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Abstract—Predicting financial defaults plays a vital role in
reducing financial risks for credit businesses. A prominent trend
in this area is the incorporation of borrowers’ social profiles
into predictive models using graph neural networks. However,
the significant imbalance between default and normal users in
labeled financial datasets poses challenges for training effective
prediction models, often leading to overfitting. A financial
default prediction model named IG-DP is proposed in this
paper, which is designed to use unlabeled background nodes
to enhance prediction performance. First, imbalanced labeled
samples are used to train an initial graph neural network
classifier, and the node embeddings of the unlabeled samples
can be obtained with the initial model. Then, background nodes
proximal to the labeled samples are selected for pseudo labeling
with the similarity selection module based on the embedding
vector of the node. Finally, the pseudo-labeled samples are
added to the training set to retrain the prediction model. The
DGraphFin dataset is used for experimental evaluation, and the
AUC−ROC and F1−measure are chosen as evaluation
metrics. The experimental results demonstrate that IG-DP
significantly outperforms other methods. Meanwhile, ablation
experiments confirm the effectiveness of both the similarity
selection module and the retraining loss calculation method
for fusion confidence.

Index Terms—Default prediction, Graph neural network,
Samples imbalanced issue, Similarity measurement.

I. INTRODUCTION

INTERNET financial services have become an essential
part of people’s social lives due to the rapid growth of

the economy. Under the internet financial model, borrowing
and lending channels have shifted from single, centralized
banks and financial institutions to increasingly decentralized
peer-to-peer lending platforms [1]. However, there are both
opportunities and threats. Credit risk in internet finance is
more complex compared to the traditional financial sector
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[2]. Assessing borrowers’ ability to repay debt promptly
and accurately can lower financial risks and guarantee the
security of online financial transactions [3]. The fundamental
function of online financial services is to identify defaulting
users. The goal of default prediction is to determine whether
a user will be unable to repay in the future. A user will
be classified as a default user if they cannot make their
repayments on time [4]. It is therefore typically regarded
as a binary categorization problem [5].

The financial data is being studied using a number of
statistical learning models [6], such as autoregressive in-
tegrated moving average model (ARIMA) [7], vector au-
toregressive model (VAR) [8] and graph neural network
(GNN) [9]. GNN is the future trend in this field since it
can take social relationship data into account when making
predictions [10], [11]. However, the majority of GNN-based
classification tasks depend on reasonably balanced datasets
[12]. In financial default prediction, there is a class imbalance
problem in the model’s training data because there are more
normal users than default users [9]. The class imbalance
problem leads to a model bias towards the majority class,
neglecting the minority class during training. As a result,
directly applying GNN to the default prediction task often
fails to yield satisfactory outcomes [2].

Typically, there are two approaches to addressing this
problem. The first involves synthesizing minority class sam-
ples using oversampling methods to enhance training data
[13]. However, the newly synthesized samples cannot prop-
erly represent the minority classes and lack interpretability.
The second approach involves adjusting the class weights,
where the model assigns higher weights to the minority class
to give it more attention [14]. Since neither of these two
methods effectively expands the classification boundaries,
they lead to overfitting issues. However, compared to other
imbalanced classification problems, default prediction bene-
fits from a large number of unlabeled background samples.
These samples, registered as financial company users but
not having made any loans, provide valuable background
information for predicting defaults. This paper proposes a
default prediction method on the imbalanced graph (IG-DP),
which leverages these background samples to predict default
risk. The main contributions of this work are as follows.

• The graph neural network is adopted for default predic-
tion to take into account borrower’s social profiles.

• A default prediction framework that takes advantage of
unlabeled background samples for the class imbalance
problem is proposed.

• The efficacy of this approach is validated utilizing the
publicly available dataset, and the impacts of various
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modules are investigated through ablation experiments.
This paper is organized as follows. Firstly, a brief review

of the related work is introduced in Section II. Following this,
the proposed prediction method is described in Section III.
Next, the performance evaluations, including experimental
design and comparison results, are shown in Section IV.
Lastly, future work and overall summary are discussed in
Section V.

II. RELATED WORKS

A. Financial default prediction

The issue of financial default prediction has been widely
studied and is typically regarded as a classification or re-
gression task based on machine learning. Using machine
learning methods, researchers are starting to forecast default
probabilities with the advent of big data [15].

Machine learning methods use different classifiers, such as
decision trees and neural networks, to make predictions by
extracting key features that represent each user [16], [17]. Dai
et al. [16] utilized reinforcement learning to decide whether
to sample the data. Wang et al. [18] proposed an adaptive
classification boundary adjustment method and used a multi-
objective evolution mechanism for ensemble creation. Then,
graph-based methods were used to enrich user information
through neighbor nodes [19].

Financial default prediction tasks also leverage graph
neural networks and their various variants, including graph
convolutional network (GCN) [2], graph sample and ag-
gregate (GraphSAGE) [20] and graph attention network
(GAT) [21]. These networks use graph topology and node
features to learn node representations [22]. Wang et al.
[2] proposed a graph-preserving graph neural network with
learning function to jointly learn the low-order structure in
the original graph and the high-order structure in the graph-
based multi-view. Cheng et al. [23] merged credit behavior
and network structure data, builds recursive and self-attention
mechanisms, and accelerates the risk prediction process. In
addition, some methods combine time series models with
convolutional neural networks (CNN) [24]. Yang et al. [25]
utilized the long-term time model of long short-term memory
recurrent neural network (LSTM) to obtain short- and long-
term structure information.

None of these methods fully utilize the vast amounts of
unlabeled node information in graph data, which are crucial
for estimating the credit risk of each user.

B. Class imbalance problem

There is a class imbalance problem, as some categories
have very few samples while others have a large number
of samples [26]. In real-world applications, such as credit
card fraud detection [27], disease identification [28], traffic
control [29], credit score [30] and emotion recognition [31],
imbalanced data is frequently encountered.

Re-weighting and re-sampling are common solutions for
addressing this issue. The re-weighting approach assigns
greater weight to minority class samples when calculating the
loss, which makes the model more focused on the minority
class [14], [32]. A solution to the issue of decision boundary
shift brought on by topological imbalance was suggested
by Chen et al. [14] to reweight the distance between each

labeled node and its class boundary. Menon et al. [32] put
forward two long-tail logit adjustment methods that offer
adaptable control over the relative value labels’ share of
the overall loss. Undersampling and oversampling are two
types of resampling methods [33]. Reducing the quantity
of samples from the majority class through undersampling
puts the class distribution into balance [34]. Cui et al. [35]
utilized a hybrid sampling method that undersamples the
majority class and oversamples the minority class to achieve
a balance of samples from different classes. Through the
use of more minority class samples, oversampling methods
adjust the distribution of classes [13], [36]. Zhao et al.
[13] generated synthetic minority nodes by interpolating two
minority class nodes. A pre-trained edge predictor determines
the connectivity of synthesized nodes between the generated
nodes and the neighbors of the two source minor nodes.
However, this approach cannot be efficiently extended to
the minority class, as the created nodes only depend on
minority class nodes. Park et al. [36] designed the diversity
of these minority classes by mixing some minority class
nodes from other classes and synthesizing new minority class
nodes with their one-hop neighbors. If the mixing ratio is not
adjusted correctly, synthetic nodes created by a subjectively
designed mix of a few nodes with other nodes might not
accurately represent the state of the underlying data, which
could damage the results. Chang et al. [37] proposed a mod-
ified cluster-based over-sampling (MCS) method to tackle
the class imbalance problems, which duplicates minority
examples until the imbalanced situations are improved in
order to select representative minority class examples.

The majority of present methods either repeat a signifi-
cant number of specific samples or increase their weights,
both of which lead to overfitting problems and impair the
performance of classifiers based on graph structure, such as
GNN.

C. Self-training

Self-training is a widely used method in semi-supervised
learning, often applied to node classification tasks [38]. A
lack of sufficient accessible labels can result in a decrease
in GNN performance. The classifier is initialized using some
labeled data through the self-training method. Once trained,
it can predict high-confidence unlabeled samples, which are
then added to the labeled data to retrain the classifier [39].
This process adresses the shortcomings of GNN caused by
the lack of labels.

The selection of high-confidence unlabeled samples is
critical to the effectiveness of self-training methods [38].
Jiao et al. [40] utilized natural neighbors to assist ensemble
classifiers grown more effectively. When calculating the
confidence between samples, Wang et al. [41] included
geometric distance and data distribution as factors. Yang et
al. [25] proposed a new graph with homogeneous and het-
erogeneous edges combining labeled and unlabeled data. A
common problem with these approaches is that the learning
process can become biased due to the label noise introduced
by the pseudo-labels generated through predictions [16]. If
reliable unlabeled samples are not efficiently selected, it is
easy to produce inaccurate predictions on unlabeled data,
which in turn reduces classifier performance. Wang et al.
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[12] combined graph structure learning and graph neural
networks to generate negative pseudo-labels for unlabeled
data with low prediction confidence. These pseudo-labeled
samples were trained alongside a limited number of labeled
samples. But training this way takes a long time.

Our method integrates the concept of self-training, selects
high-confidence samples, reduces noise, shortens training
time, and generates pseudo-labels for default samples using
graph node embeddings and similarity selection.

III. METHOD

A. Problem definition

We define G = (V ,A,X) as the graph containing all
users and their relationships, V is the user node set, |V | = n
is the total number of nodes, X = {xi} ∈ Rn×m is the
node features matrix corresponding to V , m is the number
of features, and A = {aij} ∈ Rn×n is the adjacency matrix
of graph G. In the default prediction task, each node in the
graph represents a user, and the node features represent indi-
vidual information that the user provided, such as registration
time, gender, age, and income, etc. The relationship between
users i and j is represented by edge aij in the graph, and it
can be found by looking up the user’s common connections,
emergency contacts, etc. The definition makes it clear that
matrix A is a sparse matrix. In the subsequent sections, ξ(v)
represents the set of nodes connected to node v.

Two labels defined in the financial default prediction task
are default users and normal users, denoted by labels l1 and
l2, respectively. The default user refer to one who has A loan
record and defaulted on repayments, while a normal user
repays on time. |li| is used to represent the number of nodes
in the i-th category. Since the number of defaulting users in
credit companies is much smaller than that of normal users,
|l1| << |l2|, which leads to the class imbalance problem.

Just a few nodes in the node set V have labels because
many users have registered but have not taken out loans from
financial institutions. These nodes and the corresponding
features are denoted by VF and XF , respectively. The
rest unlabeled nodes are represented by VU and XU . yi

is the label for ∀xi ∈ XF , and YF is the label set that
corresponds to XF . The financial default prediction task
aims to train a prediction model, which can predict if a user
will default in the future based on samples that already exist.
When a prediction model is trained directly from the class-
imbalanced node set VF , the predictions of this model will
be skewed in favor of the majority class, which will produce
subpar default predictions. This paper is dedicated to train
a prediction model f based on the graph neural network,
which can avoid the impact of sample imbalance problem
and improve the model’s classification ability for minority
nodes by using background nodes VU .

B. Method overview

This section briefly introduces the proposed IG-DP, with
an overview shown in Fig.1.

Given a graph consisting of all users and their relation-
ships, a binary classification GNN prediction model f0 is
first trained with the labeled sample (XF ,YF ). Then, X
is classified with f0, and VF1 and VF2 represent the node
sets categorized as l1 and l2 in VF , respectively. VU1 and

VU2 represent the node sets classified as l1 and l2 in VU . The
normalized probability vector hi represents the classification
result for xi in X . As it is a binary-classification problem,
the dimension of hi is 2. The classification confidence of
sample i, denoted as ci , which can be credibly assessed
with hi. This model also regards the input vector of the final
output layer as the embedding vector of the node, in addition
to calculating the confidence of the node. The embedding
vector can be used as the representation of the node since it
combines its initial features and topological structure. UF1,
UF2, UU1and UU2 are the corresponding embedding vector
sets for VF1, VF2, VU1 and VU2, respectively.

Some of the background nodes need to be selected in
order to enhance the effect of initial prediction model on
default users. First, calculating the mean of vectors in UF1

and denoted as u0. Then, determining the distance in vector
space for ∀u ∈ UU1 between u and u0. These nodes close
to u0 are recorded as Va. The classification result l1 is
defined as the label of the node set, and the set composed
of the confidence of these nodes is marked Ca. Both the
original feature set Xa and label set Ya corresponding
to Va are added to the original training data. Finally, the
classifier is retrained with (XF ∪ Xa,YF ∪ Ya) and the
associated confidence set Ca. The final prediction model can
be obtained by repeating these steps numerous times. The
process of IG-DP will be introduced as Algorithm 1.

Algorithm 1: The process of the IG-DP
Input: G = (V ,A,X) , imbalanced training set

(XF ,YF ), feature matrix for unlabeled nodes
XU ;

Output: Unbiased GNN classifier fT ;
1 Train the initial GNN classifier f0 with (XF ,YF );
2 for each epoch t = 1, 2 · · · do
3 Classify all nodes with ft−1, and get the

classification confidence set C;
4 Get the node embedding set UF1 and UU1;
5 Calculate the center of UF1, denoted as u0;
6 Initialize ordered set Xa = ∅,Ya = ∅,Ca = ∅;
7 for ∀u ∈ UU1 do
8 Calculate the distance between u and u0,

denoted as d;
9 if d < θ then

10 Xa = Xa ∪ xu,Ya = Ya ∪ l1,
Ca = Ca ∪ cu;

11 end
12 end
13 Train the new GNN classifier ft with

(XF ∪Xa,YF ∪ Ya) and Ca;
14 end
15 return GNN classifier fT ;

The implementation details of each part will be introduced
in the following sections.

C. Graph Neural Networks

The GNN is utilized as a classifier for the prediction
framework of this paper in order to make use of connections
among registered users. It can obtain the embedding vector
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Fig. 1: The overview of the IG-DP. The input data is a graph with limited labeled nodes and massive unlabeled nodes.
First, a temporary prediction model is trained with the input data, and the trained model is used to classify the input data

to obtain the confidence and embedding vector for each node. Then, the nodes embeddings are input to the similarity
selection module to pseudo-label some default users. Finally, the augmented labeled set is applied to retrain the temporary

prediction model. After training multiple times, the final prediction model is obtained.

of a node which combines topological relationship by aggre-
gating the features of the neighboring nodes. The GNN is
shown in Fig.2, and the general form of feature aggregation
is defined as Formula 1.

uk
v = σ(W k · [uk−1

v ||(
∑

v′∈ξ(v)
uk−1
v′ )

/
|ξ(v)|]), (1)

where uk
v is the embedding of node v after k-hop aggre-

gation, and u0
v = xv . ξ(v) is the set of nodes connected

to node v, and |ξ(v)| is node number in ξ(v). W k is the
trainable matrix, || is the vector connection operation, and
σ is the sigmoid() activation function. Feature aggregation
of neighboring nodes with k-hop distance can be achieved
by Formula 1. After feature aggregation, the vector uk is
mapped as a sample label through a fully connected layer
with an output degree of 2, shown as

ĥ = σ(Wou
k), (2)

where ĥ is the model output and Wo is the trainable weight
matrix for output layer. When the model is initialized, the
trainable parameters are initialized using a normal distribu-
tion. The gradient descent algorithm is used to update these
parameters in the training process. The cross-entropy loss
function is used in this paper to calculate the prediction loss,
shown as

L(hi, ĥi) = −
2∑

j=1

hij ln(ĥij), (3)

where hi is the one-hot vector generated based on the label
of sample xi, ĥi is model output. After multiple iterations,
the optimal parameters are obtained, and the corresponding
prediction model is denoted by f0.

D. Similarity selection
When the classifier f0 is utilized directly for default pre-

diction, the results will be biased towards normal users due to

1-hop
nodes 2-hop

nodes
3-hop
nodes

Fig. 2: The aggregation process of nodes in GNN. v is the
node that needs to obtain the embedding vector. ξ(v) is the
set of nodes connected to node v. In one-hop aggregation,

the features of one-hop nodes v′1, v′2 and v′3 are added to v.
The features of v, v′4 and v′5 are also added to v′2 as they
are neighbors of v′2. In two-hop aggregation, the enhanced

features of v′1, v′2 and v′3 are added to v, which makes node
v incorporate the characteristics of nodes v′4 to v′8.

Similarly, the features of nodes v′9 to v′15 are fused to v in
three-hop aggregation.

the imbalanced training data. The following step is enhancing
the initial prediction model with massive unlabeled nodes.
The core idea is to use the initial model to classify unlabeled
nodes, pseudo-label some nodes, and add them to the training
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set. Since nodes with higher similarity to known default
users are more likely to be default users, we constructed
a similarity selection module to choose pseudo-label nodes.
The nodes that are close to minority class centers in the
embedding space will be added to the training set. It should
be known that the embedded vector instead of the original
features is utilized to calculate the similarity, which has
fused the features of neighbor nodes. In other words, this
embedding vector has taken into account the information of
the borrower’s friends.

First, all the samples are classified with the predictive
model f0, shown as

UF1,UU1,H = f0(X), (4)

where UF1 is the embedding vector set that XF classified
as l1, UU1 is the embedding vector set that XU classified as
l1, and H is the weight vector set of all sample classification
results.

Then, the mean of the embedding vector for default users
is calculated through UF1, shown as

u0 =
1

|UF1|
∑

u∈UF1

u, (5)

where |UF1| is the number of nodes in set UF1.
Finally, nodes in UF1 whose distance to the center u0

is less than the threshold θ are filtered out, and the corre-
sponding original feature vectors are added to the training
set, shown as Formula 6 and 7.

(Xa,Ya) = {(xu, l1)|d(u,u0) < θ,u ∈ UU1} (6)

d(u,u0) =

√√√√ m′∑
i=1

(ui − u0i)
2 (7)

In these formulas, xu is the original feature vector corre-
sponding to the embedded vector u, d(u,u0) is the calcu-
lated Euler distance between the two vectors, ui is the i-th
element of the vector u. θ is determined according to the
difference between the number of normal and default users
in the labeled data, so as to ensure that the number of the two
types of users in the new training set is balanced. The filtered
(Xa,Ya) will be added to the training set for retraining the
prediction model.

E. Model retraining

The prediction model needs to be retrained after pseudo-
labeled training nodes are selected via similarity selection.
It is no guarantee that the labels of nodes newly added to
the training set are correct, so the confidence of each sample
must be considered. Here, a loss function with confidence is
proposed for model training.

First, the classification confidence of each sample in
(Xa,Ya) is calculated utilizing the set of classification
weight vectors H . For ∀xi ∈ Xa, the confidence is cal-
culated with

ci = max(RELU(hi − τ)), (8)

where hi is the classification weight vector corresponding
to sample i, and τ ∈ [0, 1] is the hyperparameter threshold
for controlling the confidence of pseudo-labeled samples.
The calculated confidence will increase as the threshold

TABLE I: The statistics of the DGraphFin

Nodes Edges Classes
Normal

users
Default
users

Background
users

Node
features

3,700,550 4,300,999 3 1,210,092 15,509 2,474,949 17

decreases, and the influence of the sample on the total
loss will also increase. Experiments will be conducted in
subsequent sections to determine how different thresholds
affect the prediction results. After obtaining the confidence
of the pseudo-labeled samples, the loss function for retraining
is shown as

Lre =
∑
i∈VF

L(hi, ĥi) +
∑
j∈Va

cjL(hj , ĥj), (9)

where L is the cross-entropy function in Formula 3. The loss
of labeled samples make up the first half of the loss function,
while the loss of pseudo-labeled samples make up the second.
It is feasible to control the effect of pseudo-labeled sample
loss on the total loss by adjusting τ in Formula 8.

IV. EXPERIMENT

A. Experimental design

1) Dataset: Although many datasets for financial default
prediction are available, fewer public datasets contain social
information. The DGraphFin dataset [42] is used to validate
our method. It is a large-scale, real-time dynamic financial
dataset with 4.3 million dynamic edges and over 3.7 million
nodes. In the dataset, the nodes represent users, and an edge
is formed between two users if one is added as an emergency
contact by another. Users without any overdue repayments
are classified as normal users, while those with at least one
overdue repayment are labeled as default users. This dataset
is widely used in fields such as fraud detection [20], node
classification [43]. An overview of the dataset is shown in
Fig.3.

credit user

emergency 

contact
edge:

node:

abnormal user

background user

Fig. 3: The overview of DGraphFin. The registered users
and their connections constitute the graph.

The dataset provides initial features for each node af-
ter desensitization, including gender, age, registration time,
repayment date, and so on. In DGraphFin, there are over
2 million background nodes, with a 1:100 ratio of default
to normal users. Background nodes are users who have
provided their personal profiles but have not taken part in
any lending transactions. Table I presents the statistical data
for the dataset. In large-scale data scenarios, appropriately
processing of background nodes can effectively enhance both
data storage capacity and model effectiveness [16].
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TABLE II: Experimental hyperparameter settings

Activation
function Optimizer

Learning
rate Dropout Layers

Batch
size

Hidden
dimension

Relu Adam 1e-2 0.3 3 1024 128, 128, 32

2) Experimental setup: The DGraphFin dataset has been
randomly split the nodes into training, testing, and validation
sets with a ratio of 70:15:15. Before constructing the graph
neural network, additional features derived from edges are
extracted, and a total of 56 features are utilized for model
construction.

In the experiment, the PyTorch and PyTorch Geometric
framework were used to build this model. Table II lists the
hyperparameters used for model training. Original 17 fea-
tures are used as the model inputs. Three graph aggregation
layers and matching ReLu activation functions make up the
graph model. In the three layers, there are 128, 128 and 32
hidden dimensions, respectively. We used the mean of the
ten results for the final comparison of the experimental data.

When evaluating the performance of the model, typical
metrics like accuracy may not be sufficient since the dataset
is imbalanced [32]. Therefore, the area under the receiver
operating characteristic curve (AUC − ROC) [44] and the
F1 − measure [22] were used to evaluate the prediction
effects.

• The AUC − ROC is a metric used to assess the
performance of the classifier. It is determined by the
area under the receiver operating characteristic curve,
where TPR is plotted on the y-axis and FPR on the x-
axis. The definitions of TPR and FPR are as follows.

TPR =
TP

TP + FN
(10)

FPR =
FP

TN + FP
(11)

In these formulas, TP , FP , TN , and FN are true
positive, false positive, true negative, and false negative,
respectively. The greater AUC − ROC represents better
performance. The AUC − ROC measures the overall per-
formance of the model across various thresholds.

• F1 − measure evaluates the quality of the algorithm
based on recall and precision, which is equal to the rec-
onciled average of the recall and precision. It effectively
evaluates the performance of the model when there is
a significant difference in the number of positive and
negative samples. The calculation formula is as follows:

F1−measure =
2TP

2TP + FN + FP
. (12)

The greater F1−measure represents better performance,
according to the metric definition.

B. Experimental results

We compared IG-DP with existing classical methods.
These methods are mainly divided into two categories:
Unsupervised methods include deepwalk [39], deep graph
infomax (DGI) [45]. Supervised methods include multilayer
perceptron (MLP) [46], GCN [8], GAT [21], SAGE [20],

TABLE III: Results of different methods.

Method
AUC -ROC F1-measure

Average Best Worst Average Best Worst

DeepWalk 0.6978 0.6986 0.6966 0.0832 0.0846 0.0823

DGI 0.7092 0.7099 0.7086 0.0912 0.0934 0.0893

MLP 0.7208 0.7244 0.7176 0.1046 0.1063 0.1021

GCN 0.7378 0.7404 0.7351 0.1121 0.1145 0.1102

GAT 0.7678 0.7792 0.7653 0.1174 0.1188 0.1162

SAGE 0.7767 0.7788 0.7749 0.1212 0.1230 0.1201

SIGN 0.7820 0.7835 0.7798 0.1268 0.1279 0.1293

UniMP 0.7827 0.7852 0.7813 0.1324 0.1341 0.1311

GEARSage 0.8460 0.8463 0.8458 0.1366 0.1361 0.1370

IG-DP 0.8676 0.8690 0.8657 0.1426 0.1437 0.1417

scalable inception graph neural networks (SIGN) [43], uni-
fied message passaging model (UniMP) [47] and GEARSage.

• DeepWalk: An online representation learning method
for graph node embedding. It learns a representation
that encodes structural regularities by using local infor-
mation from truncated random walks as input.

• DGI: A method for learning node representations with
graphs. It relies on local mutual information maximiza-
tion across the patch representations of the graph, gained
by graph convolutional architectures.

• MLP: A common feedforward neural network with two
layers. Features are passed to the next layer through a
forward layer and activation function.

• GCN: A graph-based convolutional neural network. It
aggregates node features and leverages the adjacency
relationship of nodes to perform information transfer
and learn node feature representation.

• GAT: A graph neural network model that aggregates
information and learns feature representation of nodes
using an attention mechanism.

• SAGE: An inductive learning framework that generates
embeddings via learning a function that samples and
aggregates features from the local neighborhood of a
node.

• SIGN: A scalable graph learning framework that avoids
the necessity for graph sampling by employing graph
convolutional filters of various sizes, which can be effi-
ciently precomputed and rapidly training and inference.

• UniMP: A model that incorporates feature and label
propagation at both the training and inference stages.
The Graph Transformer network is utilized as the
prediction model, which takes feature embedding and
label embedding as input for propagation. Meanwhile,
it introduces a shielded label prediction strategy.

• GEARSage: An improved method of GraphSAGE. Dif-
ferent from GraphSAGE, it extracted the features of
edges.

The experimental results of different methods are shown
in Table III. A comparison of the data in Table III clearly
indicates that IG-DP outperforms all other methods. Deep-
walk and DGI are unsupervised learning methods with the
worst experimental results. It shows that supervised methods
outperform unsupervised methods when there is labeled

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 965-973

 
______________________________________________________________________________________ 



TABLE IV: Results of different pseudo-labeled sample
selection methods.

Method
AUC-ROC F1-measure

Average Best Worst Average Best Worst

H-selection 0.8528 0.8532 0.8523 0.1403 0.1408 0.1397

R-selection 0.8504 0.8507 0.8499 0.1390 0.1393 0.1387

L-selection 0.8458 0.8472 0.8420 0.1310 0.1348 0.1298

IG-DP 0.8676 0.8690 0.8657 0.1426 0.1437 0.1417

samples. In supervised models, the worst performance comes
from MLP, which only considers node features and ignores
their connections. In the other graph-based methods, the
connections between the nodes are taken into account, with
GEARSage achieving the best performance on both evalua-
tion metrics. However, IG-DP improves these two metrics by
2.6% and 4.5%, respectively. The main reason is that these
traditional methods focus on optimizing the propagation of
features for their models. They neglect the imbalance in
the number of samples used during training. Due to this
issue, the prediction effects of the model tend toward normal
nodes, which lowers the overall prediction outcomes. IG-DP
generates pseudo labels for background nodes, and nodes
with higher confidence are selected to expand the original
dataset. Background node information was added to the
propagation process of the GNN model, and the experimental
results were greatly improved.

C. Ablation experiment

1) Impact of similarity selection module: One of the key
modules of IG-DP is similarity selection, which is used to
select retraining samples from pseudo-labeled background
nodes. This section primarily focuses on the impact of
different pseudo-labeled sample selection methods under
the proposed prediction framework. Three pseudo-labeling
methods are selected for comparison.

• H-selection: A traditional GNN-based self-training
method. Difference from IG-DP, this method adds
pseudo-labeled samples with high confidence that are
predicted to be default users to the retraining set.

• R-selection: A GNN-based random sample selection
method. This method randomly selects some pseudo-
labeled samples that are predicted to be default users
and adds them to the retraining set, ensuring a balanced
number of samples.

• L-selection: Difference from H-selection, this method
adds pseudo-labeled samples with low confidence that
are predicted to be default users to the retraining set.

The prediction results of different methods are presented in
Table IV. Our method outperforms H-selection, R-selection
and A-selection with the metrics of AUC − ROC and
F1 − measure. It improved the two metrics by 1.7% and
1.6%, respectively. The following are the primary reasons.
Since the initial classifier is affected by the imbalanced la-
beled data set, the retraining samples directly selected by the
initial prediction model also rely on the imbalanced labeled
data set. It makes the retraining samples not expand the
classification boundary of the default samples, which in turn
leads to the updated model low robust when facing unknown

samples. L-selection and R-selection include a large number
of noisy samples, resulting in a higher error rate for pseudo-
labels. The similarity selection module proposed in this
paper uses spatial distance to filter samples again based on
the classification results, reducing the impact of imbalanced
labeled data on the selected results. Therefore, the method
proposed in this paper delivers optimal performance. It also
confirms that choosing retraining samples that do not rely on
imbalanced labeled datasets plays a key role in improving the
prediction performance of the updated model.
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Fig. 4: The impact of added sample proportions

To further explore the impact of the selected sample
number on the final prediction results, Fig.4 illustrates
the changes in the predictive indicator AUC − ROC and
F1 − measure as the number of selected pseudo-labeled
samples increases. The solid line represents the predicted
mean, and the shaded area is the prediction error. The x-axis
represents the ratio of the difference between the number of
default users and normal users in the training set. The ratio is
0 indicates that pseudo-labeled samples are not selected with
similarity selection module, Xa is empty. When the ratio is 1,
the number of normal and default users in the retraining data
is equal. These two figures demonstrate that the prediction
effect first fall and then increases as the proportion of samples
increases. The primary reasons are analyzed as follows.

When the ratio is low, the nodes that are extremely near
to the central vectors are selected and added to the retraining
data. At this stage, the number of default users has increased,
but the prediction boundary of the prediction model has
not been effectively expanded, which has exacerbated the
overfitting problem and the prediction effect has somewhat
decreased. As the proportion of new samples increases, a
large number of correctly labeled samples whose distribution
is different from the initial prediction model are added
to the retraining data. The prediction effect is evidently
improved since these samples are essential in expanding the
classification boundary of the model. This analysis further
highlights that identifying samples with accurate predictions
but distributions different from the original default users is
essential for enhancing prediction performance.
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Fig. 5: The impact of parameter τ

2) The impact of confidence threshold: A novel loss func-
tion incorporating the confidence of pseudo-labeled samples
is specifically designed for model retraining in this study. The
parameter τ within the loss function plays a crucial role as it
determines the weight pseudo-labeled samples contribute to
the overall loss. Specifically, when τ is smaller, the pseudo-
labeled samples have a higher impact on the training process
as their contribution to the loss is proportionally greater.
Conversely, as τ increases, the contribution of pseudo-labeled
samples to the total loss diminishes, thereby reducing their
influence on the model’s training process. The relationship
between τ and model performance, in terms of AUC−ROC
and F1−measure, is systematically evaluated and visual-
ized in Fig.5.

The experimental results demonstrate that model perfor-
mance first improves and then deteriorates as τ increases.
The AUC − ROC and F1 − measure reach their opti-
mal values when τ lies within the range of 0.2 to 0.4,
suggesting a balance between leveraging high-confidence
pseudo-labeled samples and avoiding adverse impacts from
mislabeled data. When τ is too small, despite pseudo-
labeled samples contributing significantly to the loss, the
model’s performance does not improve consistently. This is
attributed to the presence of mislabeled nodes among the
pseudo-labeled samples, which negatively impact the training
process. The high impact of these erroneous samples can
degrade the model’s predictive capabilities, highlighting the
need for refined confidence evaluation mechanisms.

On the other hand, as τ increases beyond the optimal
range, the loss contribution of pseudo-labeled samples di-
minishes, reducing their influence on the retrained model.
While this may initially reduce the negative impact of
misclassified samples, it also limits the positive contribution
of genuinely high-confidence pseudo-labeled nodes. When τ
becomes excessively large, the influence of pseudo-labeled
samples on the retraining process becomes negligible, and
the model performance converges to that of the initial model
trained on the labeled dataset only. This result underscores
the importance of appropriately tuning τ to balance the
trade-off between incorporating pseudo-labeled samples and

mitigating the risks associated with mislabeled data.

V. CONCLUSION

Default prediction is a critical research topic in the current
financial domain. The primary challenge in this area is the
overfitting issue caused by the imbalance in the number
of labeled samples. This paper introduces IG-DP, a default
prediction method based on graph neural networks, which
leverages a large number of unlabeled background samples
to improve prediction performance and address the class
imbalance issue. The publicly available dataset DGraphFin
is utilized to evaluate the performance of this model, and the
ablation experiments are conducted to examine the effects of
model parameters.

Several potential directions for future research could fur-
ther improve the proposed method. First, in this paper,
background nodes are pseudo-labeled using the similarity
selection module. This method assumes that the node em-
bedding vector of default user has one cluster in the vector
space. It could expand to several clusters and explore the
effect of cluster size. Second, the IG-DP relies on the
expanded dataset when retraining the model. However, in
real-world economic scenarios, fully retraining the model
may be impractical. Thus, another promising direction is to
develop an online update mechanism based on graph neural
networks.
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