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Abstract—An algorithm based on improved YOLOv8 for
detecting densely small-scale vehicles in complex scenes is
designed. Using YOLOv8s as a baseline model, the Global
Attention Module (GAM) is first introduced into the backbone
network of YOLOv8 to improve the ability to extract detailed
features in complex scenes. Secondly, the Efficient RepGFPN-
ASFF network structure is used instead of the original neck
network and detection heads to enhance the fusion of shallow
detail features and deeper high-level features, and weighting
parameters are introduced to improve the network’s interest
in dense, small-scale vehicles based on multilevel functionality.
Then, an inner-SIoU loss function is adopted, and the size of
the auxiliary border is controlled by adjusting the scale factor
ratio, which improves the model’s detection performance for
overlapping occluded vehicle targets. Finally, the robustness of
the model in complex scenes is verified in different datasets,
and trained and tested in a self-built Complex Vehicle Dataset
(CVD) using transfer learning. The experimental results show
that compared with the original model, the precision, recall and
mAP@0.5 of the optimised model are improved by 4.3%, 6.2%
and 6.0%, respectively, and its detection effect is significantly
improved, which proves the effectiveness and reliability of the
algorithm.

Index Terms—Improved YOLOv8, vehicle detection, complex
scenes, Global Attention Mechanism (GAM), loss function.

I. INTRODUCTION

W ITH the continuous development of the world econ-
omy, the number of cars in the world is also in-

creasing rapidly. So, although cars have greatly facilitated
people’s daily lives, they have also caused a series of serious
social problems, such as frequent traffic accidents, traffic
congestion, and safety hazards caused by illegal parking. In
order to solve these complex traffic problems, the use of
intelligent traffic management systems has become a trend,
and vehicle object detection is one of the key technologies
of this system. Effectively solving these problems is of great
significance for improving the digitalization and intelligence
level of road traffic management [1].

Currently, object detection algorithms based on deep learn-
ing mainly include two types: one is single-stage object
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detection algorithms, such as YOLO [2], SSD [3], RetinaNet
[4]. The other is a two-stage object detection algorithm based
on candidate regions, such as R-CNN [5], SPP-Net [6], Faster
R-CNN [7]. In recent years, scholars have conducted many
studies on vehicle detection based on this. For example,
references [8], [9], and [10] proposed an improved YOLO
algorithm, which improved the detection capability of the
model in dim scenes, by replacing the backbone network
and adopting the image dark-light enhancement method.
References [11] and [12] added new modules to the backbone
network to improve the robustness of the model, and to solve
the problem of small targets. In [13], the improved Inception
module was added to the SSD network to improve the de-
tection ability of small target vehicles. In the literature [14],
the S-YOLOv3 based on the YOLOv3 [15] was presented,
and the extraction capability of features was improved by
using ResNet [16]. In the literature [17], a feature fusion
module was designed by introducing attention mechanism,
which not only improved the detection accuracy of small
target vehicles, but also ensured real-time performance. In the
literature [18], the feature extraction effect of the model was
further enhanced, by replacing the conventional convolution
in YOLOv4 with a deformable convolution [19]. while in
reference [20], a coordinate attention module was inserted ,
which reduces the loss of feature information and improves
the accuracy of vehicle detection. Literature [21] combined
YOLOv7 [22], [23] and GhostNet [24], [25] to reduce the
number of parameters. Finally, reference [26] improved the
overall accuracy of the model by improving the loss function
of the YOLOv3 algorithm.

However, there are still some issues that need to be
addressed. First, due to the large number of pedestrians,
intersections, buildings, and other interference factors on the
roads, it is necessary to make the dataset more rich and
diverse. Secondly, due to the different angles and distances
of the firing vehicles, the target vehicles can be blocked to
varying degrees, increasing the difficulty of model detection.
Finally, when there is a lack of training samples for different
scenes in the training data, the generalizability of the model
performance will be reduced. Therefore, how to improve the
accuracy of vehicle detection in complex scenes and reduce
the missed detection rate has become a major challenge in
this research field. The main contributions include:

(1) Introduce attention module. The GAM [27] is intro-
duced into the backbone network. When processing vehicle
images, it enables the model to automatically pay attention
to the important parts of the image, so as to extract richer
feature information.

(2) Improve feature pyramid structure. Replace the original
structure with the Efficient RepGFPN-ASFF network struc-
ture, combining the deep and shallow feature information of
the network to increase the interest in various vehicle targets.
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Fig. 1. Improved YOLOv8 structure diagram

(3) Replace the loss function. Improving the loss function
to inner-SIoU improves the boundary regression accuracy by
adjusting the scale factor ratio.

(4) Construct the dataset. The CVD provides a large
amount of data support for the training and testing of vehicle
detection algorithms, enhancing the richness and diversity of
the dataset.

(5) Adopt the idea of transfer learning [28]. First, use
the COCO vehicle dataset as the source domain to train the
YOLOv8 model, and then use the CVD as the target domain
to train and test the improved YOLOv8.

II. RELATED WORK

Due to its simplicity and efficiency, YOLOv8 has a good
performance among many target detection algorithms. It can
be divided into five models according to the network width
and depth. The parameters are YOLOv8-n, s, m, l and x from
small to large. After comprehensive consideration, YOLOv8s
is selected as the baseline model for this improvement.

The YOLOv8 structure includes: Input, Backbone, Neck
and Head. In the Input stage, the image to be detected
will be pre-processed by random segmentation, splicing and
normalization to enable the network to handle a variety
of images, and enhance the generalization ability of the
network. Backbone first uses the Conv module to implement
downsampling operations without losing information, and
then uses the C2f module to extract features from shallow to
deep. Finally, the SPPF module uses convolution kernels of

different sizes to max pool the feature maps and concatenate
the results. The Neck network achieves the fusion of shallow
detail semantics and deep advanced semantics, by using the
top-down FPN structure and the bottom-up PAN structure.
Head is a prediction network, which outputs prediction
results on three feature maps of different sizes.

III. IMPROVED MODEL

The network structure of the improved YOLOv8 is shown
in Fig. 1. The GAM is introduced in the deep layer of the
backbone network, the feature pyramid network is replaced
with the efficient RepGFPN, a new detection head ASFF-
Head is constructed, and the loss function is improved to
inner-SIoU.

A. Introducing Attention Module

In order to improve the detection performance of YOLOv8
for complex backgrounds, GAM was introduced. The GAM
can not only effectively reduce information loss, but also
enhance the global interactivity of the network, thereby
improving network performance. The whole process is shown
in Fig. 2.

Where Mc and Ms are channel and spatial attention maps
respectively. ⊗ represents element-wise multiplication. In the
following formulas (1) and (2), F1 ∈ RC∗H∗W is the input
feature, the intermediate state F2 and output F3 are defined
as:

F2 = Mc(F1)⊗ F1 (1)
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F3 = Ms(F2)⊗ F2 (2)

The whole structure mainly includes channel attention
module and spatial attention module. The former is mainly
used to store dimensional information. Its principle is based
on 3D sequence, and enhances cross-dimensional channel-
space dependency through a two-layer encoder-decoder
structure (MLP). The channel attention submodule structure
is shown in Fig. 3. The latter contains two convolutional
layers, which helps to focus on more spatial information. To
avoid information loss and performance impact caused by
max pooling operations, pooling operations are omitted to
better preserve mapping characteristics. The spatial attention
submodule is shown in Figure 4.
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B. Improve Feature Pyramid Structure
The traditional feature pyramid network (FPN) [29]

merges multi-scale features through a top-down approach,
but this increases the amount of computation. The bidirec-
tional feature pyramid network (BiFPN) [30] improves model
performance, by removing nodes with only a single input
and adding direct paths between the same levels. The global
feature pyramid network (GFPN) [31] can achieve better
performance, However,it shares the same channel dimension
between features of different scales, and its Queen-Fusion
mechanism involves a large number of upsampling and
downsampling operations. The efficient representative global
feature pyramid network (Efficient RepGFPN) [32] improves
these problems. It controls the computational cost by setting
different channel dimensions for feature maps of different
scales, and effectively captures multi-scale features in vehicle
images. At the same time, on the basis of ensuring real-
time detection, it removes the redundant upsampling steps
in Queen-Fusion, so as to perform feature fusion and pro-
cessing more efficiently. The network structure of Efficient
RepGFPN is shown in Fig. 5.

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

CSPStage

Fig. 5. Efficient RepGFPN network structure

CSPStage is the core fusion module of the Efficient
RepGFPN network. First, the input feature maps are con-
catenated using the Concat operation. Then, the channel
dimension is reduced through 1x1 convolution. Next, multi-
ple Rep 3x3 convolutions and 3x3 convolutions are used to
transform the features and generate multiple output layers.
Finally, these output layers are concatenated again through
Concat to obtain the final result. The structure of CSPStage
is shown in Fig. 6.
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The structural feature of Rep is that it is heavily parame-
terized. It uses two branches during training and merges them
together during reasoning, greatly saving inference time. Its
structure is shown in Fig. 7.
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Fig. 7. Rep network structure

Combined with the above structure, the network structure
of Efficient RepGFPN-ASFF is shown in Fig. 8.

The core feature of ASFF [33] is to perform feature
filtering through learning parameters, so when applying this
structure, if the scope of the information object is limited to
the attention information at the current level, then based on
the algorithmic logic of the structure, the information will
be layered, which will help improve the learning efficiency
of the model. For example, ASFF-1 contains feature layers
of different scales, each of which is multiplied by the
corresponding weight parameters α, β, γ, and then these
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results are added together to obtain the following formula:

y1ij = α1
ij · x1→1

ij + β1
ij · x2→1

ij + γ1
ij · x3→1

ij (3)

Where y1ij is the new feature map obtained by ASFF-1,
which is the output of different layer weights α1

ij , β1
ij , γ1

ij

and different features x1→1
ij , x2→1

ij , x3→1
ij . Since addition is

used, it is necessary to ensure that the ASFF layer obtains
the same output feature dimension and number of channels
from different levels. The size of the convolution kernel is
1× 1, and it uses convolution layers with the same number
of channels. The sum of the weight parameters α, β, and γ
is 1, and the value of [0.1] is locked by the normalization
function.

C. Replace Loss Function

The loss of YOLOv8 include distribution focus loss,
category classification loss and bounding box regression
loss. Compared with CIoU, SIoU considers the vector angle
problem between the required regressions, so it has been
verified experimentally that replacing CIoU with SIoU can
improve the performance of bounding box regression. The
SIoU loss function includes angle cost, shape cost, IoU cost
and distance cost. Fig. 9 shows the calculation process of
angle cost.

b
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ch
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Fig. 9. Angle cost calculation process

In order to realize the above process, the following formula
(4) is introduced for explanation.

∧ = 1− 2 · sin2
(
arcsin(x)− π

4

)d
(4)

Where:
x =

ch
σ

= sin(α) · eiθ (5)

σ =
√

(bgtcx − bcx)
2 − (bgtcy − bcy )

2 (6)

ch = max(bgtcy , bcy )−min(bgtcy , bcy )
d (7)

With the above angle cost, the distance cost can be
redefined as shown in formula (8).

△ =
∑
t=x,y

(1− e−γρt)d (8)

Where:

ρx =

(
bgtcx − bcx

cw

)2

, ρy =

(
bgtcy − bcy

ch

)2

(9)

γ = 2− ∧ (10)

When α → 0, the impact of distance cost is significantly
reduced. On the contrary, when α is close to π

4 , △ is larger.
Therefore, a shape cost needs to be defined, as shown in
formula (11).

Ω =
∑

t=w,h

(1− e−ωt)θ (11)

Where:

ωw =
|w − wgt|

max(w,wgt)
, ωh =

|h− hgt|
max(h, hgt)

(12)

Finally, SIoU is defined as formula (13).

SIOU = IoU − △+Ω

2
(13)

Among them, IoU is the intersection over union ratio:

IoU =
|B ∩Bgt|
|B ∪Bgt|

(14)

Although the introduction of new loss terms speeds up
the convergence of the model, these methods do not fully
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consider the limitations of IoU itself. Therefore, the inner-
IoU [34] is proposed to calculate IoU, which uses an aux-
iliary bounding box for calculation to enhance the model’s
generalization ability. Specifically, the size of the auxiliary
bounding box is determined by a scaling factor ratio, and
its calculation formula is shown in (15)-(16) below.

bl = xc −
w · ratio

2
, br = xc +

w · ratio
2

(15)

bt = yc −
h · ratio

2
, bb = yc +

h · ratio
2

(16)

By using formulas (17)-(19), the vertex position of the
auxiliary detection frame can be determined by transforming
the center of the detection frame. This transformation also
applies to the model’s predicted detection frame and actual
detection frame, where bgt and b note the calculation outputs
of the real detection frame and the predicted detection frame,
respectively.

inter = (min(bgtr , br)−max(bgtl , bl))

· (min(bgtb , bb)−max(bgtt , bt)) (17)

union = (wgt · hgt) · (ratio)2

+ (w · h) · (ratio)2 − inter (18)

IoU inner =
inter

union
(19)

Therefore, the core of inner-IoU is to calculate the inter-
section over union ratio between auxiliary bounding boxes.
The scaling factor ratio generally falls in the range of [0.5,
1.5]. When ratio is less than 1, the auxiliary bounding
box will be smaller than the actual bounding box, and the
effective regression range will also be reduced. Compared
with traditional IoU, the absolute value of its gradient is
greater, which accelerates the convergence speed of high
IoU samples. When ratio is greater 1, the opposite is true,
which is not conducive to high IoU regression. Therefore,
introducing inner-IoU to transform SIoU can significantly
improve detection performance. As shown in the following
formula (20).

SloU inner = IoU inner − △+Ω

2
(20)

IV. EXPERIMENTS

A. Experimental Condition Setting

The number of training rounds is set to 200, the image
size is 640×640, the batch size is 32. The initial value of
the learning rate is set to 0.001, the momentum size is set
to 0.98, and the weighted decay parameter is set to 0.001.
The model is based on the pytorch framework using CUDA
11.7, with an operating system of Ubuntu 18.04. The a GPU
processor of Quadro RTX5000×2, the RAM memory size of
128G, and a hard disk size of 4TB.

B. Experiment Dataset

Two datasets are used in this paper, one of which is
the COCO vehicle dataset. The image in this dataset has a
single viewpoint, which is less accurate in real scenarios, and
has more misdetections and omissions when encountering
complex and changing scenarios. Therefore, this dataset is
used to train the network in advance to form a pre-trained
model, which saves time and resources for further training.
The other dataset is a combination of the CVD, the VisDrone,
the KITTI, and some selected COCO vehicle datasets.

During training, the YOLOv8 model is first trained using
the COCO vehicle dataset as the source domain. Then the
improved model is initialised using the weight parameters
obtained from the training. Finally, the CVD is used as the
target domain to train the model again. The CVD contains
9604 vehicle images with occluded and small scale targets,
which are randomly divided into training, validation and test
sets in the ratio of 8:1:1.

C. Evaluation Index

In order to evaluate the performance improvement of the
improved algorithm for vehicle detection in complex scenes,
the calculation formula for the evaluation indicators used in
this paper is as follows:

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

AP =

∫ 1

0

P (r) dr (23)

mAP =
1

N

N∑
i=1

APi (24)

where P, R, AP, and mAP represent precision, recall, average
precision and mean average accuracy, respectively.TP and
TN denote the positive and negative samples with correct
predictions, while FP and FN denote the positive and neg-
ative samples with incorrect predictions, respectively. Draw
mAP@0.5 curve can more intuitively reflect the improvement
of the algorithm.

D. Ablation Studies

In order to verify the effectiveness of the improved mod-
ule, the YOLOv8s algorithm is used as a benchmark, and
these modules are introduced sequentially for the ablation
experiments: the GAM, the Efficient RepGFPN-ASFF, and
the inner-SIoU. The mAP@0.5 curve is shown in Fig. 10,
and the comparative results of the ablation experiment are
shown in Table I.

The experimental results are shown in Table I, and in
combination with the mAP@0.5 curve, it can be seen that
the improved YOLOv8s algorithm improves P, R, mAP@0.5
and mAP@0.5 to 0.95 by 4.3%, 6.2%, 6.0% and 5.6%,
respectively, compared to the YOLOv8s. The first group of
experiments represents the baseline performance without any
improvement of the YOLOv8s algorithm. The second group
of experiments only added the GAM. Its performance was
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TABLE I
ABLATION EXPERIMENT

Models GAM RepGFPN ASFF Inner-SIOU P R mAP@0.5 mAP@0.5:0.95

1 0.837 0.676 0.763 0.485
2 ✓ 0.849 0.694 0.782 0.499
3 ✓ ✓ 0.871 0.702 0.784 0.494
4 ✓ ✓ ✓ 0.883 0.719 0.805 0.548
5 ✓ ✓ ✓ ✓ 0.880 0.738 0.823 0.541

YOLOv8s

YOLOv8s+GAM

YOLOv8s+GAM+RepGFPN

YOLOv8s+GAM+RepGFPN+ASFF

YOLOv8s+GAM+RepGFPN+ASFF+inner-SIoU

YOLOv8s

YOLOv8s+GAM

YOLOv8s+GAM+RepGFPN

YOLOv8s+GAM+RepGFPN+ASFF

YOLOv8s+GAM+RepGFPN+ASFF+inner-SIoU

Fig. 10. mAP@0.5 curve

compared with the basic group. The four indicators were
improved by 1.2%, 1.8%, 1.9% and 1.4% respectively. The
third group of experiments used the GAM and the RepGFPN
network structure at the same time. Compared to the previous
group, except for the fourth index, the first three indexes were
improved by 2.2%, 0.8%, and 0.2% respectively. The fourth
group of experiments used the GAM and the RepGFPN-
ASFF network structure at the same time. Compared with the
third group of experiments, the four indexes were improved
by 1.2%, 1.7%, 2.1%, and 5.4% respectively. In the fifth
set of experiments, all four components were added. While
there was a slight decrease in P and mAP@0.5 to 0.95,
there was a significant improvement in R and mAP@0.5,
which increased by 1.9% and 1.8%, respectively. Therefore,
the improved YOLOv8 vehicle detection algorithm greatly
improves the detection accuracy with a slight increase in the
model size, and can more accurately detect occluded and
small-scale vehicles in complex scenes.

For the ratio value in the inner-SIoU, the ablation ex-
periment results of trying different values are shown in
Table II. When ratio = 0.5, the experimental effect is the
best. Because vehicles in complex environments are small
detection targets with low IoU, it is more conducive to rapid
regression with low IoU when the annotation box is also
small. When ratio > 1, the regression speed will be slightly
slowed down. Therefore, effectively adjusting the ratio can
achieve optimization of the entire model.

Under the same experimental conditions, for SSD, Faster
RCNN, YOLOv5s, YOLOv7-tiny, YOLOv8s, and YOLOv9c
algorithms were compared on the CVD to verify the per-
formance of their algorithms. The results obtained from the

TABLE II
COMPARISON OF EFFECTS OF DIFFERENT RATIO VALUES

ratio P R mAP@0.5 mAP@0.5:0.95

0.5 0.880 0.738 0.823 0.541
0.6 0.873 0.734 0.815 0.535
0.7 0.871 0.722 0.804 0.523
0.8 0.869 0.719 0.801 0.515
1.0 0.872 0.720 0.806 0.529

1.25 0.868 0.717 0.798 0.513
1.5 0.869 0.716 0.797 0.511

experiments are shown in Table III.

TABLE III
PERFORMANCE COMPARISON OF MAINSTREAM MODELS

Models P R mAP@0.5

SSD 0.612 0.509 0.574
Faster-RCNN 0.634 0.521 0.613

YOLOv5s 0.712 0.652 0.721
YOLOv7-tiny 0.627 0.531 0.615

YOLOv8s 0.837 0.676 0.763
YOLOv9c 0.876 0.750 0.834

Ours 0.880 0.738 0.823

According to Table III, the proposed algorithm has great
advantages in P, R and mAP@0.5 indicators compared
with most other algorithms. However, when compared with
YOLOv9c, it is slightly lower in terms of R and mAP@0.5.
Nevertheless, the proposed algorithm has fewer parameters
and lower computational complexity, achieving a better bal-
ance between accuracy and real-time performance.

In order to further verify the robustness and generalisabil-
ity of the improved algorithm, experiments were carried out
on different datasets to observe its performance effect, and
the results are shown in Table IV. For the COCO, KITTI and
UA-DETRAC datasets, the improved model has increased by
2.6%, 4.1% and 4.7% on mAP@0.5 over the original model,
respectively, but with varying increases in the Params and
the GFLOPs.However, on the CVD, the mAP@0.5 increases
by 6.0%. When applied to our proposed model, the number
of parameters decreases when GFLOPs increases slightly.
The experimental results show that the improved algorithm
outperforms the original algorithm on different datasets, and
the performance is more prominent on the self-constructed
CVD, which further confirms the good robustness.

E. Visualization Analysis

In order to visualise the improvement effect after each
operation, a comparison picture of the detection results is
given. As shown in Fig. 11(a) shows the COCO vehicle
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TABLE IV
COMPARISON OF EXPERIMENTS WITH DIFFERENT DATASETS

Datasets Models mAP@0.5 Params/M GFLOPs/G

COCO
YOLOv8s 0.715 11.1 28.4

Ours 0.741 17.1 33.7

KITTI
YOLOv8s 0.728 11.1 28.4

Ours 0.769 15.6 37.1

UA-DETRAC
YOLOv8s 0.734 11.1 28.4

Ours 0.781 17.6 39.7

CVD
YOLOv8s 0.763 11.1 28.4

Ours 0.823 10.2 36.5

dataset and Fig. 11(b) shows the Complex Vehicle Dataset,
the left and right pictures are the training results of the
original model and the improved model, respectively.

(b)  CVD

(a)  COCO

(b)  CVD

(a)  COCO

Fig. 11. Comparison of COCO and CVD detection results

The results in Fig. 11 show that the models trained using
the COCO vehicle dataset have many misdetections and
miss-detections, both in the original model and the improved
model, especially for the small-scale vehicles behind and
those obscured by trees. Moreover, the model trained with
the CVD is more generalizable, and the training effect is
significantly better than the COCO vehicle dataset with
higher detection accuracy. However, it is undeniable that
the improved model outperforms the original model on both
datasets.

Fig. 12 compares the detection results of the original
YOLOv8s (left) and the improved YOLOv8s (right). It can
be seen that the improved model has significant advantages in
small scale and false detection in dense scenarios. From Fig.
12(a), it can be seen that the original algorithm can’t detect
the small-scale vehicles behind the left lane when the target
size changes and there are more small target vehicles, while
the improved algorithm can. From Fig. 12(b), it can be seen
that the original algorithm misjudges the dotted line on the
road as a vehicle, while the improved algorithm doesn’t have
the phenomenon of misjudgment, so the improved algorithm
has a better recognition ability for the dense small-scale
vehicle targets in complex scenes. In summary, the proposed
algorithm has better performance in detecting small-scale

vehicle targets in complex scenes, and can more effectively
detect occlusions and small-scale vehicles, reducing missed
detections and false detections.

(b) False detection

(a) Small scale

(b) False detection

(a) Small scale

Fig. 12. Comparison of detection effects between YOLOv8s and improved
YOLOv8s algorithms

V. CONCLUSION

The paper proposes a dense vehicle detection method
based on the improved YOLOv8 in complex scenes, which
solves the problems such as low detection accuracy due to
dense occlusion in this scene. To address the problem of
a single sample dataset, data fusion is used to form a new
Complex Vehicle Dataset from selected images from multiple
datasets, which ensures the diversity of data samples.To
address the problem of detecting occluded and dense small-
scale vehicles, by means of transfer learning, this paper
introduces the GAM in the deep layer of the backbone
network, replaces the feature pyramid networks with the
Efficient RepGFPN, constructs a new detection head ASFF-
Head and improves the loss function to inner-SIoU. Then
experiments are conducted on the CVD and the mAP@0.5
reaches 82.3% and the amount of parameters is reduced by
1.1 M. In addition, experiments were conducted on several
datasets to verify the robustness of the model in complex
scenes. It can be seen that the improved YOLOv8 algorithm
provides more accurate detection of occluded dense small-
scale vehicle targets in complex scenes, which verifies the
effectiveness and generalisability of the algorithm in this
paper.
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