x) ≤ 1. The difference
1 − µ(x) − ν(x) represents a measure of uncertainty or
hesitancy about an element’s membership in the set, often
denoted as π(x). This hesitancy index captures the ambiguity
or lack of knowledge in the available information about the
element. Intuitionistic fuzzy sets have been applied in various
fields, such as decision making [3], [4], pattern recognition
[5], and medical diagnosis [6], offering a more nuanced
representation of uncertainty and vagueness compared to
traditional fuzzy sets.

Traditional fuzzy sets and intuitionsitic fuzzy sets pri-
marily consider membership and non-membership degrees,
neglecting the significance of neutrality in various decision-
making contexts, such as medical diagnosis, personnel se-
lection, and voting. In order to address limitations of fuzzy
sets and intuitionistic fuzzy sets, Cuong [7] introduced a
new generalization of fuzzy sets called picture fuzzy sets.
In a picture fuzzy set, each element x is associated with
three degrees: membership µ(x), non-membership ν(x), and
neutrality η(x), all of which lie within the interval [0, 1]. The
sum of these degrees is constrained to be less than or equal to
1 (µ(x)+ν(x)+η(x) ≤ 1). This triadic representation allows
picture fuzzy sets to capture more nuanced information,
accommodating not only affirmative and negative stances
but also neutral positions that are often present in real-
world contexts. Basic operations, such as union, intersection,
and complement, have been defined for picture fuzzy sets
to broaden their applicability in various analytical contexts.
Consequently, the versatility and expressiveness of picture
fuzzy sets have attracted considerable attention from re-
searchers across various disciplines, leading to a prolifera-
tion of studies exploring their theoretical foundations and
practical applications. The capacity of picture fuzzy sets to
represent neutral attitudes, alongside affirmative and negative
stances, makes them particularly well-suited for handling
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complex decision-making problems that inherently involve
such nuances. By proposing two correlation coefficients,
Singh [8] enabled the analysis of the strength of association
between different picture fuzzy sets, which is crucial in
many decision making contexts. Similarly, the work of Ganie
et al. [9] further refined two new correlation coefficients
for picture fuzzy sets receiving their values in the closed
interval [−1, 1] to express the nature the nature of correlation
more appropriately. Moreover, the research by He and Wang
in 2023 demonstrates the practical applicability of picture
fuzzy sets in evaluating new energy vehicles based on online
reviews [10]. By leveraging the picture fuzzy number oper-
ation law proposed by Wang et al. in 2018 [11], they were
able to develop an evaluation analysis method that accounts
for the complexity and diversity of opinions expressed in
online reviews. This work underscores the potential of picture
fuzzy sets in extracting valuable insights from large and
heterogeneous datasets, which is crucial in today’s data-
driven world. Collectively, these research efforts have sig-
nificantly expanded the scope and impact of picture fuzzy
sets. Traditional distances between fuzzy sets often have
limitations such as not meeting the axiomatic definition of
distance or producing counter-intuitive results, to overcome
these limitations, Luo and Zhang [12] gave a new distance
between picture fuzzy sets by aggregating three-dimensional
divergence. The proposed distance measure satisfies the
axiomatic definition of distance, ensuring that it behaves as
expected in mathematical and logical terms. Additionally, it
overcomes the counter-intuitive defects of some traditional
distance measures, producing more intuitive and meaningful
results. Chitra and Prabakaran [13] present an approach to
order the q̃-rung picture fuzzy numbers, and further deduced
q̃-rung picture fuzzy ordered Frank weighted arithmetic and
geometric accumulation operators. These research results not
only deepen our theoretical understanding of picture fuzzy
sets, but also demonstrate their practical usefulness in a
wide range of domains, including medical diagnosis [14],
personnel selection [15], and many others [16]. As research
in this area continues to evolve, we can expect to see more
innovative applications of picture fuzzy sets, which will help
us better cope with the complexity and uncertainty of the
real world.

In the voting model, the presence of invalid votes or
preferences is often an important factor that requires separate
consideration from acceptance or rejection. Invalid votes may
indicate errors in the voting process, voter misunderstanding,
or other factors that affect the validity of the vote. Cuong’s
picture fuzzy set (or type-1 picture fuzzy sets) fails to
capture this distinction by lumping invalid votes into the
refusal membership degree, potentially leading to biased or
inaccurate decision outcomes. To address this limitation,
Yang [17] proposed the concept of refined picture fuzzy
sets, referred to as type-2 picture fuzzy sets, which explicitly
model the “invalid” degree as a separate dimension. By
incorporating the invalid membership degree, type-2 picture
fuzzy sets provide a more comprehensive framework for
addressing decision making problems in voting models.

An aggregation operator is a mathematical function or
a set of rules that are used to combine multiple values
or evaluations into a single value or result. In the context
of multi-attribute decision making, aggregation operators

play a crucial role in combining the performance scores
or evaluations of different attributes for various alternatives.
The choice of an appropriate aggregation operator is impor-
tant because it can significantly impact the final decision
outcome. Different aggregation operators may emphasize
different aspects of the evaluations and may result in different
rankings or choices of alternatives. In recent years, the field
of aggregation operators has seen a significant growth in
research, with various types of aggregation operators being
proposed and applied in diverse domains. Picture fuzzy sets,
including both type-1 and type-2 picture fuzzy sets, offer
a more nuanced and flexible way to represent uncertain
and vague information compared to traditional fuzzy sets.
However, the aggregation of picture fuzzy information is
more complex and requires specialized aggregation operators
([18], [19], [20]).

Motivated by the concept of geometric aggregation oper-
ators for type-1 picture fuzzy numbers [21], Yang and Li
extended this idea to type-2 picture fuzzy sets by defining
new operations and proposing a series of arithmetic aggrega-
tion operators specifically tailored to this type of fuzzy sets
[22]. The traditional aggregation operators used in type-1
picture fuzzy multi-attribute decision making methods often
fail to capture the complex relationships between multiple
attributes. This limitation can lead to suboptimal decision
results because important interactions and dependencies be-
tween attributes are overlooked. Heronic mean provides a
more sophisticated and comprehensive approach to aggre-
gating situational fuzzy information by incorporating the
correlation between input arguments and their relationships.
This property makes it particularly suitable for decision
making scenarios where the relationships between attributes
are important. The extension of the geometric Heronian
mean operator to the type-2 picture fuzzy environment is
a significant advancement in the field of multi-attribute deci-
sion making, especially for handling complex and uncertain
information.

The geometric Heronian mean operator, which inherently
considers both the mutuality between attribute values and
the correlation between input arguments and themselves,
is well-suited for handling the inherent uncertainties and
ambiguities of type-2 picture fuzzy sets. By incorporating
the operations on type-2 picture fuzzy numbers, we have
developed type-2 picture fuzzy geometric Heronian mean
aggregation operators and the type-2 picture fuzzy weighted
geometric Heronian mean operators that can capture the
complex relationships between attributes and provide more
reliable decision making outcomes. The basic properties
of these operators, such as idempotency, monotonicity, and
boundedness are obtained. These properties ensure that the
aggregation results are consistent, predictable, and within a
reasonable range, which is crucial for making informed de-
cisions. The new multiple attribute decision making method
based on the proposed type-2 picture fuzzy weighted geomet-
ric Heronian mean operator provides a practical and effective
way to evaluate and choose the best financial products to
reduce risks in the type-2 picture fuzzy environment. By
comparing the performance of the proposed method with
existing methods, we have demonstrated that the proposed
method is able to handle the inherent uncertainties and
ambiguities of type-2 picture fuzzy sets more effectively and
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provide more reliable decision outcomes.

II. PRELIMINARIES

In the section, we recall some fundamental notions as-
sociated with picture fuzzy sets. By incorporating an extra
membership function to intuitionistic fuzzy sets, namely the
degree of neutral membership function, the type-1 picture
fuzzy set is obtained.

Definition 2.1: [7] Consider X as the universe of dis-
course. A type-1 picture fuzzy set A on the universe X ,
is characterized by objects in the form

A = {< x, µA(x), ηA(x), νA(x) > |x ∈ X},

where µA(x) ranges from 0 to 1 and is termed as the positive
membership degree of x, ηA(x) ranges from 0 to 1 and
represents the neutral membership degree, νA(x) lies within
[0, 1] and stands for the negative membership degree, and
they satisfy the following condition:

µA(x) + ηA(x) + νA(x) ≤ 1.

Yang proposed an enhanced version of Cuong’s picture
fuzzy sets by considering the “invalid” degree as a separate
membership function.

Definition 2.2: [17] Let X be the universe of discourse.
A type-2 picture fuzzy set, denoted as A in the universe X ,
can be represented as an object in the form:

A = {< x, µA(x), ηA(x), νA(x), ϑA(x) > |x ∈ X},

where µA(x) ∈ [0, 1] is termed as the neutral membership
degree of x, ηA(x) ∈ [0, 1] is called the neutral membership
degree, νA(x) ∈ [0, 1] is referred to as the negative mem-
bership degree, ϑA(x) ranges from 0 to 1 and is known as
the invalid membership degree. These membership degrees
satisfy

µA(x) + ηA(x) + νA(x) + ϑA(x) ≤ 1.
For any x ∈ X ,

ρA(x) = 1−
(
µA(x) + ηA(x) + νA(x) + ϑA(x)

)
could be called the refusal membership degree of x in A.
And

τA(x) = ηA(x) + ϑA(x)

could be called the degree of indefinitely determined mem-
bership of x in A.

If the invalid membership degree ϑA(x) is equal to 0 for
any x ∈ X , then the type-2 picture fuzzy set is reduced to a
type-1 picture fuzzy set. Thus, the type-2 picture fuzzy set
can be viewed as an extension or generalization of the type-1
picture fuzzy set.

The quadruplet α = (µα, ηα, να, ϑα) is commonly re-
ferred as a type-2 picture fuzzy number for convenience.
It is required that µα, ηα, να, ϑα ∈ [0, 1] and that their sum
does not exceed 1.

Definition 2.3: [22] Let α = (µα, ηα, να, ϑα) represent a
type-2 picture fuzzy number.

1) The score function S of a type-2 picture fuzzy number,
which quantifies the degree of fuzziness, is expressed
as:

S(α) = µα − να.

2) The accuracy function H of a type-2 picture fuzzy
number, measures the precision of the fuzzy number
and is defined by:

H(α) = µα + ηα + να.

3) The participation function P reflects the overall in-
volvement of the fuzzy number and is given by:

P (α) = µα + ηα + να + ϑα.

In the context of type-2 picture fuzzy numbers, a robust
comparison approach is indispensable for establishing rank-
ings and facilitating decision-making processes. Based on
score functions, accuracy functions, and participation func-
tions, we provide a comprehensive framework for evaluating
and comparing these complex fuzzy numbers.

Definition 2.4: [22] For any two type-2 picture fuzzy
numbers α and β,

1) If S(α) < S(β), then β is considered superior to α,
which we denote as α < β.

2) If S(α) = S(β),

a) H(α) < H(β), then α < β.
b) H(α) = H(β),

i) P (α) < P (β), then α < β.
ii) P (α) = P (β), then α = β.

Several operational rules for type-2 picture fuzzy numbers
are provided as follows.

Definition 2.5: Ler α = (µα, ηα, να, ϑα) and β =
(µβ , ηβ , νβ , ϑβ) be any two type-2 picture fuzzy numbers,
and λ > 0.

1) The complement αc of α is defined as: αc =
(να, ηα, µα, ϑα);

2) The partial order relation α ≤p β is established if and
only if the conditions µα ≤ µβ , ηα ≤ ηβ , να ≥ νβ and
ϑα ≤ ϑβ are simultaneously satisfied;

3) α⊕ β =


1− (1− µα)(1− µβ),

ηαηβ ,

νανβ ,

(ηα + ϑα)(ηβ + ϑβ)− ηαηβ



=


1− (1− µα)(1− µβ),

ηαηβ ,

νανβ ,

τατβ − ηαηβ

 ;

4) α⊗ β =


µαµβ

ηαηβ ,

1− (1− να)(1− νβ),

(ηα + ϑα)(ηβ + ϑβ)− ηαηβ



=


µαµβ ,

ηαηβ ,

1− (1− να)(1− νβ),

τατβ − ηαηβ

 ;

5) λα =


1− (1− µα)

λ

ηλα,

νλα,

(ηα + ϑα)
λ − ηλα

 =


1− (1− µα)

λ

ηλα,

νλα,

τλα − ηλα

 ;
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6) αλ =


µλ
α,

ηλα,

1− (1− να)
λ,

(ηα + ϑα)
λ − ηλα

 =


µλ
α,

ηλα,

1− (1− να)
λ,

τλα − ηλα

 .

Theorem 2.6: Let α = (µα, ηα, να, ϑα) and β =
(µβ , ηβ , νβ , ϑβ) be two type-2 picture fuzzy numbers and
λ, λ1, λ2 > 0. Then

1) α⊕ β = β ⊕ α,
2) α⊗ β = β ⊗ α,
3) λα⊕ λβ = λ(α⊕ β),
4) λ1α⊕ λ2α = (λ1 + λ2)α,
5) λ1(λ2α) = (λ1λ2)α,
6) (αλ1)λ2 = αλ1λ2 .

Proof: 1) and 2) are obvious.
3) According to Definition 2.5, we get

λα =


1− (1− µα)

λ

ηλα,

νλα,

τλα − ηλα

 , λβ =


1− (1− µβ)

λ

ηβα,

νλβ ,

τλβ − ηλβ


and

α⊕ β =


1− (1− µα)(1− µβ),

ηαηβ ,

νανβ ,

(ηα + ϑα)(ηβ + ϑβ)− ηαηβ

 .

Thus, we can obtain

λα⊕ λβ =


1− (1− µα)

λ(1− µβ)
λ

ηλαη
λ
β ,

νλαν
λ
β ,

τλατ
λ
β − ηλαη

λ
β ,

 = λ(α⊕ β).

4) First of all, we have

λ1α =


1− (1− µα)

λ1

ηλ1
α ,

νλ1
α ,

τλ1
α − ηλ1

α

 , λ2α =


1− (1− µα)

λ2

ηλ2
α ,

νλ2
α ,

τλ2
α − ηλ2

α

 ,

then by the definition of ⊕, we get that

λ1α⊕ λ2α =


1− (1− µα)

λ1+λ2

ηλ1+λ2
α ,

νλ1+λ2
α ,

τλ1+λ2
α − ηλ1+λ2

α

 = (λ1 + λ2)α.

5) It is easy to get that λ2α =


1− (1− µα)

λ2

ηλ2
α ,

νλ2
α ,

τλ2
α − ηλ2

α

 . And

so, λ1(λ2α) =


1− (1− µα)

λ1λ2

ηλ1λ2
α ,

νλ1λ2
α ,

τλ1λ2
α − ηλ1λ2

α

 = (λ1λ2)α.

6) Since αλ1 =


µλ1
α ,

ηλ1
α ,

1− (1− να)
λ1 ,

τλ1
α − ηλ1

α

, then we have

(αλ1)λ2 =


µλ1λ2
α ,

ηλ1λ2
α ,

1− (1− να)
λ1λ2 ,

τλ1λ2
α − ηλ1λ2

α

 = (αλ1λ2).

Definition 2.7: [23] Let xi (i = 1, 2, · · · , n) be a set
of non-negative real numbers and p, q be non-negative real
numbers. Then the geometric Heronian mean between xi is
mathematically calculated using the following formula:

HM(x1, x2, · · · , xn) =
1

p+ q

( n∏
i=1,j=i

(pxi + qxj)
2

n(n+1)

)
.

III. HERONIAN MEAN AGGREGATION OPERATORS
BASED ON TYPE-2 PICTURE FUZZY SETS

In this section, we introduce the notions of type-2 picture
fuzzy geometric Heronian mean aggregation operators and
type-2 picture fuzzy weighted geometric Heronian mean
operators, and study some fundamental properties associated
with them.

Definition 3.1: Let {αi}ni=1 be a set of type-2 picture
fuzzy numbers, with p, q being non-negative real numbers
that do not both equal zero simultaneously. If

T2HM
(
α1, α2, · · · , αn

)
=

1

p+ q

( n⊗
i=1,j=i

(pαi ⊕ qαj)
2

n(n+1)

)
then T2HM is called a type-2 picture fuzzy geometric
Heronian mean aggregation operator.

Based on the operations of type-2 picture fuzzy numbers
in Definition 2.5, we can derive Theorem 3.2.

Theorem 3.2: Given a set of type-2 picture fuzzy
numbers αi = (µαi

, ηαi
, ναi

, ϑαi
) (i = 1, 2, · · · , n),

the result obtained through the application of the type-
2 picture fuzzy geometric Heronian mean aggregation
operator is also a type-2 picture fuzzy number. Specifically,
the aggregated value has the following characteristics:
T2HM

(
α1, α2, · · · , αn

)

=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi)

p(1− µαj )
q
) 2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q)


.

Proof: By the operational laws for type-2 picture fuzzy
numbers, we have

pαi =


1− (1− µαi)

p,

ηpαi
,

νpαi
,

τpαi
− ηpαi

 ,
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and

qαj =


1− (1− µαj

)q

ηqαj
,

νqαj
,

τpαj
− ηpαj

 .

Then

pαi ⊕ qαj =


1− (1− µαi

)p(1− µαj
)q,

ηpαi
ηqαj

,

νpαi
νqαj

,

τpαi
τ qαj

− ηpαi
ηqαj

 ,

and so

(pαi ⊕ qαj)
2

n(n+1)

=



(
1− (1− µαi)

p(1− µαj )
q
) 2

n(n+1)

,

(ηpαi
ηqαj

)
2

n(n+1) ,

1− (1− νpαi
νqαj

)
2

n(n+1) ,

(τpαi
τ qαj

)
2

n(n+1) − (ηpαi
ηqαj

)
2

n(n+1)

 ,

n⊗
i=1,j=i

(pαi ⊕ qαj)
2

n(n+1)

=



n∏
i=1,j=i

(
1− (1− µαi

)p(1− µαj
)q
) 2

n(n+1)

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1) ,

1−
n∏

i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1) ,

n∏
i=1,j=i

(τpαi
τ qαj

)
2

n(n+1) −
n∏

i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)


.

Then we get that
T2HM(α1, α2, · · · , αn)

= 1
p+q

(⊗n
i=1,j=i(pαi ⊕ qαj)

2
n(n+1)

)

=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi

)p(1− µαj
)q
) 2

n(n+1)

)) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q)


,

which completes the proof.
Theorem 3.3: (Idempotency) Consider a set of type-2

picture fuzzy numbers {αi}ni=1 such that all elements are
identical, i.e., α1 = α2 = · · · = αn = α = (µα, ηα, να, ϑα),
then

T2HM
(
α1, α2, · · · , αn

)
= α.

Proof: By Theorem 3.2, we can conclude that
T2HM

(
α1, α2, · · · , αn

)

=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi

)p(1− µαj
)q
) 2

n(n+1)

)) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q)


,

Given that α1 = α2 = · · · = αn = α = (µα, ηα, να, ϑα),
it follows that µα1 = µα2 = · · · = µαn = µα, and so

1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi)

p(1− µαj )
q
) 2

n(n+1)

) 1
p+q

= 1−

(
1−

((
1− (1− µα)

p+q
)n(n+1)

2

) 2
n(n+1)

) 1
p+q

= 1−

(
(1− µα)

p+q

) 1
p+q

= µα.

Similarly,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) = ηα,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

= να,

and
n∏

i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) = ϑα.

Hence, T2HM
(
α1, α2, · · · , αn

)
= α.

Theorem 3.4: (Monotonicity) Let αi (i = 1, 2, · · · , n)
and βi(i = 1, 2, · · · , n) be collections of type-2 picture fuzzy
numbers. If αi ≤p βi for all i, then

T2HM
(
α1, α2, · · · , αn

)
≤ T2HM

(
β1, β2, · · · , βn

)
.

Proof: To facilitate our discussion, according to The-
orem 3.2, we set α∗ = T2HM(α1, α2, · · · , αn) and β∗ =
T2HM(β1, β2, · · · , βn). Then

α∗ = (µα∗ , ηα∗ , να∗ , ϑα∗) = T2HM(α1, α2, · · · , αn)

=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi

)p(1− µαj
)q
) 2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q)


and

β∗ = (µβ∗ , ηβ∗ , νβ∗ , ϑβ∗) = T2HM(α1, α2, · · · , αn)
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=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µβi

)p(1− µβj
)q
) 2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(ηpβi
ηqβj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpβi
νqβj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpβi

τ qβj

) 2
n(n+1)(p+q) −

n∏
i=1,j=i

(ηpβi
ηqβj

)
2

n(n+1)(p+q)


.

Since αj ≤p βj for all j, that is, µαj
≤ µβ , ηαj

≤
ηβ , ναj ≥ νβ , ϑαj ≤ ϑβ , we have

1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi)

p(1− µαj )
q
) 2

n(n+1)

) 1
p+q

≤ 1−

(
1−

n∏
i=1,j=i

(
1− (1− µβi)

p(1− µβj )
q
) 2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
2

n(n+1)(p+q) ≤
n∏

i=1,j=i

(ηpβi
ηqβj

)
2

n(n+1)(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
2

n(n+1)

) 1
p+q

≥
(
1−

n∏
i=1,j=i

(1− νpβi
νqβj

)
2

n(n+1)

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) 2
n(n+1)(p+q) ≤

n∏
i=1,j=i

(
τpβi

τ qβj

) 2
n(n+1)(p+q)

.

That is, µα∗ ≤ µβ∗ , ηα∗ ≤ ηβ∗ , να∗ ≥ νβ∗ and ϑα∗ + ηα∗ ≤
ϑβ∗ + ηβ∗

Therefore, by the score function of type-2 picture fuzzy
numbers, we have S(α∗) ≤ S(β∗)

And we consider the following cases:
1) If S(α∗) < S(β∗), according to Definition 2.3, we

conclude that
α∗ < β∗.

2) If S(α∗) = S(β∗), then we get that

µα∗ = µβ∗ ,

and
να∗ = νβ∗ .

Observing that ηα∗ ≤ ηβ∗ , we get that H(α∗) ≤
H(β∗) based on the accuracy function of type-2 picture
fuzzy numbers. Now we consider the following two
sub-cases:

a) If H(α∗) = H(β∗),then it follows that

α∗ < β∗.

b) If H(α∗) < H(β∗), then it follows that

ηα∗ = ηβ∗ .

Since ϑα∗+ηα∗ ≤ ϑβ∗+ηβ∗ , then ϑα∗ ≤ ϑβ∗ . By
the participation function of type-2 picture fuzzy
numbers, we get

P (α∗) ≤ P (β∗),

and so
α∗ ≤ β∗.

Based on the above comprehensive analysis, we can as-
certain that α∗ ≤ β∗, that is, T2HM

(
α1, α2, · · · , αn

)
≤

T2HM
(
β1, β2, · · · , βn

)
.

Theorem 3.5: (Boundedness) Given a collection of type-2
picture fuzzy numbers αj (j = 1, 2, · · · , n), we can define
two extreme type-2 picture fuzzy numbers

α+ =

(
max

j
{µαj},max

j
{ηαj},min

j
{ναj},max

j
{ϑαj

}
)
,

α− =

(
min
j

{µαj},min
j

{ηαj},max
j

{ναj},min
j

{ϑαj}
)
,

where α+ represents the “most positive” or “most optimistic”
view among the given type-2 picture fuzzy numbers, and α−

represents the “most negative” or “most pessimistic” view.
Then we have

α− ≤ T2HM
(
α1, α2, · · · , αn

)
≤ α+.

Proof: According to Definition 2.5, we get that α− ≤p

αj ≤p α+ for all j. By Theorem 3.3 and Theorem 3.4, we
obtain that

α− = T2HM
(
α−, α−, · · · , α−)

≤ T2HM
(
α1, α2, · · · , αn

)
≤ T2HM

(
α+, α+, · · · , α+

)
= α+.

Hence, the proof is completed.
Attribute weights are crucial in the aggregation of various

attributes during multi-attribute decision-making processes.
To account for the significance of the aggregated arguments
and inspired by the work in reference [24], we define a
type-2 picture fuzzy weighted geometric Heronian mean
aggregation operator as follows.

Definition 3.6: Let αi (i = 1, 2, · · · , n) be a collection
of type-2 picture fuzzy numbers and their corresponding
weights as (w1, w2, · · · , wn), where wi ∈ [0, 1] represents

the weight of the i-th attribute and
n∑

i=1

wi = 1. If

T2HMw

(
α1, α2, · · · , αn

)
=

1

p+ q

( n⊗
i=1,j=i

(
pαi ⊕ qαj

)wiwj
Λ

)
where Λ =

n∑
i=1,j=i

(wiwj), then T2HMw is called a type-2

picture fuzzy weighted geometric Heronian mean aggrega-
tion operator.

In particular, if w1 = w2 = · · · = wn = 1
n , then the

proposed type-2 picture fuzzy weighted geometric Heronian
mean aggregation operator is reduced to the proposed type-
2 picture fuzzy geometric Heronian mean aggregation op-
erator shown in Definition 3.1. The type-2 picture fuzzy
weighted geometric Heronian mean aggregation operator
can be applied in various multi-attribute decision-making
problems, where type-2 picture fuzzy numbers serve as tools
to capture the inherent uncertainty and variability of the
attributes. Incorporating weights allows decision makers to
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better reflect the relative importance of different attributes in
their evaluations.

Theorem 3.7: Let’s denote the set of type-2 picture fuzzy
numbers as αi = (µαi

, ηαi
, ναi

, ϑαi
) (i = 1, 2, · · · , n).

Then the aggregated value by using the type-2 picture fuzzy
weighted geometric Heronian mean aggregation operator is
also an type-2 picture fuzzy number, and
T2HMw

(
α1, α2, · · · , αn

)

=



1−

(
1−

n∏
i=1,j=i

(
1− (1− µαi

)p(1− µαj
)q
)wiwj

Λ

) 1
p+q

,

n∏
i=1,j=i

(ηpαi
ηqαj

)
wiwj

Λ(p+q) ,

(
1−

n∏
i=1,j=i

(1− νpαi
νqαj

)
wiwj

Λ

) 1
p+q

,

n∏
i=1,j=i

(
τpαi

τ qαj

) wiwj
Λ(p+q) −

n∏
i=1,j=i

(ηpαi
ηqαj

)
wiwj

Λ(p+q)


Proof: The proof of Theorem 3.7 is similar to that of

Theorem 3.2.
Next, we present several properties associated with the

type-2 picture fuzzy weighted geometric Heronian mean
aggregation operator. The proofs for these properties follow
a similar approach to those utilized for the type-2 picture
fuzzy geometric Heronian mean aggregation operator.

Theorem 3.8: Consider a collection of type-2 picture
fuzzy numbers αj (j = 1, 2, · · · , n) with the weight vector

w = (w1, w2, · · · , wn) satisfying wi ∈ [0, 1] and
n∑

i=1

wi = 1,

we have:
(1) (Idempotency) If all type-2 picture fuzzy numbers

α1, α2, · · · , αn are identical and equal to type-2 pic-
ture fuzzy number α = (µα, ηα, να, ϑα), then

T2HMw

(
α1, α2, · · · , αn

)
= α.

(2) (Monotonicity) Suppose βi(i = 1, 2, · · · , n) is another
collection of type-2 picture fuzzy numbers, if αj ≤p βj

for all j, then

T2HMw

(
α1, α2, · · · , αn

)
≤ T2HMw

(
β1, β2, · · · , βn

)
.

(3) (Boundedness) Define two extreme type-2 picture
fuzzy numbers α+ and α− as

α+ =

(
max

j
{µαj

},max
j

{ηαj
},min

j
{ναj

},max
j

{ϑαj
}
)
,

α− =

(
min
j

{µαj
},min

j
{ηαj

},max
j

{ναj
},min

j
{ϑαj

}
)
.

Then we have

α− ≤ T2HMw

(
α1, α2, · · · , αn

)
≤ α+.

IV. DECISION MAKING MODEL BASED ON TYPE-2
PICTURE FUZZY WEIGHTED GEOMETRIC HERONIAN

MEAN AGGREGATION OPERATOR

In this section, we use the decision-making method based
on the proposed type-2 picture fuzzy weighted geometric
Heronian mean aggregation operator to solve the decision-
making problem. The specific decision-making frame dia-
gram and procedures are described as Fig. 1.

Consider a collection of m alternatives denoted as
{Ai, A2, · · · , Am}, and a set of n attributes represented by
{G1, G2, · · · , Gn}. The weights assigned to these attributes

form a vector {w1, w2, · · · , wn}, where wj ∈ [0, 1] and
n∑

j=1

wj = 1.

When evaluating alternatives, decision makers are required
to utilize a type-2 picture fuzzy number, denoted as r̃ij =
(µij , ηij , νij , ϑij), to represent their preferences concerning
the attribute Gj of the alternative Ai according to specific
criteria. As a result, a type-2 picture fuzzy decision matrix
R̃ = (r̃ij)m×n is constructed.

The following steps outline the solution to the type-
2 picture fuzzy multi-attribute decision-making (MADM)
problem using a type-2 picture fuzzy weighted geometric
Heronian mean aggregation operator. The alternatives are
then ranked in descending order, and the optimal choice is
determined.

Step 1. The initial decision matrix R̃ should be normalized
to a new type-2 picture fuzzy decision matrix R = (rij)m×n.

In the context of a multi attribute decision making prob-
lem, there are generally two types of attributes: benefit type
criterion and the cost type criteria. To ensure uniformity
across all criteria, the following equation is employed to
transform cost type criteria to benefit type criteria:

rij = (µij , ηij , νij , ϑij) =

{
r̃ij , Gj ∈ I1,

r̃cij , Gj ∈ I2,
(IV.1)

where I1 and I2 represent the benefit type criteria and the
cost type criteria, respectively.

Step 2. Aggregate the evaluation information of each
attribute into the comprehensive evaluation value of each
alternative.

The decision expert or manager, who possesses exten-
sive experience in the respective field, assigns the weights
{w1, w2, · · · , wn} to the criteria.

For the alternatives Ai (i = 1, 2, · · · ,m), we utilize
the decision information provided in the normalized type-
2 picture fuzzy decision matrix R. We then select the values
of the parameters p and q, and apply the type-2 picture fuzzy
weighted geometric Heronian mean aggregation operator

T2HMw

(
ri1, ri2, · · · , rin

)
=

1

p+ q

( n⊗
j=1,k=j

(prij ⊕ qrik)
wiwj

Λ

) (IV.2)

to derive the overall preference values αi corresponding to
alternatives Ai.

Step 3. Calculate score values to explore appropriate
options or candidates.

According to Definition 2.3, we calculate the scores
S(αi) (i = 1, 2, · · · ,m) of the overall type-2 picture fuzzy
numbers αi (i = 1, 2, · · · ,m). These scores are utilized
to establish a ranking for all the alternatives Ai (i =
1, 2, · · · ,m). If the score values S(αi) and S(αj) are
identical, then we need to calculate the accuracy degrees
H(αi) and H(αj), respectively. Furthermore, if the accuracy
degrees H(αi) and H(αj) happen to be the same, then
the participation degrees P (αi) and P (αj) are needed to
calculate, respectively.

Step 4. Rank all the alternatives Ai (i = 1, 2, · · · ,m) in
a decreasing order and derive the priority of each alternative
Ai (i = 1, 2, · · · ,m) based on the score value S(αi). A
more considerable score value indicates a more favorable
alternative.
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Fig. 1: Frame Diagram for Multi-attribute Decision Making Algorithm.

V. NUMERICAL EXAMPLE OF FINANCIAL PRODUCTS
BASED ON TYPE-2 PICTURE FUZZY SETS

To confirm the viability and applicability of the sug-
gested decision framework, this section makes use of the
newly introduced decision making method based on the
type-2 picture fuzzy weighted geometric Heronian mean
aggregation operator for evaluating and selecting a suitable
financial product. Furthermore, to establish the reliability
and superiority of this framework, sensitivity analysis and
comparative studies are incorporated.

A. An Application Example

Financial products, as capital investment and management
plans tailored by commercial banks for specific target clien-
tele based on thorough analysis and research, have become
increasingly complex, particularly in the context of Internet
financing. These products, while offering diverse invest-
ment opportunities, also carry inherent risks and challenges.
Therefore, guiding investors in selecting optimal financial
products to reduce risks has become an urgent problem to
be solved. In the process of evaluating financial products,
decision makers often encounter evaluation indicators that are
uncertain and random, rendering precise quantitative analysis
using real numbers difficult. Traditional evaluation methods
may fall short in capturing the nuanced and complex nature
of these indicators. Type-2 picture fuzzy sets emerge as a
powerful tool to address this challenge. By allowing for the
representation of qualitative indicators with greater flexibility
and comprehensiveness, Type-2 picture fuzzy sets can better
handle the uncertainties and randomness inherent in financial
product evaluations. This capability stems from the ability of
type-2 picture fuzzy sets to encapsulate membership degrees
and their associated uncertainties, thereby providing a more
nuanced view of the evaluation process.

An investor wants to invest some money into a financial
product, where there are five possible financial products

A1, A2, A3, A4 and A5 as alternatives. To make a rational
decision, the investor solicited the expertise of a seasoned
professional in Internet finance to evaluate potential alter-
natives based on six key attributes: G1, G2, G3, G4, G5 and
G6. Here, G1 denotes the rate of return on investment,
G2 denotes the platform security analysis, G3 denotes the
product liquidity, G4 denotes the information transparency,
G5 denotes the product usability, G6 denotes the product
innovation strength.

Given the type-2 picture fuzzy decision matrix R̃ =
(r̃ij)5×6 that contains evaluation information for five alter-
natives A1, A2, A3, A4 and A5 under six factors Gi(i =
1, 2, · · · , 6) , where each rij is represented as a type-
2 picture fuzzy number, we can proceed with the aggre-
gation process using the weights provided. The weight
vector of the six attributes Gi(i = 1, 2, · · · , 6) is
(0.21, 0.18, 0.15, 0.17, 0.16, 0.13).

Here’s a summary of the approach we will apply to
evaluate the best alternative(s).

Step 1. Apply Eq. IV.1 to normalize the cost type attribute.
Since all attributes belong to the beneficial category, nor-
malization is unnecessary, so we get the normalized type-2
picture fuzzy decision matrix R = (rij)5×6 = R̃.

Step 2. Taking into account the data provided in Eq. IV.2
with the parameters set to p = q = 0.5, the aggregation
values αi (i = 1, 2, · · · , 5) are listed below:

α1 = T2HMw(r11, r12, · · · , r16)
= (0.4784, 0.1754, 0.1717, 0.1326),

α2 = T2HMw(r21, r22, · · · , r26)
= (0.3721, 0.1928, 0.1446, 0.1723),

α3 = T2HMw(r31, r32, · · · , r36)
= (0.4881, 0.1733, 0.1678, 0.1153),

α4 = T2HMw(r41, r42, · · · , r46)
= (0.5159, 0.1541, 0.1548, 0.1392),
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TABLE I: The Intuitionistic Fuzzy Decision Matrix

A1 A2 A3 A4 A5

G1 (0.54, 0.18, 0.13, 0.12) (0.23, 0.38, 0.11, 0.23) (0.52, 0.15, 0.17, 0.11) (0.64, 0.10, 0.12, 0.13) (0.58, 0.11, 0.18, 0.11)
G2 (0.42, 0.15, 0.18, 0.13) (0.38, 0.23, 0.13, 0.14) (0.45, 0.19, 0.20, 0.11) (0.52, 0.15, 0.15, 0.14) (0.57, 0.13, 0.14, 0.12)
G3 (0.48, 0.17, 0.21, 0.12) (0.31, 0.25, 0.15, 0.14) (0.48, 0.26, 0.13, 0.12) (0.54, 0.16, 0.18, 0.11) (0.52, 0.21, 0.13, 0.12)
G4 (0.51, 0.18, 0.15, 0.15) (0.47, 0.11, 0.23, 0.12) (0.53, 0.12, 0.14, 0.11) (0.45, 0.14, 0.16, 0.17) (0.55, 0.12, 0.15, 0.13)
G5 (0.55, 0.14, 0.14, 0.15) (0.43, 0.13, 0.15, 0.23) (0.45, 0.16, 0.24, 0.11) (0.51, 0.21, 0.14, 0.12) (0.36, 0.14, 0.31, 0.14)
G6 (0.33, 0.28, 0.27, 0.11) (0.51, 0.12, 0.11, 0.14) (0.49, 0.22, 0.12, 0.13) (0.37, 0.25, 0.21, 0.15) (0.51, 0.16, 0.18, 0.13)

α5 = T2HMw(r51, r52, · · · , r56)
= (0.5197, 0.1378, 0.1785, 0.1249).

Step 3. The scores S(αi) (i = 1, 2, · · · , 5) of the overall
type-2 picture fuzzy numbers αi (i = 1, 2, · · · , 5) are
calculated by Definition 2.3 as:

S(α1) = 0.3066,

S(α2) = 0.2275,

S(α3) = 0.3203,

S(α4) = 0.3611,

S(α5) = 0.3412.

Step 4. Rank all the alternatives and select the best one(s).
The ordering of the score values S(αi) (i = 1, 2, · · · , 5)

is

S(α4) > S(α5) > S(α3) > S(α1) > S(α2).

Thus, the ranking of alternatives Ai (i = 1, 2, · · · , 5) is

A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2,

where ≻ means “preferred to”. Thus, the best financial
product is A4.

B. Sensitive Analysis

In this section, we explore the impact of the parameters p
and q on the aggregation results when employing the type-
2 picture fuzzy weighted geometric Heron mean operator.
Consequently, we undertake a sensitivity analysis to assess
the influence of these generalized parameters on the ranking
outcomes from the previous example. In other words, we
assign various values to the parameters p and q to rank all
the options and to analyze how changes in these parameter
values affect the ordering results.

As shown in Table II, the ranking results for the schemes
remain relatively consistent despite variations in the values
of the parameters p and q.

Next, we fix the value of the parameter p = 0 and let q ∈
(0, 12]. The changes in scores for each scheme is recorded
and are illustrated in Figure 2.

From Fig. 2, it can be seen that when p = 0 and q ∈
(0, 12], the alternative A3 is the best financial product:

1) If p = 0 and q ∈ (0, 6.16], the ranking of alternatives
Ai (i = 1, 2, · · · , 5) is

A3 ≻ A4 ≻ A5 ≻ A1 ≻ A2;
2) If p = 0 and q ∈ [6.17, 12], the ranking of alternatives

Ai (i = 1, 2, · · · , 5) is
A3 ≻ A4 ≻ A1 ≻ A5 ≻ A2.

From Fig. 3, we can find that if q = 0 and
1) p ∈ (0, 3.76], the ranking of the four alternatives is

A4 ≻ A5 ≻ A1 ≻ A3 ≻ A2;
2) p ∈ [3.77, 6.56], the ranking of the four alternatives is

A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2;
3) p ∈ [6.57, 7.90], the ranking of the four alternatives is

A4 ≻ A3 ≻ A5 ≻ A1 ≻ A2.
4) p ∈ [7.91, 12], the ranking of the four alternatives is

A4 ≻ A3 ≻ A1 ≻ A5 ≻ A2.
As the parameters p and q vary, different scores are

obtained for the five alternatives. Figs. 4–8 provide a detailed
depiction of the scores for these alternatives, as calculated
using the type-2 picture fuzzy weighted geometric Heronian
mean aggregation operator.

In conclusion, it is evident that the score values change in
accordance with the change of p and q, demonstrating the
influence of the decision-maker’s choice of parameters on
the resulting scores. Therefore, during the decision making
process, the parameters can be appropriately chosen based
on the decision-maker’s risk preferences. The novel method
proposed in this paper can offer more flexible or reliable
decision-making resolutions. Moreover, the reasonable and
best alternative can be properly obtained on the basis of
the practical MADM problems, namely, the new method
can offer a powerful and effective mathematic tool for the
MADM under uncertainty.

C. Comparison Study
In this subsection, a comparative analysis is conducted

to validate the effectiveness of the proposed method. We
utilize specific existing operators to tackle and contrast the
previously discussed numerical example with the introduced
approach. To assess the invented techniques against existing
ones, we take into account several valuable and prominent
techniques that can enhance the value of the proposed
theory. Specifically, we consider existing techniques such
as the picture fuzzy Heronian mean aggregation operators
developed by Wei et al. [25], as well as type-2 picture fuzzy
weighted average operators [22]. To consider the data in
Table I, the comparative analysis is listed in Table III.

From Table III, it is evident that when the parameters
p and q are set to 0.5, the optimal scheme is achieved
through the method introduced in this paper, which aligns
with the scheme obtained by Wei et al.’s method [25] and
the approach based on type-2 picture fuzzy weighted average
operators [22]. However, as the parameters p and q change,
the schemes derived from the proposed method diverge from
those obtained by other methods. This divergence primarily
stems from the fact that both the proposed method and
the one in [25] consider the correlations between attributes,
whereas the method in [22] assumes that the attributes are in-
dependent of each other. Consequently, for MADM problems
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TABLE II: Sorting Results for Different Parameters p and q

p q S(α1) S(α2) S(α3) S(α4) S(α5) Ranking Values

0.5 0.5 0.3066 0.2275 0.3203 0.3611 0.3412 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

0.5 1 0.2945 0.2357 0.3176 0.3438 0.3240 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

1 0.5 0.3125 0.2117 0.3194 0.3731 0.3499 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

1 1 0.3021 0.2220 0.3176 0.3571 0.3348 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

1 2 0.2850 0.2256 0.3120 0.3371 0.3108 A4 ≻ A3 ≻ A5 ≻ A1 ≻ A2

2 1 0.3054 0.2023 0.3153 0.3660 0.3389 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

2 2 0.2909 0.2089 0.3113 0.3479 0.3180 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

2 3 0.2768 0.2074 0.3061 0.3340 0.2983 A4 ≻ A3 ≻ A5 ≻ A1 ≻ A2

3 2 0.2907 0.1940 0.3093 0.3508 0.3155 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

3 3 0.2781 0.1941 0.3049 0.3380 0.2978 A4 ≻ A3 ≻ A5 ≻ A1 ≻ A2

10 10 0.1955 0.1110 0.2707 0.2775 0.1824 A4 ≻ A3 ≻ A1 ≻ A5 ≻ A2
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Fig. 2: Scores of Alternatives (p = 0, q ∈ (0, 12])

TABLE III: Comparison of the Existing Methods with the Proposed Method

Methods Score Values Ranking Values

The proposed method (p = q = 0.5) 0.3066, 0.2275, 0.3203, 0.3611, 0.3412 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

Wei et al. [25] (p = q = 0.5) 0.8521, 0.8266, 0.8582, 0.8661, 0.8643 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

The proposed method (p = 0, q = 3) 0.2502, 0.2354, 0.3020, 0.2983, 0.2628 A3 ≻ A4 ≻ A5 ≻ A1 ≻ A2

Wei et al. [25] (p = 0, q = 3) 0.8553, 0.8548, 0.8679, 0.8625, 0.8660 A3 ≻ A5 ≻ A4 ≻ A1 ≻ A2

Type-2 picture fuzzy weighted average operators [22] 0.3144, 0.2442, 0.3247, 0.3687, 0.3515 A4 ≻ A5 ≻ A3 ≻ A1 ≻ A2

involving attribute correlations, the proposed method and the
one in [25] are more appropriate. Furthermore, a comparison
reveals that while the schemes from the proposed method and
[25] differ as parameters change, the outcomes of the method
presented here exhibit greater stability.

To sum up, the proposed methods are effective and feasible
and are sufficient to deal with practical MADM problems.

However, this is only a case study. It is important to recognize
that these findings are based on a single case study. This
implies that the observed stability of the method in this
particular instance does not necessarily indicate its superi-
ority over alternative methods in different scenarios. Indeed,
each method is tailored to specific contextual requirements
and may perform differently depending on the application
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Fig. 4: Scores of Alternative A1 (p ∈ (0, 10], q ∈ (0, 10])

environment.

VI. CONCLUSION

In this paper, we have broadened the scope of the geomet-
ric Heronian mean operator to the realm of type-2 picture
fuzzy sets, recognizing its inherent ability to consider both
the mutuality between attribute values and the correlation
between input arguments. This extension is particularly well-
suited for handling the inherent uncertainties and ambiguities
of type-2 picture fuzzy sets, which are common in complex

Fig. 5: Scores of Alternative A2 (p ∈ (0, 10], q ∈ (0, 10])

decision making scenarios. By integrating operations on
type-2 picture fuzzy numbers, we have developed type-2 pic-
ture fuzzy geometric Heronian mean aggregation operators
and type-2 picture fuzzy weighted geometric Heronian mean
operators. Furthermore, we have proposed a new multiple
attribute decision making method based on the type-2 picture
fuzzy weighted geometric Heronian mean operator. Through
a comparative analysis with existing methods, we have
demonstrated that the proposed method is able to handle the
inherent uncertainties and ambiguities of type-2 picture fuzzy
sets more effectively and provide more reliable decision
outcomes.

In summary, this research contributes to the advancement
of decision making methods in uncertain environments by
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Fig. 6: Scores of Alternative A3 (p ∈ (0, 10], q ∈ (0, 10])

Fig. 7: Scores of Alternative A4 (p ∈ (0, 10], q ∈ (0, 10])

developing and analyzing new aggregation operators based
on the geometric Heronian mean in the type-2 picture fuzzy
setting. The proposed method offers decision-makers a pow-
erful tool to navigate complex decision making scenarios and
make more informed choices. Future research can further ex-
plore the applications of these operators in other domains and
refine the method to handle even more complex uncertainties
and ambiguities.
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