
 

 

Abstract—This research delves into the escalating 

cybersecurity issues brought about by the rapid 

integration of Internet of Things (IoT) technologies. With the 

proliferation of IoT systems, the intricate connections between 

devices are heightened, leading to a surge in data flow and 

consequently, presenting numerous openings for cyber 

threats. As a result, the detection and mitigation of 

cyberattacks aimed at IoT systems have become indispensable 

priorities within the cybersecurity domain. The objective of 

this technical assessment is to offer a detailed insight into how 

employing PCA/KPCA feature extraction algorithms with 

many machine learning classifiers contribute to classifying 

cyber-attacks within IoT systems. By analyzing the 

performance of many classifiers such as Support Vector 

Machine (SVM), multilayer perceptron (MLP), Decision Tree 

(DT), Logistic Regression (LR), k-Nearest Neighbors (k-NN), 

Random Forest (RF), cybersecurity professionals can glean 

valuable insights to craft resilient protection strategies for the 

IoT landscape. The outcome indicates that the combination of 

Principal Component Analysis (PCA) with Decision 

Tree/Random Forest outperformed the other models in the 

evaluation. The experiments were conducted on iot23 dataset 

and CIC IoT 2023 dataset 

 

Index Terms— Internet of Things (IoT), PCA, KPCA, IDS, 

KNN, Decision Tree (DT), Random Forest (RF) 

 

I. INTRODUCTION 

HE concept of the Internet of Things (IoT) 

encompasses a framework designed to link diverse 

computing devices and sensors via the Internet, enhancing 

a wide array of applications such as smart homes, 

healthcare, agriculture, and industrial settings. IoT has 

spurred significant advancements across industries and in 

our daily lives by interconnecting billions of devices and 

generating vast volumes of data. Yet, this 

interconnectedness also brings forth significant security 

challenges, leaving systems vulnerable to various forms of 
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attacks. Recognizing anomalous behavior within IoT 

systems is paramount for safeguarding their integrity, as 

it enables the early detection of potential malicious 

activities or system malfunctions. 

The rapid expansion and increasing complexity of the 

IoT landscape necessitate the development of robust and 

flexible intrusion detection systems (IDS). Conventional 

IDS methods, such as statistical and rule-based approaches, 

frequently face challenges in adapting to the dynamic 

nature of IoT environments and the ever-evolving range of 

cyber threats. Leveraging Machine Learning (ML) has 

proven to be a highly promising strategy for detecting 

anomalies in IoT systems. 

Numerous recent studies incorporate Support Vector 

Machines (SVM) [1] as a core component of their 

approaches. For instance, the article [2] proposes a 

streamlined, precise, and high-performing IDS for IoT 

networks by utilizing finely-tuned Linear Support Vector 

Machines (LSVMs) along with advanced feature selection 

techniques. This method applies four feature selection 

strategies: Importance Coefficient, Forward-Sequential, 

Backward-Sequential, and Correlation Coefficient-based 

methods, to identify the most critical features from 

extensive datasets, significantly improving IDS 

performance. Similarly, the work [3] introduces a hybrid 

intrusion detection system that combines SVM with Grey 

Wolf Optimization (GWO), harnessing the strengths of 

both algorithms. In this framework, SVM is used to train 

the system and differentiate anomalous records from 

normal ones, while GWO optimizes the kernel function, 

selects features, and fine-tunes SVM parameters, thereby 

enhancing the overall classification effectiveness. 

Other works explore the application of Decision Tree-

based approaches, for example, the study [4] integrates 

multiple classifiers rooted in decision tree and rule-based 

methodologies, including REP Tree, the JRip algorithm, 

and Forest PA. The first two classifiers utilize dataset 

features to categorize network traffic as either Attack or 

Benign, while the third classifier combines the original 

dataset features with the outputs of the first two classifiers. 

Experimental evaluations using the CICIDS2017 and BoT-

IoT datasets highlight the proposed IDS's superior 
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performance compared to existing methods, particularly in 

terms of accuracy, detection rate, false alarm rate, and time 

efficiency. 

In [5], a combination of three decision trees is utilized 

for intrusion detection, and the performance of the proposed 

approach is compared with several other classifiers. 

Experiments conducted on the NSL-KDD dataset reveal 

that the proposed method outperforms alternative 

techniques in intrusion detection effectiveness 

In [6], the authors propose an enhanced Intrusion 

Detection System (IDS) leveraging Gradient Boosting (GB) 

and Decision Tree (DT) techniques, implemented through 

the open-source CatBoost framework for IoT security. The 

improved NSL-KDD, IoT-23, BoT-IoT, and Edge-IIoT 

datasets were utilized, with GPU support to optimize the 

experimental setup. Compared to existing IDS methods, the 

proposed approach demonstrates superior performance 

metrics, particularly in terms of accuracy. 

Logistic Regression [7] has also been utilized as a 

classifier. In [8], the authors introduced mIDS, a system 

designed to monitor and detect attacks using a statistical 

analysis tool based on Binary Logistic Regression (BLR). 

mIDS operates by analyzing local node parameters for both 

benign and malicious behavior, constructing a normal 

behavior model to identify abnormalities within constrained 

nodes. 

K-Nearest Neighbors (KNN) [9] has been widely used in 

various studies. In [10], the authors proposed a network 

intrusion detection model for IoT environments that 

combines the KNN classifier with feature selection 

techniques. They developed the Network Intrusion 

Detection System (NIDS) using KNN to improve accuracy 

(ACC) and detection rate (DR). To enhance data quality 

and identify the most relevant features, they applied 

Principal Component Analysis (PCA), univariate statistical 

tests, and a Genetic Algorithm (GA) for feature selection. 

The paper [11] introduced Deep Neural Networks (DNN) 

with kNN algorithm. This method utilizes information gain 

to select the most important features. The effectiveness of 

this approach was evaluated using the public NSL-KDD 

and CICIDS2017 datasets. Recently, the authors of [12] 

systematically evaluate many PCA variants in combination 

with KNN classifier to improve the intrusion detection. 

They conduct extensive experiments on IoT23 and CICIoT 

2023. The same authors evaluate KNN algorithm with 

different distance metrics in the research [13]. 

The paper [14] demonstrates that Multi-layer Perceptron 

(MLP) is a viable solution, achieving top performance and 

outperforming many previous neural network 

implementations. The study [15] highlights MLP's 

effectiveness in classifying IoT botnet traffic. 

In [16], a multi-level random forest algorithm integrated 

with a fuzzy inference system was developed for intrusion 

detection. This approach combines the strengths of filter 

and wrapper techniques to create an advanced multi-level 

feature selection method, enhancing network security. In 

the first stage of feature selection, a filter method using 

correlation-based feature selection identifies key features 

based on multicollinearity within the dataset. A genetic 

search is then applied within this method to identify the 

optimal features, evaluating each attribute's effectiveness 

and selecting those with the highest fitness values. 

Additionally, a rule assessment is used to determine if two 

feature subsets have identical fitness values, ultimately 

selecting the subset with the fewest features. The second 

stage employs a wrapper method with sequential forward 

selection to refine the top features, optimizing them based 

on the accuracy of the baseline classifier. The selected top 

features are then fed into the random forest algorithm for 

intrusion detection. Finally, fuzzy logic is applied to 

categorize the intrusions into levels such as normal, low, 

medium, or high, helping to reduce misclassification. 

In other studies, researchers selected the best classifier by 

comparing it with alternative models. In [17], the authors 

trained their model using the IoTID20 dataset with features 

selected by a Genetic Algorithm (GA) and concluded that 

the Decision Tree and Random Forest classifiers 

demonstrated the most optimal performance. 

The study [18] applied various machine learning 

techniques to detect anomalies in cyber-attacks targeting 

IoT systems and evaluated the performance of these 

methods. The experiments were conducted using the ToN-

IoT and Bot-IoT datasets, and the results showed that the 

neural network outperformed the other models. 

In [19], the authors explore various machine learning 

classifiers. The system achieved a test accuracy of 99.4% 

for Decision Tree, Random Forest, and Artificial Neural 

Networks (ANN). While these methods showed similar 

accuracy levels, additional metrics indicated that Random 

Forest performed better overall. A key takeaway from the 

study is that simpler models, such as Decision Tree and 

Random Forest, can be effectively compared with more 

complex networks like ANN for anomaly detection. The 

open-source dataset used in the study was sourced from 

Kaggle [20]. 

The methodology presented in our article is similar to the 

approaches discussed in the previously cited works, it 

involves the comparison of multiple classifiers to identify 

the most effective one. What distinguishes our work is the 

use of newer datasets, such as the IoT23 and CIC IoT 2023 

datasets, the application of PCA and KPCA for feature 

extraction, and the employment of several scalers, 

including StandardScaler, MinMaxScaler, and 

RobustScaler, prior to the feature extraction step. The 

experimental results show that combining PCA with the 

Decision Tree classifier produces the best accuracy while 

requiring less CPU time. 

This paper is structured as follows: Section II describes 

the proposed IDS. Section III introduces the datasets and 

their preprocessing. Section IV explains the characteristics 

of each scaler. In Section V, we revisit Principal 

Component Analysis (PCA) and Kernel PCA. Section VI 

addresses the machine learning classifiers and their 

mathematical formulations. Section VII covers the 

experimental setup, analysis results, and comparisons with 

other classifiers. Finally, Section VIII presents the 
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conclusion and outlines future directions for the research. 

II. THE PROPOSED APPROACH 

The Intrusion Detection System (IDS) proposed in this 

study, as illustrated in Fig. 1, operates in two key parts: the 

training part and the testing part. During the first part, data 

is gathered from multiple devices and undergoes 

preprocessing steps, which include data cleaning and 

handling incomplete data, as outlined in Section III. 

Following this, the data is scaled using numerous methods, 

as described in Section IV, ensuring uniform scaling across 

all features to prevent any single feature from dominating 

due to its scale. 

Once the data is scaled, dimensionality reduction 

techniques, such as Principal Component Analysis (PCA) 

or Kernel PCA (KPCA), are applied to extract principal 

components, resulting in a dataset with reduced features. 

Further information on PCA and KPCA is provided in 

Section IV. In the testing part, data is gathered from the 

identical devices and subjected to the same preprocessing 

and normalization procedures as in the training part. This 

data is then mapped onto the reduced feature space using 

the principal components. In the end, various classifiers—

including K-Nearest Neighbors (KNN), Decision Tree, 

Random Forest, Support Vector Machine (SVM), and 

Multi-Layer Perceptron (MLP)—are employed to classify 

the testing data as either normal or malicious. Section VI 

provides an overview and mathematical formulation of each 

used machine learning technique. 

  
Fig. 1.  The proposed IDS model 

 

III. DATASETS 

A. Iot-23 

The first dataset used in this study is the IoT23 dataset, 

described in [21] and published in January 2020. It contains 

network traffic data from three different smart home IoT 

devices: Amazon Echo, Philips HUE, and Somfy Door 

Lock. Designed specifically for the development of machine 

learning algorithms, the dataset includes both real and 

labeled instances of IoT malware infections, as well as 

benign traffic. It consists of 23 captures or scenarios, with 

20 representing malicious activity and 3 representing 

benign traffic. 

Each capture from infected devices is labeled with the 

corresponding malware sample executed. The malware la- 

bels within the IoT-23 dataset encompass categories 

such as Attack, C&C, C&C-FileDownload, C&C-

HeartBeat, C&C- HeartBeatAttack, C&C-HeartBeat-

FileDownload, C&C-Mirai, C&C-Torii, DDoS, 

FileDownload, Okiru, Okiru-Attack, and 

PartOfAHorizontalPortScan. 

Given the large size of the dataset, we chose to extract a 

subset of records from each capture and combine them into 

a new dataset. This approach allows us to manage the 

computational workload more efficiently while preserving 

most of the attack types found in the original IoT-23 dataset 

B. Data Preprocessing 

The Python library Pandas was used to load each of the 

23 datasets from the IoT-23 Dataset into individual data 

frames. 

We applied a condition to skip the first 10 rows and read 

the next one hundred thousand rows from each dataset. 

These 23 data frames were then consolidated into a single 

data frame, with missing values replaced by 0. 

C. CIC IoT 2023 

The second dataset is a recent release from the Canadian 

Institute for Cybersecurity [22], designed to support the 

development of security analytics applications for real-

world IoT operations. This dataset provides a unique and 

comprehensive collection of IoT attack data, covering 33 

attacks within an IoT network of 105 devices. The attacks 

are classified into seven categories: DDoS, DoS, Recon, 

Web-based, Brute Force, Spoofing, and Mirai.  

Detailed information on each attack, along with the 

corresponding number of packets used for each during the 

analysis, is provided in Table 1 

 
TABLE I. DESCRIPTION OF CICIOT2023 ATTACKS 

Attack 
Category 

Attack 
Name 

Packet 
Number 

 
 
 
 
 
DDoS 

 
ACK Fragmentation 
UDP Flood 

SlowLoris ICMP 

Flood RSTFIN 

Flood PSHACK 

Flood HTTP  

UDP Fragmentation 

ICMP Fragmentation 

TCP Flood 
SYN Flood 
Synonymous IP Flood 

 
285104 

      5412287 
          23426 

7200504 
4045285 
4094755 

28790 
286925 
452489 

4497667 
4059190 
3598138 

 
DoS 

 
TCP Flood 
HTTP Flood 
SYN Flood 
UDP Flood 
 

 
2,671,445 

71,864 
2,028,834 
3,318,595 

 
Recon 

 
Ping Sweep 
OS Scan  

Vulnerability Scan 

Port Scan 
Host Discovery 
 

 
2262 

98,259 
37,382 
82,284 

134,378 
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Web-
Based 

 
Sql Injection 
Command Injection 

Backdoor Malware 

Uploading Attack XSS 
Browser Hijacking 
 

 
5245 
5409 
3218 
1252 
3846 
5859 

Brute 
Force 

 
Dictionary Brute Force 
 

 
13064 

 
Spoofing 

 
Arp Spoofing 
DNS Spoofing 
 

          
         307593 
         178911 

 
Mirai 

 
GREIP Flood 
Greeth Flood 
UDPPlain 

          
         751682 
         991866 
         890576 

 

IV. SCALING TECHNIQUES 

Within the realm of data preprocessing for machine 

learn- ing, scaling methods play a pivotal role in bolstering 

the resilience and performance of predictive models. Three 

fre- quently employed scalers include the StandardScaler, 

Min- MaxScaler, and RobustScaler. 

The StandardScaler normalizes features by removing the 

mean(µ) and adjusting them to unit variance by 

normalizing with the standard deviation (σ): 

 

This technique proves especially potent when features 

display varying scales, guaranteeing that each feature 

carries an equal weight in the model. Consequently, the 

obtained data boasts a mean of zero and a standard 

deviation of one. 

The MinMaxScaler transforms original features to a 

defined range, usually between zero and one, using the 

formula: 

 

This method is beneficial in scenarios where the data 

distribution deviates from a Gaussian distribution. It aids in 

reducing the impact of outliers while maintaining the 

general structure of the original distribution. 

The RobustScaler effectively manages outliers by scaling 

features using robust statistical measures. It employs the 

median  and interquartile range (IR) for this purpose: 

specified range, typically between 0 and 1, using the 

following formula: 

 

This normalization approach is more resistant to extreme 

values, making it especially appropriate for datasets 

containing outliers or uneven distributions. The selection of 

a scaler ultimately relies on the specific traits of the dataset 

and the objectives of the machine learning task. Each scaler 

presents unique benefits for handling data patterns, dealing 

with anomalies, and preserving the essence of the original 

information 

V. THE FEATURE EXTRACTION METHODS 

Integrating Principal Component Analysis (PCA) and 

Kernel Principal Component Analysis (KPCA) into an IoT-

based Intrusion Detection System (IDS) can enhance its 

effectiveness in detecting and mitigating security breaches. 

These techniques reduce the dimensionality of network 

traffic data while retaining key features, making it easier to 

identify abnormal patterns and deviations from normal 

behavior. Previous studies [23], [24], [25] have 

demonstrated the effectiveness of PCA and KPCA in 

improving IDS performance. 

KPCA, in particular, excels at capturing nonlinear 

relationships in data, which is valuable for detecting 

complex and evolving attack patterns in IoT environments. 

By leveraging kernel methods, KPCA uncovers subtle 

anomalies that traditional linear methods may miss, 

helping the IDS adapt to new and sophisticated threats. 

The following sections provide the mathematical 

foundations of these feature extraction methods. 

A. Principal Components Analysis 

Principal Component Analysis (PCA) serves the purpose 

of dimensionality reduction while preserving the maximum 

possible of variance. This is obtained by considering only 

the first few Principal Components (PCs), arranged in 

descending order [26]. 

Mathematically, let’s consider a training set comprising 

M vectors w1, w2,... ,wM , each containing n features. To 

obtain n′ principal components of the training set, where 

n′< < n, we follow these steps: 

1- Compute the average σ of this set: 

    (1) 

2- Subtract the mean σ from wi to obtain ρi: 

    (2) 

3- Compute the covariance matrix C, where: 

   (3) 

  And 

   (4) 

Let Uk be the kth eigenvector of C corresponding to the 
λk associated eigenvalue. Form a matrix Un×n′ = 
[U1...Un′ ] consisting of these eigenvectors, such that: 

    (5) 

The first Uk corresponding to the largest eigenvalues λk 

are termed Principal Components (PCs). 
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B. Kernel Principal Components Analysis 

Kernel Principal Component Analysis (Kernel PCA) [27] 

enhances the capabilities of PCA by using kernel methods 

to perform nonlinear dimensionality reduction. The method 

involves projecting the input data into a higher-dimensional 

feature space to achieve linear separability, and then 

conducting PCA within this transformed space. It enables 

Kernel PCA to identify the nonlinear relationships inherent 

in the original data. 

The kernel trick is employed to efficiently calculate the 

dot product within the higher-dimensional feature space 

indirectly, without explicitly performing the transformation. 

Given a kernel function ( ), where  and  

represent input data points, the kernel PCA algorithm can 

be summarized as follows: 

1- Compute the kernel matrix : 

    (6) 

2- Center the kernel matrix: 

   (7) Where 1 represents a 

matrix filled of ones. 

3- Compute the eigenvectors αi and eigenvalues λi of 
the centered kernel matrix K′: 

   (8) 

4-  Choose the top n′ eigenvectors associated with the 
highest eigenvalues to construct the principal 
components. The Radial Basis Function (RBF) Kernel 
is frequently utilized and is defined as follows: 

    (9)  Where  represents  

the kernel bandwidth parameter 
 

VI. CLASSIFIERS 

A. KNN 

K-Nearest Neighbors (KNN) is a simple yet effective 

machine learning algorithm applicable to both 

classification and regression tasks. The fundamental 

concept behind KNN is to determine the class of a data 

point based on the majority class among its k-nearest 

neighbors within the feature space. Given a dataset (x1, y1), 

(x2, y2),. . ., (xn, yn) where xi denotes the feature vector and 

yi represents the associated class label, the KNN algorithm 

functions as follows: 

1) Select the number of neighbors k. 
2) Calculate the distance between the query point 

and all data points in the training set. 
3) Identify the k nearest neighbors based on the 

calculated distances. 

4) For classification, assign the class label by 
majority vote among the k neighbors. 

For regression, predict the average of the k neighbors’ target 

values. 

 

B. Decision tree 

Decision tree operates by partitioning the feature space 

into a hierarchy of simple decision rules, represented as a 

tree- like structure. At each internal node of the tree, a 

decision is made based on the value of a particular feature, 

leading to subsequent branches corresponding to different 

outcomes. The process continues recursively until reaching 

leaf nodes, where final predictions are made. Decision trees 

are favored for their ability to handle both numerical and 

categorical data, their transparency in model interpretation, 

and their capability to capture nonlinear relationships 

between features and target variables. Here are the principal 

steps of Decision tree Algorithm. 

 

1) Initialization: 

• Define the feature space X and the target 
variable y. 

• Set the root node of the decision tree. 

2) Splitting Criteria: 

At each decision node: 

• Iterate over each feature xi in X. 

• Calculate a splitting criterion, such as Gini 
impurity or entropy, to evaluate the 
impurity of the data after splitting based 
on xi. 

• Select the feature xi and threshold value θ 
that minimizes the impurity or 
maximizes the information gain. 

3) Partitioning: 

 Split the data into two subsets based on the 

selected feature and threshold: 

Xleft = {(x, y) | xi ≤ θ} 
Xright = {(x, y) | xi > θ} 
 

4) Stopping Criteria: 

 Check if stopping criteria are met: 

- Maximum tree depth reached. 

- Minimum number of samples in a 

node reached 

- All samples in a node belong to the 

same class 

5) Recursive Splitting: 

If stopping criteria are not met: 

- Create child nodes for the current 
node corresponding to the subsets 
Xleft and Xright. 

- Recursively apply steps 2-4 to each 
child node. 

6) Leaf Node Prediction: 

- At leaf nodes: 

For classification tasks: 
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 Assign the majority class label 

of the samples in the node as 

the predicted class. 

For regression tasks: 

 Calculate the mean or median 

of the target variable of the 

samples in the node as the 

predicted value. 

7) Tree Building: 

Continue splitting and partitioning until all 

nodes are either leaf nodes or the stopping 

criteria are met. 

C. Random Forest 

Random Forest is a powerful ensemble learning 

algorithm that leverages the wisdom of crowds to make 

accurate predictions in classification and regression tasks. It 

operates by constructing multiple decision trees during 

training and combining their predictions through a process 

called bootstrapping and aggregation. Let X denote the 

feature space and y represent the target variable. The 

Random Forest algorithm consists of the following steps: 

1) Bootstrapping: 

• Randomly sample with replacement from the 
original dataset to create multiple bootstrap 
samples. 

• Each bootstrap sample is used to train an 
individual decision tree. 

2) Decision Tree Construction: 

• For each bootstrap sample: 

• Build a decision tree using a subset of features 
selected randomly at each node. 

• Split the data at each node based on a selected 

splitting criterion, such as Gini impurity or 

entropy. 

• Continue recursively partitioning the data until 

reaching leaf nodes. 

3) Aggregation: 

• Aggregate the predictions of all decision 

trees to make a final prediction: 

a. For classification tasks, use the 
majority vote among the predictions 
of individual trees. 

b. For regression tasks, calculate the 
mean or median of the predictions. 

 

 

Random Forest offers several advantages over individual 

decision trees, including improved generalization, reduced 

overfitting, and increased robustness to noise in the data. 

By combining multiple trees trained on different subsets of 

the data, Random Forest harnesses the collective knowledge 

of diverse models to produce more accurate and stable 

predictions. 

 

D. Support Vector Machines (SVM) 

Support Vector Machines (SVM) are powerful supervised 

learning models used for classification and regression tasks. 

They aim to find the optimal hyperplane that best separates 

data points of different classes in the feature space. 

Given a training dataset (x1, y1), (x2, y2), ..., (xn, yn)  

where xi represents the feature vector and yi is the 

corresponding class label, the SVM algorithm seeks to find 

the hyper plane with the maximum margin that separates 

the data points. Mathematically, this can be formulated as 

the optimization problem: 

    (10) 

Subject to the constraints: 

   (11) 

Where w is the weight vector perpendicular to the hyper- 

plane, b is the bias term, and  w  denotes the Euclidean 

norm of w. The term w. xi + b represents the decision 

function, and yi denotes the class label of data point xi. In 

the case of non- linearly separable data, SVM can be 

extended using the kernel trick to map the input data into a 

higher-dimensional feature space where it becomes linearly 

separable. This allows SVM to learn complex decision 

boundaries and handle non-linear relationships between 

features and target variables. Support Vector Machines 

offer several advantages, including robustness to over 

fitting, effectiveness in high-dimensional spaces, and 

versatility in handling both linear and non-linear 

classification problems. They are widely used in various 

domains, including image classification, text 

categorization, and bioinformatics, making them a valuable 

tool in the field of machine learning 

E. Logistic Regression 

Logistic Regression is a widely used statistical method 

for binary classification tasks. Unlike linear regression, 

which predicts a continuous output, logistic regression 

predicts the probability of a binary outcome. It is 

particularly useful when the dependent variable is 

categorical and represents two possible outcomes, such as 

success/failure or yes/no. 

Given a dataset (x1, y1), (x2, y2)... (xn, yn)  where xi 

represents the feature vector and yi is the corresponding 

class label, the logistic regression model predicts the 

probability that yi=1 given xi by applying the logistic 

function to a linear combination of the input features. 

Mathematically, this is expressed as: 

   (12) 

Where σ(z) is the logistic (or sigmoid) function defined 

as 

   (13) 

Here, w is the weight vector, and b is the bias term. The 
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logistic function maps any real-valued number into the 

range (0, 1), which can be interpreted as a probability. 

The parameters w and b are estimated by maximizing 

the likelihood of the observed data, which is equivalent to 

minimizing the logistic loss function (also known as binary 

cross-entropy loss): 

(14) 

Where  is the predicted probability for 

the i-th instance 

Logistic Regression is popular due to its simplicity, 

efficiency, and interpretability. It is widely used in various 

applications such as medical diagnosis, credit scoring, and 

marketing, where binary classification is required. Despite 

its name, logistic regression is a linear model in the 

transformed feature space, making it a powerful tool for 

binary classification problems 

F. Multilayer Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a class of artificial 

neural networks (ANNs) that consists of at least three layers 

of nodes: an input layer, one or more hidden layers, and an 

output layer. MLPs are widely used for both classification 

and regression tasks due to their ability to model complex 

non- linear relationships between input features and target 

variables. 

Given a dataset (x1, y1), (x2, y2)... (xn, yn) where xi 

represents the feature vector and yi is the corresponding 

target vector, the MLP model transforms the input through 

multiple layers using a series of weighted linear 

combinations followed by non-linear.  

The mathematical formulation of MLP can be summa- 

rized as follows: 

1. Input Layer: 

   (15) 
2. Hidden Layers: for each hidden layer l = 1, 2, ..., 

L, where L is the number of hidden layers: 
   (16) 

Here, Wl and bl are the weight matrix and bias 
vector for the l-th layer, and f is the non-linear 
activation function (e.g., ReLU, sigmoid, or tanh). 

3. Output Layer: 

   (17) 

Where WL+1 and bL+1 are the weight matrix and 
bias vector for the output layer, and g is the 
activation function for the output layer (e.g., 
softmax for classification or identity for 
regression). 

4. Loss Function: The parameters of the MLP (i.e., 
weights and biases) are learned by minimizing a loss 
function L( ŷ ,  y) over the training dataset. For 
classification, the cross-entropy loss is commonly 
used, while for regression, the mean squared error 
(MSE) is often employed 

))   (18) 

For classification tasks with m classes, or for 
regression tasks 

   (19) 

5. Backpropagation: The MLP model uses the 
backpropagation algorithm to update the weights 
and biases by computing the gradient of the loss 
function with respect to each parameter and 
applying an optimization algorithm such as 
gradient descent or its variants. 

Multilayer Perceptrons are versatile and capable of 
capturing intricate patterns in data, making them 
suitable for a wide range of applications, including 
image and speech recognition, natural language 
processing, and financial forecasting.  

VII. THE EXPERIMENTS 

Performance Measures 

A critical measure of an Intrusion Detection System 

(IDS) is its accuracy, which reflects its effectiveness in 

detecting and categorizing intrusions or abnormal network 

behavior. Accuracy is defined as the proportion of correctly 

classified instances (true positives and true negatives) to the 

total instances (including true positives, true negatives, 

false positives, and false negatives). The formula for 

calculating accuracy is: 

 

The F1-score is a metric used to evaluate the 

performance of an intrusion detection system. It is the 

harmonic mean of precision and recall and is calculated as 

follows: 

 
- Precision = True Positives / (True Positives + False 

Positives)  

- Recall = True Positives / (True Positives + False 

Negatives) 

Experimental Results 

 

In our study, we conducted five distinct experiments on 

two datasets: IoT23 and CIC IoT 2023. The goal was to 

assess the performance of various classifiers combined with 

Principal Component Analysis (PCA), Kernel Principal 

Component Analysis (KPCA), and different scaling 

techniques. The evaluated classifiers include K-Nearest 

Neighbors (KNN), Multi-Layer Perceptron (MLP), Support 

Vector Machine (SVM), Random Forest (RF), Decision 

Tree (DT), and Logistic Regression (LR). We explored 

several configurations for these experiments: 

In Experiment 1, we fixed the size of the training dataset 

and varied the number of principal components. This 

allowed us to assess how the number of components affects 

classifier performance using different scaling methods. 
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In Experiment 2, we set the number of principal 

components at three and progressively increased the size of 

the training dataset. This approach enabled us to observe 

how classifier performance changes as the amount of 

training data grows. 

Experiment 3 used RobustScaler, a training size of 

2,000, and three principal components. This experiment 

focused on evaluating the accuracy of each classifier in 

identifying different types of attacks, offering insights into 

their performance against specific threat categories. 

The fourth experiment focuses on calculating CPU time 

for various classifiers combined with PCA. This experiment 

examines how computational efficiency is affected by the 

choice of PCA dimensionality reduction technique and 

classifier, across different principal components number. 

The fifth experiment investigates the F1-score 

performance of various classifiers combined with PCA 

focusing on their effectiveness as the number of principal 

components increases. 

For the last experiment, we fixed the number of training 

size at 2000 and we use RobustScaler. 

The following paragraphs will provide a detailed 

description of each experiment, along with an analysis of 

the corresponding results. 

Experiment 1 

In the first experiment, we randomly selected 10,000 

normal data points and 1,000 malicious data points for 

the training phase. For the testing phase, we selected 

5,000 normal data points and 1,000 malicious data points. 

This selection process was repeated 20 times. 

This setup enhances the reliability and generalizability of 

the results by minimizing biases from a single random split 

and evaluating variability across multiple iterations. By 

simulating real-world scenarios and assessing system 

performance with diverse data samples, it provides valuable 

insights into the system's generalization abilities and 

stability. Additionally, this approach ensures statistical 

significance, enabling efficient resource usage despite 

repeated trials. 

Our objective was to analyze how classifier accuracy 

varies with different numbers of components and to 

compare the effectiveness of PCA and KPCA. 

After scaling the data, the feature extraction methods 

were applied with a varying number of components, 

ranging from 2 to 8 and the transformed data was used to 

train each classifier. 

The classifiers were instantiated with specific parameters 

to ensure optimal performance, for KNN we consider 

Euclidean distance metric, for MLP two hidden layers 

(sizes 100 and 50), ReLU activation, and adaptive learning 

rate were chosen. For SVM we consider RBF kernel. 

We examined three distinct scaling techniques: 

Standard- Scaler, MinMaxScaler, and RobustScaler. 

We divide the results into two sections: the first pertains 

to IoT23 dataset (Fig.2), and the second focuses on the CIC 

IoT 2023 dataset (Fig.3). 

Each row of the figures corresponds to a different data 

scaling technique. The accuracies of the classifiers are 

plotted against the number of components, which vary from 

2 to 8. 

Under StandardScaler normalization (first row of Fig. 2), 

the Decision Tree classifier, when combined with PCA, 

shows a rapid increase in accuracy, reaching near-perfect 

accuracy with just 3 components and maintaining stability 

as more components are added. This suggests that the 

Decision Tree is highly effective for this dataset with 

minimal feature extraction through PCA. Similarly, 

Random Forest paired with PCA quickly achieves high 

accuracy, reflecting Decision Tree’s performance. Both 

classifiers demonstrate stability and resilience with 

StandardScaler, indicating that tree-based models are 

particularly well-suited for this IoT dataset. For SVM and 

MLP, accuracy also improves quickly as more components 

are added, stabilizing around 4-5 components, although 

they do not reach the peak accuracy of Decision Tree and 

Random Forest. Logistic Regression with PCA requires 

more components to achieve similar accuracy, showing a 

slower performance increase compared to other classifiers. 

When paired with KPCA (RBF kernel), Decision Tree and 

Random Forest continue to perform well, closely matching 

their PCA performance. However, Logistic Regression and 

SVM with KPCA exhibit greater sensitivity to the number 

of components, stabilizing at slightly higher component 

counts than with PCA.  

With MinMaxScaler normalization (second row of Fig. 

2), the Decision Tree and Random Forest classifiers with 

PCA quickly achieve high accuracy, reaching near-optimal 

performance with just 3 components. These tree-based 

models maintain stability across all tested component 

numbers, highlighting their effectiveness with minimal 

dimensionality. For MLP and SVM with PCA, high 

accuracy is achieved with slightly more variability than the 

tree-based models, particularly at lower component 

numbers, though they stabilize around 4 components 

Logistic Regression with PCA again requires more 

components to reach comparable accuracy, showing greater 

sensitivity in the early component range. When paired with 

KPCA, Decision Tree and Random Forest perform 

similarly to PCA, achieving high accuracy early on. 

However, Logistic Regression and SVM with KPCA exhibit 

significant variability, indicating sensitivity to both the 

number of components and the scaling method. This 

suggests that these classifiers may require additional 

parameter tuning when used with KPCA on this dataset.  

With RobustScaler normalization (as shown in the third 

row of Fig.2), the Decision Tree and Random Forest 

classifiers combined with PCA maintain strong 

performance, achieving high accuracy with only 3-4 

components and remaining stable as more components are 

added. This demonstrates that tree-based models are highly 

versatile across different scaling methods when paired with 

PCA. MLP and SVM with PCA show slightly more 

variation in accuracy under RobustScaler, particularly at 

lower component numbers, although they stabilize as more 

components are introduced. 
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Fig 2. Performance of many classifiers on iot23 dataset when changing 

Number of components 

 

 
Fig 3. Performance of many classifiers on CIC IoT 2023 dataset 

 

Fig 3. Performance of many classifiers on CIC IoT 2023 dataset when 

changing Number of components 
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Logistic Regression with PCA displays the most 

instability under RobustScaler, starting with lower accuracy 

and improving gradually as additional components are 

added. When using KPCA, Decision Tree and Random 

Forest again show high accuracy, demonstrating robustness 

even with the RobustScaler transformation. However, 

Logistic Regression and SVM with KPCA exhibit 

noticeable sensitivity to the number of components, with 

greater fluctuations in accuracy compared to PCA, 

especially with fewer components. This suggests that these 

classifiers may not be as compatible with KPCA when 

using RobustScaler on the IoT23 dataset. 

Fig.3 illustrates the performance of the classifiers on the 

CIC IoT 2023 dataset under varying normalization 

methods. 

In the first row of Fig.3, where StandardScaler 

normalization is applied, the Decision Tree classifier 

combined with PCA quickly achieves high accuracy, 

reaching near-perfect results with just 3 components and 

maintaining this level of performance as more components 

are added. This indicates that the Decision Tree model is 

well-suited for the CIC IoT 2023 dataset, requiring minimal 

feature extraction through PCA. Similarly, Random Forest 

with PCA shows rapid accuracy improvement, stabilizing at 

3 components and remaining resilient as more components 

are added. SVM and MLP also improve in accuracy with 

PCA under StandardScaler, although they reach peak 

performance at slightly higher component counts (around 

4-5). Logistic Regression, however, requires more 

components to achieve similar accuracy, with a more 

gradual improvement compared to the other classifiers. 

When paired with KPCA (RBF kernel), both Decision Tree 

and Random Forest continue to perform well, achieving 

high accuracy quickly and stabilizing across components. 

On the other hand, Logistic Regression and SVM with 

KPCA exhibit greater fluctuations in accuracy, particularly 

at lower component counts, suggesting sensitivity to the 

number of components in this configuration. 

In the second row of Fig.3, where MinMaxScaler 

normalization is applied, the Decision Tree and Random 

Forest classifiers combined with PCA continue to show 

strong performance, achieving high accuracy with as few as 

3 components and maintaining stability across the 

component range. This further confirms their effectiveness 

for the CIC IoT 2023 dataset under MinMaxScaler. MLP 

and SVM also reach high accuracy with PCA under 

MinMaxScaler, although they exhibit slightly more 

variability, particularly at lower component counts. Logistic 

Regression with PCA shows a more gradual improvement 

in accuracy, requiring additional components to achieve 

similar performance to the other classifiers. 

When paired with KPCA, Decision Tree and Random 

Forest maintain strong performance, achieving high 

accuracy and stability across the number of components. 

However, SVM and Logistic Regression with KPCA 

demonstrate greater fluctuations in accuracy, especially at 

lower component counts. This suggests that these models 

may need further tuning when combined with KPCA under 

MinMaxScaler for this dataset 

Under RobustScaler normalization (third row of Fig. 3), 

Decision Tree and Random Forest with PCA maintain their 

trend of strong performance, reaching high accuracy by 3-4 

components and remaining stable across additional 

components. This demonstrates the robustness of tree-based 

models when paired with PCA, regardless of scaling 

method. 

MLP and SVM with PCA under RobustScaler exhibit 

more variability in accuracy, particularly at lower 

component counts, though they stabilize with higher 

components. Logistic Regression with PCA shows the most 

instability, with a more gradual increase in accuracy across 

components. For KPCA, Decision Tree and Random Forest 

remain strong performers, displaying high accuracy with 

only a few components and remaining stable. However, 

SVM and Logistic Regression with KPCA show marked 

sensitivity to the number of components, exhibiting greater 

variability and requiring additional components to stabilize, 

which suggests a less compatible fit for these models under 

RobustScaler with KPCA on this dataset. 
 

Experiment 2 

Figures 4 and 5 represent the results of Experiment 2. In 

this experiment, the training dataset size was gradually 

increased, while the number of principal components was 

fixed at three. This setup provides insights into how each 

classifier adapts to larger training size under different 

normalization methods 

In the first row of Fig.4, we can see that under 

StandardScaler normalization, PCA+ Decision Tree and 

PCA+ Random Forest maintain consistently high accuracy 

as the training data increases. Decision Tree, in particular, 

demonstrates exceptional stability. 

It effectively captures the data structure even with larger 

training sizes. SVM, MLP, and KNN classifiers deliver 

moderate performance. Their accuracy is stable but lower 

compared to tree-based models. Logistic Regression 

performs poorly throughout. It struggles to handle the 

complex feature transformations produced by PCA. When 

KPCA with an RBF kernel is used, Decision Tree and 

Random Forest still perform well. However, KPCA offers 

no significant improvement over PCA in this case 

In the second row of Fig.4, MinMaxScaler normalization 

shows that Decision Tree and Random Forest with PCA 

deliver high accuracy with minimal variation. This 

highlights the reliability of tree-based models with 

MinMaxScaler. SVM and MLP combined with KPCA 

exhibit more fluctuation as the training size increases. This 

may be due to MinMaxScaler's impact on feature 

distribution transformations in kernel-based methods. 

Logistic Regression performs consistently poorly, indicating 

that linear models may fail to capture the complexity of the 

transformed data effectively. 
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Fig. 4. Performance of many classifiers on iot23 dataset when changing 

Training size 

 

Fig. 5. Performance of many classifiers on iot23 dataset when changing 

Training size 
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In the third row of Fig.4, RobustScaler normalization is 

applied. We can see clearly that Tree-based models such as 

Decision Tree and Random Forest maintain consistent 

accuracy and stability as the training size grows. Non-tree 

classifiers, especially SVM and MLP, exhibit more 

fluctuation. This is likely due to how RobustScaler handles 

outliers within the PCA/KPCA-transformed feature space. 

The variability highlights the difficulties some classifiers 

encounter with outlier-sensitive scaling. Meanwhile, 

Decision Tree and Random Forest continue to classify IoT 

attack data effectively in this setup. 

Fig.5 illustrates the results of experiment 2 using CIC 

IoT 2023 dataset. 

Under StandardScaler (first row), Decision Tree and 

Random Forest with PCA consistently achieve high 

accuracy, with Decision Tree slightly ahead. Both leverage 

PCA-transformed features effectively. KPCA models like 

SVM and MLP show more variability, while Logistic 

Regression performs poorly, struggling with the 

transformed data. 

With MinMaxScaler (second row), Decision Tree and 

Random Forest maintain high accuracy with minimal 

fluctuation, reinforcing their adaptability to MinMaxScaler-

transformed features. KPCA-based SVM and MLP show 

greater variability, and Logistic Regression remains 

underwhelming. 

Under RobustScaler (third row), Decision Tree and 

Random Forest continue to perform well, unaffected by 

outlier handling. SVM and MLP experience more 

variability, reflecting sensitivity to outliers and KPCA 

transformations, while Logistic Regression again shows low 

accuracy, unable to manage the dataset’s complexities 

effectively. 

Experiment 3 

The analysis of Experiment 3 on the IoT23 dataset 

reveals significant insights into the effectiveness of various 

classifiers in identifying attack types under different 

dimensionality reduction methods (PCA and KPCA) with 

RobustScaler. The Table VI contains every individual 

attack name with it corresponding number. The Table II 

highlights distinct patterns in classifier accuracy, with tree-

based classifiers demonstrating stable performance across 

multiple attack categories, whereas other classifiers like 

MLP and SVM show variability depending on the reduction 

method and attack type. 

The Decision Tree and Random Forest classifiers achieve 

consistently high accuracy across the majority of attack 

types, demonstrating robust detection capabilities. Both 

classifiers perform exceptionally well on attacks such as 

DDoS and C&C-HeartBeat-FileDownload, achieving close 

to or even perfect accuracy scores (0.9995 and above). For 

example, the Decision Tree classifier reaches 100% 

accuracy for C&C-HeartBeat-FileDownload attacks using 

both PCA and KPCA, while Random Forest exhibits 

similar stability across these categories. This indicates that 

tree-based classifiers are well-suited to capture the 

underlying structure in PCA/KPCA transformed features, 

showing resilience in accurately identifying both simpler 

and more nuanced attack types. 

KNN performs reasonably well on certain attack types, 

particularly with PCA. For instance, it achieves 99.98% 

and 100% accuracy for FileDownload and C&C-HeartBeat-

FileDownload, respectively, suggesting that KNN benefits 

from PCA’s linear transformations, which may better 

approximate distances in the dataset. However, KNN’s 

accuracy declines substantially when KPCA is applied, 

particularly for complex attacks like Okiru and 

PartOfAHorizontalPortScan, where it only reaches 

accuracies of 0.4930 and 0.5333. This indicates that KNN 

may struggle with the non-linear transformations 

introduced by KPCA, impacting its ability to detect more 

intricate patterns in certain attack types 

Both MLP and SVM classifiers exhibit significant 

variability across attack types, particularly when using 

PCA. For example, MLP performs poorly in detecting 

attacks such as DDoS and Okiru, scoring 0.0000 in both 

cases, while SVM with PCA also fails on DDoS and 

PartOfAHorizontalPortScan. This suggests that MLP and 

SVM may have difficulty capturing complex patterns when 

constrained to a lower-dimensional, linear space. KPCA 

provides some performance improvements for these 

classifiers in detecting certain attacks, such as 

FileDownload for MLP (0.8617) and C&C-Mirai for SVM 

(0.9970), though both classifiers continue to struggle with 

attacks requiring more complex decision boundaries, like 

C&C-HeartBeat. 

Logistic Regression shows the least effectiveness among 

the classifiers, especially when paired with PCA. It fails to 

detect multiple attacks, including 

PartOfAHorizontalPortScan, DDoS, and C&C-HeartBeat, 

where it scores 0. While KPCA provides slight performance 

improvements for some attacks, such as FileDownload and 

C&C-Mirai (0.8676 and 0.8222, respectively), its overall 

performance remains low. This outcome confirms that 

Logistic Regression’s linear nature is inadequate for 

capturing the complexities within this IoT dataset, 

especially for non-linear attack types. 

Overall, tree-based classifiers, particularly with PCA, are 

consistently more effective across various attack categories, 

highlighting their adaptability and reliability in this 

experimental setup. KPCA, although beneficial for certain 

classifiers, does not universally enhance detection rates 

across attack types, particularly for MLP, KNN, and SVM, 

which exhibit more variable accuracy under this method. 

The experiment underscores the superior performance of 

tree-based models with PCA, as well as the limitations of 

linear models like Logistic Regression for complex, non-

linear IoT data classification tasks. 

The analysis of individual attack detection accuracy for 

the CIC IoT 2023 dataset (Tables III, IV and V) reveals 

significant insights into classifier performance across 

various attack types. 
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TABLE II.  INDIVIDUAL ATTACK ACCURACY FOR IoT23 DATASET

 
TABLE III. FIRST PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET 

 
TABLE IV. SECOND PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET 

 
TABLE V. THIRD PART OF INDIVIDUAL ATTACK ACCURACY FOR CIC IoT 2023 DATASET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classifier EM 1 2 3 4 5 6 7 8 9 10 

KNN PCA 0.5816 0.3538 0.8094 0.806 0.7255 0.5604 0.9998 0.9988 1.0000 0.9986 

KNN KPCA 0.5333 0.4930 0.5893 0.701 0.7454 0.5243 0.8674 0.9845 1.0000 1.0000 

MLP PCA 0.0203 0.0000 0.0000 0.110 1.0000 0.0000 0.8233 0.0844 0.0104 0.0104 

MLP KPCA 0.5726 0.2903 0.7056 0.297 0.0749 0.1047 0.4053 0.8617 0.9082 0.9980 

SVM PCA 0.0000 0.1518 0.0000 0.606 1.0000 0.4291 0.9231 0.4594 0.5161 0.5505 

SVM KPCA 0.3865 0.2903 0.6335 0.021 0.0000 0.1027 0.3912 0.8188 0.9416 0.9970 

Random Forest PCA 0.6124 0.5719 0.9998 0.809 0.9139 0.4005 0.9998 0.9988 1.0000 0.9986 

Random Forest KPCA 0.6151 0.6143 0.9976 0.813 0.9095 0.3948 0.8662 0.9890 1.0000 0.9992 

Decision Tree PCA 0.6111 0.5721 0.9995 0.8147 0.9195 0.3944 0.9998 0.9986 1.0000 0.9986 

Decision Tree KPCA 0.6162 0.6143 0.9988 0.8157 0.8342 0.3944 0.8402 0.9960 1.0000 1.0000 

Logistic Regression PCA 0.0000 0.0000 0.0106 0.0000 0.5687 0.0095 0.8363 0.0099 0.0000 0.0530 

Logistic Regression KPCA 0.1046 0.2874 0.4052 0.0000 0.0000 0.0731 0.0813 0.8169 0.8676 0.8222 

Classifier 11 12 13 14 15 16 17 18 19 20 21 22 

PCA + KNN 0.7584 0.9090 0.8479 0.4548 0.8024 0.8145 0.8690 0.7553 0.7572 0.7784 0.7666 0.5024 

KPCA + KNN 0.8958 0.7740 0.8214 0.4375 0.6500 0.6325 0.6673 0.2895 0.7319 0.8267 0.7563 0.4070 

PCA + MLP 0.0133 0.0073 0.0000 0.2871 0.0330 0.0344 0.0000 0.6008 0.0408 0.0135 0.0130 0.5484 

KPCA + MLP 0.6486 0.3054 0.5723 0.4438 0.2016 0.4066 0.3807 0.1288 0.5094 0.6779 0.3497 0.1788 

PCA + SVM 0.0704 0.0237 0.0105 0.0576 0.0272 0.0805 0.0510 0.2228 0.0089 0.0279 0.0035 0.0125 

KPCA + SVM 0.1464 0.0445 0.0484 0.1146 0.0401 0.3066 0.2395 0.0538 0.0165 0.0120 0.0846 0.0866 

PCA + Random 
Forest 

0.9471 0.9604 0.9637 0.8215 0.9435 0.9348 0.9406 0.9436 0.9554 0.9535 0.9661 0.8251 

KPCA + Random 
Forest 

0.9060 0.8133 0.9299 0.4536 0.7080 0.6775 0.7365 0.3251 0.7524 0.8327 0.7945 0.4270 

PCA + Decision 
Tree 

0.9543 0.9677 0.9670 0.8311 0.9604 0.9491 0.9559 0.9526 0.9263 0.9502 0.9511 0.8544 

KPCA + Decision 
Tree 

0.9142 0.7158 0.9069 0.4390 0.6283 0.6752 0.7020 0.3125 0.6887 0.8583 0.7284 0.4490 

PCA + Logistic 
Regression 

0.0017 0.0114 0.0011 0.1398 0.0076 0.0108 0.0129 0.1096 0.0009 0.0008 0.0023 0.0947 

KPCA + Logistic 
Regression 

0.0138 0.0357 0.0966 0.0198 0.0801 0.3616 0.2305 0.0448 0.0453 0.0000 0.0724 0.0867 

23 24 25 26 27 28 29 30 31 32 33 34 

0.3250 0.8041 0.8075 0.7096 0.8041 0.1901 0.2032 0.5433 0.1683 0.3203 0.7388 0.3676 

0.0717 0.7529 0.6809 0.3609 0.7186 0.1290 0.0771 0.6611 0.1191 0.2565 0.4237 0.1881 

0.3561 0.0300 0.0587 0.0507 0.0305 0.0183 0.1835 0.3756 0.0553 0.1124 0.0317 0.0541 

0.0775 0.7136 0.5329 0.3548 0.7053 0.0834 0.0146 0.6424 0.0364 0.0992 0.4530 0.1165 

0.2344 0.0094 0.0526 0.0000 0.0382 0.0245 0.1560 0.0012 0.0082 0.0078 0.0103 0.0133 

0.0162 0.5084 0.3008 0.3593 0.3963 0.0548 0.0180 0.5559 0.0141 0.0769 0.2568 0.0826 

0.4599* 0.9430* 0.9630* 0.8655* 0.9271* 0.3314* 0.3098* 0.8303* 0.2592* 0.3497* 0.8736* 0.4668* 

0.0563 0.7924 0.7139 0.4028 0.7548 0.1339 0.0752 0.6513 0.1176 0.2660 0.4341 0.1971 

0.3890 0.9406* 0.9452* 0.8352* 0.8939* 0.3201* 0.2643* 0.8070* 0.2613 0.3511* 0.8413* 0.4330 

0.0617 0.6842 0.7012 0.3492 0.7548 0.1391 0.0743 0.6353 0.1150 0.2631 0.4138 0.1909 

0.1548 0.0013 0.0091 0.0000 0.0166 0.0369 0.0747 0.0000 0.0111 0.0532 0.0067 0.0092 

0.0358 0.3804 0.3221 0.2432 0.1148 0.0359 0.0515 0.6196 0.0078 0.0815 0.1636 0.0768 

35 36 37 38 39 40 41 42 43 

0.3345 0.6879 0.4783 0.3777 0.3083 0.2462 0.2899 0.4640 0.4820 

0.2404 0.3998 0.3354 0.2844 0.2298 0.1551 0.2342 0.3814 0.4597 

0.1905 0.5259 0.3522 0.2009 0.0869 0.1208 0.1579 0.4931 0.0911 

0.9304 0.5529 0.4001 0.0136 0.0500 0.0719 0.0308 0.0629 0.1524 

0.0657 0.0350 0.2211 0.0356 0.0390 0.3066 0.0403 0.0149 0.0173 

0.0441 0.4933 0.2091 0.0328 0.0503 0.0275 0.0336 0.1376 0.0789 

0.3975* 0.8772* 0.7054* 0.4416* 0.3816* 0.3960* 0.3991* 0.5412* 0.4987* 

0.2321 0.3007 0.3056 0.2752 0.2053 0.1591 0.2325 0.3955 0.4322 

0.3523* 0.8275* 0.7018 0.4399* 0.3439* 0.3978* 0.3962* 0.5495* 0.5132* 

0.2191 0.3560 0.2999 0.2778 0.2220 0.1526 0.2212 0.3826 0.4471 

0.2212 0.1088 0.0929 0.0607 0.0210 0.0158 0.0492 0.0649 0.0176 

0.0238 0.5659 0.2443 0.0300 0.0290 0.0308 0.0567 0.0126 0.0477 
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Among the tested classifiers, PCA + Random Forest and 

PCA + Decision Tree consistently achieve high accuracy, 

particularly for complex Distributed Denial of Service 

(DDoS) attacks. These two classifiers demonstrate strong 

performance for attacks like DDoS-ACK Fragmentation, 

DDoS-ICMP Fragmentation, and DDoS-HTTP Flood, often 

reaching over 90% accuracy, as marked by the asterisks. 

This result suggests that PCA-based dimensionality 

reduction, when combined with ensemble methods like 

Random Forest and Decision Tree, is highly effective in 

identifying sophisticated DDoS patterns within IoT data. 

Conversely, KPCA-based classifiers, such as KPCA + 

KNN and KPCA + MLP, generally struggle to achieve 

comparable accuracy levels across most attacks. For 

example, KPCA + KNN manages moderate success on 

certain DDoS attacks, including DDoS-ACK 

Fragmentation and Mirai-greip Flood, but its performance 

significantly declines for more complex or subtle attacks, 

like MITM-ArpSpoofing and Recon-HostDiscovery. KPCA 

+ MLP, in particular, has difficulty with various attacks, 

frequently falling below 40% accuracy. This disparity 

suggests that KPCA may not be as suitable as PCA for 

dimensionality reduction on this IoT dataset, likely due to 

PCA's more straightforward projection onto principal 

components, which might better capture the underlying 

patterns in network traffic data. 

The analysis also highlights certain attack types that pose 

challenges across all classifiers. Reconnaissance and 

spoofing attacks, such as Recon-OSScan, DNS Spoofing, 

and MITM-ArpSpoofing, consistently exhibit lower 

detection rates, regardless of the classifier and 

dimensionality reduction technique used. These attacks 

likely involve subtle patterns or lower signal-to-noise ratios 

that make them harder to detect with the current feature set 

and models. Even high-performing classifiers like PCA + 

Random Forest and PCA + Decision Tree struggle with 

these attack types, achieving moderate accuracy at best. 

This indicates a need for potential refinement, such as 

additional feature engineering or the exploration of 

alternative algorithms specifically tailored to detect subtle 

anomalies. 

Certain attack types demonstrate mixed detection rates, 

suggesting a nuanced response by the classifiers. For 

example, XSS and Recon-PortScan attacks yield varied 

results, with PCA + Random Forest generally 

outperforming other classifiers but still not reaching high 

accuracy. This inconsistency might be attributed to the 

attack behavior within IoT environments, where 

reconnaissance activities or cross-site scripting could 

exhibit unique traffic patterns that are difficult to 

generalize.  

Experiment 4 

This experiment focuses on measuring the required CPU 

time of various classifiers combined with PCA using the 

RobustScaler preprocessing method. The goal is to compare 

the computational efficiency of these methods. 

For the IoT23 dataset, the results are illustrated in Figure 

6. Among the combinations of PCA and the classifiers, the 

PCA+MLP exhibited the highest CPU time, in contrast, the 

combination of the feature extraction method and KNN, 

Random Forest, Decision Tree, and Logistic Regression, 

maintained consistently low CPU times regardless of the 

number of components 

The results for the CICIoT 2023 dataset are shown in the 

Figure 7. The trends for PCA are similar to those seen in 

the IoT23 dataset. MLP required the highest CPU time, 

especially as the number of components increased. Other 

classifiers, like Logistic Regression, Decision Tree, and 

KNN, had stable and low CPU times across all 

configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6 CPU Times of PCA +classifiers vs. Number of Components for iot23 

dataset 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig.7 CPU Times of PCA +classifiers vs. Number of Components for CIC 

IoT23 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig.8. F1-Score of PCA +classifiers vs. Number of Components for IoT23 
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Experiment 5 

 

The figure 8 represents the F1-score trends for classifiers 

integrated with PCA on the IoT23 dataset. Among the 

classifiers, Decision Tree and Random Forest emerge as the 

most effective, achieving F1-scores consistently around 0.6. 

This consistency highlights the robustness of tree-based 

models when handling IoT datasets, even after 

dimensionality reduction. KNN also performs 

competitively, showing stable and moderate F1-scores 

across all PCA components, suggesting its suitability for 

this dataset. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. F1-Score of PCA +classifiers vs. Number of Components for CIC 

IoT2023 

 

The MLP classifier, although improving slightly with 

additional components, maintains a lower F1-score 

compared to the top-performing models, reflecting its 

limited adaptability or the dataset's potential challenges for 

deep learning. Similarly, Logistic Regression steadily 

increases but does not exceed an F1-score of 0.4, indicating 

that linear classifiers are less effective in capturing the 

complexities of this dataset. The SVM classifier, in 

contrast, performs poorly, remaining near an F1-score of 

zero throughout, which could result from insufficient kernel 

customization or scalability issues with PCA-transformed 

data. 

These observations indicate that the IoT23 dataset 

benefits most from tree-based methods, which can handle 

complex patterns efficiently, while simpler or 

computationally intensive models struggle. 

The figure 9 highlights the performance of the same 

classifiers on the CICIoT23 dataset. Here, Decision Tree 

and Random Forest achieve near-perfect F1-scores (close to 

1.0) as the number of PCA components increases. These 

results suggest that the CICIoT23 dataset contains well-

defined patterns, allowing these classifiers to excel in 

intrusion detection. KNN and Logistic Regression also 

show significant improvement, stabilizing at high F1-scores 

(above 0.8) with fewer components. This indicates that 

simpler classifiers can also achieve good performance on 

the CICIoT23 dataset when supported by effective 

dimensionality reduction. 

While MLP improves slightly compared to its 

performance on the IoT23 dataset, it still struggles to 

maintain consistency, reflecting its sensitivity to dataset 

characteristics. The rapid performance gains across 

classifiers, particularly with fewer PCA components, 

suggest that the CIC23 dataset is more separable and easier 

to classify than IoT23. The strong performance of Decision 

Tree and Random Forest on both datasets highlights their 

versatility and suitability for intrusion detection tasks in IoT 

networks. 

 
TABLE VI. EVERY ATTACK NAME WITH IT CORRESPONDING 

NUMBER 

N° Attack’s Name N° Attack’s Name 

1 PartOfAHorizontalPortScan 
 

22 DDoS-UDP_Flood 

2 Okiru 23 MITM-ArpSpoofing 

3 DDoS 24 DDoS-

ACK_Fragmentation 

4 C&C-HeartBeat 25 Mirai-greip_flood 

5 C&C-Torii 26 DoS-HTTP_Flood 

6 C&C 27 DDoS-

ICMP_Fragmentation 

7 C&C-FileDownload 28 Recon-PortScan 

8 FileDownload 29 DNS_Spoofing 

9 C&C-HeartBeat FileDownload 30 DDoS-

UDP_Fragmentation 

10 C&C-Mirai 31 Recon-OSScan 

11 DDoS-RSTFINFlood 32 XSS 

12 DoS-TCP_Flood 33 DDoS-HTTP_Flood 

13 DDoS-ICMP_Flood 34 Recon-HostDiscovery 

14 DoS-UDP_Flood 35 CommandInjection 

15 DoS-SYN_Flood 36 VulnerabilityScan 

16 Mirai-greeth_flood 37 DDoS-SlowLoris 

17 DDoS-SynonymousIP_Flood 38 Backdoor_Malware 

18 Mirai-udpplain 39 BrowserHijacking 

19 DDoS-SYN_Flood 40 DictionaryBruteForce 

20 DDoS-PSHACK_Flood 41 SqlInjection 

21 DDoS-TCP_Flood 42,43 Recon-PingSweep, 

Uploading_Attack 
 

VIII. CONCLUSION 

This study evaluates preprocessing techniques and many 

machine learning classifiers for enhancing IoT network 

security through intrusion detection. Integrating PCA with 

Decision Tree and Random Forest classifiers significantly 

improves accuracy while managing high-dimensional IoT data. 

A comparative analysis of scalers (StandardScaler, 

MinMaxScaler, and RobustScaler) highlights the importance of 

tailoring preprocessing to dataset characteristics. Furthermore, 

the results suggest that this combination is particularly effective 

in identifying sophisticated DDoS patterns within IoT data. 

Future work should focus on optimizing the trade-off 

between computational cost and detection accuracy by 

exploring lightweight models, hybrid dimensionality reduction 

techniques, and scalable architectures.  
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