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Abstract—Semantic segmentation algorithms are essential
for technologies in autonomous systems. The development of
lightweight convolutional neural networks has facilitated the
deployment of deep learning-driven semantic segmentation
approaches on energy-efficient mobile devices. However, these
lightweight networks often overlook feature fusion relation-
ships, employing linear fusion strategies that limit segmentation
accuracy. To tackle this challenge, this study introduces an
innovative lightweight network design intended to serve as
the core structure for the encoder. This method aims to
decrease both the parameter count and the computational
demands, thereby substantially boosting the network’s effi-
ciency in real-time applications. Additionally, a new Multi-
Feature Extraction Module (MFM) is introduced before the
decoder to capture multi-scale object information from images,
thereby enhancing contextual understanding and improving
segmentation accuracy and robustness. Furthermore, to further
boost network performance, we extract high-frequency features
from images and form a new stream. These features are then
fused with existing feature maps through a High-Frequency
Feature Fusion (HFF) module. This strategy captures finer
details, thereby enhancing segmentation precision. Extensive
experiments conducted on the publicly available Cityscapes and
CamVid datasets using an NVIDIA 4090 GPU demonstrate
average Intersection over Union (IoU) scores of 75.8% and
70.3%, respectively. Our approach not only surpasses existing
network architectures in terms of accuracy but also significantly
reduces computational resource consumption.

Index Terms—autonomous driving; real-time semantic seg-
mentation; lightweight networks; spatial attention mechanism

I. INTRODUCTION

DRIVERLESS technology represents the convergence of
artificial intelligence and transportation [1]. In recent

years, rapid advancements in industrial technology have led
to automobiles becoming ubiquitous in many households.
The surge in private vehicle ownership in China, com-
bined with frequent accidents caused by factors such as
drunk or fatigued driving, has highlighted the importance
and necessity of researching autonomous vehicles. This
promising industry has attracted significant academic interest
in unmanned vehicle research. Autonomous driving, also
known as intelligent or driverless driving, involves vehicles
autonomously planning travel routes and executing control
actions via computer systems. Technologies such as radar,
ultrasound, GPS, and computer vision are utilized to interpret
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various signals and perceive road conditions, enabling safe
navigation.

The advent of driverless cars is poised to revolutionize
transportation by alleviating human driving responsibilities,
minimizing accidents attributable to human error, and ad-
dressing issues such as traffic congestion and environmental
pollution. Despite these potential benefits, occasional re-
ports of accidents involving casualties and property dam-
age have sparked safety concerns. Ensuring accurate and
rapid detection of road conditions, traffic signs, and other
critical information is paramount for the advancement of
autonomous vehicles. Real-time semantic scene segmenta-
tion stands out as a pivotal task in driverless technology,
posing significant challenges to traditional computer vision
methods. Autonomous driving environments necessitate pre-
cise object recognition and segmentation under stringent
real-time constraints. Advances in deep learning have in-
troduced methodologies that leverage convolutional neural
networks (CNNs) for robust feature extraction and pixel-
level classification, significantly improving real-time road
segmentation performance. However, existing deep learning
models frequently suffer from a large number of parame-
ters and high computational complexity, which can impede
their practical deployment in real-time applications within
unmanned scenarios. Therefore, there is a pressing need
for lightweight yet powerful models that can deliver high
accuracy while meeting the strict latency requirements of
autonomous driving systems.

Moreover, the diverse types of objects encountered in
autonomous driving environments—such as vehicles, pedes-
trians, and lane markings—exhibit considerable variation in
scale, shape, and appearance, significantly complicating the
road segmentation task. The requirement for high-resolution
images to ensure accurate semantic segmentation further in-
tensifies computational demands. To tackle these challenges,
we have developed LMSNet, a novel real-time semantic
segmentation network specifically designed for driverless
applications. LMSNet is characterized by its minimal pa-
rameter count and low computational complexity, enabling
it to meet the stringent real-time performance requirements
of autonomous driving systems. Our approach incorporates a
lightweight backbone network optimized for reduced param-
eters and enhanced computational efficiency. Additionally,
we introduce an innovative Multi-Scale Feature Extraction
Module (MFM) that effectively fuses features across multiple
scales, thereby improving segmentation performance. Exten-
sive experiments on benchmark datasets have demonstrated
LMSNet’s superior segmentation capabilities, particularly in
complex road scenarios.

• We developed a streamlined backbone network that
features reduced parameters and lower computational
demands, rendering it ideal for real-time semantic seg-
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mentation applications.
• We designed an innovative MFM module that efficiently

extracts multi scale features and enhances the integra-
tion of contextual information.

• We extracted high-frequency features from the images,
formed a new stream, and fused these feature maps with
the existing ones through a High-Frequency Feature
Fusion (HFF) module.

II. RELATED WORK

In 2015, Long et al. [2] proposed a fully convolutional net-
work by substituting the conventional CNN’s fully connected
layers with convolutional layers, which facilitated end-to-
end learning for semantic segmentation. While this model
had advantages in capturing global relationships and context,
it suffered from the loss of significant spatial information
during downsampling, resulting in coarse segmentation out-
puts. To overcome this constraint, Ronneberger et al. [3]
introduced U-Net, a framework combining an encoder and
decoder through extended skip connections that integrate spa-
tial data from the encoder with semantic information from the
decoder. preserving finer segmentation details. In an effort
to mitigate spatial information loss during downsampling,
Chen et al. [4], [5], [6], [7] introduced the DeepLab series of
networks. These architectures utilized dilated convolutional
layers to increase the receptive field while maintaining the
feature map resolution, and they employed a spatial pyramid
pooling mechanism to integrate multi-scale semantic infor-
mation, improving the efficiency of feature exploitation. In
2017, Lin et al. [8] proposed RefineNet, which gradually
merged low-resolution semantic features with high-resolution
spatial features to leverage feature information across dif-
ferent resolutions, producing high-resolution output feature
maps containing diverse scale features. However, the large
parameter count and redundant structures in these networks
hindered operational speed, limiting their applicability in
real-time semantic segmentation scenarios where both speed
and fine segmentation quality are crucial. As a response,
lightweight convolutional neural networks have emerged as
a key research area, focusing on reducing parameters and en-
hancing operational speed. For instance, ENet by Paszke [9]
introduced a sparse convolutional layer and minimized chan-
nels in residual modules to significantly cut down network
parameters and computations. The ShuffleNet and MobileNet
series by Zhang et al. [10], [11], Howard et al. [12], and San-
dler et al. [13] incorporated depth-wise separable convolution
layers to lower computational requirements with minimal
accuracy loss. Further innovations include the introduction of
separable convolution layers in the MobileNet family, as seen
in ERFNet proposed by Romera et al. [14], where a standard
3x3 convolutional layer is decomposed into two 3x1 and
1x3 convolutional layers, reducing computational load while
maintaining receptive fields. Lightweighting techniques have
also been applied to semantic segmentation tasks, enabling a
better balance between segmentation accuracy, network size,
and operational speed as showcased in various studies [15],
[16], [17], [18]. For instance, LCANet proposed by Dong et
al. [19] utilizes nonlinear fusion to enhance segmentation by
learning relationships between different feature maps.

While existing networks have made strides in accuracy and
real-time performance, they often neglect semantic context

relationships, potentially leading to information loss and
reduced precision. To tackle these challenges, this work
introduces LMSNet, a streamlined convolutional architecture
designed for real-time semantic segmentation by incorporat-
ing multi-scale feature extraction.

III. METHOD

The network structure of LMSNet is designed to optimize
real-time semantic segmentation performance while main-
taining a lightweight architecture. It comprises several key
components aimed at enhancing segmentation accuracy and
operational efficiency.

A. Structure of Network

The architecture of our proposed LMSNet, as illustrated in
Figure 1, adheres to a conventional encoder-decoder frame-
work while emphasizing a streamlined structure to facilitate
efficient end-to-end training. The encoder is built upon a
three-stage backbone network, where blue segments denote
downsampling modules integrating convolutional layers with
a stride of 2 and a 3x3 kernel, alongside pooling layers with
a 2x2 kernel, effectively reducing information loss during en-
coding. Within this backbone, excluding stage 4, the first unit
of each stage serves as a downsampling element, resulting in
a cumulative downsampling ratio of only 8, which preserves
spatial details. These blue areas represent Enhanced Convolu-
tion (EConv) modules, thoroughly described in Section III-B.
For the decoder, we employ a gradual upsampling strategy
using three transposed convolutional layers to incrementally
reconstruct feature map resolution and mitigate spatial data
loss. Each upsampling unit includes a 1x1 convolutional
layer, batch normalization (BN) [20], a rectified linear unit
(ReLU), and twofold bilinear interpolation, culminating in
a pixel-level classifier at the final stage. To enhance fea-
ture representation, a Multi-scale Feature Extraction Module
(MFM) is integrated between the encoder and decoder stages,
fusing features from multiple scales to improve segmentation
accuracy (Section III-C). Additionally, we introduce a high-
frequency feature extraction stream from RGB images, which
are merged with existing feature maps via a High-Frequency
Feature Fusion (HFF) module, capturing nuanced details and
enhancing segmentation precision (Section III-D).

B. EConv Module

He et al. introduced an extended foundational network
architecture epitomized by ResNet. This architecture enables
the network to capture intricate contexts and semantic nu-
ances within images by progressively deepening the layers
and diminishing the resolution of feature maps. On the other
hand, MobileNetV3 achieves innovation through substituting
conventional 3x3 convolutional layers with depthwise sep-
arable 3x3 convolutions. This substitution notably reduces
the network size and computational burden, thereby en-
hancing efficiency while preserving essential representational
capacity. This makes it especially apt for deployment in
environments with limited computational resources, such as
mobile and embedded systems. The integration of the SE
(Squeeze-and-Excitation) attention mechanism further boosts
network performance by recalibrating channel-wise feature
responses. However, the presence of two fully-connected
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Fig. 1. An overview of the LMSNet architecture designed for real-time semantic segmentation. This architecture is carefully crafted to achieve a balance
between precision and computational efficiency, making it ideal for use in environments with limited resources. herein, ECA refers to the Efficient Channel
Attention Module, MFM represents the Multi-scale Feature Aggregation Module, and HFF stands for the High-Frequency Feature Integration Module.

layers within the SE module introduces additional param-
eters, which can be a drawback for lightweight applications.
Building upon the advancements of MobileNetV3, we have
replaced the SE module with the more parameter-efficient
ECA (Efficient Channel Attention) module [23], thereby
reducing the number of parameters while maintaining or even
enhancing performance. Additionally, we have introduced
the Enhanced Convolution (EConv) module, as shown in
Figure 2. These modifications aim to refine the model’s
parameters further and enhance the overall lightweight design
of our architecture, ensuring efficient real-time processing
capabilities without compromising on accuracy.

The ECA module presents an effective channel attention
mechanism that utilizes a localized cross-channel interac-
tion approach without reducing dimensionality, effectively
mitigating any negative impacts of dimensionality reduction
on channel attention learning effectiveness. In this research,
the ECA module is employed for residual propagation,
strengthening channel characteristics and improving network
segmentation performance. After two consecutive operations
with 3 × 3 convolutional kernels, we obtain integrated
features of dimensions 1 × 1 × C through global average
pooling (GAP). The ECA module governs channel weights
by swiftly convolving in one dimension with a size k, where
k dynamically adapts based on the mapping of channel di-
mensions C, with σ denoting the sigmoid activation function.

C. Multi-scale Feature Extraction Module

Prior real-time semantic segmentation techniques have
overlooked image context to maintain a lightweight design,
often resulting in the loss of intricate features and a decline

in network segmentation precision. Drawing inspiration from
this limitation, we present the multi-scale feature extraction
module. In this module, we use dilated convolutions with
dilation rates set at 2, 4, and 6, along with 3 × 3 convolution
kernels. This combination enables local features in the deeper
layers to connect with a wider receptive field., preventing the
loss of minute target features during data transmission. As
shown, starting from the top and moving downward, the first
branch utilizes a 1 × 1 convolution to maintain the original
receptive field. The following three branches (second to
fourth) use dilated convolutions with different dilation rates,
each designed to capture features at unique receptive fields.
The fifth branch applies global average pooling to the input to
gather broad, overarching features. Finally, the feature maps
from all five branches are concatenated along the channel
dimension, and multi-scale information is integrated via a 1
× 1 convolution, resulting in the creation of a new feature
map, F.

Subsequently, to derive spatial attention details, the com-
bined feature map F is fed into the Spatial Attention Module
(SAM) [24], resulting in the final feature map Fs. Further-
more, the detailed workflow is illustrated in Figure 3, while
the formula for CAM is provided in Equation 1.

M(s) = σ(f5×5([Favg;Fmax])), (1)

Where σ denotes the sigmoid function, and f signifies the
convolution operation utilizing a 5 x 5 kernel. Here, Favg ∈
R1×H×W and Fmax ∈ R1×H×W .

In this equation, σ denotes sigmoid function, while f
signifies a convolution operation utilizing with a 5 x 5 kernel.

The aforementioned Multi-scale Feature Module (MFM)
expands the sensory field and enriches feature information
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Fig. 2. The structure of the Econv. The EConv module integrates several innovative components to achieve superior performance while maintaining
computational efficiency, making it particularly well-suited for real-time semantic segmentation tasks.

by amplifying the multilevel sampling rate of convolutional
parallel sampling. Consequently, image-level features adeptly
capture global contextual information. By considering the
interplay between these contexts, the module mitigates seg-
mentation errors stemming from fixation on local features,
thereby enhancing image segmentation accuracy. Further-
more, the module consolidates contextual information across
various scales, bolstering the network’s capability to discern
regions of diverse sizes on the road.

D. High-Frequency Feature Fusion

To further enhance the segmentation performance of the
network, we introduced a high-frequency filter as a prepro-
cessing step. The filter is designed to augment the edges and
other high-frequency components of various objects within
images. By emphasizing detailed features such as object
boundaries and textures, the filter not only improves the
model’s ability to recognize target regions but also promotes
finer semantic segmentation outcomes. High-frequency com-
ponents are crucial for capturing subtle changes in pixel
intensity, which are often indicative of important structural
information. This enhancement facilitates the extraction of
meaningful features during the convolutional process, leading
to more precise and reliable segmentation results.

However, simply combining feature maps through addition
can lead to the loss of detailed features. Such simplistic
approaches fail to adequately preserve the rich information
contained within each feature map, potentially degrading the
network’s performance. To address this limitation, in this
paper, we propose a novel module called High-Frequency
Feature Fusion (HFF). This module integrates two types of
feature maps while preserving their detailed characteristics.

As illustrated in Figure 1, the HFF process involves
several key steps: Channel Alignment: Initially, 1x1 convo-
lution operations are applied to both feature maps to align
their channel numbers. This ensures that each feature map
has the same number of channels, facilitating subsequent
processing steps. Batch Normalization: After performing

channel alignment, we apply two distinct batch normaliza-
tion layers to normalize each feature map separately. This
technique enhances training stability and speed by mitigating
internal covariate shift, thereby maintaining uniform input
distributions throughout the network layers. Feature Fusion:
After normalization, the two feature maps are fused using
element-wise summation. This method allows for seamless
integration of the enhanced high-frequency features with the
original feature maps, maintaining the integrity of detailed
information. Activation Function: Lastly, a ReLU activation
function is utilized to add non-linearity to the combined
features. The ReLU function helps retain only the positive
elements, effectively highlighting significant features while
suppressing less relevant ones. By carefully integrating these
steps, the HFFF module ensures that detailed features are
preserved and effectively utilized, this results in improved
segmentation precision and enhanced network robustness.

IV. EXPERIMENTS

A. Experimental Settings

Experimental Dataset: For dataset evaluation, we se-
lected two widely recognized city road datasets, Cityscapes
[25] and Camvid [26], to assess the performance of our net-
work. To broaden the dataset and mitigate sample imbalance
issues, this study incorporates data augmentation techniques
on the training dataset, including random cropping (RC),
vertical axis mirroring (MVA), and color shifting (CS). In
the training stage using the Cityscapes dataset, input images
are randomly cropped to a size of 512x1024. For the CamVid
dataset, images are randomly cropped to 360x480. Such data
augmentation techniques improve the model’s robustness and
ability to generalize by introducing it to a broader range of
variations and conditions found in real-world imagery.

Experimental Metrics: In experimental settings, choosing
suitable evaluation metrics is crucial for accurately assessing
network performance. This study employs evaluation metrics
that have been widely used in prior relevant research [19].
The Mean Intersection over Union (MIoU) is adopted as a
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Fig. 3. Architecture of the Multi-scale Feature Extraction Module. The MFM incorporates dilated convolutions at different dilation rates along with
several feature extraction pathways to efficiently gather comprehensive multi-scale contextual details.

TABLE I
OVERVIEW OF THE EVALUATION DATASETS FOR OUR NETWORK (THE

NUMBERS INDICATE THE QUANTITY OF IMAGES UTILIZED FOR
TRAINING AND TESTING. SYMBOLS!AND%DENOTE THE INCLUSION

OR EXCLUSION OF SPECIFIC DATA AUGMENTATION TECHNIQUES,
RESPECTIVELY)

Datast
Number Type

Train Val Test RC MVA CS

Cityspaces [25] 2975 500 1525 ! % !

Camvid [26] 367 101 233 ! ! !

key metric to measure the pixel-level accuracy of segmenta-
tion models. MIoU is computed by averaging the IoU scores
across all classes. The IoU is determined by comparing the
predicted segmentation masks against the actual ground truth
labels. The formula for IoU is provided in Equation 2.

IoU =
TP

TP + FP + FN
(2)

Here, TP denotes the count of pixels for which both
the actual label and the predicted label match a specific
class. FP refers to the number of pixels where the predicted
label indicates the class, but the actual label does not.
FN represents the number of pixels where the actual label
indicates the class, but the predicted label does not.

Compared Methods: To assess the advancement of the
method proposed in this paper, we conducted experiments
on the Cityscapes and CamVid test sets with LMSNet
and other established networks. Our evaluation not only
compares against large semantic segmentation networks but
also juxtaposes the current lightweight real-time semantic
segmentation networks. The purpose of this comparative
study is to demonstrate the effectiveness and efficiency of
the proposed approach in relation to current state-of-the-art
methodologies.

Implementation Details: The implementation of our
method was carried out on a server outfitted with an NVIDIA
GeForce RTX 3090 GPU using PyTorch. The network was

trained end-to-end employing the Adam optimizer with a
momentum of 0.8, a weight decay of 1e−5, and an initial
learning rate of 3e−3. To maximize GPU memory utiliza-
tion, a batch size of 16 was employed for training on the
Cityscapes dataset, and a batch size of 32 was utilized for
training on the CamVid dataset. These configurations were
optimized to facilitate efficient training and to leverage the
computational capabilities of the GPU for enhanced perfor-
mance. Our approach was implemented on a server equipped
with an NVIDIA GeForce RTX 3090 GPU, utilizing the
PyTorch framework. We trained the network in an end-to-
end manner using the Adam optimizer, configured with a
momentum value of 0.8, a weight decay of 1e−5, and an
initial learning rate set to 3e−3. To optimize GPU memory
usage, we used a batch size of 16 for training on the
Cityscapes dataset and a batch size of 32 for the CamVid
dataset. These settings were fine-tuned to ensure efficient
training processes and to take full advantage of the GPU’s
computational power for improved performance.

Image Ground truth Ours W/o MFM W/o EConv
Fig. 4. For visual comparison: Ground Truth (GT) Masks, Full Model
Predictions, Predictions without Multi-scale FE Module, and Predictions
without ECov Module.

B. Compared Detection Methods

To assess the performance of our proposed network, we
perform a comparative study against various leading method-
ologies. Our comparison encompasses both extensive large-
scale semantic segmentation techniques and efficient real-
time semantic segmentation models.
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TABLE II
THE MIOU AND FRAME RESULT (% AND FPS) OF OUR METHOD AND

THE OTHER METHODS ON CITYSPACES DATASET.

Network Type Methods MIoU(%) Frame(fps)

Large
SegNet [29] 57.0 17

DeepLabV2 [5] 70.4 <1

SFNet [30] 78.4 <1

Lightweight

ENet [8] 58.3 77

CGNet [27] 64.8 50

BiSeNet [28] 68.4 106

DABNet [16] 70.1 104

LCANet [19] 72.7 86

Ours 75.8 101

Table II presents the quantitative results obtained by each
method on the Cityscapes dataset. It is evident that even
without utilizing additional training data, LMSNet achieved
an MIoU of 75.8% while operating at a frame rate of 101fps.
Our network surpasses all lightweight networks in terms of
the MIoU metric, even outperforming some large-scale se-
mantic segmentation networks like DeepLabV2 and SegNet.
Although SFNet achieved an MIoU of 78.4%, its processing
speed is insufficient for real-time semantic segmentation
tasks. In contrast to lightweight networks, while our network
runs slightly slower than BiSeNet and DABNet, our method’s
MIoU metric is the highest, surpassing them by 3.3% and
5%, respectively.

As illustrated in Figure 5, a scatter plot comparison of
various lightweight networks on the Cityscapes test set
reveals LMSNet’s superior performance in both segmentation
accuracy and running speed. Positioned at the apex of this
plot, our proposed network outperforms its counterparts in
segmentation precision while concurrently maintaining high-
speed inference capabilities. LMSNet’s efficient architecture,
characterized by a reduced parameter count, exemplifies
an optimal balance between computational efficiency and
predictive accuracy. This positioning not only signifies LM-
SNet’s leadership among lightweight semantic segmentation
models but also highlights its capability to deliver state-of-
the-art segmentation results without sacrificing operational
efficiency. The equilibrium achieved by LMSNet between
accuracy and speed sets a new standard for real-time ap-
plications and contributes significantly to the advancement
of lightweight deep learning architectures. This achievement
underscores the potential for deploying advanced semantic
segmentation models in environments with limited computa-
tional resources.

Table III summarizes the performance metrics obtained
by various methods on the CamVid dataset. Remarkably,
LMSNet achieves an mIoU of 75.8% and processes images at
a rate of 101 frames per second, all without using extra train-
ing data. These results underscore LMSNet’s superior mIoU
performance relative to other lightweight real-time semantic
segmentation models that were assessed. In conclusion, our
network strikes a good balance in segmentation accuracy,
running speed, and other aspects.

TABLE III
THE MIOU AND FRAME RESULT (% AND FPS) OF OUR METHOD AND

THE OTHER METHODS ON CAMVID DATASET.

Network Type Methods MIoU(%) Frame(fps)

Large
SegNet [29] 46.4 5

DeepLab [4] 61.6 5

PSPNet [31] 69.1 5

Lightweight

ENet [8] 51.3 61

CGNet [27] 65.6 -

BiSeNet [28] 65.6 -

FDDWNet [17] 66.9 79

LCANet [19] 67.1 105

Ours 70.3 106

C. Robustness Evaluation

Beyond benchmarking against existing state-of-the-art
techniques, we performed supplementary experiments to test
the resilience of our proposed model. Specifically, we applied
several types of image distortions to the validation set images
from the Cityscapes dataset. These distortions comprised
resizing, JPEG compression using a quality factor η, and
Gaussian blurring with a kernel size κ.

Details of the parameters used and the results for manip-
ulation detection, evaluated using MIoU and Frame metrics,
are summarized in Table IV. Our model shows strong
performance across different types of distortions. Particularly
for compressed images, the MIoU decreases by just 0.4%
compared to undistorted images at a quality factor of 100,
and by 1.0% at a quality factor of 80. This indicates that our
network exhibits significant robustness against various image
distortion methods.

TABLE IV
THE MIOU AND FRAME RESULT (% AND FPS) ON CITYSPACES DATASET

UNDER VARIOUS DISTORTION.

Distortion MIoU Frame

No distortion 75.8 ↓0.0 101 ↓0.0

Resize (0.75×) 74.9 ↓0.9 101 ↓0.0
Resize (0.30×) 72.6 ↓3.2 103 ↑2.0

GaussianBlur (κ = 3) 72.8 ↓3.0 99 ↓2.0
GaussianBlur (κ = 7) 70.4 ↓5.4 97 ↓4.0

JPEGCompress (η = 100) 72.9 ↓3.1 100 ↓1.0
JPEGCompress (η = 80) 70.7 ↓5.1 98 ↓3.0

D. Ablation Study

In this study, we integrated the EConv module and MFM
module into conventional semantic segmentation networks.
To systematically evaluate the contributions of these two pro-
posed modules, we conducted ablation studies by selectively
removing each module from our network architecture. The
performance of the modified models was assessed using the
Cityscapes and CamVid datasets.

When MobileNetV3 was substituted for EConv as the
backbone network, no significant changes were observed in
the Mean Intersection over Union (MIoU) metric on both
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Fig. 5. A Comparative Analysis of Accuracy and Operational Speed in Lightweight Networks.

datasets. However, a notable decrease in inference speed was
recorded, with reductions of 5.2% and 5.8% on the respective
datasets. This performance degradation is likely attributable
to EConv’s streamlined architecture, which features one
fewer fully connected layer compared to MobileNetV3. Our
experimental findings indicate that employing EConv as the
backbone network enhances computational efficiency without
compromising segmentation accuracy.

Excluding the MFM module between the encoder and
decoder layers led to an increase in running speed but
resulted in a substantial drop in accuracy, with MIoU de-
creasing by 6.7% and 4% on the Cityscapes and CamVid
datasets, respectively. These results underscore the critical
role of MFM in maintaining high segmentation accuracy
under reduced computational loads by effectively preserving
and transmitting multi-scale contextual information.

Omitting the High-Frequency Feature (HF) stream yielded
a slight improvement in running speed, However, it also
caused a decline in segmentation accuracy, with MIoU re-
ductions of 2.7% and 1.1% on the respective datasets.

As illustrated in Figure IV-A, the visual results corre-
sponding to Table V demonstrate that LMSNet achieves
accurate segmentation with well-defined object boundaries.
Compared to other methods, LMSNet exhibits superior per-
formance in capturing detailed segmentation features across
various object categories. For example, in the segmentation
of pedestrian walkways, which occupy significant spatial
proportions, LMSNet excels in accurately delineating local
regions. Additionally, less frequent objects such as trucks,
bicycles, and pedestrians in smaller spatial proportions are
precisely identified and segmented with clear boundaries.

V. CONCLUSIONS

In this paper, we propose LMSNet for real-time semantic
segmentation. In the encoder part of LMSNet, we leverage

TABLE V
ABLATION RESULTS ON CITYSCAPES AND CAMVID DATASETS, MIOU

AND FRAME (% AND FPS) ARE REPORTED

Variants
Cityspaces CamVid

MIoU Frame MIoU Frame

w/o EConv module 72.9 96 69.3 102
w/o MFM module 69.1 108 66.3 117
w/o HF stream 73.1 113 69.2 120
Ours 75.8 101 70.3 108

the advantages of the ECA module to introduce a more
lightweight backbone network while preserving network per-
formance. Subsequently, between the encoder and decoder, in
order to better retain image context information, we introduce
a novel Multi-Feature Extraction Module (MFM), capable of
extracting object information at multiple scales. Furthermore,
to further enhance the network’s performance, we extract
high-frequency features from the images, forming a new
stream, and fuse these two types of feature maps through a
High-Frequency Feature Fusion (HFF) module. This strategy
helps capture more detailed information, thereby improv-
ing segmentation accuracy. Through experiments, We assess
the performance of each component in our network and
benchmark it against other leading networks. The experi-
mental outcomes on the Cityscapes and CamVid datasets
showcase the competitive edge of LMSNet, outperforming
most advanced lightweight semantic segmentation networks
and even surpassing some large-scale semantic segmentation
networks. This fully illustrates that LMSNet achieves a
favorable balance in segmentation accuracy, network scale,
and operational speed.
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