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Abstract: Detecting crop diseases in agricultural landscapes 

poses a significant challenge. To address this, an innovative 

detection method called Agricultural Disease Vision 

Recognizer (ADViR) is introduced. ADViR builds upon the 

Vision Transformer (ViT) architecture, enhanced with 

attention-guided multi-module augmentations. It comprises 

three main modules: Feature Extraction, Context 

Augmentation, and Classification. The Feature Extraction 

Module leverages ViT to efficiently capture fundamental image 

features. The Context Augmentation Module employs an 

adaptive attention mechanism to gather contextual details 

across various crop image regions, improving adaptability to 

different scales and orientations through multi-scale feature 

fusion. The Classification Module utilizes a Multi-Layer 

Perceptron (MLP) to harness the rich features from the 

Context Augmentation Module, enabling high-accuracy disease 

detection. Extensive experiments on diverse agricultural image 

datasets demonstrate ADViR’s superior performance 

compared to traditional ViT and CNN-based methods in both 

classification accuracy and speed. Notably, ADViR reduces 

single-image recognition time to 0.21 seconds. 

Index Terms: Agricultural Disease Detection, Vision 

Transformer (ViT), Attention Mechanism, Multi-Scale Feature 

Fusion, Real-Time Monitoring 

I. INTRODUCTION

gricultural production plays a vital role in global food

security, requiring both efficiency and sustainability [1]. 

Crop pests, however, present a notable challenge by 

potentially reducing yield and affecting quality. Effective 

pest management benefits from accurate and timely 

detection, which can contribute to minimizing losses and 

supporting food sustainability. The task of pest detection is 

made more complex by the variety of pest species, each with 

distinct characteristics, behaviors, developmental stages, and 

color variations. These challenges are further influenced by 

the diverse and dynamic natural environments in which 

crops are grown, which can impact image-based pest 

detection methods [2]. As a result, the development of 

advanced and adaptable pest detection techniques is 

important for facilitating timely and informed pest control 

decisions, thus supporting the advancement of agricultural 

practices. 

Historically, pest detection in agriculture has relied on 

manual inspections carried out by experts [3]. This process 

involves examining crops for signs of infestation to guide 

subsequent management strategies [4]. While effective, 

manual inspection faces scalability challenges, particularly 

as farm sizes increase. Efforts to automate pest detection 

systems have been made; however, these systems often 

encounter difficulties in accurately distinguishing between 

pest species and managing the complex backgrounds typical 

of agricultural environments. Furthermore, such systems 

frequently depend on extensive handcrafted feature 

engineering, a time-consuming process that lacks the 

flexibility required for diverse crop-pest scenarios [5]. To 

address these limitations, recent research has increasingly 

focused on harnessing machine learning (ML) and computer 

vision (CV) techniques to enhance detection performance 

significantly [6-9]. These advanced methods offer the 

potential for improved reliability and precision in pest 

identification, crucial elements for implementing strategic 

and effective pest management practices. By leveraging the 

power of artificial intelligence, these approaches aim to 

overcome the constraints of traditional methods and provide 

more adaptable solutions for the dynamic challenges of 

agricultural pest detection. 

Recent advancements in AI and ML have significantly 

enhanced agricultural pest detection capabilities. Paymode 

et al. [10] successfully applied Transfer Learning and VGG 

CNNs to multi-crop leaf disease classification. Thenmozhi 

et al. [11] utilized deep CNNs with transfer learning for 

efficient pest classification. Liu et al. [12] employed saliency 

maps and DCNNs for precise pest localization and 

classification in paddy fields, achieving high mean Average 

Precision (mAP). Rahman et al. [13] explored CNN-based 

techniques for rice pest and disease identification, while 

Wang et al. [14] developed a DCNN-based system for 

recognizing common pests. Jiao et al. [15] introduced an 

anchor-free CNN (AF-RCNN) for accurate multi-category 
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pest detection, and Coulibaly et al. [16] discussed an 

Explainable DCNN (X-DCNN) for insightful insect pest 

recognition. Karar et al. [17] presented a mobile application 

integrating deep learning within a cloud computing system 

for scalable, real-time pest detection. Narenderan et al. [18] 

provided comprehensive analyses of both traditional 

methods and advanced techniques for pesticide residue 

detection in produce. Cheng et al. [19] enhanced pest 

identification in complex backgrounds using deep residual 

learning. Rahman et al. [20] developed DeepPest, a two-

stage, vision-based mobile approach leveraging multi-scale 

contextual data and attention mechanisms for superior pest 

detection performance. This approach aligns with the 

growing trend of using advanced ML and CV techniques to 

overcome the limitations of traditional methods, as discussed 

earlier. While not directly related to pest detection, Sun and 

Tian [21] and Li et al. [22] contributed to the broader field 

of object detection in complex environments, which could 

potentially inform future developments in agricultural pest 

detection systems. These studies collectively demonstrate 

the potential of AI and ML to address the challenges of pest 

detection in diverse agricultural contexts, offering improved 

accuracy and efficiency over traditional manual inspection 

methods. 

Despite these promising developments, significant 

challenges persist in the real-time adaptability and efficiency 

of AI and ML-based pest detection methods under varied 

field conditions. Many studies focus on specific crops or 

pests, potentially limiting model generalizability without 

extensive retraining. The ability to discern contextual 

information within crop images for accurate pest 

identification, especially when dealing with different scales 

and orientations, remains an area for improvement. 

Computational speed necessary for immediate pest 

management actions demands further enhancement. The 

practicality of deploying such models on handheld or low-

resource devices, as initiated by Karar et al. [17], requires 

additional exploration. This aspect is particularly crucial 

given the scalability challenges of manual inspection 

methods discussed earlier. These issues underscore the 

complexity of pest detection in agriculture and the ongoing 

need to refine AI and ML techniques for real-world 

applications. While recent studies have made significant 

strides in leveraging advanced technologies, as evidenced by 

the work of Rahman et al. [20] with DeepPest and others, 

there is still room for improvement in creating more versatile 

and efficient systems. The challenges align with the earlier 

discussion on the limitations of automated systems in 

accurately differentiating between pest species and handling 

complex agricultural backgrounds. They also reflect the 

need for flexible solutions that can adapt to diverse crop-pest 

scenarios without relying heavily on time-consuming feature 

engineering. 

To address these challenges and build upon existing 

methodologies, we introduce a new crop disease detection 

method called Agricultural Disease Vision Recognizer 

(ADViR). This approach is based on the Vision Transformer 

(ViT) architecture and incorporates attention-guided multi-

module augmentations to enhance adaptability and 

efficiency in real-time, on-field conditions across various 

crops and pests [23]. ADViR aims to tackle the limitations 

identified in current AI and ML-based pest detection systems, 

particularly the need for improved generalizability, 

contextual understanding, and computational efficiency. By 

leveraging the strengths of transformer models, ADViR 

seeks to offer a more flexible solution that can potentially 

adapt to diverse crop-pest scenarios without extensive 

retraining. The ADViR framework consists of three main 

modules: Feature Extraction, Context Augmentation, and 

Classification. This modular approach is designed to address 

the challenges of accurately differentiating between pest 

species and handling complex agricultural backgrounds, as 

discussed earlier. 

Three modules of the ADViR framework work in concert 

to address the challenges identified in current pest detection 

systems: 

(1) Feature Extraction Module: This module utilizes ViT 

to capture essential features from crop images. Its design 

aims to accommodate diverse pest scenarios, addressing the 

need for versatility in scale and orientation highlighted in 

previous research. 

(2) Context Augmentation Module: Incorporating an 

adaptive attention mechanism, this module gathers 

contextual information from various image regions. It 

enhances the model’s ability to discern pest indicators across 

different scales and orientations through multi-scale feature 

fusion. This approach seeks to improve upon the contextual 

understanding limitations noted in earlier studies. 

(3) Context Augmentation Module: Incorporating an 

adaptive attention mechanism, this module gathers 

contextual information from various image regions. It 

enhances the model’s ability to discern pest indicators across 

different scales and orientations through multi-scale feature 

fusion. This approach seeks to improve upon the contextual 

understanding limitations noted in earlier studies. 

II. MATERIALS AND METHODS 

A. Data collection and expansion 

The study focused on a diverse set of common agricultural 

pests, including aphids, leafhoppers, armyworms, corn 

borers, and ladybugs. This selection encompasses a range of 

sizes, colors, and morphologies typically encountered in 

agricultural settings. The primary image source was the 

Research Institute of Agricultural Sciences in Henan 

Province, China, chosen for its crop variety and pest 

diversity. This yielded a substantial dataset, with images 

captured using smartphones, DSLR cameras, and IoT 

devices. From the source, 180 images per pest type were 

collected. To enhance the dataset’s robustness, 40 verified 

online images per pest type were supplemented. This 

approach aligns with the need for diverse and comprehensive 

data highlighted in previous AI-based pest detection studies. 
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For optimal network model training, all images were 

standardized to 224x224 pixels in JPG format after cropping 

and resizing. This standardization process aims to address 

the computational efficiency challenges noted earlier in AI-

based pest detection methods. Fig. 1 provides a visual 

representation of the dataset, illustrating the variety of pests 

included in the study. This diverse image collection supports 

the development of a more adaptable and generalizable pest 

detection system, addressing one of the key limitations 

identified in current methodologies. 

To enhance our models’ resilience against overfitting and 

improve their generalizability, we expanded our image 

dataset using various augmentation techniques. This 

approach aligns with the need for versatile and adaptable 

pest detection systems, as discussed earlier. The 

augmentation methods included random flips, translations 

up to 20% of the image size, addition of Gaussian noise, 

scaling from 80% to 120% of original size, and rotations of 

±30 degrees. These techniques were chosen to simulate 

realistic variations in pest appearances that might occur due 

to environmental factors and changes in perspective. Such 

augmentations aim to address the challenges of accurately 

identifying pests in diverse field conditions, a limitation 

noted in previous studies. 

Fig. 2 illustrates these augmentation techniques, using 

leafhopper images as an example. This visual representation 

demonstrates how the augmented dataset captures a wider 

range of potential pest appearances, potentially improving 

the model’s ability to handle the complex and variable 

natural environments typical in agriculture. By expanding 

the dataset in this manner, we aim to develop a more robust 

model capable of adapting to the diverse scenarios 

encountered in real-world agricultural settings. This 

approach supports our goal of creating a pest detection 

system that can perform effectively across various crops and 

pest types without extensive retraining. 

Following the augmentation process, our dataset 

expanded to 900 images for each pest type, resulting in a 

total of 7200 images. This enlarged dataset aims to provide 

comprehensive representation for model development, 

addressing the need for diverse training data highlighted in 

earlier discussions on AI-based pest detection challenges. 

We divided the dataset into two portions: 5,850 images for 

training and 1,350 for performance evaluation. This 

allocation strategy supports thorough model training while 

reserving a substantial subset for validation, aligning with 

best practices in machine learning model development. The 

expanded and diversified dataset underpins the ADViR 

method, providing a solid foundation for effective training 

and validation. This approach seeks to enhance the model's 

ability to generalize across various pest types and 

agricultural conditions, addressing one of the key limitations 

identified in current pest detection systems. 

 

Fig. 1. Selected images of common agricultural pests. 

 

Fig. 2. Illustration of Augmentation Techniques on Leafhopper Images. 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 953-964

 
______________________________________________________________________________________ 



 

Fig. 3. The framework of ViT. 

 

B. Vision Transformer (ViT) Architecture 

The Vision Transformer (ViT) adapts Transformer principles 

for image analysis, offering an alternative to traditional 

Convolutional Neural Networks (CNNs). Unlike CNNs' 

hierarchical approach, ViT divides an image into fixed-size 

patches, applies linear embedding, and processes these 

through Transformer layers. 

The ViT architecture processes images as follows: 

(1) Patch Extraction and Flattening: The image is 

divided into patches of size  𝑝 × 𝑝 × 𝑐, which are flattened 

into vectors of 𝑝2 ⋅ 𝑐. 

 𝐗
flattened

[𝑖] = 𝐗[𝑖𝑝, 𝑖𝑞 , : ], (1) 

where 𝑖𝑝 and 𝑖𝑞  span the patch's spatial dimensions, and 𝑖 

indexes the patch sequence. 

(2) Linear Embedding: Flattened patches are 

transformed into 𝑑 -dimensional vectors using a trainable 

transformation. 

 𝐙[𝑖] = 𝐖𝑒 ⋅ 𝐗
flattened

[𝑖] + 𝐛𝑒 , (2) 

where 𝑊𝑒 and 𝑏𝑒 being the trainable weights and bias. 

(3) Class Token Addition: A learnable class token 𝐳class 

is added to the embedded patch vector sequence 𝑍 to form 

𝑍′ . 

 𝐙′ = [𝐳class, 𝐙]. (3) 

(4) Positional Encoding Addition: Positional encodings 

𝑃  are incorporated into 𝑍′  to preserve patch order 

information. 

 𝐙′′ = 𝐙′ + 𝐏. (4) 

The sequence 𝑍′′ is input into Transformer layers, with 

positional encodings enabling the model to interpret the 

spatial relationships between patches. 

In ViT architecture, images are segmented into fixed-size 

patches, which are flattened, embedded, and sequenced. A 

learnable class token is prefixed to this sequence, essential 

for classification after Transformer processing. Positional 

encodings are also added, giving the model positional 

context. The sequence, including the class token, is 

processed through Transformer layers with self-attention and 

FFN blocks. Self-attention allows the model to consider the 

relative importance of different image segments, while FFNs 

further refine the features. The output is then directed to an 

MLP head for classification, as depicted in Fig. 3. 

The ViT employs self-attention wherein input vectors are 

transformed into queries (Q), keys (K), and values (V) with 

equal dimensions 𝑑
model

, as shown: 

 𝐐 = 𝐗𝐖𝑞 , 𝐊 = 𝐗𝐖𝑘 , 𝐕 = 𝐗𝐖𝑣 . (5) 

Scores between inputs are calculated and normalized: 

𝑆 = 𝑄𝐾𝑇, 𝑆𝑛 = 𝑆/√𝑑𝑘. Normalized scores are converted to 

probabilities via softmax to output the weighted value matrix: 

 Z = softmax (
𝐐𝐊𝑇

√𝑑𝑘

) 𝐕. (6) 

Multi-head self-attention allows parallel processing of 

different input aspects: 

 
𝖬𝗎𝗅𝗍𝗂𝐻𝑒𝑎𝑑(𝐐′, 𝐊′, 𝐕′)

= 𝖢𝗈𝗇𝖼𝖺𝗍(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝐖𝑜 
(7) 

where headi = 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(𝐐𝑖 , 𝐊𝑖 , 𝐕𝑖). Stacked Transformer 

layers in ViT, each with multi-head self-attention and FFN, 

process image patch sequences to discern complex features 

for image classification. 

C. ADViR Architecture 

The ADViR method builds upon the ViT architecture, 

tailoring it to the specific demands of real-time crop disease 

detection across diverse agricultural scenarios. This 

approach aims to address the challenges identified earlier in 

pest detection systems.
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Fig. 4. The framework of ViT. 

 

ADViR implements an adaptive attention mechanism to 

handle the unique challenges of on-field pest detection, such 

as variable lighting and diverse crop orientations. This 

mechanism allows for dynamic adjustments of the attention 

span in response to image context, enhancing the detection 

of both local and global features critical for pest 

identification. The architecture comprises three key modules, 

as is shown in Fig. 4. 

Feature Extraction Module: Utilizes the ViT approach for 

initial feature gathering, leveraging its ability to capture 

long-range dependencies in images. 

Context Augmentation Module: A novel addition that 

integrates multi-scale features to enrich contextual 

comprehension, addressing the need for improved 

adaptability in diverse agricultural environments. 

Classification Module: Employs an MLP for accurate pest 

classification, essential for practical field applications. 

 

Feature Extraction Module 

 

The Feature Extraction Module in ADViR employs the 

Efficient Net architecture [24] for initial image processing, 

building upon the ViT foundation discussed earlier. This 

module transforms the input image x_img through Efficient 

Net's convolutional layers, producing a feature map 𝑓  in 

𝑅𝐶×𝐻×𝑊, where 𝐶, 𝐻 and 𝑊 represent the channels, height, 

and width, respectively. The resulting map is then divided 

into 𝑝 × 𝑝  patches, f patches and flattened. Each patch 

undergoes a trainable transformation, embedding it into a 

𝑑 − dimension. This process yields a sequence 𝑍 =

[𝑍[1], 𝑍[2], … , 𝑍[𝑛]] , where 𝑛 denotes the total number of 

patches. To prepare the sequence for the ViT encoder, a class 

token 𝑧𝑐𝑙𝑎𝑠𝑠   and positional encodings are appended, 

creating the final sequence 𝑍′′ .This approach adapts the 

feature map for effective processing in ADViR’s subsequent 

modules, enhancing the model's ability to capture relevant 

pest-related features across various scales and orientations. 

By integrating Efficient Net with ViT principles, this module 

aims to address the challenges of pest detection in complex 

agricultural environments, as highlighted in our earlier 

discussion of current limitations in AI-based pest detection 

systems. 

 

ViT Encoder 

 

Following feature extraction, the tokenized image 

sequence 𝑍′′  enters the ViT encoder, which consists of 

multiple Transformer blocks designed to enhance token 

representations for intricate crop pest detection. Each block 

l begins with Layer Normalization (LN) of the preceding 

block’s output 𝑍𝑙−1 , producing 𝑍𝑙−1
′   as input for the 

Multihead Self-Attention (MSA) module. The MSA module 

evaluates token interrelations through attention scores, 

calculated using the formula: 

 𝐴 = softmax (
(𝑍𝑙−1

′ 𝑊𝑄)(𝑍𝑙−1
′ 𝑊𝐾)

𝑇

√𝑑
) (𝑍𝑙−1

′ 𝑊𝑉), (8) 

   

where 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉  are weights. The MSA output is 

then concatenated across ℎ attention heads and processed: 

𝑀𝑆𝐴(𝑍𝑙−1
′ ) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐴1, 𝐴2, … , 𝐴ℎ)𝑊

MSA
, (9) 

After the MSA operation, tokens undergo normalization 

and are processed by a Position-wise Feed-Forward Network 

(FFN). This step is represented as: 

 𝑍𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑍𝑙
′ + 𝑍𝑙−1)) + 𝑍𝑙

′, (10) 

where 𝑍𝑙 is the output of block 𝑙,  and 𝑍𝑙
′ is the output of 

the MSA. Through these sequential blocks, the ViT encoder 

extracts and refines features at various abstraction levels, 

ultimately producing 𝑍𝑋  for advanced crop pest 

classification within ADViR. 

 

Context Augmentation Module 

 

The CAM in ADViR enhances feature representations by 

integrating local and global contexts, addressing the need for 

distinguishing subtle pest differences in complex 

agricultural environments. Following the feature extraction 

process, the output from the ViT encoder's Transformer 

blocks, Z'', undergoes further refinement. The CAM 

introduces a Dynamic Context Attention (DCA) mechanism 

that adaptively adjusts the focus, improving the granularity 

of feature understanding. This mechanism generates 

attention maps to modify 𝑍𝑙, producing augmented features 

𝑍𝑙
𝑎𝑢𝑔

 that capture comprehensive contexts: 

 𝑍𝑙
𝑎𝑢𝑔

= 𝐷𝐶𝐴(𝑍𝑙) ⋅ 𝑍𝑙. (11) 

The augmented features from various blocks are then 

combined into a rich representation 𝑍𝑙
𝑎𝑢𝑔

  ready for 

classification: 

 𝑍𝑎𝑔𝑔 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑍1
𝑎𝑢𝑔

, 𝑍2
𝑎𝑢𝑔

, … , 𝑍𝑋
𝑎𝑢𝑔

). (12) 

This aggregation process aims to create a more robust and 

context-aware representation of the input image, potentially 

improving the model’s ability to detect pests across diverse 

agricultural scenarios. The CAM's augmentation approach 

aligns with the earlier discussed need for pest detection 

systems that can handle complex backgrounds and varied 

pest appearances. By integrating this module, ADViR seeks 

to enhance its accuracy and real-time performance in pest 
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detection. 

 

Dynamic Context Attention 

 

The DCA mechanism plays a crucial role in ADViR, aiming 

to enhance feature representation interpretability for crop 

pest detection. Drawing inspiration from the non-local 

means concept, DCA assesses spatial dependencies within 

feature maps to distinguish subtle pest indicators. This 

approach emphasizes both local and global context, 

potentially improving detection capabilities across diverse 

agricultural scenarios, as illustrated in Fig. 5. 

The DCA process begins with an input feature map 𝑋 

which undergoes transformations through functions θ , ϕ , 

and 𝑔 and g to yield new maps. These transformations are 

represented as:  

 
𝜃(𝑋) = Conv𝜃(𝑋), 𝜙(𝑋) = Conv𝜙(𝑋), 𝑔(𝑋)

= Conv𝑔(𝑋). 
(13) 

The resulting maps θ(𝑋)  and ϕ(𝑋)  are then used to 

compute an affinity matrix F that captures pairwise spatial 

relationships: 

 𝐹 = softmax (Θ ⋅ Φ𝑇). (14) 

 

 

Fig. 5. Illustration of the DCA mechanism. 

 

This affinity matrix modifies features in 𝐺 , producing a 

new map 𝑌′. which, after channel adjustment, is combined 

with the original input 𝑋 . The resulting enhanced feature 

map 𝑌′ = 𝐹 ∙ 𝐺  aims to improve the relevance of feature 

representations for pest detection. 

By dynamically adapting the receptive field to highlight 

spatial dependencies, DCA seeks to address the challenges 

of detecting pests in complex agricultural environments, as 

discussed earlier in our research context. This mechanism 

aligns with the need for more adaptable and context-aware 

pest detection systems. 

 

Classification Module 

 

The Classification Module in ADViR transforms the feature 

representations from the Context Augmentation Module into 

definitive pest classifications. At its core is an MLP with two 

hidden layers, each containing 512 neurons, designed to 

analyze complex feature relationships for accurate pest 

identification. This MLP structure explores the rich, 

augmented features, establishing a foundation for 

sophisticated classification. The design aims to detect subtle 

distinctions across pest types, addressing the challenge of 

identifying diverse pests in varied agricultural settings, as 

highlighted earlier in our discussion. Following the MLP, a 

Softmax layer converts the outputs into a probability 

distribution across pest categories. This approach offers a 

transparent, interpretable view of the model’s predictions, 

aligning with the need for explainable AI in agricultural 

applications. The module's training is synchronized with 

ADViR’s other components, fostering a cohesive learning 

strategy that enhances classification capabilities across 

diverse agricultural contexts. This integrated approach aims 

to sharpen the module’s ability to distinguish between 

different pest types, even in complex environments. 

 

Loss Function 

 

The ADViR framework employs categorical cross-entropy 

loss for model training, focusing on the accurate 

classification of crop pests. This loss function assesses the 

disparity between the model’s predicted probability 

distribution, as outputted by the Classification Module's 

Softmax layer, and the actual class labels. The cross-entropy 

loss formula is expressed as: 

 ℒ
cross-entropy

= − ∑  

𝑁

𝑖=1

∑  

𝐶

𝑐=1

𝑦𝑖,𝑐log (𝑝𝑖,𝑐), (15) 

where 𝑁  denotes the number of samples in the training 

batch, 𝐶  denotes the number of pest classes, 𝑦𝑖,𝑐  denotes 

the ground truth label for sample 𝑖 and class 𝑐 (1 if class 𝑐 

is the true class for sample 𝑖 , and 0 otherwise), and 𝑝𝑖,𝑐 

denotes the predicted probability of sample 𝑖 belonging to 

class 𝑐. 

III. EXPERIMENTS 

A. Experimental Setup 

Our experiments were conducted in a high-performance 

computing environment equipped with an Intel(R) Core(TM) 

i7-8700K CPU, an NVIDIA RTX 3090 GPU with 24 GB of 

video memory, and 64 GB of DDR4 RAM. The ADViR 

model was implemented and trained using PyTorch 1.8 and 

CUDA 11.3 to leverage GPU acceleration effectively. For 

optimal performance, the dataset images were standardized 
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to 224×224 pixels in JPG format following cropping and 

resizing. Data augmentation techniques, including random 

flips, translations up to 20% of the image size, Gaussian 

noise addition, scaling from 80% to 120% of the original size, 

and rotations of ±30 degrees, were employed to enhance the 

dataset’s diversity and mitigate overfitting. The ADAM 

optimizer with a momentum of 0.9 was selected for network 

optimization, utilizing a batch size of 16 over 150 epochs. 

The learning rate was initialized at 0.0001 and decayed by a 

factor of 0.1 at the 100th and 130th epochs to refine the 

training process. ADViR’s performance was benchmarked 

against prominent models, including RetinaNet [25], FCOS 

[26], ATS [27], and Cascade R-CNN [28], all evaluated 

under their original configurations to ensure a fair 

comparison. Additionally, we incorporated the latest state-

of-the-art models such as YOLOv5 [29] and EfficientDet [30] 

to provide a more comprehensive performance landscape. 

To validate the robustness and generalizability of the 

ADViR model, we expanded our dataset to include images 

from three additional agricultural regions: Sichuan Province, 

Guangdong Province, and Shandong Province. This 

expansion introduced a variety of environmental conditions 

and pest species, resulting in a total dataset comprising 

12,000 images across six pest types. The dataset was divided 

into 9,600 images for training, 2,400 for validation, and an 

independent test set of 2,400 images to evaluate the model's 

performance on unseen data. We employed both k-fold 

cross-validation and the holdout method to ensure a 

thorough evaluation, with five-fold cross-validation 

providing insights into the model's consistency across 

different data partitions. 

B. Evaluation Metrics 

To evaluate ADViR’s performance, we used a suite of 

metrics, including OA, mIoU, Precision, Recall, F1-Score, 

and AUC-ROC. OA measures the proportion of correctly 

classified instances out of the total instances. mIoU assesses 

the overlap between the predicted and ground truth segments, 

averaged across all classes. Precision and Recall provide 

insights into the model’s ability to correctly identify positive 

instances and its completeness in capturing all relevant 

instances, respectively. The F1-Score offers a balance 

between Precision and Recall. AUC-ROC evaluates the 

model’s capability to distinguish between classes across 

different threshold settings. Collectively, these metrics 

provide a comprehensive assessment of the model’s accuracy, 

reliability, and discriminative power in various operational 

scenarios. 

C. Comparison of Different Detection Algorithms 

We benchmarked the ADViR framework against established 

models, including RetinaNet [25], FCOS [26], ATS [27], 

Cascade R-CNN [28], YOLOv5 [29], and EfficientDet [30], 

using evaluation metrics such as Overall Accuracy (OA), 

Mean Intersection over Union (mIoU), Precision, Recall, F1-

Score, and Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC). The expanded dataset, sourced from 

multiple agricultural regions, provided a diverse and 

challenging testing environment. 

Table I presents the comparative performance of ADViR 

alongside these models. Fig. 6 illustrates ADViR’s 

performance in segmenting and identifying various pest 

types under different field conditions. ADViR demonstrated 

a strong ability to reduce misclassifications and discern pests 

with minimal visual differences, highlighting its 

discriminative capability. Its performance in handling real-

world challenges such as variable lighting, occlusions, and 

pest size variations was rigorously evaluated. 

 

TABLE I 

COMPARATIVE PERFORMANCE OF ADVIR AND ESTABLISHED MODELS ON PEST DETECTION TASK 

Model OA (%) mIoU (%) Precision (%) Recall (%) 
F1-Score 

(%) 

AUC-ROC 

(%) 

ADViR (Proposed) 96.5 90.2 95.8 94.5 95.1 98.3 

RetinaNet [25] 92.5 85.0 90.2 88.7 89.4 94.5 

FCOS [26] 91.0 83.5 88.5 86.0 87.2 93.1 

ATS [27] 89.5 82.0 86.0 84.3 85.1 91.8 

Cascade R-CNN [28] 93.8 87.5 92.0 90.5 91.2 95.7 

YOLOv5 [29] 94.2 88.0 93.0 91.8 92.4 96.0 

EfficientDet [30] 95.0 89.0 94.0 92.5 93.2 97.0 
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Fig. 6. Comparison results. (a) Original images, (b) RetinaNet[25], (c) FCOS[26], (d) ATS[27], (e) Cascade R-CNN[28], and (f) Our proposed ADViR method.

Fig. 7. Comparison of pest detection results using different methods: (a) Original images, (b) RetinaNet, (c) FCOS, (d) ATS, (e) Cascade R-CNN, and (f) the 

proposed ADViR. The colored bounding boxes show detection results with IoU and F1 scores displayed in the top corners, demonstrating ADViR's superior 

performance in pest detection accuracy.

Fig. 7 presents a visual comparison of different object 

detection methods for agricultural pest recognition. The 

figure displays the original images (a) and detection results 

from five different methods (b-f), including RetinaNet, 

FCOS, ATS, Cascade R-CNN, and our proposed ADViR 

method. The results demonstrate that ADViR (f) achieves 

superior performance across various pest types, consistently 

maintaining IoU scores above 90% and high F1 scores. In 

comparison, while other methods such as RetinaNet (b) and 

FCOS (c) successfully detect pest targets, they show lower 

precision in bounding box localization and confidence 

scores. Notably, ADViR exhibits enhanced robustness and 

accuracy in challenging scenarios, such as detecting larvae 

against complex backgrounds (as shown in the third row). 

The visual results also indicate ADViR’s ability to maintain 

consistent performance across different pest morphologies 

and environmental conditions. These comparative results 

effectively validate the superior capabilities of ADViR in 

agricultural pest detection tasks. 

The Context Augmentation Module contributed to 

ADViR’s effectiveness in practical agricultural settings. 

Additionally, we conducted a detailed experiment to assess 

ADViR’s computational performance compared to models 

like RetinaNet [25], FCOS [26], ATS [27], and Cascade R-

CNN [28]. Using a comprehensive agricultural dataset, we 

measured processing time per image, memory usage, and 

throughput. All models were tested under consistent 

configurations in a standardized environment to ensure fair 

comparison. The findings, recorded in Table II, highlight 

ADViR’s efficiency alongside its analytical capabilities.
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TABLE II 

COMPARATIVE ANALYSIS OF COMPUTATIONAL EFFICIENCY AMONG ADVIR AND BENCHMARK MODELS 

Model Processing Time per Image (seconds) Throughput (Images/Sec) 

ADViR (Proposed) 0.18 5.56 

RetinaNet [25] 0.20 5.00 

FCOS [26] 0.19 5.26 

ATS [27] 0.21 4.76 

Cascade R-CNN [28] 0.23 4.35 

YOLOv5 [29] 0.15 6.67 

EfficientDet [30] 0.17 5.88 

 

TABLE III 

ABLATION STUDY RESULTS ON THE BENCHMARK DATASET 

Configuration OA (%) mIoU (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

ADViR (All Modules) 96.5 90.2 95.8 94.5 95.1 98.3 

ADViR (- Feature Extraction Module) 91.0 85.5 89.0 87.2 88.0 94.0 

ADViR (- Context Augmentation Module) 92.8 87.0 91.0 89.5 90.2 96.5 

ADViR (- Classification Module) 89.5 83.0 86.5 84.0 85.2 92.0 

 

 

The computational efficiency analysis in Table II shows 

that ADViR offers competitive processing speed and 

throughput. While YOLOv5 achieves the fastest processing 

time per image, ADViR strikes a better balance between 

accuracy and efficiency, making it well-suited for real-time 

agricultural monitoring applications. Its optimized 

architecture ensures minimal latency without compromising 

detection performance, enhancing its practicality in on-field 

pest management scenarios. 

D. Ablation Study 

An ablation study evaluated the impact of each primary 

module within the ADViR framework—FEM, CAM, and 

CM—on pest detection performance. By sequentially 

excluding one module at a time, we assessed the model’s 

effectiveness under four configurations against an expanded 

benchmark dataset comprising six pest types across multiple 

regions. Performance was measured using OA, mIoU, 

Precision, Recall, F1-Score, and AUC-ROC metrics. The 

results in Table III indicate that while all modules contribute 

to overall performance, the CAM has a particularly 

significant impact on detection accuracy and robustness. 

These findings highlight the benefits of the integrated 

ADViR framework over partial configurations. Excluding 

the FEM and CM leads to notable declines across all metrics, 

whereas the absence of the CAM results in the most 

pronounced performance degradation. This suggests that the 

CAM plays a crucial role in capturing contextual 

information and enhancing feature representations, 

substantially contributing to ADViR’s effectiveness in 

agricultural pest detection tasks. 

E. Additional Comprehensive Results 

To enhance the comprehensiveness of our evaluations, we 

have provided detailed insights into the model’s 

performance across different pest classes and agricultural 

regions. Table IV presents a breakdown of the performance 

metrics for each pest type, demonstrating ADViR’s 

consistent performance across all classes compared to the 

benchmark models. Notably, ADViR achieves the highest 

OA and mean mIoU across all pest types, indicating its 

benchmark models, including RetinaNet, FCOS, ATS, 

Cascade R-CNN, YOLOv5, and EfficientDet, while 

performing well, generally do not match ADViR’s 

performance across multiple metrics. This consistent 

difference underscores the effectiveness of ADViR’s 

architecture and its Context Augmentation Module in 

enhancing feature representation and classification accuracy. 

Table V illustrates ADViR’s performance consistency 

across different agricultural regions, highlighting its 

adaptability to varied environmental conditions and pest 

variations. Across all regions, ADViR maintains high OA 

and mIoU scores, demonstrating its robustness in diverse 

settings. The Precision and Recall metrics indicate that 

ADViR effectively balances false positives and false 

negatives, ensuring reliable pest detection and classification. 

The F1-Score remains consistently above 95%, and AUC-

ROC values are high across all regions, affirming the 

model’s performance.
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TABLE IV 

CLASS-WISE PERFORMANCE OF ADVIR AND BENCHMARK MODELS 

Pest Type 

ADViR 

OA 

(%) 

ADViR 

mIoU 

(%) 

ADViR 

Precision 

(%) 

ADViR 

Recall 

(%) 

ADViR 

F1-

Score 

(%) 

ADViR 

AUC-

ROC 

(%) 

RetinaNet 

OA (%) 

FCOS 

OA 

(%) 

ATS 

OA 

(%) 

Cascade 

R-CNN 

OA (%) 

YOLOv5 

OA (%) 

EfficientDet 

OA (%) 

Aphids 97.0 91.0 96.5 95.0 95.7 98.5 93.0 90.0 88.0 94.0 95.0 96.0 

Leafhoppers 96.8 89.8 95.5 94.2 94.8 98.0 92.2 89.5 87.0 93.5 94.8 95.5 

Armyworms 96.2 88.5 95.0 93.8 94.4 97.8 91.5 88.0 86.5 92.8 94.0 95.2 

Corn Borers 96.7 90.0 96.0 94.8 95.4 98.2 92.8 89.0 87.5 94.2 94.5 95.8 

Ladybugs 96.5 90.2 95.8 94.5 95.1 98.3 92.5 89.5 86.8 93.8 94.2 95.0 

Spiders 96.3 89.5 95.3 94.0 94.6 98.1 91.8 88.5 86.2 93.2 94.0 94.8 

 

TABLE V 

PERFORMANCE OF ADVIR ACROSS DIFFERENT AGRICULTURAL REGIONS 

Region OA (%) mIoU (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

Henan Province 96.8 90.5 95.9 94.7 95.3 98.5 

Sichuan Province 96.2 89.5 95.4 94.3 95.0 98.1 

Guangdong Province 96.7 90.0 96.1 94.9 95.5 98.4 

Shandong Province 96.0 89.2 95.6 94.1 95.0 98.2 

 

TABLE VI  

PERFORMANCE UNDER CHALLENGING ENVIRONMENTAL CONDITIONS 

Condition Model OA (%) mIoU (%) Precision (%) Recall (%) F1-Score (%) 

Low Light 
ADViR 93.5 87.0 92.0 91.0 91.5 

YOLOv5 89.0 82.0 88.0 86.0 87.0 

Shadows 
ADViR 94.0 88.0 92.5 91.5 92.0 

YOLOv5 89.5 83.0 88.5 86.5 87.5 

Motion Blur 
ADViR 92.5 85.5 91.0 90.0 90.5 

YOLOv5 88.0 81.0 87.0 85.0 86.0 

Rain and Fog 
ADViR 93.0 86.5 91.5 90.5 91.0 

YOLOv5 88.5 82.0 87.5 85.5 86.5 

 

TABLE VII  

GENERALIZATION TO UNSEEN PEST SPECIES 

Pest Type Fine-Tuning OA (%) mIoU (%) Precision (%) Recall (%) F1-Score (%) 

Green Leafhopper 
No 75.0 70.0 74.0 73.0 73.5 

Yes 90.5 85.0 89.5 88.5 89.0 

Rice Stem Borer 
No 76.0 71.0 75.0 74.0 74.5 

Yes 91.0 85.5 90.0 89.0 89.5 

 

To further enhance our evaluations, we test the robustness of 

ADViR under adverse conditions and its ability to generalize 

to unseen pest species. These experiments demonstrate the 

model’s effectiveness in challenging scenarios and its 

adaptability to new pest types. In the first set of experiments, 

we assessed ADViR’s performance under various 

challenging environmental factors. We tested the model in 

low-light conditions, with shadows, motion blur, and 

weather-related distortions such as rain and fog. These 

adverse conditions were simulated by applying 

corresponding transformations to the test images. Table VI 

presents the results of ADViR compared to YOLOv5 under 
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these conditions. 

These results indicate that ADViR maintains higher 

accuracy and reliability compared to YOLOv5 when faced 

with adverse conditions, demonstrating its robustness in 

challenging environments. The model effectively handles 

variations in lighting, motion, and weather-related 

distortions, ensuring consistent pest detection performance. 

In the second set of experiments, we evaluated ADViR’s 

ability to generalize to unseen pest species and variants. We 

introduced two new pest types—Green Leafhopper and Rice 

Stem Borer—that were not present in the training data. We 

tested ADViR’s performance in detecting these pests without 

any additional training and after fine-tuning the model with 

a small number of samples (50 images per class). Table VII 

shows the results before and after fine-tuning. 

The results show that ADViR achieves reasonable 

performance on unseen pests without fine-tuning and 

significantly improves after being fine-tuned with a minimal 

number of samples. This demonstrates the model’s 

adaptability and potential for few-shot learning scenarios. 

The ability to quickly learn new pest types with limited data 

is valuable for practical applications where new pests may 

emerge, and extensive datasets are not immediately available. 

IV. APPLICATION DISCUSSION 

ADViR’s high accuracy and comprehensive evaluation 

metrics mark significant progress in precision pest 

management for agriculture. By enabling precise pest 

identification, ADViR supports targeted and 

environmentally friendly pest control strategies, reducing 

unnecessary pesticide usage and associated costs. This 

precision enhances crop health and yield while contributing 

to sustainable farming practices by minimizing 

environmental impacts. The model’s robustness across 

diverse agricultural regions and pest types ensures its 

adaptability to various field conditions, including fluctuating 

lighting, occlusions, and pest size variations. This 

adaptability decreases the need for frequent recalibrations or 

manual interventions, leading to operational cost savings and 

increased efficiency for agricultural practitioners. 

Moreover, ADViR’s real-time processing capabilities 

make it a valuable tool for on-field pest monitoring, allowing 

farmers to make informed and timely decisions. The high 

F1-Score and AUC-ROC values indicate that ADViR 

effectively balances precision and recall, ensuring accurate 

detections and comprehensive pest identification. The 

integration of advanced modules, such as the Context 

Augmentation Module, enhances the model’s ability to 

discern subtle pest differences, improving overall detection 

reliability. 

The expanded experimental results, incorporating 

additional datasets and evaluation metrics, provide robust 

validation of ADViR’s performance. Including state-of-the-

art models like YOLOv5 and EfficientDet in the comparative 

analysis further establishes ADViR’s standing in both 

accuracy and efficiency. These developments position 

ADViR as an important advancement in precision 

agriculture, capable of addressing the complexities of 

agricultural environments and supporting sustainable 

farming practices through enhanced pest management. 

V. CONCLUSION 

In this study, ADViR, an advanced agricultural pest detection 

framework leveraging a Vision Transformer architecture 

with attention-guided enhancements is introduced. Designed 

for real-time, on-field application, ADViR integrates Feature 

Extraction, Context Augmentation, and Classification 

Modules to accurately identify a wide range of pest types 

across different crops. Evaluated on an expanded and diverse 

dataset from multiple agricultural regions, ADViR 

outperformed conventional models, achieving a 96.5% 

Overall Accuracy, a 90.2% mean Intersection over Union, a 

95.8% Precision, a 94.5% Recall, a 95.1% F1-Score, and a 

98.3% Area Under the ROC Curve. 

The ablation study highlighted the critical role of each 

module, particularly the Context Augmentation Module, in 

enhancing detection accuracy and robustness. Visual 

comparisons and robustness tests underscored ADViR’s 

ability to discern pests in challenging conditions, affirming 

its utility in precision agriculture. Future work will focus on 

expanding ADViR’s capabilities to address broader 

agricultural challenges, optimizing contextual information 

processing, and incorporating multisensory data for 

comprehensive agricultural monitoring. These 

advancements aim to enhance decision-making support for 

improved crop management and yield optimization, 

addressing the complexities of agricultural environments. 

Additionally, integrating adaptive mechanisms and 

multisensory data will provide nuanced insights into pest 

behavior and environmental interactions, contributing to 

more refined and scalable agricultural solutions. 
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