

Abstract—This research delves into the escalating

cybersecurity issues brought about by the rapid

integration of Internet of Things (IoT) technologies. With the

proliferation of IoT systems, the intricate connections between

devices are heightened, leading to a surge in data flow and

consequently, presenting numerous openings for cyber

threats. As a result, the detection and mitigation of

cyberattacks aimed at IoT systems have become indispensable

priorities within the cybersecurity domain. The objective of

this technical assessment is to offer a detailed insight into how

employing PCA/KPCA feature extraction algorithms with

many machine learning classifiers contribute to classifying

cyber-attacks within IoT systems. By analyzing the

performance of many classifiers such as Support Vector

Machine (SVM), multilayer perceptron (MLP), Decision Tree

(DT), Logistic Regression (LR), k-Nearest Neighbors (k-NN),

Random Forest (RF), cybersecurity professionals can glean

valuable insights to craft resilient protection strategies for the

IoT landscape. The outcome indicates that the combination of

Principal Component Analysis (PCA) with Decision

Tree/Random Forest outperformed the other models in the

evaluation. The experiments were conducted on iot23 dataset

and CIC IoT 2023 dataset

Index Terms— Internet of Things (IoT), PCA, KPCA, IDS,

KNN, Decision Tree (DT), Random Forest (RF)

I. INTRODUCTION

HE concept of the Internet of Things (IoT)

encompasses a framework designed to link diverse

computing devices and sensors via the Internet, enhancing

a wide array of applications such as smart homes,

healthcare, agriculture, and industrial settings. IoT has

spurred significant advancements across industries and in

our daily lives by interconnecting billions of devices and

generating vast volumes of data. Yet, this

interconnectedness also brings forth significant security

challenges, leaving systems vulnerable to various forms of

Manuscript received August 13, 2024; revised January 28, 2025.

Zyad Elkhadir is an assistant professor attached to SIGL Laboratory,

ENSATe of Tetouan, Abdelmalek Essaâdi University, Morocco (e-mail:

z.elkhadir@uae.ac.ma)

Mohammed Achkari Begdouri is a professor attached to SIGL Laboratory,

ENSATe of Tetouan, Abdelmalek Essaâdi University, Morocco (e-mail:

m.achkaribegdouri@uae.ac.ma)

attacks. Recognizing anomalous behavior within IoT

systems is paramount for safeguarding their integrity, as

it enables the early detection of potential malicious

activities or system malfunctions.

The rapid expansion and increasing complexity of the

IoT landscape necessitate the development of robust and

flexible intrusion detection systems (IDS). Conventional

IDS methods, such as statistical and rule-based approaches,

frequently face challenges in adapting to the dynamic

nature of IoT environments and the ever-evolving range of

cyber threats. Leveraging Machine Learning (ML) has

proven to be a highly promising strategy for detecting

anomalies in IoT systems.

Numerous recent studies incorporate Support Vector

Machines (SVM) [1] as a core component of their

approaches. For instance, the article [2] proposes a

streamlined, precise, and high-performing IDS for IoT

networks by utilizing finely-tuned Linear Support Vector

Machines (LSVMs) along with advanced feature selection

techniques. This method applies four feature selection

strategies: Importance Coefficient, Forward-Sequential,

Backward-Sequential, and Correlation Coefficient-based

methods, to identify the most critical features from

extensive datasets, significantly improving IDS

performance. Similarly, the work [3] introduces a hybrid

intrusion detection system that combines SVM with Grey

Wolf Optimization (GWO), harnessing the strengths of

both algorithms. In this framework, SVM is used to train

the system and differentiate anomalous records from

normal ones, while GWO optimizes the kernel function,

selects features, and fine-tunes SVM parameters, thereby

enhancing the overall classification effectiveness.

Other works explore the application of Decision Tree-

based approaches, for example, the study [4] integrates

multiple classifiers rooted in decision tree and rule-based

methodologies, including REP Tree, the JRip algorithm,

and Forest PA. The first two classifiers utilize dataset

features to categorize network traffic as either Attack or

Benign, while the third classifier combines the original

dataset features with the outputs of the first two classifiers.

Experimental evaluations using the CICIDS2017 and BoT-

IoT datasets highlight the proposed IDS's superior

Enhancing IoT Security: A Comparative

Analysis of Preprocessing Techniques and

Classifier Performance on IoT23 and CIC IoT

2023 Datasets

Zyad ELKHADIR and Mohammed ACHKARI BEGDOURI

T

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

performance compared to existing methods, particularly in

terms of accuracy, detection rate, false alarm rate, and time

efficiency.

In [5], a combination of three decision trees is utilized

for intrusion detection, and the performance of the proposed

approach is compared with several other classifiers.

Experiments conducted on the NSL-KDD dataset reveal

that the proposed method outperforms alternative

techniques in intrusion detection effectiveness

In [6], the authors propose an enhanced Intrusion

Detection System (IDS) leveraging Gradient Boosting (GB)

and Decision Tree (DT) techniques, implemented through

the open-source CatBoost framework for IoT security. The

improved NSL-KDD, IoT-23, BoT-IoT, and Edge-IIoT

datasets were utilized, with GPU support to optimize the

experimental setup. Compared to existing IDS methods, the

proposed approach demonstrates superior performance

metrics, particularly in terms of accuracy.

Logistic Regression [7] has also been utilized as a

classifier. In [8], the authors introduced mIDS, a system

designed to monitor and detect attacks using a statistical

analysis tool based on Binary Logistic Regression (BLR).

mIDS operates by analyzing local node parameters for both

benign and malicious behavior, constructing a normal

behavior model to identify abnormalities within constrained

nodes.

K-Nearest Neighbors (KNN) [9] has been widely used in

various studies. In [10], the authors proposed a network

intrusion detection model for IoT environments that

combines the KNN classifier with feature selection

techniques. They developed the Network Intrusion

Detection System (NIDS) using KNN to improve accuracy

(ACC) and detection rate (DR). To enhance data quality

and identify the most relevant features, they applied

Principal Component Analysis (PCA), univariate statistical

tests, and a Genetic Algorithm (GA) for feature selection.

The paper [11] introduced Deep Neural Networks (DNN)

with kNN algorithm. This method utilizes information gain

to select the most important features. The effectiveness of

this approach was evaluated using the public NSL-KDD

and CICIDS2017 datasets. Recently, the authors of [12]

systematically evaluate many PCA variants in combination

with KNN classifier to improve the intrusion detection.

They conduct extensive experiments on IoT23 and CICIoT

2023. The same authors evaluate KNN algorithm with

different distance metrics in the research [13].

The paper [14] demonstrates that Multi-layer Perceptron

(MLP) is a viable solution, achieving top performance and

outperforming many previous neural network

implementations. The study [15] highlights MLP's

effectiveness in classifying IoT botnet traffic.

In [16], a multi-level random forest algorithm integrated

with a fuzzy inference system was developed for intrusion

detection. This approach combines the strengths of filter

and wrapper techniques to create an advanced multi-level

feature selection method, enhancing network security. In

the first stage of feature selection, a filter method using

correlation-based feature selection identifies key features

based on multicollinearity within the dataset. A genetic

search is then applied within this method to identify the

optimal features, evaluating each attribute's effectiveness

and selecting those with the highest fitness values.

Additionally, a rule assessment is used to determine if two

feature subsets have identical fitness values, ultimately

selecting the subset with the fewest features. The second

stage employs a wrapper method with sequential forward

selection to refine the top features, optimizing them based

on the accuracy of the baseline classifier. The selected top

features are then fed into the random forest algorithm for

intrusion detection. Finally, fuzzy logic is applied to

categorize the intrusions into levels such as normal, low,

medium, or high, helping to reduce misclassification.

In other studies, researchers selected the best classifier by

comparing it with alternative models. In [17], the authors

trained their model using the IoTID20 dataset with features

selected by a Genetic Algorithm (GA) and concluded that

the Decision Tree and Random Forest classifiers

demonstrated the most optimal performance.

The study [18] applied various machine learning

techniques to detect anomalies in cyber-attacks targeting

IoT systems and evaluated the performance of these

methods. The experiments were conducted using the ToN-

IoT and Bot-IoT datasets, and the results showed that the

neural network outperformed the other models.

In [19], the authors explore various machine learning

classifiers. The system achieved a test accuracy of 99.4%

for Decision Tree, Random Forest, and Artificial Neural

Networks (ANN). While these methods showed similar

accuracy levels, additional metrics indicated that Random

Forest performed better overall. A key takeaway from the

study is that simpler models, such as Decision Tree and

Random Forest, can be effectively compared with more

complex networks like ANN for anomaly detection. The

open-source dataset used in the study was sourced from

Kaggle [20].

The methodology presented in our article is similar to the

approaches discussed in the previously cited works, it

involves the comparison of multiple classifiers to identify

the most effective one. What distinguishes our work is the

use of newer datasets, such as the IoT23 and CIC IoT 2023

datasets, the application of PCA and KPCA for feature

extraction, and the employment of several scalers,

including StandardScaler, MinMaxScaler, and

RobustScaler, prior to the feature extraction step. The

experimental results show that combining PCA with the

Decision Tree classifier produces the best accuracy while

requiring less CPU time.

This paper is structured as follows: Section II describes

the proposed IDS. Section III introduces the datasets and

their preprocessing. Section IV explains the characteristics

of each scaler. In Section V, we revisit Principal

Component Analysis (PCA) and Kernel PCA. Section VI

addresses the machine learning classifiers and their

mathematical formulations. Section VII covers the

experimental setup, analysis results, and comparisons with

other classifiers. Finally, Section VIII presents the

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

conclusion and outlines future directions for the research.

II. THE PROPOSED APPROACH

The Intrusion Detection System (IDS) proposed in this

study, as illustrated in Fig. 1, operates in two key parts: the

training part and the testing part. During the first part, data

is gathered from multiple devices and undergoes

preprocessing steps, which include data cleaning and

handling incomplete data, as outlined in Section III.

Following this, the data is scaled using numerous methods,

as described in Section IV, ensuring uniform scaling across

all features to prevent any single feature from dominating

due to its scale.

Once the data is scaled, dimensionality reduction

techniques, such as Principal Component Analysis (PCA)

or Kernel PCA (KPCA), are applied to extract principal

components, resulting in a dataset with reduced features.

Further information on PCA and KPCA is provided in

Section IV. In the testing part, data is gathered from the

identical devices and subjected to the same preprocessing

and normalization procedures as in the training part. This

data is then mapped onto the reduced feature space using

the principal components. In the end, various classifiers—

including K-Nearest Neighbors (KNN), Decision Tree,

Random Forest, Support Vector Machine (SVM), and

Multi-Layer Perceptron (MLP)—are employed to classify

the testing data as either normal or malicious. Section VI

provides an overview and mathematical formulation of each

used machine learning technique.

Fig. 1. The proposed IDS model

III. DATASETS

A. Iot-23

The first dataset used in this study is the IoT23 dataset,

described in [21] and published in January 2020. It contains

network traffic data from three different smart home IoT

devices: Amazon Echo, Philips HUE, and Somfy Door

Lock. Designed specifically for the development of machine

learning algorithms, the dataset includes both real and

labeled instances of IoT malware infections, as well as

benign traffic. It consists of 23 captures or scenarios, with

20 representing malicious activity and 3 representing

benign traffic.

Each capture from infected devices is labeled with the

corresponding malware sample executed. The malware la-

bels within the IoT-23 dataset encompass categories

such as Attack, C&C, C&C-FileDownload, C&C-

HeartBeat, C&C- HeartBeatAttack, C&C-HeartBeat-

FileDownload, C&C-Mirai, C&C-Torii, DDoS,

FileDownload, Okiru, Okiru-Attack, and

PartOfAHorizontalPortScan.

Given the large size of the dataset, we chose to extract a

subset of records from each capture and combine them into

a new dataset. This approach allows us to manage the

computational workload more efficiently while preserving

most of the attack types found in the original IoT-23 dataset

B. Data Preprocessing

The Python library Pandas was used to load each of the

23 datasets from the IoT-23 Dataset into individual data

frames.

We applied a condition to skip the first 10 rows and read

the next one hundred thousand rows from each dataset.

These 23 data frames were then consolidated into a single

data frame, with missing values replaced by 0.

C. CIC IoT 2023

The second dataset is a recent release from the Canadian

Institute for Cybersecurity [22], designed to support the

development of security analytics applications for real-

world IoT operations. This dataset provides a unique and

comprehensive collection of IoT attack data, covering 33

attacks within an IoT network of 105 devices. The attacks

are classified into seven categories: DDoS, DoS, Recon,

Web-based, Brute Force, Spoofing, and Mirai.

Detailed information on each attack, along with the

corresponding number of packets used for each during the

analysis, is provided in Table 1

TABLE I. DESCRIPTION OF CICIOT2023 ATTACKS

Attack
Category

Attack
Name

Packet
Number

DDoS

ACK Fragmentation
UDP Flood

SlowLoris ICMP

Flood RSTFIN

Flood PSHACK

Flood HTTP

UDP Fragmentation

ICMP Fragmentation

TCP Flood
SYN Flood
Synonymous IP Flood

285104

 5412287
 23426

7200504
4045285
4094755

28790
286925
452489

4497667
4059190
3598138

DoS

TCP Flood
HTTP Flood
SYN Flood
UDP Flood

2,671,445

71,864
2,028,834
3,318,595

Recon

Ping Sweep
OS Scan

Vulnerability Scan

Port Scan
Host Discovery

2262

98,259
37,382
82,284

134,378

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Web-
Based

Sql Injection
Command Injection

Backdoor Malware

Uploading Attack XSS
Browser Hijacking

5245
5409
3218
1252
3846
5859

Brute
Force

Dictionary Brute Force

13064

Spoofing

Arp Spoofing
DNS Spoofing

 307593
 178911

Mirai

GREIP Flood
Greeth Flood
UDPPlain

 751682
 991866
 890576

IV. SCALING TECHNIQUES

Within the realm of data preprocessing for machine

learn- ing, scaling methods play a pivotal role in bolstering

the resilience and performance of predictive models. Three

fre- quently employed scalers include the StandardScaler,

Min- MaxScaler, and RobustScaler.

The StandardScaler normalizes features by removing the

mean(µ) and adjusting them to unit variance by

normalizing with the standard deviation (σ):

This technique proves especially potent when features

display varying scales, guaranteeing that each feature

carries an equal weight in the model. Consequently, the

obtained data boasts a mean of zero and a standard

deviation of one.

The MinMaxScaler transforms original features to a

defined range, usually between zero and one, using the

formula:

This method is beneficial in scenarios where the data

distribution deviates from a Gaussian distribution. It aids in

reducing the impact of outliers while maintaining the

general structure of the original distribution.

The RobustScaler effectively manages outliers by scaling

features using robust statistical measures. It employs the

median and interquartile range (IR) for this purpose:

specified range, typically between 0 and 1, using the

following formula:

This normalization approach is more resistant to extreme

values, making it especially appropriate for datasets

containing outliers or uneven distributions. The selection of

a scaler ultimately relies on the specific traits of the dataset

and the objectives of the machine learning task. Each scaler

presents unique benefits for handling data patterns, dealing

with anomalies, and preserving the essence of the original

information

V. THE FEATURE EXTRACTION METHODS

Integrating Principal Component Analysis (PCA) and

Kernel Principal Component Analysis (KPCA) into an IoT-

based Intrusion Detection System (IDS) can enhance its

effectiveness in detecting and mitigating security breaches.

These techniques reduce the dimensionality of network

traffic data while retaining key features, making it easier to

identify abnormal patterns and deviations from normal

behavior. Previous studies [23], [24], [25] have

demonstrated the effectiveness of PCA and KPCA in

improving IDS performance.

KPCA, in particular, excels at capturing nonlinear

relationships in data, which is valuable for detecting

complex and evolving attack patterns in IoT environments.

By leveraging kernel methods, KPCA uncovers subtle

anomalies that traditional linear methods may miss,

helping the IDS adapt to new and sophisticated threats.

The following sections provide the mathematical

foundations of these feature extraction methods.

A. Principal Components Analysis

Principal Component Analysis (PCA) serves the purpose

of dimensionality reduction while preserving the maximum

possible of variance. This is obtained by considering only

the first few Principal Components (PCs), arranged in

descending order [26].

Mathematically, let’s consider a training set comprising

M vectors w1, w2,... ,wM , each containing n features. To

obtain n′ principal components of the training set, where

n′< < n, we follow these steps:

1- Compute the average σ of this set:

 (1)

2- Subtract the mean σ from wi to obtain ρi:

 (2)

3- Compute the covariance matrix C, where:

 (3)

 And

 (4)

Let Uk be the kth eigenvector of C corresponding to the
λk associated eigenvalue. Form a matrix Un×n′ =
[U1...Un′] consisting of these eigenvectors, such that:

 (5)

The first Uk corresponding to the largest eigenvalues λk

are termed Principal Components (PCs).

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

B. Kernel Principal Components Analysis

Kernel Principal Component Analysis (Kernel PCA) [27]

enhances the capabilities of PCA by using kernel methods

to perform nonlinear dimensionality reduction. The method

involves projecting the input data into a higher-dimensional

feature space to achieve linear separability, and then

conducting PCA within this transformed space. It enables

Kernel PCA to identify the nonlinear relationships inherent

in the original data.

The kernel trick is employed to efficiently calculate the

dot product within the higher-dimensional feature space

indirectly, without explicitly performing the transformation.

Given a kernel function (), where and

represent input data points, the kernel PCA algorithm can

be summarized as follows:

1- Compute the kernel matrix :

 (6)

2- Center the kernel matrix:

 (7) Where 1 represents a

matrix filled of ones.

3- Compute the eigenvectors αi and eigenvalues λi of
the centered kernel matrix K′:

 (8)

4- Choose the top n′ eigenvectors associated with the
highest eigenvalues to construct the principal
components. The Radial Basis Function (RBF) Kernel
is frequently utilized and is defined as follows:

 (9) Where represents

the kernel bandwidth parameter

VI. CLASSIFIERS

A. KNN

K-Nearest Neighbors (KNN) is a simple yet effective

machine learning algorithm applicable to both

classification and regression tasks. The fundamental

concept behind KNN is to determine the class of a data

point based on the majority class among its k-nearest

neighbors within the feature space. Given a dataset (x1, y1),

(x2, y2),. . ., (xn, yn) where xi denotes the feature vector and

yi represents the associated class label, the KNN algorithm

functions as follows:

1) Select the number of neighbors k.
2) Calculate the distance between the query point

and all data points in the training set.
3) Identify the k nearest neighbors based on the

calculated distances.

4) For classification, assign the class label by
majority vote among the k neighbors.

For regression, predict the average of the k neighbors’ target

values.

B. Decision tree

Decision tree operates by partitioning the feature space

into a hierarchy of simple decision rules, represented as a

tree- like structure. At each internal node of the tree, a

decision is made based on the value of a particular feature,

leading to subsequent branches corresponding to different

outcomes. The process continues recursively until reaching

leaf nodes, where final predictions are made. Decision trees

are favored for their ability to handle both numerical and

categorical data, their transparency in model interpretation,

and their capability to capture nonlinear relationships

between features and target variables. Here are the principal

steps of Decision tree Algorithm.

1) Initialization:

• Define the feature space X and the target
variable y.

• Set the root node of the decision tree.

2) Splitting Criteria:

At each decision node:

• Iterate over each feature xi in X.

• Calculate a splitting criterion, such as Gini
impurity or entropy, to evaluate the
impurity of the data after splitting based
on xi.

• Select the feature xi and threshold value θ
that minimizes the impurity or
maximizes the information gain.

3) Partitioning:

 Split the data into two subsets based on the

selected feature and threshold:

Xleft = {(x, y) | xi ≤ θ}
Xright = {(x, y) | xi > θ}

4) Stopping Criteria:

 Check if stopping criteria are met:

- Maximum tree depth reached.

- Minimum number of samples in a

node reached

- All samples in a node belong to the

same class

5) Recursive Splitting:

If stopping criteria are not met:

- Create child nodes for the current
node corresponding to the subsets
Xleft and Xright.

- Recursively apply steps 2-4 to each
child node.

6) Leaf Node Prediction:

- At leaf nodes:

For classification tasks:

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

 Assign the majority class label

of the samples in the node as

the predicted class.

For regression tasks:

 Calculate the mean or median

of the target variable of the

samples in the node as the

predicted value.

7) Tree Building:

Continue splitting and partitioning until all

nodes are either leaf nodes or the stopping

criteria are met.

C. Random Forest

Random Forest is a powerful ensemble learning

algorithm that leverages the wisdom of crowds to make

accurate predictions in classification and regression tasks. It

operates by constructing multiple decision trees during

training and combining their predictions through a process

called bootstrapping and aggregation. Let X denote the

feature space and y represent the target variable. The

Random Forest algorithm consists of the following steps:

1) Bootstrapping:

• Randomly sample with replacement from the
original dataset to create multiple bootstrap
samples.

• Each bootstrap sample is used to train an
individual decision tree.

2) Decision Tree Construction:

• For each bootstrap sample:

• Build a decision tree using a subset of features
selected randomly at each node.

• Split the data at each node based on a selected

splitting criterion, such as Gini impurity or

entropy.

• Continue recursively partitioning the data until

reaching leaf nodes.

3) Aggregation:

• Aggregate the predictions of all decision

trees to make a final prediction:

a. For classification tasks, use the
majority vote among the predictions
of individual trees.

b. For regression tasks, calculate the
mean or median of the predictions.

Random Forest offers several advantages over individual

decision trees, including improved generalization, reduced

overfitting, and increased robustness to noise in the data.

By combining multiple trees trained on different subsets of

the data, Random Forest harnesses the collective knowledge

of diverse models to produce more accurate and stable

predictions.

D. Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful supervised

learning models used for classification and regression tasks.

They aim to find the optimal hyperplane that best separates

data points of different classes in the feature space.

Given a training dataset (x1, y1), (x2, y2), ..., (xn, yn)

where xi represents the feature vector and yi is the

corresponding class label, the SVM algorithm seeks to find

the hyper plane with the maximum margin that separates

the data points. Mathematically, this can be formulated as

the optimization problem:

 (10)

Subject to the constraints:

 (11)

Where w is the weight vector perpendicular to the hyper-

plane, b is the bias term, and w denotes the Euclidean

norm of w. The term w. xi + b represents the decision

function, and yi denotes the class label of data point xi. In

the case of non- linearly separable data, SVM can be

extended using the kernel trick to map the input data into a

higher-dimensional feature space where it becomes linearly

separable. This allows SVM to learn complex decision

boundaries and handle non-linear relationships between

features and target variables. Support Vector Machines

offer several advantages, including robustness to over

fitting, effectiveness in high-dimensional spaces, and

versatility in handling both linear and non-linear

classification problems. They are widely used in various

domains, including image classification, text

categorization, and bioinformatics, making them a valuable

tool in the field of machine learning

E. Logistic Regression

Logistic Regression is a widely used statistical method

for binary classification tasks. Unlike linear regression,

which predicts a continuous output, logistic regression

predicts the probability of a binary outcome. It is

particularly useful when the dependent variable is

categorical and represents two possible outcomes, such as

success/failure or yes/no.

Given a dataset (x1, y1), (x2, y2)... (xn, yn) where xi

represents the feature vector and yi is the corresponding

class label, the logistic regression model predicts the

probability that yi=1 given xi by applying the logistic

function to a linear combination of the input features.

Mathematically, this is expressed as:

 (12)

Where σ(z) is the logistic (or sigmoid) function defined

as

 (13)

Here, w is the weight vector, and b is the bias term. The

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

logistic function maps any real-valued number into the

range (0, 1), which can be interpreted as a probability.

The parameters w and b are estimated by maximizing

the likelihood of the observed data, which is equivalent to

minimizing the logistic loss function (also known as binary

cross-entropy loss):

(14)

Where is the predicted probability for

the i-th instance

Logistic Regression is popular due to its simplicity,

efficiency, and interpretability. It is widely used in various

applications such as medical diagnosis, credit scoring, and

marketing, where binary classification is required. Despite

its name, logistic regression is a linear model in the

transformed feature space, making it a powerful tool for

binary classification problems

F. Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is a class of artificial

neural networks (ANNs) that consists of at least three layers

of nodes: an input layer, one or more hidden layers, and an

output layer. MLPs are widely used for both classification

and regression tasks due to their ability to model complex

non- linear relationships between input features and target

variables.

Given a dataset (x1, y1), (x2, y2)... (xn, yn) where xi

represents the feature vector and yi is the corresponding

target vector, the MLP model transforms the input through

multiple layers using a series of weighted linear

combinations followed by non-linear.

The mathematical formulation of MLP can be summa-

rized as follows:

1. Input Layer:

 (15)
2. Hidden Layers: for each hidden layer l = 1, 2, ...,

L, where L is the number of hidden layers:
 (16)

Here, Wl and bl are the weight matrix and bias
vector for the l-th layer, and f is the non-linear
activation function (e.g., ReLU, sigmoid, or tanh).

3. Output Layer:

 (17)

Where WL+1 and bL+1 are the weight matrix and
bias vector for the output layer, and g is the
activation function for the output layer (e.g.,
softmax for classification or identity for
regression).

4. Loss Function: The parameters of the MLP (i.e.,
weights and biases) are learned by minimizing a loss
function L(ŷ , y) over the training dataset. For
classification, the cross-entropy loss is commonly
used, while for regression, the mean squared error
(MSE) is often employed

)) (18)

For classification tasks with m classes, or for
regression tasks

 (19)

5. Backpropagation: The MLP model uses the
backpropagation algorithm to update the weights
and biases by computing the gradient of the loss
function with respect to each parameter and
applying an optimization algorithm such as
gradient descent or its variants.

Multilayer Perceptrons are versatile and capable of
capturing intricate patterns in data, making them
suitable for a wide range of applications, including
image and speech recognition, natural language
processing, and financial forecasting.

VII. THE EXPERIMENTS

Performance Measures

A critical measure of an Intrusion Detection System

(IDS) is its accuracy, which reflects its effectiveness in

detecting and categorizing intrusions or abnormal network

behavior. Accuracy is defined as the proportion of correctly

classified instances (true positives and true negatives) to the

total instances (including true positives, true negatives,

false positives, and false negatives). The formula for

calculating accuracy is:

The F1-score is a metric used to evaluate the

performance of an intrusion detection system. It is the

harmonic mean of precision and recall and is calculated as

follows:

- Precision = True Positives / (True Positives + False

Positives)

- Recall = True Positives / (True Positives + False

Negatives)

Experimental Results

In our study, we conducted five distinct experiments on

two datasets: IoT23 and CIC IoT 2023. The goal was to

assess the performance of various classifiers combined with

Principal Component Analysis (PCA), Kernel Principal

Component Analysis (KPCA), and different scaling

techniques. The evaluated classifiers include K-Nearest

Neighbors (KNN), Multi-Layer Perceptron (MLP), Support

Vector Machine (SVM), Random Forest (RF), Decision

Tree (DT), and Logistic Regression (LR). We explored

several configurations for these experiments:

In Experiment 1, we fixed the size of the training dataset

and varied the number of principal components. This

allowed us to assess how the number of components affects

classifier performance using different scaling methods.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

In Experiment 2, we set the number of principal

components at three and progressively increased the size of

the training dataset. This approach enabled us to observe

how classifier performance changes as the amount of

training data grows.

Experiment 3 used RobustScaler, a training size of

2,000, and three principal components. This experiment

focused on evaluating the accuracy of each classifier in

identifying different types of attacks, offering insights into

their performance against specific threat categories.

The fourth experiment focuses on calculating CPU time

for various classifiers combined with PCA. This experiment

examines how computational efficiency is affected by the

choice of PCA dimensionality reduction technique and

classifier, across different principal components number.

The fifth experiment investigates the F1-score

performance of various classifiers combined with PCA

focusing on their effectiveness as the number of principal

components increases.

For the last experiment, we fixed the number of training

size at 2000 and we use RobustScaler.

The following paragraphs will provide a detailed

description of each experiment, along with an analysis of

the corresponding results.

Experiment 1

In the first experiment, we randomly selected 10,000

normal data points and 1,000 malicious data points for

the training phase. For the testing phase, we selected

5,000 normal data points and 1,000 malicious data points.

This selection process was repeated 20 times.

This setup enhances the reliability and generalizability of

the results by minimizing biases from a single random split

and evaluating variability across multiple iterations. By

simulating real-world scenarios and assessing system

performance with diverse data samples, it provides valuable

insights into the system's generalization abilities and

stability. Additionally, this approach ensures statistical

significance, enabling efficient resource usage despite

repeated trials.

Our objective was to analyze how classifier accuracy

varies with different numbers of components and to

compare the effectiveness of PCA and KPCA.

After scaling the data, the feature extraction methods

were applied with a varying number of components,

ranging from 2 to 8 and the transformed data was used to

train each classifier.

The classifiers were instantiated with specific parameters

to ensure optimal performance, for KNN we consider

Euclidean distance metric, for MLP two hidden layers

(sizes 100 and 50), ReLU activation, and adaptive learning

rate were chosen. For SVM we consider RBF kernel.

We examined three distinct scaling techniques:

Standard- Scaler, MinMaxScaler, and RobustScaler.

We divide the results into two sections: the first pertains

to IoT23 dataset (Fig.2), and the second focuses on the CIC

IoT 2023 dataset (Fig.3).

Each row of the figures corresponds to a different data

scaling technique. The accuracies of the classifiers are

plotted against the number of components, which vary from

2 to 8.

Under StandardScaler normalization (first row of Fig. 2),

the Decision Tree classifier, when combined with PCA,

shows a rapid increase in accuracy, reaching near-perfect

accuracy with just 3 components and maintaining stability

as more components are added. This suggests that the

Decision Tree is highly effective for this dataset with

minimal feature extraction through PCA. Similarly,

Random Forest paired with PCA quickly achieves high

accuracy, reflecting Decision Tree’s performance. Both

classifiers demonstrate stability and resilience with

StandardScaler, indicating that tree-based models are

particularly well-suited for this IoT dataset. For SVM and

MLP, accuracy also improves quickly as more components

are added, stabilizing around 4-5 components, although

they do not reach the peak accuracy of Decision Tree and

Random Forest. Logistic Regression with PCA requires

more components to achieve similar accuracy, showing a

slower performance increase compared to other classifiers.

When paired with KPCA (RBF kernel), Decision Tree and

Random Forest continue to perform well, closely matching

their PCA performance. However, Logistic Regression and

SVM with KPCA exhibit greater sensitivity to the number

of components, stabilizing at slightly higher component

counts than with PCA.

With MinMaxScaler normalization (second row of Fig.

2), the Decision Tree and Random Forest classifiers with

PCA quickly achieve high accuracy, reaching near-optimal

performance with just 3 components. These tree-based

models maintain stability across all tested component

numbers, highlighting their effectiveness with minimal

dimensionality. For MLP and SVM with PCA, high

accuracy is achieved with slightly more variability than the

tree-based models, particularly at lower component

numbers, though they stabilize around 4 components

Logistic Regression with PCA again requires more

components to reach comparable accuracy, showing greater

sensitivity in the early component range. When paired with

KPCA, Decision Tree and Random Forest perform

similarly to PCA, achieving high accuracy early on.

However, Logistic Regression and SVM with KPCA exhibit

significant variability, indicating sensitivity to both the

number of components and the scaling method. This

suggests that these classifiers may require additional

parameter tuning when used with KPCA on this dataset.

With RobustScaler normalization (as shown in the third

row of Fig.2), the Decision Tree and Random Forest

classifiers combined with PCA maintain strong

performance, achieving high accuracy with only 3-4

components and remaining stable as more components are

added. This demonstrates that tree-based models are highly

versatile across different scaling methods when paired with

PCA. MLP and SVM with PCA show slightly more

variation in accuracy under RobustScaler, particularly at

lower component numbers, although they stabilize as more

components are introduced.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Fig 2. Performance of many classifiers on iot23 dataset when changing

Number of components

Fig 3. Performance of many classifiers on CIC IoT 2023 dataset

Fig 3. Performance of many classifiers on CIC IoT 2023 dataset when

changing Number of components

0
10
20
30
40
50
60
70
80
90

1er

trim.

2e trim.3e trim.4e trim.

Est

Ouest

Nord

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1

2

3

4, 5

6

4, 5

1

2

1, 2,3,4,5

6

 3- PCA + SVM 4- PCA + RF 5- PCA + DT 6- PCA + LR

3- PCA + SVM 4- PCA + RF 5- PCA + DT 6- PCA + LR

1

2

3

4, 5

6

1

3

4, 5

2
1- PCA + KNN 2- PCA + MLP

3

6

1- PCA + KNN 2- PCA + MLP

6

6

2

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

4, 5

2

3

1 6

1- PCA + KNN 2- PCA + MLP 3- PCA + SVM

4- PCA + RF 5- PCA + DT 6-PCA + LR

6

1- PCA + KNN

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR 6

1, 2,3,4,5

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

6

3

1, 2,3,4,5

1- PCA + KNN

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

6

3 2

5

1, 4

3- KPCA + SVM 4- KPCA + RF

5- KPCA + DT 6- KPCA + LR

1- KPCA + KNN 2- KPCA + MLP

6
3

2

4

1 5

1- PCA + KNN

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR 3

1

4, 5

6

2

1

3

6

2

4, 5

5- KPCA + DT

6- KPCA + LR

5- KPCA + DT

6- KPCA + LR

0.90

0.80

0.90

0.82

0.90

0.80

Accuracy

Number of Components

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Logistic Regression with PCA displays the most

instability under RobustScaler, starting with lower accuracy

and improving gradually as additional components are

added. When using KPCA, Decision Tree and Random

Forest again show high accuracy, demonstrating robustness

even with the RobustScaler transformation. However,

Logistic Regression and SVM with KPCA exhibit

noticeable sensitivity to the number of components, with

greater fluctuations in accuracy compared to PCA,

especially with fewer components. This suggests that these

classifiers may not be as compatible with KPCA when

using RobustScaler on the IoT23 dataset.

Fig.3 illustrates the performance of the classifiers on the

CIC IoT 2023 dataset under varying normalization

methods.

In the first row of Fig.3, where StandardScaler

normalization is applied, the Decision Tree classifier

combined with PCA quickly achieves high accuracy,

reaching near-perfect results with just 3 components and

maintaining this level of performance as more components

are added. This indicates that the Decision Tree model is

well-suited for the CIC IoT 2023 dataset, requiring minimal

feature extraction through PCA. Similarly, Random Forest

with PCA shows rapid accuracy improvement, stabilizing at

3 components and remaining resilient as more components

are added. SVM and MLP also improve in accuracy with

PCA under StandardScaler, although they reach peak

performance at slightly higher component counts (around

4-5). Logistic Regression, however, requires more

components to achieve similar accuracy, with a more

gradual improvement compared to the other classifiers.

When paired with KPCA (RBF kernel), both Decision Tree

and Random Forest continue to perform well, achieving

high accuracy quickly and stabilizing across components.

On the other hand, Logistic Regression and SVM with

KPCA exhibit greater fluctuations in accuracy, particularly

at lower component counts, suggesting sensitivity to the

number of components in this configuration.

In the second row of Fig.3, where MinMaxScaler

normalization is applied, the Decision Tree and Random

Forest classifiers combined with PCA continue to show

strong performance, achieving high accuracy with as few as

3 components and maintaining stability across the

component range. This further confirms their effectiveness

for the CIC IoT 2023 dataset under MinMaxScaler. MLP

and SVM also reach high accuracy with PCA under

MinMaxScaler, although they exhibit slightly more

variability, particularly at lower component counts. Logistic

Regression with PCA shows a more gradual improvement

in accuracy, requiring additional components to achieve

similar performance to the other classifiers.

When paired with KPCA, Decision Tree and Random

Forest maintain strong performance, achieving high

accuracy and stability across the number of components.

However, SVM and Logistic Regression with KPCA

demonstrate greater fluctuations in accuracy, especially at

lower component counts. This suggests that these models

may need further tuning when combined with KPCA under

MinMaxScaler for this dataset

Under RobustScaler normalization (third row of Fig. 3),

Decision Tree and Random Forest with PCA maintain their

trend of strong performance, reaching high accuracy by 3-4

components and remaining stable across additional

components. This demonstrates the robustness of tree-based

models when paired with PCA, regardless of scaling

method.

MLP and SVM with PCA under RobustScaler exhibit

more variability in accuracy, particularly at lower

component counts, though they stabilize with higher

components. Logistic Regression with PCA shows the most

instability, with a more gradual increase in accuracy across

components. For KPCA, Decision Tree and Random Forest

remain strong performers, displaying high accuracy with

only a few components and remaining stable. However,

SVM and Logistic Regression with KPCA show marked

sensitivity to the number of components, exhibiting greater

variability and requiring additional components to stabilize,

which suggests a less compatible fit for these models under

RobustScaler with KPCA on this dataset.

Experiment 2

Figures 4 and 5 represent the results of Experiment 2. In

this experiment, the training dataset size was gradually

increased, while the number of principal components was

fixed at three. This setup provides insights into how each

classifier adapts to larger training size under different

normalization methods

In the first row of Fig.4, we can see that under

StandardScaler normalization, PCA+ Decision Tree and

PCA+ Random Forest maintain consistently high accuracy

as the training data increases. Decision Tree, in particular,

demonstrates exceptional stability.

It effectively captures the data structure even with larger

training sizes. SVM, MLP, and KNN classifiers deliver

moderate performance. Their accuracy is stable but lower

compared to tree-based models. Logistic Regression

performs poorly throughout. It struggles to handle the

complex feature transformations produced by PCA. When

KPCA with an RBF kernel is used, Decision Tree and

Random Forest still perform well. However, KPCA offers

no significant improvement over PCA in this case

In the second row of Fig.4, MinMaxScaler normalization

shows that Decision Tree and Random Forest with PCA

deliver high accuracy with minimal variation. This

highlights the reliability of tree-based models with

MinMaxScaler. SVM and MLP combined with KPCA

exhibit more fluctuation as the training size increases. This

may be due to MinMaxScaler's impact on feature

distribution transformations in kernel-based methods.

Logistic Regression performs consistently poorly, indicating

that linear models may fail to capture the complexity of the

transformed data effectively.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Fig. 4. Performance of many classifiers on iot23 dataset when changing

Training size

Fig. 5. Performance of many classifiers on iot23 dataset when changing

Training size

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1- KPCA + KNN 2- KPCA + MLP

3- KPCA + SVM 4- KPCA + RF

5- KPCA + DT 6- KPCA + LR

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

1- PCA + KNN

2- PCA + MLP

1- PCA + KNN

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

5- PCA + DT

6- PCA + LR

1- PCA + KNN 2- PCA + MLP

3- PCA + SVM 4- PCA + RF

2- PCA + MLP

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1- KPCA + KNN

2- KPCA + MLP

3- KPCA + SVM

4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1- KPCA + KNN 2- KPCA + MLP

3- KPCA + SVM 4- KPCA + RF

5- KPCA + DT

6- KPCA + LR

1- PCA + KNN 2- PCA + MLP

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

1- PCA + KNN

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

1- PCA + KNN 2- PCA + MLP

2- PCA + MLP

3- PCA + SVM

4- PCA + RF

5- PCA + DT

6- PCA + LR

1

4, 5

2

6

3 2, 3

1

4, 5

6

6

3

2 1
4, 5

4, 5

2

1

3 6

6

1

3

2 4, 5
4, 5

2

1

6

3

6

5
1, 2, 3, 4

1, 2, 3, 4
5

6

6

6

3

3

5

4

1, 2

5

1, 2, 4

6

1

&

5

2

&

3

4

2

&

3

6

1

&

5

&

4

Training Size

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

In the third row of Fig.4, RobustScaler normalization is

applied. We can see clearly that Tree-based models such as

Decision Tree and Random Forest maintain consistent

accuracy and stability as the training size grows. Non-tree

classifiers, especially SVM and MLP, exhibit more

fluctuation. This is likely due to how RobustScaler handles

outliers within the PCA/KPCA-transformed feature space.

The variability highlights the difficulties some classifiers

encounter with outlier-sensitive scaling. Meanwhile,

Decision Tree and Random Forest continue to classify IoT

attack data effectively in this setup.

Fig.5 illustrates the results of experiment 2 using CIC

IoT 2023 dataset.

Under StandardScaler (first row), Decision Tree and

Random Forest with PCA consistently achieve high

accuracy, with Decision Tree slightly ahead. Both leverage

PCA-transformed features effectively. KPCA models like

SVM and MLP show more variability, while Logistic

Regression performs poorly, struggling with the

transformed data.

With MinMaxScaler (second row), Decision Tree and

Random Forest maintain high accuracy with minimal

fluctuation, reinforcing their adaptability to MinMaxScaler-

transformed features. KPCA-based SVM and MLP show

greater variability, and Logistic Regression remains

underwhelming.

Under RobustScaler (third row), Decision Tree and

Random Forest continue to perform well, unaffected by

outlier handling. SVM and MLP experience more

variability, reflecting sensitivity to outliers and KPCA

transformations, while Logistic Regression again shows low

accuracy, unable to manage the dataset’s complexities

effectively.

Experiment 3

The analysis of Experiment 3 on the IoT23 dataset

reveals significant insights into the effectiveness of various

classifiers in identifying attack types under different

dimensionality reduction methods (PCA and KPCA) with

RobustScaler. The Table VI contains every individual

attack name with it corresponding number. The Table II

highlights distinct patterns in classifier accuracy, with tree-

based classifiers demonstrating stable performance across

multiple attack categories, whereas other classifiers like

MLP and SVM show variability depending on the reduction

method and attack type.

The Decision Tree and Random Forest classifiers achieve

consistently high accuracy across the majority of attack

types, demonstrating robust detection capabilities. Both

classifiers perform exceptionally well on attacks such as

DDoS and C&C-HeartBeat-FileDownload, achieving close

to or even perfect accuracy scores (0.9995 and above). For

example, the Decision Tree classifier reaches 100%

accuracy for C&C-HeartBeat-FileDownload attacks using

both PCA and KPCA, while Random Forest exhibits

similar stability across these categories. This indicates that

tree-based classifiers are well-suited to capture the

underlying structure in PCA/KPCA transformed features,

showing resilience in accurately identifying both simpler

and more nuanced attack types.

KNN performs reasonably well on certain attack types,

particularly with PCA. For instance, it achieves 99.98%

and 100% accuracy for FileDownload and C&C-HeartBeat-

FileDownload, respectively, suggesting that KNN benefits

from PCA’s linear transformations, which may better

approximate distances in the dataset. However, KNN’s

accuracy declines substantially when KPCA is applied,

particularly for complex attacks like Okiru and

PartOfAHorizontalPortScan, where it only reaches

accuracies of 0.4930 and 0.5333. This indicates that KNN

may struggle with the non-linear transformations

introduced by KPCA, impacting its ability to detect more

intricate patterns in certain attack types

Both MLP and SVM classifiers exhibit significant

variability across attack types, particularly when using

PCA. For example, MLP performs poorly in detecting

attacks such as DDoS and Okiru, scoring 0.0000 in both

cases, while SVM with PCA also fails on DDoS and

PartOfAHorizontalPortScan. This suggests that MLP and

SVM may have difficulty capturing complex patterns when

constrained to a lower-dimensional, linear space. KPCA

provides some performance improvements for these

classifiers in detecting certain attacks, such as

FileDownload for MLP (0.8617) and C&C-Mirai for SVM

(0.9970), though both classifiers continue to struggle with

attacks requiring more complex decision boundaries, like

C&C-HeartBeat.

Logistic Regression shows the least effectiveness among

the classifiers, especially when paired with PCA. It fails to

detect multiple attacks, including

PartOfAHorizontalPortScan, DDoS, and C&C-HeartBeat,

where it scores 0. While KPCA provides slight performance

improvements for some attacks, such as FileDownload and

C&C-Mirai (0.8676 and 0.8222, respectively), its overall

performance remains low. This outcome confirms that

Logistic Regression’s linear nature is inadequate for

capturing the complexities within this IoT dataset,

especially for non-linear attack types.

Overall, tree-based classifiers, particularly with PCA, are

consistently more effective across various attack categories,

highlighting their adaptability and reliability in this

experimental setup. KPCA, although beneficial for certain

classifiers, does not universally enhance detection rates

across attack types, particularly for MLP, KNN, and SVM,

which exhibit more variable accuracy under this method.

The experiment underscores the superior performance of

tree-based models with PCA, as well as the limitations of

linear models like Logistic Regression for complex, non-

linear IoT data classification tasks.

The analysis of individual attack detection accuracy for

the CIC IoT 2023 dataset (Tables III, IV and V) reveals

significant insights into classifier performance across

various attack types.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

TABLE II. INDIVIDUAL ATTACK ACCURACY FOR IoT23 DATASET

TABLE III. FIRST PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET

TABLE IV. SECOND PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET

TABLE V. THIRD PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET

Classifier EM 1 2 3 4 5 6 7 8 9 10

KNN PCA 0.5816 0.3538 0.8094 0.806 0.7255 0.5604 0.9998 0.9988 1.0000 0.9986

KNN KPCA 0.5333 0.4930 0.5893 0.701 0.7454 0.5243 0.8674 0.9845 1.0000 1.0000

MLP PCA 0.0203 0.0000 0.0000 0.110 1.0000 0.0000 0.8233 0.0844 0.0104 0.0104

MLP KPCA 0.5726 0.2903 0.7056 0.297 0.0749 0.1047 0.4053 0.8617 0.9082 0.9980

SVM PCA 0.0000 0.1518 0.0000 0.606 1.0000 0.4291 0.9231 0.4594 0.5161 0.5505

SVM KPCA 0.3865 0.2903 0.6335 0.021 0.0000 0.1027 0.3912 0.8188 0.9416 0.9970

Random Forest PCA 0.6124 0.5719 0.9998 0.809 0.9139 0.4005 0.9998 0.9988 1.0000 0.9986

Random Forest KPCA 0.6151 0.6143 0.9976 0.813 0.9095 0.3948 0.8662 0.9890 1.0000 0.9992

Decision Tree PCA 0.6111 0.5721 0.9995 0.8147 0.9195 0.3944 0.9998 0.9986 1.0000 0.9986

Decision Tree KPCA 0.6162 0.6143 0.9988 0.8157 0.8342 0.3944 0.8402 0.9960 1.0000 1.0000

Logistic Regression PCA 0.0000 0.0000 0.0106 0.0000 0.5687 0.0095 0.8363 0.0099 0.0000 0.0530

Logistic Regression KPCA 0.1046 0.2874 0.4052 0.0000 0.0000 0.0731 0.0813 0.8169 0.8676 0.8222

Classifier 11 12 13 14 15 16 17 18 19 20 21 22

PCA + KNN 0.7584 0.9090 0.8479 0.4548 0.8024 0.8145 0.8690 0.7553 0.7572 0.7784 0.7666 0.5024

KPCA + KNN 0.8958 0.7740 0.8214 0.4375 0.6500 0.6325 0.6673 0.2895 0.7319 0.8267 0.7563 0.4070

PCA + MLP 0.0133 0.0073 0.0000 0.2871 0.0330 0.0344 0.0000 0.6008 0.0408 0.0135 0.0130 0.5484

KPCA + MLP 0.6486 0.3054 0.5723 0.4438 0.2016 0.4066 0.3807 0.1288 0.5094 0.6779 0.3497 0.1788

PCA + SVM 0.0704 0.0237 0.0105 0.0576 0.0272 0.0805 0.0510 0.2228 0.0089 0.0279 0.0035 0.0125

KPCA + SVM 0.1464 0.0445 0.0484 0.1146 0.0401 0.3066 0.2395 0.0538 0.0165 0.0120 0.0846 0.0866

PCA + Random
Forest

0.9471 0.9604 0.9637 0.8215 0.9435 0.9348 0.9406 0.9436 0.9554 0.9535 0.9661 0.8251

KPCA + Random
Forest

0.9060 0.8133 0.9299 0.4536 0.7080 0.6775 0.7365 0.3251 0.7524 0.8327 0.7945 0.4270

PCA + Decision
Tree

0.9543 0.9677 0.9670 0.8311 0.9604 0.9491 0.9559 0.9526 0.9263 0.9502 0.9511 0.8544

KPCA + Decision
Tree

0.9142 0.7158 0.9069 0.4390 0.6283 0.6752 0.7020 0.3125 0.6887 0.8583 0.7284 0.4490

PCA + Logistic
Regression

0.0017 0.0114 0.0011 0.1398 0.0076 0.0108 0.0129 0.1096 0.0009 0.0008 0.0023 0.0947

KPCA + Logistic
Regression

0.0138 0.0357 0.0966 0.0198 0.0801 0.3616 0.2305 0.0448 0.0453 0.0000 0.0724 0.0867

23 24 25 26 27 28 29 30 31 32 33 34

0.3250 0.8041 0.8075 0.7096 0.8041 0.1901 0.2032 0.5433 0.1683 0.3203 0.7388 0.3676

0.0717 0.7529 0.6809 0.3609 0.7186 0.1290 0.0771 0.6611 0.1191 0.2565 0.4237 0.1881

0.3561 0.0300 0.0587 0.0507 0.0305 0.0183 0.1835 0.3756 0.0553 0.1124 0.0317 0.0541

0.0775 0.7136 0.5329 0.3548 0.7053 0.0834 0.0146 0.6424 0.0364 0.0992 0.4530 0.1165

0.2344 0.0094 0.0526 0.0000 0.0382 0.0245 0.1560 0.0012 0.0082 0.0078 0.0103 0.0133

0.0162 0.5084 0.3008 0.3593 0.3963 0.0548 0.0180 0.5559 0.0141 0.0769 0.2568 0.0826

0.4599* 0.9430* 0.9630* 0.8655* 0.9271* 0.3314* 0.3098* 0.8303* 0.2592* 0.3497* 0.8736* 0.4668*

0.0563 0.7924 0.7139 0.4028 0.7548 0.1339 0.0752 0.6513 0.1176 0.2660 0.4341 0.1971

0.3890 0.9406* 0.9452* 0.8352* 0.8939* 0.3201* 0.2643* 0.8070* 0.2613 0.3511* 0.8413* 0.4330

0.0617 0.6842 0.7012 0.3492 0.7548 0.1391 0.0743 0.6353 0.1150 0.2631 0.4138 0.1909

0.1548 0.0013 0.0091 0.0000 0.0166 0.0369 0.0747 0.0000 0.0111 0.0532 0.0067 0.0092

0.0358 0.3804 0.3221 0.2432 0.1148 0.0359 0.0515 0.6196 0.0078 0.0815 0.1636 0.0768

35 36 37 38 39 40 41 42 43

0.3345 0.6879 0.4783 0.3777 0.3083 0.2462 0.2899 0.4640 0.4820

0.2404 0.3998 0.3354 0.2844 0.2298 0.1551 0.2342 0.3814 0.4597

0.1905 0.5259 0.3522 0.2009 0.0869 0.1208 0.1579 0.4931 0.0911

0.9304 0.5529 0.4001 0.0136 0.0500 0.0719 0.0308 0.0629 0.1524

0.0657 0.0350 0.2211 0.0356 0.0390 0.3066 0.0403 0.0149 0.0173

0.0441 0.4933 0.2091 0.0328 0.0503 0.0275 0.0336 0.1376 0.0789

0.3975* 0.8772* 0.7054* 0.4416* 0.3816* 0.3960* 0.3991* 0.5412* 0.4987*

0.2321 0.3007 0.3056 0.2752 0.2053 0.1591 0.2325 0.3955 0.4322

0.3523* 0.8275* 0.7018 0.4399* 0.3439* 0.3978* 0.3962* 0.5495* 0.5132*

0.2191 0.3560 0.2999 0.2778 0.2220 0.1526 0.2212 0.3826 0.4471

0.2212 0.1088 0.0929 0.0607 0.0210 0.0158 0.0492 0.0649 0.0176

0.0238 0.5659 0.2443 0.0300 0.0290 0.0308 0.0567 0.0126 0.0477

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Among the tested classifiers, PCA + Random Forest and

PCA + Decision Tree consistently achieve high accuracy,

particularly for complex Distributed Denial of Service

(DDoS) attacks. These two classifiers demonstrate strong

performance for attacks like DDoS-ACK Fragmentation,

DDoS-ICMP Fragmentation, and DDoS-HTTP Flood, often

reaching over 90% accuracy, as marked by the asterisks.

This result suggests that PCA-based dimensionality

reduction, when combined with ensemble methods like

Random Forest and Decision Tree, is highly effective in

identifying sophisticated DDoS patterns within IoT data.

Conversely, KPCA-based classifiers, such as KPCA +

KNN and KPCA + MLP, generally struggle to achieve

comparable accuracy levels across most attacks. For

example, KPCA + KNN manages moderate success on

certain DDoS attacks, including DDoS-ACK

Fragmentation and Mirai-greip Flood, but its performance

significantly declines for more complex or subtle attacks,

like MITM-ArpSpoofing and Recon-HostDiscovery. KPCA

+ MLP, in particular, has difficulty with various attacks,

frequently falling below 40% accuracy. This disparity

suggests that KPCA may not be as suitable as PCA for

dimensionality reduction on this IoT dataset, likely due to

PCA's more straightforward projection onto principal

components, which might better capture the underlying

patterns in network traffic data.

The analysis also highlights certain attack types that pose

challenges across all classifiers. Reconnaissance and

spoofing attacks, such as Recon-OSScan, DNS Spoofing,

and MITM-ArpSpoofing, consistently exhibit lower

detection rates, regardless of the classifier and

dimensionality reduction technique used. These attacks

likely involve subtle patterns or lower signal-to-noise ratios

that make them harder to detect with the current feature set

and models. Even high-performing classifiers like PCA +

Random Forest and PCA + Decision Tree struggle with

these attack types, achieving moderate accuracy at best.

This indicates a need for potential refinement, such as

additional feature engineering or the exploration of

alternative algorithms specifically tailored to detect subtle

anomalies.

Certain attack types demonstrate mixed detection rates,

suggesting a nuanced response by the classifiers. For

example, XSS and Recon-PortScan attacks yield varied

results, with PCA + Random Forest generally

outperforming other classifiers but still not reaching high

accuracy. This inconsistency might be attributed to the

attack behavior within IoT environments, where

reconnaissance activities or cross-site scripting could

exhibit unique traffic patterns that are difficult to

generalize.

Experiment 4

This experiment focuses on measuring the required CPU

time of various classifiers combined with PCA using the

RobustScaler preprocessing method. The goal is to compare

the computational efficiency of these methods.

For the IoT23 dataset, the results are illustrated in Figure

6. Among the combinations of PCA and the classifiers, the

PCA+MLP exhibited the highest CPU time, in contrast, the

combination of the feature extraction method and KNN,

Random Forest, Decision Tree, and Logistic Regression,

maintained consistently low CPU times regardless of the

number of components

The results for the CICIoT 2023 dataset are shown in the

Figure 7. The trends for PCA are similar to those seen in

the IoT23 dataset. MLP required the highest CPU time,

especially as the number of components increased. Other

classifiers, like Logistic Regression, Decision Tree, and

KNN, had stable and low CPU times across all

configurations.

Fig.6 CPU Times of PCA +classifiers vs. Number of Components for iot23

dataset

Fig.7 CPU Times of PCA +classifiers vs. Number of Components for CIC

IoT23

Fig.8. F1-Score of PCA +classifiers vs. Number of Components for IoT23

1 – PCA+KNN

2 – PCA+MLP

3 – PCA+SVM

4 – PCA+RF

5 – PCA+DT

6 – PCA+LR

2

1, 3, 4

 5, 6

2

1

3

4

6

5

3

6

2

1

4, 5

1 – PCA+KNN 2 – PCA+MLP 3 – PCA+SVM

4 – PCA+RF 5 – PCA+DT 6 – PCA+LR

1 – PCA+KNN

2 – PCA+MLP

3 – PCA+SVM

4 – PCA+RF

5 – PCA+DT

6 – PCA+LR

0.6

1.0

3.0

12

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

Experiment 5

The figure 8 represents the F1-score trends for classifiers

integrated with PCA on the IoT23 dataset. Among the

classifiers, Decision Tree and Random Forest emerge as the

most effective, achieving F1-scores consistently around 0.6.

This consistency highlights the robustness of tree-based

models when handling IoT datasets, even after

dimensionality reduction. KNN also performs

competitively, showing stable and moderate F1-scores

across all PCA components, suggesting its suitability for

this dataset.

Fig.9. F1-Score of PCA +classifiers vs. Number of Components for CIC

IoT2023

The MLP classifier, although improving slightly with

additional components, maintains a lower F1-score

compared to the top-performing models, reflecting its

limited adaptability or the dataset's potential challenges for

deep learning. Similarly, Logistic Regression steadily

increases but does not exceed an F1-score of 0.4, indicating

that linear classifiers are less effective in capturing the

complexities of this dataset. The SVM classifier, in

contrast, performs poorly, remaining near an F1-score of

zero throughout, which could result from insufficient kernel

customization or scalability issues with PCA-transformed

data.

These observations indicate that the IoT23 dataset

benefits most from tree-based methods, which can handle

complex patterns efficiently, while simpler or

computationally intensive models struggle.

The figure 9 highlights the performance of the same

classifiers on the CICIoT23 dataset. Here, Decision Tree

and Random Forest achieve near-perfect F1-scores (close to

1.0) as the number of PCA components increases. These

results suggest that the CICIoT23 dataset contains well-

defined patterns, allowing these classifiers to excel in

intrusion detection. KNN and Logistic Regression also

show significant improvement, stabilizing at high F1-scores

(above 0.8) with fewer components. This indicates that

simpler classifiers can also achieve good performance on

the CICIoT23 dataset when supported by effective

dimensionality reduction.

While MLP improves slightly compared to its

performance on the IoT23 dataset, it still struggles to

maintain consistency, reflecting its sensitivity to dataset

characteristics. The rapid performance gains across

classifiers, particularly with fewer PCA components,

suggest that the CIC23 dataset is more separable and easier

to classify than IoT23. The strong performance of Decision

Tree and Random Forest on both datasets highlights their

versatility and suitability for intrusion detection tasks in IoT

networks.

TABLE VI. EVERY ATTACK NAME WITH IT CORRESPONDING

NUMBER

N° Attack’s Name N° Attack’s Name

1 PartOfAHorizontalPortScan

22 DDoS-UDP_Flood

2 Okiru 23 MITM-ArpSpoofing

3 DDoS 24 DDoS-

ACK_Fragmentation

4 C&C-HeartBeat 25 Mirai-greip_flood

5 C&C-Torii 26 DoS-HTTP_Flood

6 C&C 27 DDoS-

ICMP_Fragmentation

7 C&C-FileDownload 28 Recon-PortScan

8 FileDownload 29 DNS_Spoofing

9 C&C-HeartBeat FileDownload 30 DDoS-

UDP_Fragmentation

10 C&C-Mirai 31 Recon-OSScan

11 DDoS-RSTFINFlood 32 XSS

12 DoS-TCP_Flood 33 DDoS-HTTP_Flood

13 DDoS-ICMP_Flood 34 Recon-HostDiscovery

14 DoS-UDP_Flood 35 CommandInjection

15 DoS-SYN_Flood 36 VulnerabilityScan

16 Mirai-greeth_flood 37 DDoS-SlowLoris

17 DDoS-SynonymousIP_Flood 38 Backdoor_Malware

18 Mirai-udpplain 39 BrowserHijacking

19 DDoS-SYN_Flood 40 DictionaryBruteForce

20 DDoS-PSHACK_Flood 41 SqlInjection

21 DDoS-TCP_Flood 42,43 Recon-PingSweep,

Uploading_Attack

VIII. CONCLUSION

This study evaluates preprocessing techniques and many

machine learning classifiers for enhancing IoT network

security through intrusion detection. Integrating PCA with

Decision Tree and Random Forest classifiers significantly

improves accuracy while managing high-dimensional IoT data.

A comparative analysis of scalers (StandardScaler,

MinMaxScaler, and RobustScaler) highlights the importance of

tailoring preprocessing to dataset characteristics. Furthermore,

the results suggest that this combination is particularly effective

in identifying sophisticated DDoS patterns within IoT data.

Future work should focus on optimizing the trade-off

between computational cost and detection accuracy by

exploring lightweight models, hybrid dimensionality reduction

techniques, and scalable architectures.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, pp. 273–297, 1995.

[2] J. Azimjonov and T. Kim, “Designing accurate lightweight intrusion

detection systems for iot networks using fine-tuned linear svm and

feature selectors,” Computers & Security, vol. 137, p. 103598, 2024.

[3] H. . Ghasemi and S. Babaie, “A new intrusion detection system based on

svm–gwo algorithms for internet of things,” Wireless Networks, pp. 1–

13, 2024.

3

6

1.0
4

3
1 1 – PCA+KNN

2 – PCA+MLP

3 – PCA+SVM

4 – PCA+RF

5 – PCA+DT

6 – PCA+LR
2

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

[4] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and H. Janicke,

“Rdtids: Rules and decision tree-based intrusion detection system for

internet-of-things networks,” Future internet, vol. 12, no. 3, p. 44, 2020.

[5] S. M. Taghavinejad, M. Taghavinejad, L. Shahmiri, M. Zavvar, and M.

H. Zavvar, “Intrusion detection in iot-based smart grid using hybrid

decision tree,” in 2020 6th International Conference on Web Research

(ICWR). IEEE, 2020, pp. 152–156.

[6] M. Douiba, S. Benkirane, A. Guezzaz, and M. Azrour, “An improved

anomaly detection model for iot security using decision tree and gradient

boosting,” The Journal of Supercomputing, vol. 79, no. 3, pp. 3392–

3411, 2023.

[7] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic

regression. Springer, 2002.

[8] C. Ioannou and V. Vassiliou, “An intrusion detection system for con-

strained wsn and iot nodes based on binary logistic regression,” in

Proceedings of the 21st ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 2018, pp.

259–263.

[9] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[10] M. Mohy-Eddine, A. Guezzaz, S. Benkirane, and M. Azrour, “An

efficient network intrusion detection model for iot security using k- nn

classifier and feature selection,” Multimedia Tools and Applications,

vol. 82, no. 15, pp. 23 615–23 633, 2023.

[11] C. A. De Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral, and

G. dos Santos Vieira, “Hybrid approach to intrusion detection in fog-

based iot environments,” Computer Networks, vol. 180, p. 107417,

2020.

[12] E. Zyad and A. B. Mohammed, “Evaluation of PCA Variants for

Intrusion Detection in IoT Networks," in Sixth International Conference

on Intelligent Computing in Data Sciences (ICDS), Marrakech,

Morocco, 2024, pp. 1-5

[13] Z. Elkhadir and M. Achkari Begdouri, “Enhancing internet of things

attack detection using principal component analysis and kernel principal

component analysis with cosine distance and sigmoid

kernel,” International Journal of Electrical & Computer Engineering,

vol. 15, no 1, pp. 1099–1108, 2025.

[14] A. Rosay, F. Carlier, and P. Leroux, “Mlp4nids: An efficient mlp- based

network intrusion detection for cicids2017 dataset,” in Machine

Learning for Networking: Second IFIP TC 6 International Conference,

MLN 2019, Paris, France, December 3–5, 2019, Revised Selected

Papers 2. Springer, 2020, pp. 240–254.h

[15] Y. Javed and N. Rajabi, “Multi-layer perceptron artificial neural

network based iot botnet traffic classification,” in Proceedings of the

Future Technologies Conference (FTC) 2019: Volume 1. Springer,

2020, pp.973–984.

[16] J. B. Awotunde, F. E. Ayo, R. Panigrahi, A. Garg, A. K. Bhoi, and P.

Barsocchi, “A multi-level random forest model-based intrusion detection

using fuzzy inference system for internet of things networks,”

International Journal of Computational Intelligence Systems, vol. 16,

no. 1, p. 31, 2023.

[17] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly

detection ids for detecting dos attacks in iot networks based on machine

learning algorithms,” Sensors, vol. 24, no. 2, p. 713, 2024.

[18] M. M. Inuwa and R. Das, “A comparative analysis of various machine

learning methods for anomaly detection in cyber attacks on iot net-

works,” Internet of Things, vol. 26, p. 101162, 2024.

[19] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, “Attack and

anomaly detection in iot sensors in iot sites using machine learning

approaches,” Internet of Things, vol. 7, p. 100059, 2019.

[20] M. O. Pahl, and F. X. Aubet, “DS2OS traffic traces,” 2018.

[21] S. Garcia, A. Parmisano, and M.J. Erquiaga, “IoT-23: A labeled dataset

with malicious and benign IoT network traffic,” Stratosphere Lab.,

Praha, Czech Republic, Tech. Rep, 2020.

[22] E.C.P. Neto, S. Dadkhah, R. ferreira, and al., “CICIoT2023: A real-

time dataset and benchmark for large-scale attacks in IoT environment,”

Sensors, vol. 23, no 13, p. 5941, 2023.

[23] Z. Elkhadir, K. Chougdali, and M. Benattou, “Intrusion detection

system using pca and kernel pca methods,” in Proceedings of the

Mediterranean Conference on Information & Communication

Technologies 2015. Springer, 2016, pp. 489–497.

[24] T. M. Pattewar and H. A. Sonawane, “Neural network based intrusion

detection using bayesian with pca and kpca feature extraction,” in 2015

IEEE International Conference on Computer Graphics, Vision and

Information Security (CGVIS). IEEE, 2015, pp. 83–88.

[25] F. Kuang, W. Xu, and S. Zhang, “A novel hybrid kpca and svm with ga

model for intrusion detection,” Applied Soft Computing, vol. 18, pp.

178–184, 2014.

[26] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[27] B. Schölkopf, A. Smola, and K.-R. Mu¨ller, “Kernel principal

component analysis,” in International conference on artificial neural

networks. Springer, 1997, pp. 583–588.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 995-1010

__

