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Abstract— Sugarcane leaf diseases are major agricultural 

issues that lead to reduced production and economic losses. 

Early detection is crucial for controlling their spread. This 

study introduces a solution for identifying sugarcane leaf 

diseases using image processing and deep learning techniques. 

Preprocessing steps include normalization for pixel scale 

stabilization and Gaussian blur for noise reduction. Features 

are extracted using a pre-trained DenseNet201 model, and 

classification is performed using a Support Vector Machine 

(SVM) with an RBF kernel. The proposed hybrid DCNN-SVM 

architecture achieves a test accuracy of 96.74%, demonstrating 

effectiveness in disease classification. Comprehensive 

evaluations highlight the model’s strengths and areas for 

improvement, providing a foundation for future research in 

plant disease detection. 

 
Index Terms— DCNN, image classification, sugarcane 

disease, hybrid deep learning 

 

I. INTRODUCTION 

UGARCANE (Saccharum officinarum), a plant that thrives 

in tropical regions, is a key source of raw material for 

sugar production [1]. The productivity of sugarcane is 

heavily dependent on leaf health, as diseases can 

significantly reduce yields and the quality of the sugar 

produced. Leaf diseases in sugarcane, often caused by fungal 

pathogens, are a major concern, with Fusarium being one of 

the most critical diseases globally [2]. This disease spreads 

rapidly and can lead to severe economic losses. 

Early and accurate detection of sugarcane leaf diseases is 

essential for implementing timely and effective control 

measures. Traditional methods, which depend on visual 

inspections by plant disease experts, can be time-consuming 
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and expensive. Therefore, there is an urgent need for an 

automated system that can classify sugarcane leaf diseases 

with high accuracy. 

The accuracy of this system greatly relies on the quality of 

the input images. Proper preprocessing techniques can 

significantly enhance the performance of a model [3]–[5]. 

Various studies have utilized image processing techniques to 

extract relevant features while reducing noise. Researchers 

have explored methods such as dynamic adjustments of 

image size and shape, filtering, image conversion, contrast 

enhancement, and morphological operations [6]. Research 

by [7], highlighted the impact of wavelet transforms in 

enhancing model accuracy during image segmentation, 

facilitating more efficient feature extraction using algorithms 

like ant colony optimization. Additionally, background 

segmentation techniques have proven effective in reducing 

false positives and improving detection accuracy [8]. 

In recent years, deep learning-based approaches, 

particularly those using Convolutional Neural Networks 

(CNN) [9], have shown promising results in plant disease 

classification [10]–[13]. For instance, a hybrid deep learning 

model combining VGG-16 and MobileNet with stacking 

ensemble learning has been applied to sunflower leaf disease 

classification [14]. Another study focused on detecting 

bacterial spot diseases in peach plants, introducing a model 

combining Convolutional Auto-Encoder (CAE) and CNN, 

which significantly reduced training parameters while 

maintaining high detection accuracy [15]. Moreover, the 

MobiRes-Net architecture, a fusion of MobileNet and 

ResNet, has demonstrated substantial performance 

improvements in detecting olive leaf diseases [16]. In 

scenarios where feature extraction generates large volumes 

of data, techniques such as logistic regression in the fully 

connected (FC) layer have been employed to eliminate 

irrelevant features, as demonstrated in [17]. 

However, these models often require large amounts of 

high-quality training data, which can be challenging, 

particularly for rare or emerging diseases. To address these 

challenges, this research proposes a hybrid architecture 

combining a Deep Convolutional Neural Network (DCNN) 

for feature extraction and a Support Vector Machine (SVM) 

for final classification. The DCNN will be used to extract 

features from sugarcane leaf images processed with 

Gaussian blur, and these features will then serve as input for 

the SVM to classify the diseases. 

The main objective of this study is to create an automatic 
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classification system that accurately identifies different 

diseases affecting sugarcane leaves. The key contributions of 

this research are as follows: 

1) Application of Gaussian blur to enhance the quality of 

sugarcane leaf images before feature extraction. 

2) Use of Deep Convolutional Neural Networks (DCNN) 

for feature extraction from the enhanced images. 

3) Implementation of Support Vector Machine (SVM) for 

final classification based on the features obtained from 

the DCNN 

4) Evaluation of the system’s performance in terms of 

classification accuracy. 

This paper is structured as follows: Section 2 presents the 

research methodology. Section 3 discusses the experimental 

results and provides analysis. Finally, Section 4 concludes 

the research. 

II. PROPOSED METHOD 

In this section, a concise description of the proposed 

method is provided, an explanation of the dataset used, 

preprocessing techniques (Gaussian blur), a detailed 

description of the DCNN-SVM model architecture, and an 

overall evaluation of the model. Figure 1 illustrates the 

proposed method for detecting sugarcane leaf diseases. 

 

A. Dataset 

The Sugarcane Leaf dataset is a publicly available 

collection of 6748 high-resolution JPEG images showcasing 

sugarcane leaves. [18]. Each image in the dataset is sized at 

768 × 1024 pixels. The dataset is categorized into 11 

classes, comprising nine disease categories, a category for 

healthy leaves, and a category for dry leaves. The disease 

category encompasses various common sugarcane leaf 

diseases, including smut, banded chlorosis, yellow leaf 

disease, pokkah boeng, mosaic, brown spots, grassy shoots, 

brown spots, brown rust, and set rot. To facilitate 

accessibility and identification of specific disease samples, 

each category is clearly labeled and organized into separate 

folders. Table I shows the distribution of different categories 

of sugarcane leaf diseases and healthy leaves in the dataset. 

 

 
 

 

TABLE I 

IMAGE DISTRIBUTION PER CATEGORIES 

Categories  Amount of Images 

Diseases 

Yellow leaf disease 1194 

Smut 316 

Brown spot 1722 

Pokkah boeng 297 

Grassy shoot 346 

Mosaic (viral disease) 663 

Banded chlorosis 471 

Sett rot 652 

Brown rust 314 

Healthy leaves  430 

Dried leaves  343 

Total  6748 

 

 
 

Fig. 1.  Proposed Method 
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B. Preprocessing 

Preprocessing is an important step in processing image 

data before it is used in deep learning models [19], [20]. 

This process involves several techniques to improve image 

quality, reduce noise, and prepare data for model training. 

The three main techniques used in preprocessing are: 

resizing, normalization, and Gaussian blurring. 

Images in a dataset often vary in size [21]. To ensure 

consistency and compatibility with the deep learning model 

architecture to be used, images must be resized to uniform 

dimensions. In this case, each image is resized to 224 x 224 

pixels. This helps the model process images more efficiently 

and ensures that all images have the same dimensions. 

The normalization technique is used to change the pixel 

values of an image so that they fall within a specified range 

[22]. In this case, the image is normalized by rescaling its 

pixel values to the range 0 to 1 by dividing each pixel value 

by 255 (the maximum value of a pixel in an 8-bit image). 

Normalization helps the model converge faster and improves 

training stability. Equation (1) shows the mathematical 

function of normalized pixels. 

 

   (1) 

 

In order to improve the quality of the images, and reduce 

the noise to fine detail in images, Gaussian blur is used [23], 

[24]. This technique uses a Gaussian filter to create a soft 

blur effect that can help highlight important features in an 

image by blurring irrelevant details. Applying Gaussian blur 

can help models focus on more significant patterns for 

classification tasks. Equation (2) shows the function of the 

Gaussian filter. 

       (2) 
    

Where, G(x,y) is the Gaussian value at coordinates (x,y), σ 

is a parameter that controls the sharpness of the Gaussian 

curve, x, and y are the distances from the middle point of the 

filter to the pixel being processed. Figure 2 depicts the 

process of removing noise from the original input image. 

C. DenseNet feature extraction 

Feature extraction plays a crucial role in both machine 

learning and deep learning pipelines [25]. It is a pivotal 

process that significantly impacts the effectiveness and 

efficiency of these methodologies., especially when working 

with image data [26], [27]. In this research, we use the pre-

trained DenseNet201 model to extract features from images 

of sugarcane leaves.  

DenseNet (Densely Connected Convolutional Networks) 

is a convolutional network architecture designed to have 

denser connections between its layers, this helps facilitate 

the flow of information and gradients throughout the 

network [28]. Huang et al proposed DenseNet. in 2017, 

where every layer is connected to all previous layers (dense 

connections), which has the property that each training 

image leads to a lot of back-propagation updates which in 

turn weaken certain gradients. This architecture solves the 

vanishing gradient problem which is common in deep 

networks, by facilitating a strong signal flow during 

backpropagation. DenseNet also demonstrates feature reuse, 

thanks to which the model is able to achieve state of the art 

accuracy by using lesser parameters compared ResNets. 

Figure 3 shows the process of extraction feature with 

DenseNet. 

Using dense blocks as the key ingredient, DenseNet is 

able to facilitate direct connections between layers in deep 

neural networks. These connections contribute in 

suppressing vanishing gradients, promotes fast reuse of 

features and reduces number of parameters required for the 

model. In DenseNet, the output of each layer is appended to 

its previous layers resulting in better information flow 

through different layer & making network learning complex 

patterns and features. 

 

 

 

 

 
Fig. 2.  Noise removal with Gaussian smoothing 
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The variant utilized in this research is DenseNet201, 

which consists of 201 layers and has been pre-trained on the 

ImageNet dataset. This thorough pre-training enables 

DenseNet201 to effectively capture a broad spectrum of 

low- to high-level features. These features can then be 

transferred to other tasks, such as detecting sugarcane leaf 

diseases. The pre-trained nature of DenseNet201 eliminates 

the need for retraining the model using the sugarcane leaf 

dataset. Instead, it can extract detailed feature 

representations from the input images, which are 

subsequently used for classification. 

 

 
 

The process of feature extraction using DenseNet201 can 

be explained in several steps (Table II): (1) Input images: 

Sugarcane leaf images of size 224x224 pixels and with 3 

color channels (RGB) are used as input for the model. (2) 

Feature extraction by DenseNet: These images are processed 

by a pre-trained DenseNet201 network, which extracts 

features and generates a tensor with dimensions 7x7x1920. 

(3) Global Average Pooling: The tensor with dimensions 

7x7x1920 is then passed through a global average pooling 

layer, which reduces its spatial dimensions to a 1D feature 

vector of length 1920. (4) Feature Vector: The resulting 1D 

feature vector of length 1920 represents the extracted 

features from the original image. This feature vector can be 

utilized for classification tasks or further analysis.  

Non-trained parameters are parameters from a DenseNet 

model that was previously trained on the ImageNet dataset. 

This means that this model will not be retrained on our 

sugarcane leaf dataset, but will only be used to extract 

features. Figure 4 shows the result of the extracted feature 

with DenseNet. 

D. SVM Classifier 

The Support Vector Machine (SVM) is a highly effective 

machine learning method commonly employed for 

classification purposes [29], [30]. In this particular case, we 

will utilize SVM with a Radial Basis Function (RBF) kernel 

to classify sugarcane leaf diseases. The classification will be 

based on features obtained from leaf images using 

DenseNet201. SVM works by finding the best possible 

hyperplane to separate the classes of data in the feature 

space. SVM has several advantages [31], such as: (1) SVM 

works very well on high-dimensional data, (2) only support 

vectors are used to define the hyperplane, which makes 

SVM efficient in memory usage, (3) flexibility with kernel 

tricks, which allows SVM to handle data that cannot be 

separated linearly using various kernel functions. Equation 

(3) provides the SVM classifier used to identify sugarcane 

leaf disease. 

 

              (3) 

 

Where: 

Wt is the Weight vector, φ is the mapping function. This 

mapping function is utilized to transform any input function 

into a different dimensional space, allowing for easier 

separation. The hyperplane is determined in a manner that 

the distance from this hyperplane to the nearest data points 

on each side is referred to as support vectors. SVM employs 

the values of training images to effectively classify the test 

images. 

In the context of our research on sugarcane leaf disease 

classification, SVM provides a valuable alternative to deep 

learning models. By training an SVM on features extracted 

from sugarcane leaf images, we can establish a baseline 

performance and gain insights into the discriminative power 

of different feature representations. Furthermore, the 

interpretability of SVM, particularly in terms of identifying 

key support vectors, can offer valuable insights into the 

characteristics that distinguish between different types of 

sugarcane leaf diseases. 

 

 

TABLE II 

MODEL SUMMARY FOR FEATURE EXTRACTION  

Layer (type) Output shape Param# 

Input layer (224x224x3) 0 

Densenet201 (functional) (7x27x1920) 18321984 

Global Average Pooling (1920) 0 

Total params  18321984 

Trainable params  0 

Non-trainable params  18321984 

Batch size  256 

 

 

 
Fig. 3. Feature extraction with DenseNet201 
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E. Evaluation 

The Confusion Matrix (CM) is the most commonly used 

method to figure out the achievement of classification 

models in machine learning [32]. CM represents the 

comparison between predicted and actual values from the 

classification model The CM can be used to calculate 

several important metrics such as accuracy, f1-score, 

precision, and recall, which help to evaluate the performance 

of the DCNN-SVM model. 

From these components, we can calculate several 

important classification evaluation metrics: 

1) The accuracy of the predictions of the model, which is 

calculated according to equation (4), is represented as a 

percentage of correctly predicted samples.  

      (4) 

2) Precision is calculated as Equation (5) and displays the 

percentage of positive data samples accurately 

predicted by the model. 

             (5) 
3) Recall, also known as sensitivity or true positive rate, 

imply the percentage of positive samples that the model 

accurately predicts. Equation (6) can be used to 

calculate it. 

           (6) 

4) The F-1 Score describes the weighted average precision 

compared to the weighted average recall, and it can be 

represented by Equation (7). 

     (7) 

Where: 

tp represents the number of true positive samples, tn 

represents the number of true negative samples, fp represents 

the number of false positive samples, and fn represents the 

number of false negative samples.   

 

F. Experiment Set Up 

In this experiment, the data was split into training and 

testing sets with a ratio of 75% for training and 25% for 

testing. The distribution of this split data is shown in Table 

III and Figure 5. The experiments in this research used the 

Python programming language, and the libraries used such 

as OpenCV, Sci-kit Learn, TensorFlow, and Keras. This 

experiment was performed using a PC with the following 

specifications: CPU processor core i7 gen 9th, DDR4 16 

GB, and GPU NVIDIA GeForce GTX 1660 Ti. 

 

 
Fig. 4. Result of the extracted feature 

 

TABLE III 

DISTRIBUTION OF SPLIT DATASET  

Classes in dataset Training set Testing set 

Banded Chlorosis 354 117 

Brown Spot 1275 447 

Brown Rust 234 80 

Dried leaves 262 81 

Grassy Shoot 267 79 

Healthy Leaves 314 116 

Pokkah Boeng 234 63 

Sett Rot 447 175 

Smut 249 67 

Viral Disease 505 158 

Yellow leaf 890 304 

Total 5061 1687 
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III. RESULT AND DISCUSSION 

A. Result 

In this chapter, we will be presenting the outcomes of our 

study on sugarcane leaf disease detection. Specifically, we 

implemented a hybrid DCNN+SVM model and will be 

discussing the results obtained. We will cover various 

aspects, such as the classification reports, confusion matrix, 

and RoC plots. Analyzing these results will allow us to 

assess the effectiveness of the model in detecting sugarcane 

leaf diseases. Table IV summarizes precision, recall, and F1-

scores per class. 

The classification results indicate that the model 

demonstrates a remarkable overall accuracy of 96.74%. This 

clearly highlights the model's effectiveness in accurately 

classifying sugarcane leaf diseases. Moreover, the model 

exhibits exceptional performance consistency across classes, 

as evidenced by its high weighted average precision, recall, 

and F1 score of 96.75%, 96.74%, and 96.72% respectively. 

The model's performance in each class appearance is 

remarkable across multiple categories. For instance, in the 

'Brown Spot' category, it achieved a precision of 98.67%, a 

recall of 99.55%, and an F1 score of 99.11%, indicating its 

exceptional ability to identify this particular disease. 

Additionally, the model demonstrated flawless precision, 

recall, and F1 score in the 'Grassy Shoot' category, 

showcasing its flawless classification of this disease. 

 
(a) 

 
(b) 

Fig. 5. Dataset distribution. (a) Distribution of images per categories, (b) Proportion of images per categories 
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However, there are a few categories that exhibit lower 

performance. The 'Pokkah Boeng' category, in particular, 

achieved a precision of 85.45% and a recall of 74.60%. 

These figures indicate the difficulties in accurately 

identifying this disease. Likewise, the 'Smut' category 

demonstrated a precision of 76.39% and a recall of 82.09%, 

suggesting that the model is more prone to misclassifying 

this disease compared to other categories. 

 

1) Summary of Model Performance and Findings 

Overall, despite some limitations in classifying certain 

diseases, the model exhibited strong overall performance. Its 

remarkable accuracy across most classes highlights its 

practical utility in identifying sugarcane leaf diseases in real-

world scenarios. These findings establish a robust 

foundation for future improvements and adjustments aimed 

at enhancing accuracy, particularly for diseases that showed 

lower classification performance. 

 

2) Confusion Matrix Analysis 

Figure 6 illustrates the confusion matrix (CM) for the 

DCNN-SVM model. The matrix predominantly features 

diagonal elements, indicating that the model accurately 

classified most instances within each class. Each diagonal 

element reflects the number of instances correctly predicted 

for that specific class. The diagonal plot indicates very 

favorable results from the CM. However, the most 

significant misclassification occurred between the classes 

'Pokkah Boeng' and 'Smut.' 

In the case of the true class 'Pokkah Boeng,' it was 

incorrectly classified as 'Smut' 16 times. This consistent 

misclassification suggests that the model struggles to 

differentiate between these two classes. Several factors 

contribute to this issue: (1) Similarity of Visual Features: 

'Pokkah Boeng' and 'Smut' share similar visual 

characteristics, complicating their distinction by the model; 

(2) Insufficient Training Data: There are fewer training 

samples for 'Pokkah Boeng,' leading to an imbalance 

between the samples of 'Pokkah Boeng' and 'Smut,' which 

may bias the model toward classifying instances as 'Smut'; 

(3) Limitations in Feature Extraction: The features extracted 

by DenseNet may not effectively capture the subtle 

differences between these diseases, resulting in 

misclassifications. 

For the true class 'Smut,' it was misclassified 7 times as 

'Pokkah Boeng,' 3 times as 'Viral Disease,' and once as 

'Yellow Leaf.' The misclassification of 'Smut' as 'Pokkah 

Boeng' and other categories indicates that it is challenging 

for the model to classify correctly. Contributing factors 

include: (1) Confusion with 'Pokkah Boeng': This aligns with 

previous observations that these two diseases are often 

confused, likely due to their similar appearance or a lack of 

distinguishing features in the dataset; (2) Confusion with 

Other Diseases: Misclassifications as 'Viral Disease' and 

'Yellow Leaf' suggest that 'Smut' may exhibit symptoms or 

visual features that overlap with these other diseases. 

 

3) RoC Curve Evaluation 

Figure 7 presents the ROC curve for the DCNN-SVM 

model. The performance of the classification algorithm is 

evident from the position of the ROC curve on the graph, 

which shows a significant upward trend, indicating that the 

classification algorithm performs well. All classes achieved 

an AUC score of 1.00, demonstrating that the model has a 

perfect ability to differentiate between different classes. This 

means that for each class, the model accurately classifies all 

positive instances as positive and all negative instances as 

negative without any errors. 

  

 

TABLE IV 

CLASSIFICATION REPORT FOR DCNN-SVM MODEL 

 precision recall F1-score support 

Banded Chlorosis 0.9492 0.9573 0.9532 117 

Brown Spot 0.9867 0.9955 0.9911 447 

Brown Rust 1.000 0.9875 0.9937 80 

Dried leaves 0.9872 0.9506 0.9686 81 

Grassy Shoot 1.000 1.000 1.000 79 

Healthy Leaves 1.000 0.9655 0.9825 116 

Pokkah Boeng 0.8545 0.7460 0.7966 63 

Sett Rot 1.000 1.000 1.000 175 

Smut 0.7639 0.8209 0.7914 67 

Viral Disease 0.9490 0.9430 0.9460 158 

Yellow leaf 0.9711 0.9934 0.9821 304 

Accuracy   0.9674 1687 

Macro (avg) 0.9511 0.9418 0.9459 1687 

Weighted (avg) 0.9675 0.9674 0.9672 1687 
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TABLE VI 

RESULT OF ABLATION STUDIES 

 Accuracy precision recall F1-score 

DenseNet201-Logistic Regression 0.9609 0.9624 0.9609 0.9612 

DenseNet201-Random Forest 0.9443 0.9447 0.9443 0.9438 

DenseNet201-Decision Tree 0.8121 0.8132 0.8121 0.8115 

DenseNet201-Naïve Bayes 0.5483 0.6793 0.5483 0.5187 

DenseNet201-SVM+Linear Kernel 0.9591 0.9593 0.9591 0.9591 

DenseNet201-SVM+Poly Kernel 0.9621 0.9617 0.9621 0.9615 

DenseNet201-SVM+Sigmoid Kernel 0.8785 0.8840 0.8785 0.8781 

DenseNet201-SVM+RBF Kernel (proposed) 0.9674 0.9675 0.9674 0.9672 

 

 

TABLE V 

DETAILS OF VARIOUS STUDIES IN SUGARCANE LEAF DISEASE DETECTION   

Article reference Dataset availability 
Number of 

images 

Number of 

Classes 
Method Accuracy (%) 

[33] Private 14724 2 CNN 95.40 

[34] Private 240 2 VGG+SVM 90,29 

[35] Private 910 4 DCGAN+transfer learning 99.00 

[36] Private 2569 5 Emsemble deep learning 86.53 

[37] Private 5048 6 InceptionV3 86 

[38] Private 3508 3 SVM RBF 88 

[39] 
Plant village dataset + 

private dataset 
2095 6 CNN+transformer 87.64 

Proposed architecture Sugarcane leaf dataset 6748 11 DCNN+SVM 96.74 

 

 

 
Fig. 6. Confusion matrix for DCNN-SVM model 
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Fig. 7. RoC curve for DCNN-SVM model 

 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 974-985

 
______________________________________________________________________________________ 



 

4) Comparative Study of Sugarcane Leaf Disease 

Table 5 details various studies on sugarcane leaf disease 

detection. With an accuracy rate of 96.74%, it demonstrates 

that the combination of DCNN and SVM (the proposed 

architecture) is effective for classifying sugarcane leaf 

diseases. This accuracy surpasses most other studies, except 

one that achieved 99% using a DCGAN-transfer learning 

method. Notably, this study addresses a larger number of 

classes (11 classes), showcasing the model's capability to 

classify more complex disease categories. With a dataset 

comprising 6,748 images, this research utilizes a sufficiently 

large dataset to provide adequate training data, even though 

larger datasets exist (e.g., 14,724 images). Nonetheless, this 

dataset size is adequate for achieving high accuracy. 

By integrating the feature extraction capabilities of 

DCNN with the classification strengths of SVM, this 

approach yields highly competitive results in detecting 

sugarcane leaf diseases. It achieves excellent accuracy while 

effectively classifying a wide range of classes, positioning it 

as a superior solution in this field. 

 

B. Ablation Studies 

In this research, we will conduct an ablation study 

comparing various classification methods applied alongside 

DenseNet for feature extraction. The models under 

consideration include DenseNet combined with Logistic 

Regression, Random Forest, Decision Tree, Naive Bayes, 

and several configurations of Support Vector Machines 

(SVM) using different kernels: linear, polynomial, and 

sigmoid. By analyzing the performance of these 

combinations, we aim to identify which classification 

methods yield the best results in detecting diseases in 

sugarcane leaves. 

The significance of this study lies in its potential to refine 

model architectures by pinpointing the most effective 

combinations of feature extraction and classification 

techniques. Understanding the strengths and weaknesses of 

each approach will not only enhance disease detection 

accuracy but also contribute to the broader field of 

agricultural machine learning applications. Through this 

systematic evaluation, we hope to provide valuable insights 

that can guide future developments in plant disease 

identification. 

Table VI displays the outcomes of ablation studies carried 

out to assess the performance of different classification 

methods integrated with DenseNet201 for identifying 

diseases in sugarcane leaves. The evaluation metrics, 

including accuracy, precision, recall, and F1-score, offer a 

detailed insight into the effectiveness of each model. 

 

1) Performance Overview 

DenseNet201-Logistic Regression: This combination 

achieved an accuracy of 96.09%, with precision at 96.24%, 

recall at 96.09%, and an F1-score of 96.12%. These results 

indicate that Logistic Regression performs well when paired 

with DenseNet201, effectively balancing sensitivity and 

specificity. 

DenseNet201-Random Forest: The Random Forest model 

yielded an accuracy of 94.43%, with precision and recall 

both at approximately 94.43% and an F1-score of 94.38%. 

While still effective, this approach shows a notable drop in 

performance compared to Logistic Regression. 

DenseNet201-Decision Tree: This model recorded a 

significantly lower accuracy of 81.21%, with precision and 

recall values around 81.32% and 81.21%, respectively, 

leading to an F1-score of 81.15%. The Decision Tree's 

performance suggests that it may not be as effective in 

handling the complexities of disease classification as other 

methods. 

DenseNet201-Naïve Bayes: The Naïve Bayes classifier 

exhibited the lowest performance among the tested models, 

achieving an accuracy of only 54.83%. Its precision was 

relatively high at 67.93%, but recall was low at 54.83%, 

resulting in an F1-score of 51.87%. This indicates that Naïve 

Bayes struggles significantly with this classification task. 

DenseNet201-SVM (Linear Kernel): This model achieved 

an accuracy of 95.91%, with precision at 95.93%, recall at 

95.91%, and an F1-score of 95.91%. The linear SVM shows 

strong performance, comparable to Logistic Regression. 

DenseNet201-SVM (Polynomial Kernel): The polynomial 

kernel SVM performed slightly better than the linear variant, 

achieving an accuracy of 96.21%, precision at 96.17%, 

recall at 96.21%, and an F1-score of 96.15%. This suggests 

that the polynomial kernel can capture more complex 

relationships in the data. 

DenseNet201-SVM (Sigmoid Kernel): The sigmoid 

kernel SVM recorded an accuracy of 87.85%, with precision 

at 88.40%, recall at 87.85%, and an F1-score of 87.81%. 

While better than Naïve Bayes and Decision Trees, its 

performance is still inferior to the other SVM 

configurations. 

DenseNet201-SVM (RBF Kernel - Proposed): This 

proposed model achieved the highest performance metrics, 

with an accuracy of 96.74%, precision at 96.75%, recall at 

96.74%, and an F1-score of 96.72%. The RBF kernel SVM 

demonstrates superior capability in classifying diseases 

compared to all other methods evaluated. 

 

2) Analysis 

The findings from these ablation studies reveal several 

important observations. The integration of DenseNet201 

with SVM using the RBF kernel stands out as the most 

effective approach for detecting diseases in sugarcane 

leaves, achieving the highest accuracy and balanced metrics 

across all evaluation criteria. Logistic Regression and 

Polynomial SVM also performed well, demonstrating their 

robustness when paired with deep learning-based feature 

extraction. These results highlight the potential of combining 

advanced classification methods with deep learning 

architectures to enhance disease detection capabilities. 

On the other hand, simpler models like Decision Trees 

and Naïve Bayes showed significantly lower performance, 

suggesting they may not be suitable for applications 

requiring the recognition of complex patterns. This contrast 

emphasizes the importance of selecting appropriate 

classification algorithms that complement deep learning 

frameworks like DenseNet201. Overall, this ablation study 

provides valuable insights into how different classification 

methods interact with DenseNet201's feature extraction 

capabilities, offering guidance for future research aimed at 

optimizing plant disease identification systems in 

agriculture. 
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C. Discussion 

The implementation of DenseNet201 for feature 

extraction in this study has yielded promising outcomes in 

detecting diseases in sugarcane leaves; however, several 

limitations must be acknowledged. 

Dataset Imbalance: A primary limitation is the potential 

imbalance within the dataset. When certain classes are 

underrepresented, it can lead to biased models that perform 

poorly on minority classes. This imbalance may cause the 

model to prioritize majority classes, thereby diminishing its 

ability to accurately detect less frequent diseases. 

Limited Applicability: While DenseNet201 has proven 

effective for sugarcane leaves, its performance on other 

crops remains uncertain. The specific features learned from 

sugarcane may not transfer effectively to other plant types, 

which restricts the model's applicability in a broader 

agricultural context. 

Computational Demands: DenseNet201 is a complex 

model that requires substantial computational resources for 

both training and inference. This high demand for 

computational power may not be feasible in all agricultural 

settings, particularly in developing regions where access to 

advanced hardware is limited. 

Interpretability Issues: Although DenseNet201 excels at 

feature extraction, the interpretability of these features is 

constrained. Understanding which specific features influence 

the model's predictions can be challenging, complicating 

efforts to provide explanations or insights into the reasoning 

behind certain predictions. 

To address these limitations and build upon the findings 

of this research, several areas for future work are proposed.  

1) Dataset expansion and augmentation: To mitigate the 

issue of dataset imbalance, future work should focus on 

expanding the dataset with more images, especially for 

underrepresented classes. Data augmentation 

techniques could also be employed to synthetically 

increase the size of the minority classes, helping to 

create a more balanced dataset.  

2) Transferability to other crops: Future research could 

explore the transferability of the DenseNet201-based 

model to other crops. This could involve fine-tuning 

the model on datasets from different crops or 

developing a generalized model capable of detecting 

diseases across multiple types of plants. Testing the 

model's performance on a variety of crops will provide 

insights into its robustness and potential for broader 

agricultural applications. 

3) Development of lightweight models: Given the 

computational demands of DenseNet201, future work 

could involve developing or exploring more 

lightweight models that require fewer resources while 

still maintaining high accuracy. Models such as 

MobileNet or EfficientNet could be considered as 

alternatives, especially for deployment in resource-

constrained environments. Improving Feature 

Interpretability: It is important to enhance the 

interpretability of the features extracted by 

DenseNet201. A technique like Grad-CAM (Gradient-

weighted Class Activation Mapping) can be utilized to 

visualize the regions of the input images that have the 

most influence on the model's decision-making process. 

This would make the model's predictions more 

transparent and improve understanding. 

4) Real-time disease detection: In order to make disease 

detection more practical for agricultural applications, 

future research should focus on developing real-time 

detection systems. This would involve optimizing the 

model for faster inference times and integrating it into 

mobile applications or low-power devices that can be 

directly used by farmers in the field. 

5) Multi-modal approaches: To improve the robustness of 

disease detection, future work should explore multi-

modal approaches that combine image data with other 

types of data. This could include environmental factors 

(such as temperature and humidity) or plant metadata 

(such as growth stage and nutrient levels). Integrating 

these additional data sources has the potential to 

enhance the accuracy and reliability of the disease 

detection system. 

IV. CONCLUSION 

The approach used in this research combines DenseNet 

for extracting features and SVM with an RBF kernel for 

classification, proving to be effective in identifying diseases 

in sugarcane leaves with a high accuracy rate of 96.74%. 

However, issues with misclassification between different 

disease categories remain. To improve the model's 

performance and ensure more precise and dependable 

detection, it is expected that using high-quality datasets and 

advanced methods will be advantageous. The results of this 

study provide a strong foundation for further progress in 

plant disease detection using deep learning and machine 

learning techniques. Future studies could focus on enlarging 

the dataset by including more images that depict diverse 

environmental conditions and diseases, which would 

enhance the model's capability to identify more intricate 

patterns. Moreover, investigating other deep learning models 

or creating new hybrid structures could lead to better 

outcomes in disease identification. 
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