
  

Abstract— Chaotic signals hold significant promise for secure 

communication due to their inherent noise-like properties and 

broad bandwidth. However, practical implementation challenges 

exist, particularly regarding synchronization under real-world 

conditions. This work explores the potential double-edged sword 

of machine learning algorithms in predicting chaotic signal 

parameters. While improved prediction accuracy can enhance 

synchronization, it might compromise the masking effect that 

bolsters security. Utilizing the well-understood Lorenz system as a 

testbed, this research investigates how machine learning impacts 

the predictability of chaotic signals. We explore the trade-off 

between achieving high-fidelity predictions for synchronization 

and maintaining the masking effect critical for secure 

communication. 

This study explores using machine learning to predict chaotic 

signals in the Lorenz system, impacting secure communication. 

Gaussian Process models effectively predict x and y signals, but not 

the z signal. This suggests the z signal's potential for more secure 

communication due to its resistance to prediction. The findings 

highlight the need for additional security measures in chaotic 

communication systems and pave the way for exploring more 

robust protocols. 

 
Index Terms— Chaotic Signals, Machine Learning Prediction, 

Lorenz System, Secure Communication, Gaussian Process (GP) 

Regression.   

  

I.  INTRODUCTION 

HAOTIC signals present significant potential for 

applications in telecommunications and secure 

communication, owing to their broad and continuous spectrum 

[1-4]. This distinctive characteristic facilitates the transmission 

of information across a wide range of frequencies, making 

chaotic signals particularly advantageous for high-data-rate 

scenarios such as fiber-optic communications and congested 

wireless networks [5-6], [22-23]. In chaotic systems, the 

transmitted message is effectively concealed within the 

complex and unpredictable patterns of the signal [7]. The noise-

like properties inherent in chaotic signals pose considerable 

challenges for eavesdroppers attempting to intercept and 

decode the transmitted information, thereby enhancing the 

security of the communication system. 

 
  

Additionally, the broad bandwidth associated with chaotic 

signals can be utilized for spread-spectrum communication, 

which provides an efficient method for transmitting data across 

a wide frequency range. This dual benefit not only strengthens 

the security of the system but also improves the overall 

efficiency and reliability of communication networks. By 

dispersing the signal over a wider frequency spectrum than the 

original data, the approach makes it more difficult for potential 

jammers to disrupt the communication, thereby further 

safeguarding the transmission. Consequently, this technique 

significantly contributes to securing the communication 

channel, ensuring that transmitted data remains protected from 

unauthorized access and interference [7-8]. 

Nevertheless, it is essential to acknowledge that the 

integration of chaotic signals into telecommunications and 

secure communication systems remains a developing field. 

Despite their notable advantages, several practical challenges 

must be addressed, particularly with regard to implementation 

and the maintenance of synchronization under real-world 

conditions [10-12], [24]. These challenges need to be carefully 

considered to fully realize the potential of chaotic signal-based 

communication systems. 

A. The Purpose and Significance of Our Research 

This study investigates the feasibility of applying a machine 

learning algorithm to predict the dynamics of chaotic systems, 

particularly in scenarios with limited data points. The goal is to 

demonstrate that accurate short-term predictions can be 

achieved, even for systems known for their sensitivity to initial 

conditions and long-term unpredictability 

The significance of this research can be summarized in the 

following points: 

• Improved Forecasting: Even partial knowledge of a chaotic 

system can enhance the accuracy of predictions in fields like 

meteorology and climate science, where small improvements 

can have substantial impacts. 

• Enhanced Control: In engineering and robotics, predicting 

chaotic behavior can lead to better control strategies, 

improving system stability and performance. 

• Risk Management: In financial markets, understanding 

chaotic patterns can help in developing strategies to mitigate 

risks and capitalize on market opportunities. 

• Data Compression: Recognizing patterns in chaotic data can 

lead to more efficient data compression techniques, saving 

storage space and transmission bandwidth. 
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• Security Applications: In secure communications, predicting 

chaotic signals can improve encryption methods, making it 

harder for unauthorized parties to intercept and decode 

messages. 

• Scientific Discovery: Analyzing chaotic systems can lead to 

new scientific discoveries and a deeper understanding of 

complex natural phenomena. 

 

On the other hand, predicting chaotic signal parameters can 

be a double-edged sword [13]. While high-fidelity predictions 

can enhance synchronization, they may also reduce masking 

effectiveness, potentially compromising system security. This 

highlights the crucial importance of our research in wireless 

chaotic communication systems. 

B. System under test 

Recognizing the need for a complex and well-understood 

chaotic system, we selected the Lorenz system. Governed by 

three ordinary differential equations and demonstrating diverse 

chaotic behaviors depending on parameter values and initial 

conditions, this system served as an ideal testbed for our 

machine learning-based investigation. 

The Lorenz system stands out for its simplicity and rich 

chaotic behavior. It is easier to analyze and visualize with only 

three equations than more complex systems. Despite its 

simplicity, it displays key characteristics of chaos, such as 

extreme sensitivity to initial conditions and long-term 

unpredictability. Furthermore, extensive research has made the 

Lorenz system well-understood, making it valuable for both 

theoretical studies and practical applications. Its 

straightforward nature also allows easy implementation in both 

hardware and software environments.  

II. DATA PREPARATION 

A Simulink model was developed to numerically solve the 

Lorenz system of differential equations as shown in Fig. 1. The 

Lorenz system is mathematically represented as follows [14]: 

 
𝑑𝑥

𝑑𝑡
= 𝐾(𝑐1𝑦 − 𝑐1𝑥)  (1)                                                

                          
𝑑𝑦

𝑑𝑡
= 𝐾(𝑐2𝑥 − 𝑦 − 𝑥𝑧)                                (2) 

     
𝑑𝑧

𝑑𝑡
= 𝐾(𝑥𝑦 − 𝑐3𝑧)                                      (3) 

where c1 , c2 and  c3 are arbitrary constants with the values 

10, 28, and 2.666, respectively. K represents the time scaling 

factor of the Lorenz system which is taken here as 4000. 

Despite originating from the same chaotic system, the signals 

x, y, and z display unique dynamical characteristics and 

statistical properties, influenced by their individual 

contributions to the system's evolution. When plotted as a time 

series, all three signals, x,y, and z, show a seemingly random 

and unpredictable pattern, characteristic of chaotic systems, as 

shown in Fig. 2. However, their specific patterns and 

fluctuations can differ. x and y might exhibit more frequent and 

rapid oscillations, while z might show smoother variations due 

to its additional coupling term involving x. 

Statistical analysis of the three signals indicates similar 

characteristics, including mean, variance, and autocorrelation. 

This consistency is a hallmark of chaos. Furthermore, the power 

spectrum density, presented in Fig. 3, demonstrates the 

broadband characteristic shared by all three signals [14], and 

Fig. 4 shows the attractor butterfly's chaotic pattern in 3D. 

 
Fig. 1.  Simulink model to Numerically simulate for Lorenz chaotic system, K (time scaling) =4000, c1 , c2, and  c3 are arbitrary constants with the values 10, 28, 
and 2.666 respectively. 
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Fig. 4. The Lorenz attractor (x vs. y vs. z) 

III. MACHINE LEARNING MODELS 

To evaluate the predictability of the Lorenz system, we 

utilize a diverse array of 24 machine learning models divided 

into 6 distinct categories [15-16]. We will examine how 

effectively these models capture the dynamics of the system’s 

x, y, and z variables. The ML models are: 

 

Linear regression LR  

It is a supervised machine learning algorithm that uncovers 

the linear relationship between one dependent variable (w) and 

one or more independent variables (u). It aims to fit a best-fit 

line through the data points, enabling the prediction of future 

values of w based on new u values. 

The equation for linear regression with one independent 

variable is: 

                                    𝑤 = 𝑎 + 𝑏𝑢 + 𝜀                                 (4) 

where 

w: dependent variable (what we want to predict) 

u: independent variable (what we know) 

a: intercept (y-intercept of the line) 

b: slope (steepness of the line) 

ε: error term (accounts for randomness and noise in the data) 

Linear regression assumes a linear relationship between 

variables. If the relationship is non-linear, alternative models 

are required. Therefore, we do not expect this algorithm to 

perform well in capturing the dynamics of chaotic signals. In 

this category, four algorithms will be tested: linear, interactions 

linear, robust linear, and stepwise linear. 

Tree 

Tree-based algorithms are versatile supervised learning 

methods renowned for their interpretability and ability to 

capture complex patterns in data. Their suitability for both 

classification and regression tasks, combined with their 

capacity to handle nonlinear relationships without extensive 

preprocessing, makes them ideal for analyzing the Lorenz 

signal. In this study, we will evaluate three tree-based 

algorithms: Fine Tree, Medium Tree, and Coarse Tree 

SVM  

Support Vector Machines (SVMs) are powerful supervised 

learning algorithms known for their accuracy, robustness, and 

interoperability. In this category, five algorithms will be tested: 

Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian 

SVM, Medium Gaussian SVM, and Coarse Gaussian SVM. 

Ensemble 

Ensemble methods combine diverse models to produce more 

accurate and robust predictions than any single model. They 

work by aggregating the predictions of different models to 

create a more robust and accurate final prediction. In this 

category, two algorithms will be tested: Boosted Tree and 

Bagged Tree. 

Gaussian Process GP 

Gaussian Processes (GPs) are a powerful and flexible non-

parametric approach to supervised and unsupervised learning in 

machine learning. They offer a probabilistic framework for 

learning functions directly from data, making them suitable for 

time series data like chaotic signals. Four different Gaussian 

Process Regression (GPR) kernels will be tested: Squared 

Exponential, Matern 5/2, Exponential, and Rational Quadratic. 

[17]. 

  
Fig. 2. Lorenz system with chaotic behavior of x, y, and z signals. Parameters: 

K = 4000, c1 = 10, c2 = 28, and c3 = 2.666 

Fig. 3. The PSD of the three Lorenz signals (x,y, and z)  
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Neural networks NN 

Neural networks are a powerful class of algorithms inspired 

by the structure and function of the human brain. In summary, 

neural networks are powerful tools in machine learning, capable 

of learning complex patterns and solving a wide range of tasks 

across different domains. Their versatility and effectiveness 

make them one of the most widely used techniques in modern 

AI applications. Five neural network architectures will be 

evaluated: Narrow, Medium, Wide, Bilayered, and Trilayered. 

 

Moreover, the performance of the ML models will be 

assessed using two validation techniques: cross-validation and 

holdout validation. 

Cross-validation is a machine learning technique to assess a 

predictive model's performance. It involves partitioning the 

dataset into subsets, training the model on a portion of the data 

(training set), and evaluating it on the remaining portion 

(validation set or test set). The process is repeated multiple 

times with different partitions, and the results are averaged to 

obtain a more reliable estimate of the model's performance. 

Cross-validation helps to provide a more accurate estimate of a 

model's performance by reducing the impact of the dataset's 

partitioning and ensuring that the model's performance is not 

overly influenced by a particular subset of the data [18]. 

The cross-validation works as follows: 

Select the number of folds (or divisions) to partition the data 

set. 

if you choose k folds, then: 

1. Partitions the data into k disjoint sets or folds. 

2. For each validation fold: 

a) Trains a model using the training-fold observations 

(observations not in the validation fold) 

   b) Assesses model performance using validation-fold data. 

3. Calculates the average validation error over all folds. 

 

In Holdout Validation, A percentage of the data is set aside 

as a validation set. The ML trains a model on the training set 

and assesses its performance with the validation set. The model 

used for validation is based on only a portion of the data, so 

holdout validation is appropriate only for large data sets. The 

final model is trained using the full data set [19-20]. 

 

IV. RESULT ANALYSIS 

The system was initially simulated for 100 seconds, yielding 

1515 data points for each of the x, y, and z signals. 

Subsequently, 15 machine learning models were applied to the 

data using two prevalent validation techniques: cross-validation 

and holdout-validation with a 25% holdout set. To validate the 

simulation's accuracy, it is executed multiple times with 

different sets of samples. The outputs are highly consistent, 

indicating the simulation's reliability. The main findings are 

summarized below and shown in Figs 5-8: 

a) The RMSE varies noticeably depending on the machine 

learning approach employed for both the x and y signals. In this 

scenario, the x signal demonstrates superior performance 

compared to the y signal, with a minimum RMSE of 0.5037 

compared to 1.277 for the y signal. This observation suggests 

that utilizing both signals could potentially enhance 

synchronization between transmitter and receiver in non-

encrypted communication systems. However, caution should be 

taken in secure communication contexts, as employing these 

  
Fig. 5. Root Mean Squared Error (RMSE) for the x-dataset (1515 samples) 

using 12 Machine Learning models with Cross-Validation and Holdout 
Validation. Gaussian Process (GP) models achieve the lowest RMSE, with 

cross-validation performing marginally better than handout-validation. 

A) LG: Linear B) LG: interactions Linear C)LG: robust linear D) LG: stepwise 
linear E) Fine Tree F) Medium Tree G) Coarse Tree H) Linear SVM I) Quadratic 
SVM J) Cubic SVM K) Fine Gaussian L) Medium Gaussian M) Coarse Gaussian 
N) Boosted Tree O) Bagged Tree P) Squared Exponential Q) Matern 5/2 R) GP: 
exponential S) GP: Rational Quadratic T) NN: Narrow U) NN: Medium V) NN: 
wide W) NN: Bilayered X) NN: Trilayered  

Fig. 6. Root Mean Squared Error (RMSE) for the y-dataset (1515 samples) using 12 

Machine Learning models with Cross-Validation and Holdout Validation. Gaussian 
Process (GP) models achieve the lowest RMSE, with handout-validation 

performing marginally better than cross-validation. 

A) LG: Linear B) LG: interactions Linear C)LG: robust linear D) LG: stepwise linear E) 
Fine Tree F) Medium Tree G) Coarse Tree H) Linear SVM I) Quadratic SVM J) Cubic 
SVM K) Fine Gaussian L) Medium Gaussian M) Coarse Gaussian N) Boosted Tree O) 
Bagged Tree P) Squared Exponential Q) Matern 5/2                   R) GP: exponential S) 
GP: Rational Quadratic T) NN: Narrow U) NN: Medium V) NN: wide W) NN: 
Bilayered X) NN: Trilayered  
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signals may introduce vulnerabilities to hacking attempts 

utilizing machine learning models. 

b) The RMSE for the z-signal remains consistently similar 

across all machine learning models, as shown in Fig.7, 

indicating that the z-signal may be more suitable for secure 

communication compared to the x and y signals. This 

consistency suggests that the z-signal possesses characteristics 

that resist attempts to extract its features using ML algorithms. 

c) Our analysis revealed that, out of all the ML models tested, 

the general Gaussian process achieved the best results. It 

produced the lowest Root Mean Squared Error (RMSE) for both 

 the x and y signals. Interestingly, in this particular scenario 

with both x and y datasets, the Rational Quadratic (RQ) model 

outperformed the other Gaussian Process (GP) models. This 

aligns with expectations, as Gaussian processes excel at 

capturing complex, non-linear relationships within data, a 

characteristic often present in time series forecasting, where 

their strong historical performance is well documented [21]. 

d) the impressive performance of the Rational Quadratic 

(RQ) model is likely due to the inherently quadratic nature of 

both the x and y datasets, as the Lorenz equations include two 

quadratic terms, (xy) and (xz), and with its simpler structure, RQ 

might be less susceptible to overfitting in such cases, resulting 

in better generalization performance. 

e) While cross-validation often yields lower RMSE for the x-

signal compared to holdout-validation, with the opposite being 

true for the y-signal and near-identical results for the z-signal, 

it's crucial to consider the trade-offs. Cross-validation leverages 

all available data for training and evaluation, potentially leading 

to a more robust and less variable performance estimate. 

However, this comes with increased computational complexity 

compared to holdout-validation, which offers simplicity and 

ease of implementation. 

In addition to the initial simulation run at 100 seconds, which 

produced 1,515 samples, the experiment was repeated with two 

longer simulation times: 500 and 1,000 seconds. These runs 

generated 7,215 and 14,413 samples, respectively. Gaussian 

process models consistently achieved superior performance 

compared to other models across all simulations. Notably, an 

increase in data size did not necessarily lead to a reduction in 

Root Mean Squared Error (RMSE) for all signals. The z-signal, 

in particular, proved resistant to accurate prediction in all 

simulations. Several factors could explain why the RMSE may 

not decrease as expected with the growth of the data set, such 

as overfitting, selection bias, inherent noise, or limitations of 

the model [14]. In our case, this is identified as an instance of 

overfitting, as there is no evidence of selection bias, intrinsic 

noise, or limitations within the model.  

A deeper understanding can be gained by examining the 

characteristics of the Lorenz chaotic signals shown in Fig. 2. 

Unlike a truly random signal, these three signals exhibit stable 

patterns without sudden fluctuations. As a result, we argue that 

increasing the number of samples does not improve the machine 

learning model's ability to capture the signal's nonlinearity, and, 

as such, it will not lead to a reduction in the Root Mean Square 

Error (RMSE).  

Focusing on the simulation for the Gaussian Process (GP) 

family, Figs 9 and 10 illustrate the relationship between Root 

Mean Squared Error (RMSE) and various Gaussian Process 

(GP) models for the x and y signals, respectively. Interestingly, 

the plots reveal that increasing the number of samples doesn't 

always lead to lower RMSE. This trend suggests potential 

overfitting, where the GP models become too tailored to the 

specific training data and struggle to generalize to unseen data. 

Furthermore, a key takeaway from these figures is the 

absence of a single "best" GP model for all scenarios. For 

example, the Matern 5/2 model shines for the x-signal with 

1,515 samples, while the exponential Gaussian takes the lead 

with 14,413 samples. This emphasizes the importance of 

selecting the appropriate GP model based on the data size and 

the underlying characteristics of the signals. 

A comparative analysis of actual and predicted responses for all 

models is presented in Figure 11, utilizing 7,215 samples from 

the x-dataset through cross-validation. The visualization clearly 

demonstrates that only Gaussian Process (GP) models 

effectively capture the dynamic nature of the response variable, 

as depicted in Figures 11(p) to 11(s). In contrast, other machine 

learning categories exhibit significant deviations. 

Figures 12(a) to 12(g) visually compare the predicted and actual 

responses for the best-performing models in each category, 

using 7,215 samples from the x-dataset.  

The diagonal line in these plots represents perfect prediction 

accuracy.  

 

 
Fig. 7. Root Mean Squared Error (RMSE) for the z-dataset (1515 samples) 

using 12 Machine Learning models with Cross-Validation and Holdout 

Validation. Unlike the x and y signals, all models here exhibit consistently high 
RMSE, suggesting difficulty in accurately predicting the z-signal's behavior. 

This characteristic might be advantageous for secure communication 

applications.  
A) LG: Linear B) LG: interactions Linear C)LG: robust linear D) LG: stepwise 

linear E) Fine Tree F) Medium Tree G) Coarse Tree H) Linear SVM I) 

Quadratic SVM J) Cubic SVM K) Fine Gaussian L) Medium Gaussian M) 
Coarse Gaussian N) Boosted Tree O) Bagged Tree P) Squared Exponential Q) 

Matern 5/2  R) GP: exponential S) GP: Rational Quadratic T) NN: Narrow U) 

NN: Medium V) NN: wide W) NN: Bilayered X) NN: Trilayered  
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(a) 

 
(b) 

Fig. 8. RMSE achieved by 12 machine learning models in predicting the behavior of the x, y, and z signals using both Cross-Validation and Holdout Validation. 
Fig.8(a) from A to L where A) LG: Linear B) LG: interactions Linear C)LG: robust linear D) LG: stepwise linear E) Fine Tree F) Medium Tree G) Coarse Tree H) Linear 
SVM I) Quadratic SVM J) Cubic SVM K) Fine Gaussian L) Medium Gaussian. And Fig.8(b) from M to X where M) Coarse Gaussian N) Boosted Tree O) Bagged Tree 
P) Squared Exponential Q) Matern 5/2 R) GP: exponential S) GP: Rational Quadratic T) NN: Narrow U) NN: Medium V) NN: wide W) NN: Bilayered X) NN: Trilayered  

 

 
Fig. 9. Root Mean Squared Error (RMSE) for the three different sizes of x-datasets using 4 machine learning models of the GP family. 
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Notably, only the Matern 5/2 Gaussian Process 

Regression(GPR) model closely aligns with this diagonal, 

indicating its superior ability to capture the response variable's 

behavior. The Matern 5/2 GPR model achieved the lowest Root 

Mean Squared Error (RMSE) of 0.61565, significantly 

outperforming other machine learning (ML) models, including 

Linear Regression (RMSE = 8.214), Fine Gaussian SVM 

(RMSE = 4.4862), Gapped Tree (RMSE = 4.6442), Fine Tree 

(RMSE = 4.4862), Layered Neural Network (RMSE = 8.08), 

and Trilayered Neural Network (RMSE = 8.0859). For a 

detailed understanding of the Matern 5/2 GPR model's 

configuration, please refer to Table 1, which provides a 

comprehensive list of its parameters. 

Once the Gaussian Process (GP) family is selected for its 

superior performance over other machine learning families, it 

can be further optimized by choosing from various advanced 

options. Some of these options include internal model 

parameters or hyperparameters, which can significantly impact 

the model's performance.  Hyperparameter optimization can be 

automated using MATLAB's Regression Learner app, 

eliminating the need for manual selection. The app explores 

different combinations of hyperparameter values using an 

optimization scheme that aims to minimize the model's mean 

squared error (MSE). Subsequently, a model with optimized 

hyperparameters is returned. This resulting model can then be 

used like any other trained model. 

Figs 13 to 23 present the results from exploring 

hyperparameter ranges for the GPR optimizer with 7,215 

samples in MATLAB, and the parameters are listed in Table 2. 

Fig. 13 illustrates the high predictive accuracy of the GPR 

model trained on 7,215 samples from the x-dataset with 

optimized hyperparameters. The close proximity of the 

predicted values to the actual values highlights the model's 

ability to effectively capture the underlying trends in the data. 

Figures 14(a)-(c) illustrate the predictive performance of the 

model for datasets x, y, and z. The diagonal line represents 

perfect prediction accuracy. While the model performs well for 

datasets x and y, dataset z exhibits the largest deviations, 

highlighting the limitations of the model in capturing the 

underlying patterns in this specific dataset. This discrepancy is 

further discussed in the previous section. 

Figs. 15 to 17 depict the convergence behavior of the 

hyperparameter optimization process for three datasets: x in 

Fig. 15, y in Fig. 16, and z in Fig. 17. The blue line represents 

the observed minimum Mean Squared Error (MSE) achieved 

during each iteration, while the red line shows the estimated 

minimum MSE. The hyperparameter configuration that 

resulted in the optimal MSE is highlighted in each figure.  

Table 2 presents a detailed overview of the hyperparameters 

employed for each of the three datasets (x, y, and z). A 

comparative analysis of the Root Mean Square Error (RMSE) 

values reveals that the x dataset exhibited the lowest error 

(0.57691), significantly outperforming both the y dataset 

(RMSE = 1.3847) and the z dataset (RMSE = 1.9722). 

Furthermore, the optimal machine learning model for the x and 

y datasets was identified as a non-isotropic rational quadratic 

model, while an isotropic rational quadratic model proved most 

effective for the z dataset. 

The observed performance metrics suggest that the x and y 

signals exhibit isotropic behavior, implying that their 

characteristics are consistent across all directions. This aligns 

well with the assumptions of the isotropic rational quadratic 

model, leading to its efficient and effective performance. In 

contrast, the z signal appears to possess a directional bias, 

indicating that its properties vary depending on the specific 

direction being considered. This directional nature is more 

effectively captured by the non-isotropic model, explaining its 

superior performance for the z signal. 

This conclusion is further supported by the sigma values for 

the three signals: 0.013635, 0.00010912, and 14.7159, 

respectively. In Gaussian Process (GP) machine learning 

models, sigma (σ) represents the standard deviation of the noise 

term. This parameter quantifies the inherent variability or 

uncertainty present in the data that the model itself cannot 

account for. A lower sigma value indicates less noise and higher 

confidence in the model's predictions. In this case, the smaller 

sigma values for the x and y signals suggest that these datasets 

are relatively noise-free, enabling the isotropic model to 

accurately capture their underlying patterns.  

 

 
Fig. 10. Root Mean Squared Error (RMSE) for the three different sizes of y-datasets using 4 machine learning models of the GP family. 
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Fig. 11. Comparison of actual response and predicted response for the 7,215 samples of x-dataset under cross-validation technique. 24 different ML models from 

(a) to (x) are compared.  
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Fig. 12. Performance Comparison of Regression Models. Predicted vs. Actual Response for Models with Minimum RMSE in each of the main categories for 7215 
samples x-dataset. As seen in 9(e), the best algorithm is Matern 5/2 GPR with its close alignment with the diagonal line in this scatter plot. 

 
TABLE I 

MATERN 5/2 GPR PARAMETERS FOR 7,215 SAMPLES OF THE X-DATASET UNDER THE CROSS-VALIDATION TECHNIQUE. 

Parameter Value 

RMSE (validation) 0.61565 

R-squared (validation) 0.99 

MSE 0.37903 

MAE 0.29344 

Model type Matern 5/2 GPR 

Basic function  Constant 

Kernel function Matern 5/2 

Use isotropic kernel:  True 

Kernel scale:  Automatic 
Signal standard deviation:  Automatic 
Sigma:  Automatic 
Standardize:  True 
Optimize numeric parameters:  true 
PCA  disabled 

 
Fig. 13. Predicted vs. Actual Response for GPR Model. This figure shows the predicted response compared to the actual response for 7,215 samples in the x-

dataset using a Gaussian Process Regression (GPR) model with optimized hyperparameters. 
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(a) (b) (c) 

Fig. 14. Predicted response versus the true response for optimizable GPR datasets x, y, and z (a, b, and c, respectively). 

 
Fig. 15. The observed (blue line) and estimated (red line) minimum Mean Squared Error (MSE) for x -datasets versus iteration number. Additionally, the best 
hyperparameter settings are identified in the figure. 

 
Fig. 16. The observed (blue line) and estimated (red line) minimum Mean Squared Error (MSE) for y -dataset versus iteration number. Additionally, the best 

hyperparameter settings are identified in the figure. 
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nalysis of RMSE reveals that the x signal achieved the  

 
Fig. 17. The observed (blue line) and estimated (red line) minimum Mean Squared Error (MSE) for z -dataset versus iteration number. Additionally, the best 

hyperparameter settings are identified in the figure. 

 
TABLE 2  

TRAINING RESULTS FOR 7215 SAMPLES OF x,y AND z DATASETS 

Parameter x_dataset y_dataset z_dataset 

RMSE (Validation) 0.57691 1.3847 1.9722 

R-Squared (Validation) 1.00 0.97 0.95 

MSE (Validation) 0.33282 1.9173 3.8897 

MAE (Validation) 0.28052 0.66081 1.0642 

Prediction speed ~7500 obs/sec ~7500 obs/sec ~9400 obs/sec 

Training time 4807.1 sec 4875.8 sec 3817 sec 

Preset Optimizable GPR   

Signal standard 

deviation: 

5.8088 6.0207 6.1741 

Optimize numeric 

parameters: 

true true True 

Optimized Hyperparameters 
Kernel function Nonisotropic Rational 

Quadratic 
Nonisotropic Rational 

Quadratic 
Isotropic Rational 

Quadratic 

Kernel scale:  0.51938 486.4491 0.50152 
Sigma: 0.013635 0.00010912 14.7159 
Standardize: False true false 
Hyperparameter Search 

Range 
   

Sigma: 0.0001-82.1492 0.0001-85.1459 0.0001-87.3143 
Basis function: Constant, Zero, Linear Constant, Zero, Linear Constant, Zero, Linear 
Kernel function: Nonisotropic Exponential, 

Nonisotropic Matern 3/2, 

Nonisotropic Matern 5/2, 

Nonisotropic Rational 

Quadratic, Nonisotropic 

Squared Exponential, 

Isotropic Exponential, 

Isotropic Matern 3/2, 

Isotropic Matern 5/2, 

Isotropic Rational 

Quadratic, Isotropic 

Squared Exponential 

Nonisotropic Exponential, 

Nonisotropic Matern 3/2, 

Nonisotropic Matern 5/2, 

Nonisotropic Rational 

Quadratic, Nonisotropic 

Squared Exponential, 

Isotropic Exponential, 

Isotropic Matern 3/2, 

Isotropic Matern 5/2, 

Isotropic Rational 

Quadratic, Isotropic 

Squared Exponential 

Nonisotropic 

Exponential, 

Nonisotropic Matern 3/2, 

Nonisotropic Matern 5/2, 

Nonisotropic Rational 

Quadratic, Nonisotropic 

Squared Exponential, 

Isotropic Exponential, 

Isotropic Matern 3/2, 

Isotropic Matern 5/2, 

Isotropic Rational 

Quadratic, Isotropic 

Squared Exponential 
 

Best point with 

minimum error 
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Conversely, the significantly larger sigma value for the z 

signal implies a higher level of noise, which the non-isotropic 

model is better equipped to handle due to its ability to account 

for directional variations. 

Overall, sigma is a critical parameter in GP models that 

provides insights into the underlying noise in the data and helps 

assess the uncertainty associated with the model's predictions. 

The low sigma values observed for the x and y signals 

(0.013635 and 0.00010912, respectively) suggest two key 

implications: 

1- Low Inherent Variability: The signals are well-understood 

and exhibit minimal variability, resulting in narrow confidence 

intervals in the GP model’s predictions for x and y data. This 

indicates high confidence in the model’s accuracy. 

2- High Model Confidence: The low sigma values show that the 

GP model is highly confident in its predictions for the x and y 

signals, effectively capturing underlying patterns and 

accounting for minimal noise. 

In contrast, the high sigma value for the z signal (14.7159) 

indicates significant noise or variability. This results in wider 

confidence intervals in the GP model’s predictions, implying 

greater uncertainty in accurately predicting the z signal. 

V. CONCLUSION 

This research has provided a comprehensive investigation 

into the potential of machine learning algorithms, particularly 

Gaussian Process (GP) regression, to predict the dynamics of 

signals generated by the Lorenz chaotic system (specifically the 

x, y, and z signals). The results underscore the effectiveness of 

GP regression, which consistently outperformed other machine 

learning models in accurately predicting the x and y signals. 

However, the z signal presents significant challenges, 

exhibiting a remarkable resistance to accurate prediction across 

all models and simulation runs. 

 

Key takeaways include: 

a) Gaussian Process advantage: GP regression's superior 

performance for the x and y signals can be attributed to its 

capability to capture complex non-linear relationships and its 

inherent smoothness, which is crucial in modeling chaotic 

dynamics. This highlights the importance of selecting models 

that align with the data's characteristics. 

b) Impact of sample size: Interestingly, increasing the number 

of training samples does not always lead to improved prediction 

accuracy, as evidenced by the potential for overfitting. This 

phenomenon occurs when models become excessively tailored 

to the specific training dataset, thereby impairing their ability to 

generalize effectively to unseen data. This insight is critical for 

practitioners who must balance data quantity with model 

complexity. 

c) Model selection: The optimal GP model is contingent upon 

both the size of the dataset and the specific characteristics of the 

signals being analyzed. Our findings indicate that the Matern 

5/2 model is particularly effective for the x signal when using 

1,515 samples, while the Exponential Gaussian model 

outperformed others with a larger dataset of 14,413 samples. 

This emphasizes the necessity of tailored model selection to 

achieve the best predictive performance. 

d) z-signal resistance: The z signal's pronounced resistance to 

prediction accuracy suggests it possesses intrinsic properties 

that make it less amenable to extraction by machine learning 

algorithms. This characteristic could prove advantageous in the 

context of secure communications, as it may enhance the 

robustness of signal encoding against unauthorized 

deciphering. 

e) Security Implications: The successful prediction of the x 

and y signals raises pertinent concerns regarding the security of 

chaotic communication systems that rely on these signals for 

encryption. This necessitates the exploration of additional 

security measures, such as integrating key-based encryption 

alongside chaotic masking, to mitigate potential vulnerabilities. 

Conversely, the z signal’s resistance to machine learning 

prediction indicates its potential utility for enhancing security 

in chaotic communication frameworks. This finding calls for 

further investigation into how to exploit this characteristic to 

develop more robust and secure communication protocols. 
 

VI. GENERALIZABILITY AND FUTURE DIRECTIONS 

The promising results of this study pave the way for several 

future research directions that can enhance our understanding 

and application of Gaussian Process (GP) regression in chaotic 

systems. One significant avenue involves the optimization of 

TABLE 2. CONT.  

TRAINING RESULTS FOR 7215 SAMPLES OF x,y AND z DATASETS 

Parameter x_dataset y_dataset z_dataset 

Kernel scale: 0.5-500 0.5-500 0.5-500 

Standardize : true, false true, false true, false 

Optimizer Options 

Optimizer:  Bayesian optimization Bayesian optimization Bayesian optimization 

 

Acquisition function: Expected improvement 

per second plus 

Expected improvement 

per second plus 

Expected improvement 

per second plus 

Iterations 30 30 30 

Training time limit:  False False False 

PCA PCA disabled PCA disabled PCA disabled 
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GP hyperparameters, which could potentially yield even greater 

prediction accuracy in chaotic dynamics. While this study 

focused on the well-defined Lorenz system, it serves as a 

springboard for broader exploration into the interaction 

between machine learning and chaotic dynamics. 

Given the inherent unpredictability associated with chaotic 

systems, future work must acknowledge the limitations of 

achievable accuracy. Advanced techniques for hyperparameter 

optimization should be explored, possibly involving 

sophisticated algorithms or an expanded range of 

hyperparameter values. This would enable researchers to fine-

tune GP models for various chaotic systems effectively. 

Moreover, the generalizability of our findings to other 

chaotic systems characterized by different complexities is a 

crucial area for further investigation. This will help ascertain 

whether the insights gained from the Lorenz system can be 

applied to other chaotic phenomena, thereby broadening the 

impact of our research. 

In addition, assessing the robustness of the GP models 

against noise, a pervasive element in real-world applications, is 

essential. Such evaluations will not only validate the practical 

applicability of these models but also provide insights into their 

reliability in noisy environments, which are common in chaotic 

systems. 

By addressing these aspects, we can enhance our 

understanding of the effectiveness of GP regression in 

predicting chaotic system behaviors, paving the way for its 

broader use in both theoretical research and practical 

applications. Integrating machine learning techniques in the 

study of chaos has the potential to open new frontiers in secure 

communications, predictive modeling, and more, contributing 

to advancements in fields like cryptography, climate modeling, 

and engineering. This research is significant for its potential to 

revolutionize wireless chaotic communication systems. By 

demonstrating the effectiveness of Gaussian Process regression 

in predicting chaotic signal dynamics, this study not only 

advances our understanding of chaotic systems but also 

highlights important security implications. The insights gained 

could lead to the development of more robust and secure 

communication protocols, enhancing the reliability and security 

of wireless networks. This research opens the door for future 

innovations in secure communications, predictive modeling, 

and various engineering and scientific applications. 

Finally, this effort to predict chaotic signals, even for short 

durations, is vital in real-life applications. It enhances our 

ability to manage and anticipate complex systems, not only in 

secure communications but also in other scientific areas like 

weather patterns and financial markets. By improving our 

predictive capabilities, we can make more informed decisions, 

mitigate risks, and develop more robust systems across various 

fields 
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