
  

Abstract—With the advancement of the era, speaker 

recognition technology plays a pivotal role in applications such as 

remote telephone identity verification and anti-telecom fraud. 

However, traditional identification methods utilizing single 

feature parameters often result in inadequate representation and 

information loss. Additionally, with the introduction of 

convolutional neural networks, many approaches to adopt 

deeper and wider network structures to enhance recognition 

effectiveness, leading to a decline in network performance. In 

response to this issue, this paper proposes a speaker recognition 

network model, Fca-ProRes2Net, based on the fusion of feature 

parameter dimension reduction. Firstly, a novel hybrid 

parameter is formed by integrating traditional Mel Frequency 

Cepstral Coefficients (MFCC) with more robust Gammatone 

frequency cepstral coefficients (GFCC), capturing both 

mid-to-high frequency and dynamic/static features. 

Furthermore, 2DPCA is employed to reduce and integrate the 

feature matrix, addressing the issue of information redundancy 

caused by high-dimensional feature parameters and thereby 

enhancing the representation capability of the parameters. 

Secondly, the Res2Net network is incorporated into the 

recognition model, utilizing its fully connected form, known as 

ProRes2Net, to effectively expand the receptive field combination 

without significantly increasing parameters, thus enlarging the 

model's acceptance domain. Lastly, Frequency Channel 

Attention Networks (Fca-Net) are integrated into this model to 

redistribute weights among feature parameter channels, 

enhancing the model's recognition ability. Experimental results 

demonstrate a stable performance improvement of this method 

on the complex VoxCeleb dataset, particularly evident when data 

is abundant and tasks are complex, effectively enhancing the 

accuracy and robustness of the speaker recognition model. 

 

Index Terms—Speaker Recognition, 2DPCA, Fca-ProRes2Net, 

Attention mechanism 
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I. INTRODUCTION 

PEAKER recognition, commonly known as voiceprint 

recognition [1], shares similarities with identity 

authentication technologies such as fingerprint and facial 

recognition, as it emphasizes the unique characteristics that 

distinguish individuals. This technology extracts distinctive 

features from speech signals to determine the identity of the 

speaker. The production of human language necessitates the 

coordinated operation of various physiological components 

and vocal apparatus [2]. Each individual's speech is marked by 

variations in short-time spectra, vocal sources, rhythms, and 

other linguistic characteristics. Voiceprint recognition 

effectively differentiates individuals by utilizing these feature 

discrepancies, thereby enabling speaker identification. 

Compared to other biometric recognition methods, speaker 

recognition presents several advantages, including ease of data 

collection, resilience to environmental interference, and a 

non-contact approach. This technology is particularly 

beneficial in scenarios where the acquisition of other biometric 

data, such as facial images or fingerprints, is impractical, such 

as in remote telephone identity verification and the prevention 

of telecom fraud. As social interactions and speech contexts 

become increasingly varied, the demand for speaker 

recognition technology is growing, alongside heightened 

concerns regarding privacy and the need for improved system 

development [3]. Consequently, as the necessity for speaker 

authentication technology intensifies and relevant 

advancements occur, enhancing system recognition 

performance has emerged as a critical area of research in 

recent years [4]. 

Speaker recognition can be classified into two primary types 

based on the ultimate task performed: Speaker Verification 

(SV) and Speaker Identification (SI) [5]. SV focuses on 

determining whether a specific speech segment is produced by 

a designated individual, while SI seeks to identify which 

individual among a group has spoken a particular segment. 

Additionally, speaker recognition can be further categorized 

into three types based on the nature of the content: 

text-dependent, text-independent, and text-prompted [6]. This 

paper specifically addresses research related to 

text-independent speaker verification. 

The fundamental framework of speaker recognition consists 

of two key components: feature extraction and the formulation 

of recognition models. The primary aim of feature extraction is 

to identify parameters that capture the unique characteristics of 

individual speakers, thereby highlighting the differences 
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among them. These feature parameters are categorized into 

temporal and spectral features. Temporal features aid in 

distinguishing between voiced and unvoiced segments, while 

the perceptual characteristics of various speakers are primarily 

represented in the spectral domain. As a result, the use of 

temporal features is somewhat limited due to their inadequate 

capacity for representing speakers [7]. Recent developments 

have led to the incorporation of various spectral features, such 

as Linear Prediction Coefficients (LPC), Filter Bank (F-bank) 

features derived from filter groups, Mel Frequency Cepstral 

Coefficients (MFCC), and Gammatone Frequency Cepstral 

Coefficients (GFCC) [8]. Notably, MFCC features 

encapsulate the perceptual dimensions of human auditory 

perception through a series of Mel-frequency filter banks [9], 

which enhances their discriminative power, making them 

more widely utilized in feature extraction methodologies. 

However, MFCC features are somewhat susceptible to noise 

interference, a limitation that GFCC features effectively 

mitigate [10]. 

Traditional speaker recognition models include the 

Gaussian Mixture Model-Universal Background Model 

(GMM-UBM), Gaussian Mixture Model-Support Vector 

Machine (GMM-SVM), Joint Factor Analysis (JFA), and 

i-vector, among others [11]. These models are generally 

classified as shallow architectures, which involve limited 

linear or non-linear processing of raw input signals to achieve 

signal and information processing goals. Consequently, they 

exhibit a restricted capacity for modeling complex speech 

signals and fail to adequately represent structured and 

high-level information within the signal. The introduction of 

deep learning has facilitated the development of Deep Neural 

Networks (DNNs), which have demonstrated significant 

recognition capabilities across various feature recognition 

domains [12]. Deep learning has made substantial progress in 

fields such as data mining, natural language processing, and 

image processing. In the context of speaker recognition, 

D-Vector is recognized as one of the initial neural network 

models that utilizes DNNs for speech recognition, 

characterized by multiple fully connected hidden layers. 

Convolutional Neural Networks (CNNs) have been widely 

adopted as the foundational neural network for speaker 

recognition systems, enabling the extraction of deeper network 

parameters. Among these, ResNet is a variant of CNN that 

addresses issues such as gradient vanishing and explosion. By 

implementing residual connections, ResNet can construct very 

deep networks while simultaneously minimizing parameters 

and computational complexity. However, lightweight CNNs 

often exhibit limited stability. To address this challenge, Gao 

et al. [13] proposed Res2Net, which builds upon ResNet and 

allows for a more detailed hierarchical representation of 

multiscale features, thereby improving the capture of both 

deep and shallow features of the speaker. Nonetheless, an 

indiscriminate increase in the depth and width of network 

architectures may lead to overfitting. Therefore, the 

development of an effective network architecture is crucial for 

enhancing speaker recognition performance. 

In consideration of the aforementioned analysis, this 

research presents an advanced speaker recognition model that 

incorporates two-dimensional Principal Component Analysis 

(2D PCA) for the purpose of feature dimension reduction, in 

conjunction with the Res2Net architecture. This integration is 

intended to enhance the overall effectiveness of the speaker 

recognition system. The key contributions of this study are 

outlined as follows: 

1) In the feature extraction phase, a combination of features, 

including Discrete Cosine Transform (DCT)-operated 

MFCC, and GFCC, are combined, followed by dimension 

reduction and integration using 2D PCA, to extract 

effective combined dynamic and static features. 

2) In the speaker recognition model section, a fully 

connected multi-scale Res2Net network is employed. 

This network architecture features a larger receptive field 

than traditional Res2Net networks. Furthermore, a 

Frequency Channel Attention Network (Fca-Net) is 

integrated to reweight information from various channels, 

thereby improving the model's generalization capability 

and recognition performance. 

3) The proposed speaker recognition model is trained and 

tested on the VoxCeleb dataset, and experiments are 

conducted comparing it with traditional speaker 

recognition networks. The results demonstrate the model's 

effectiveness in extracting highly representative feature 

parameters and efficiently recognizing speakers. 

 

II. RELATED WORKS 

The speaker recognition model is developed and assessed 

within a deep learning framework. The foundational 

architecture for speaker recognition, as presented in this study, 

is depicted in Figure 1. Enhancements will be introduced in 

two primary domains: feature extraction and the recognition 

model, leading to the proposal of a fully connected 

Fca-ProRes2Net speaker recognition method that utilizes 

dimensionality reduction via fusion feature 2D PCA [14]. In 

the feature extraction phase, MFCC, GFCC, ΔMFCC and 

ΔGFCC, are combined without employing DCT to generate a 

set of mixed feature parameters. Subsequently, dimensionality 

reduction techniques are applied to streamline the feature 

matrix, thereby mitigating the issues of information 

redundancy associated with high dimensionality and resulting 

in highly representative parameters. An advanced multi-scale 

fully connected Res2Net network is then employed for the 

recognition model, which allows for an expanded receptive 

field without a substantial increase in the number of 

parameters. To enhance feature interdependence and bolster 

the stability and robustness of the system, Fca-Net [15] is 

incorporated to reweight information across various channels. 

Following the fully connected layer, the Softmax function is 

utilized to classify the output results. The optimization of the 

speaker recognition model is achieved through the application 

of the cross-entropy loss function, which seeks to identify 

optimal weight parameters. 
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Fig. 1.  Depicts the fundamental framework of speaker recognition. 
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Fig. 2.  The process of preprocessing. 
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Fig. 3.  Illustrates the process of feature extraction. 
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Fig. 4.  The framework of the speaker recognition network. 
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III. METHODOLOGY 

A. Feature extraction 

Due to the unique anatomical and phonetic attributes of each 

individual's vocal tract, as well as their specific pronunciation 

patterns, speech manifests distinctive characteristics that set it 

apart from that of others. Therefore, the extraction of effective 

and highly representative features is essential for the 

advancement of a robust speaker recognition system. 
1) Preprocessing 

The speech signal is acquired through microphone 
recording, during which the high-frequency components 

experience significant attenuation. Additionally, the recorded 
speech may contain segments of silence [16]. Consequently, 
preprocessing the speech signal is essential to derive 
appropriate signals for feature extraction pertinent to speaker 
identification. The preprocessing of speech signals primarily 
involves pre-emphasis, endpoint detection, and the 

segmentation of frames with windowing techniques [17]. 
Pre-emphasis: In the process of generating speech signals, 

high-frequency components are subject to rapid attenuation. 
Pre-emphasis serves to amplify these high-frequency elements, 
thereby counteracting the effects of attenuation and enhancing 
the high-frequency information present in the signal. This 

amplification is accomplished by routing the signal through a 
digital filter specifically designed to enhance high-frequency 
content. 

Endpoint Detection: This procedure entails the 
identification of both the initiation and conclusion of speech 
within a signal that contains spoken words. Endpoint detection 

is crucial for various speech-related tasks that necessitate the 
analysis or processing of only the speech segments [18]. It is 
frequently utilized in algorithms for speech encoding and 
decoding, noise reduction, wake word recognition, and other 
applications. 

Frame Segmentation and Windowing: Speech signals 

exhibit temporal variations; however, due to their short-time 
stationary characteristics, they are often divided into brief 
intervals along the time axis, referred to as frames. To 
facilitate smooth transitions between frames, adjacent frames 
typically overlap, with half of their length designated as the 
overlap length. Windowing addresses issues such as the Gibbs 

phenomenon and spectral leakage that may occur following 
Fourier transformation by applying distinct weights to each 
value within a frame. 
2) Feature extraction 

Speaker recognition technology commences with the 

extraction of feature parameters from processed speech data, a 

pivotal step that significantly influences the final recognition 

results. The primary process is depicted in Figure 3. While 

MFCC, which are based on human auditory characteristics, 

demonstrate limited robustness in noisy environments, GFCC 

exhibit substantial resistance to noise, thus providing a 

complementary approach to MFCC. To address the loss of 

essential information that occurs during the extraction phase as 

a result of the DCT operation, this study advocates for the 

elimination of DCT. MFCC and GFCC features primarily 

capture the static characteristics of speech. Therefore, by 

implementing differential operations on these two feature sets, 

ΔMFCC and ΔGFCC are produced, which rectify the 

inadequacy of dynamic features within the speech signal [19]. 

Ultimately, these four features are integrated and concatenated 

to create Mixed Mel Gamma Frequency Cepstrum 

Coefficients (MMGFCC). 

The augmentation of feature parameters can significantly 

improve the robustness and accuracy of recognition models; 

however, it simultaneously introduces redundancy and 

complexity within the subsequent networks. To extract 

high-quality information while minimizing resource 

expenditure, dimensionality reduction is applied to the 

MMGFCC features. A prevalent method for achieving this is 

Principal Component Analysis (PCA) [20]. Nonetheless, PCA 

necessitates the transformation of a two-dimensional matrix 

into a one-dimensional vector, which may not fully leverage 

the available feature information. As a result, this study 

employs 2D PCA. In contrast to PCA, 2D PCA does not 

require the conversion of the feature matrix into a 

one-dimensional vector; rather, it directly utilizes the original 

image matrix to construct the covariance matrix. This 

methodology facilitates the preservation of the local data 

structure and produces highly representative features while 

streamlining the computation of feature vectors [21]. Let 

{𝐴1,𝐴2 ,… , 𝐴𝑁}   denote the two-dimensional feature image 

matrices 𝑋 ∈ 𝑅𝑛×𝑘  that are projected into space 𝑌 ∈ 𝑅𝑚×𝑘 , 

resulting in the projected feature vectors 𝑌 ∈ 𝑅𝑚×𝑘 , as 

demonstrated in equation (1). 

Y AX=  (1) 

The ideal projection axis can be identified by analyzing the 

distribution of feature vectors, particularly through the 

assessment of the trace of the covariance matrix obtained from 

the projected features. The criteria employed in this evaluation 

are as follows: 

( ) ( )xJ X tr S=  (2) 

𝑆𝑥 represents the covariance matrix of the feature vectors 𝑌, 

while 𝑡𝑟(𝑆𝑥) denotes the dispersion of 𝑆𝑥. The definition of 𝑆𝑥 
is as follows: 

[( ) ][( ) ]T

xS E A EA X A EA X= − −  (3) 

Therefore, the dispersion is: 

( ) ( [( ) ( )] )T T

xtr S tr X E A EA A EA X= − −  (4) 

Assuming a sample set comprises 𝑁  distinct speech feature 

images {𝐴𝑖}1
𝑁, with a size of 𝑚×𝑛, the covariance matrix of 

the overall feature images is: 
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Where 𝐴̅ represents the average of all training samples. Firstly, 

compute the feature vectors corresponding to 𝐺𝑡, then select d 
feature vectors 𝑋1 ,𝑋2 , … ,𝑋𝑑  as the principal components of 

the matrix 𝐺𝑡 to form the projection matrix 𝑋, obtaining the 
optimal projection axis. Subsequently, project  𝐴𝑖 onto space 

𝑋 to obtain a set of projection feature vectors 𝑌1 , 𝑌2 , … , 𝑌𝑑 , 
which collectively form a matrix 𝑚×𝑑  denoted as 𝑀𝑖 =
𝑌1 , 𝑌2 , … , 𝑌𝑑 . 

B. Modeling of Speaker Recognition 

CNNs are generally designed by sequentially stacking 

convolutional layers alongside downsampling layers. 

However, as the depth of the network increases, several 

challenges emerge, including vanishing gradients, exploding 

gradients, parameter redundancy, and heightened 

computational complexity [22]. To address these challenges, 

the present study proposes enhancements to the recognition 

network. The architecture of the proposed recognition network 

is illustrated in Figure 5. 

This research incorporates Res2Net into the speaker 

recognition framework [23], facilitating the establishment of a 

fixed receptive field size within the network. In the realm of 

deep learning, Squeeze-and-Excitation Networks (SE-Net) are 

frequently utilized to assign weights to significant acoustic 

feature channels, thereby reflecting their importance in 

relation to critical features. A higher weight signifies greater 

relevance. However, SE-Net employs Global Average Pooling 

(GAP) for dimensionality reduction, which compresses the 

two-dimensional features of each channel into a single real 

number. This transformation modifies the feature maps from a 

three-dimensional configuration of (H, W, C) to a 

two-dimensional format of (1, 1, C), resulting in the loss of 

certain feature information [15]. To enhance the model's 

recognition performance, modifications are introduced to the 

Res2Net architecture by integrating a fully connected structure 

and the Fca-Net module, which retains a greater amount of 

feature information. This culminates in the development of a 

speaker recognition network termed Fca-ProRes2Net. In 

comparison to the Res2Net architecture, the Fca-ProRes2Net 

network achieves an expanded receptive field with minimal 

increases in parameters [23], thereby improving both 

recognition accuracy and efficiency. 
1) Res2Net and ProRes2Net 

CNNs, a prominent subset of feedforward neural networks, 
are distinguished by their incorporation of convolutional 

operations and deep architectural designs. Their primary 
purpose is to facilitate the efficient and automated extraction 
of feature information. This architecture has consistently 
demonstrated outstanding performance across diverse 
recognition tasks, establishing itself as a cornerstone of 
research in the field. To further improve the network's 
representational power and recognition accuracy, researchers 

have frequently employed strategies to expand both its width 
and depth. However, increasing network depth often 

introduces optimization challenges, such as gradient vanishing 
and gradient explosion, which can significantly impede 
effective training. To overcome these challenges, the ResNet 
was introduced, as depicted in Figure 5, providing a reliable 

and effective framework for training deep neural networks. 
Unlike conventional network architectures, ResNet 
incorporates a direct connection between the input and output 
of each residual block, thereby allowing the input to be 
transmitted to the output as an initial result, denoted as 

𝐻(𝑥)= 𝐹(𝑥)+ 𝑥 . This innovative design facilitates an 
increase in network depth without compromising accuracy, 
while also fostering a more efficient learning process. 
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3×3

1×1，channel2

 
 

Fig. 5.  Structure of the ResNet module. 
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Fig. 6.  Structure of the Res2Net module. 
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Although ResNet demonstrates significant performance 
advantages in practical applications, its effectiveness still 
depends largely on increasing network depth. To address this 
limitation, this study presents an enhanced version of ResNet, 

called Res2Net[25], which is incorporated into the speaker 
recognition framework. This variant not only retains the 
fundamental characteristics of ResNet but also further 
improves network performance. By introducing hierarchical 
residual connections within each residual block, Res2Net 
effectively expands the receptive field of each layer, thereby 

enhancing the network's feature representation and overall 
performance. The configuration of the Res2Net module is 
depicted in Figure 6. 

The primary distinction between Res2Net and conventional 

convolutional neural networks lies in its employment of 

smaller filters to capture multi-scale feature information. It 

enhances the single 3×3 convolution structure in ResNet 

residual blocks by introducing a scale control parameters. For 

the input feature map 𝐹(𝐻 ×𝑊× 𝐶), it initially undergoes 

dimension transformation via a 1×1 convolution, splitting the 

output into s feature subsets, each denoted as 𝑥𝑖, with shapes 

represented by  𝐻 ×𝑊 ×𝐶′ and 𝑖 = 1,2,… , 𝑠, 𝐶′ denotes the 

channel number of each subset after averaging. Using  𝐾𝑖(.) to 

denote a 3×3 convolution, its output is denoted by 𝑦𝑖. The 

initial feature subset 𝑦𝑖  circumvents convolutional 

computations and transmits directly to the output. In contrast, 

each subsequent feature subset incorporates the output derived 

from a 3×3 convolution operation, which is then added to the 

next feature subset. This iterative process culminates in the 

following output formula: 
 

1

, 1

( ) , 2

( ) , 2
i

i

i i

i i i

x i

y K x i

K x y i s−

=


= =
 +  

 (6) 
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Fig. 7.  Structure of the ProRes2Net module. 

 

The generated feature maps are concatenated and integrated 

according to their channel dimensions. Following this, a 1×1 

convolution operation is performed, and the resultant output is 

merged with the original input features to produce the final 

feature map, which subsequently serves as the input for the 

next convolutional layer. In the residual blocks of Res2Net, 

standard convolutions are substituted with convolutional 

groups, and hierarchical residual connections are established. 

This framework of hierarchical residual connections enhances 

the extraction of a broader spectrum of multi-scale feature 

information, thereby facilitating the integration of both global 

and local information. Nonetheless, Res2Net is constrained by 

its ability to achieve a fixed-size receptive field. To mitigate 

this limitation and improve the robustness of the recognition 

model by capturing a wider range of receptive fields, this study 

employs the fully connected Res2Net module structure, 

designated as the ProRes2Net module [26], as depicted in 

Figure 7. 

In the Res2Net module, the output from each preceding 

feature subset is directed solely to the subsequent feature 

subset. In contrast, as depicted in Figure 7, the ProRes2Net 

module adopts a different methodology. Within the parallel 

branches of the ProRes2Net module, each feature subset 

assimilates all prior outputs before the application of 3×3 

convolutional operations. Following this, the outputs from all 

groups are concatenated along the spatial dimension and 

processed through a 1×1 convolution operation. This result is 

then concatenated with the original input features to yield the 

final feature map.The output iy  is expressed as follows: 

1 1

( ) , 1

( ) ,1

i i

i

i i i

K x i
y

K x y y i s−

=
= 

+ + +  
 (7) 

Each subset of features follows a specific processing 

pathway, integrating diverse feature information and 
producing outputs via convolutional operations. This approach 
allows the speaker recognition model to incorporate a broader 
spectrum of information derived from speech features. As a 
result, the ProRes2Net module is capable of accessing a wider 
variety of receptive field sizes, which promotes a more 

thorough and effective use of speech feature information. 
Consequently, this enhances the model's performance and 
demonstrates improved generalization abilities. 
2) Fca-Net 

The significant efficacy of various attention mechanisms in 
the domain of computer vision has led to their application in 

speaker recognition tasks, facilitating models in more 
effectively capturing the complex interrelationships among 
input feature parameters. To improve the overall performance 
of the model, this study integrates the Fca-Net module [15] 
into the ProRes2Net backbone network. The Fca-Net module 
is an advancement of the SE-Net, as depicted in Figure 8, 

which illustrates the structural differences between the SE-Net 
and Fca-Net modules. The GAP operation employed by 
SE-Net is limited to retaining low-frequency information [27]; 
consequently, the literature [15] supports the adoption of 
Fca-Net, which substitutes the channel attention mechanism's 
compression with a two-dimensional discrete cosine 

transformation. This alteration enables the capture of a broader 
spectrum of information, effectively preserving mid-to-high 
frequency data, thereby incorporating additional frequency 
component information that enhances recognition accuracy. 
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Fig. 8.  SE-Net module and Fca-Net module. 
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 Fig. 9.  ProRes2Net module and Fca -ProRes2Net module.
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The primary functions of a two-dimensional Discrete 
Cosine Transform are delineated as follows: 

,

,

1 1
B cos( ( ))cos( ( ))

2 2

i j

h w

h w
i j

H W

 
= + +  

(

(8) 

Consequently, the two-dimensional Discrete Cosine 
Transform can be expressed as follows: 

1 1

( ) , 1

( ) ,1

i i

i

i i i

K x i
y

K x y y i s−

=
= 

+ + +  
 (

(9) 

Here, ℎ ∈ {0,1,… ,𝐻 − 1} ,  𝑤 ∈ {0,1,… , 𝑊 − 1} , and 𝑓2𝑑 

represent the two-dimensional Discrete Cosine Transform 

spectrum, 𝑥2𝑑 ∈ 𝑅𝐻×𝑊 is the input, and H and W denote the 

height and width of 𝑥2𝑑. The inverse of the two-dimensional 

Discrete Cosine Transform can be expressed as: 

1 1
2 2 ,

, , ,

0 0

H W
d d i j

i j h w h w

h w

x f B
− −

= =

=   (10) 

When both variables h  and w  are equal to zero, the above 

equation becomes: 

1 1
2 2 2

0,0 ,

0 0

( )
H W

d d d

i j

i j

f x gap x HW
− −

= =

= =  (11) 

At this juncture, the variable f denotes the lowest frequency 
component of the 2D DCT, which exhibits a direct 
proportional relationship with the GAP. Consequently, it can 
be inferred that GAP serves as a particular representation of 

the 2D DCT. 

Divide along the channel dimension of X into n parts, 

denoted as [𝑋0 ,𝑋1 ,… ,𝑋𝑛−1] , where 𝑋𝑖 ∈ 𝑅𝐶
′×𝐻×𝑊 , 𝑖 =

0,1,… , 𝑛 − 1,  𝐶′ = 𝐶/𝑛, and n can evenly divide C. Each 

segment is assigned a corresponding 2D DCT frequency 

component, resulting in the compression of channel attention. 

Assign a corresponding 2D DCT frequency component to each 

part, and the resulting output is the compression of channel 

attention. The compressed 𝐶′ dimensional vector is: 

1 1
, ,

:, , ,

0 0

2 ( )i i i i

H W
u v u vi i i

h w h w

h w

Freq DDCT X X B
− −

= =

= =   (12) 

Here, 𝑖 = 0,1,… , 𝑛 − 1  and (𝑢𝑖, 𝑣𝑖)  are the frequency 

components corresponding to the two-dimensional 

exponentials of 𝑋𝑖 , and finally, by concatenating all the 

compressed results, we obtain: 

0 1 1( ) ([ , , , ])nFreq compress X cat Freq Freq Freq −= =

 
(13) 

 

In accordance with the aforementioned rationale, the 

structural framework of the Fca-Net network is delineated as 

follows: 

_ ( ( ))ms att sigmoid fc Freq=  (14) 

In summary, the integration of the Fca-Net module with the 

ProRes2Net module serves to enhance the model's recognition 

capabilities and robustness, as illustrated in Figure 9. 

IV. EXPERIMENTS 

A. Dataset 

This research involved conducting experiments using the 

VoxCeleb1 [28] and VoxCeleb2 [29] open-source datasets to 

support text-independent speaker recognition. The VoxCeleb 

dataset series consists of an extensive compilation of human 

speech data sourced from interview videos available on 

video-sharing platforms. The interview participants represent 

a wide range of nationalities, ethnicities, accents, ages, and 

genders, ensuring a balanced gender distribution and the 

absence of overlap between the development and test sets. 

Specifically, VoxCeleb1 includes over 100,000 utterances 

from 1,251 speakers, with 1,211 speakers allocated to the 

training set and 40 to the test set. The average duration of the 

utterances is 8.2 seconds, with a maximum length of 145 

seconds and a minimum of 4 seconds, predominantly 

comprising short phrases, all recorded at a sampling rate of 16 

kHz, 16-bit, and in mono format. In contrast, VoxCeleb2 

offers a more extensive dataset, containing over one million 

utterances from 6,112 speakers, with 5,994 speakers in the 

training set and 118 in the test set. For the purposes of this 

study, the training sets from both VoxCeleb1 and VoxCeleb2 

were employed for training, while the VoxCeleb1 test set was 

utilized for evaluation. 

B. Experimental Data 

In order to assess the efficacy of the improvements 

implemented in the speaker recognition system within this 
research, traditional training methodologies were utilized to 
evaluate performance. Speech segments, each with a duration 
of 2.5 seconds, were extracted from individual speakers in the 
dataset. The selection of an appropriate window function is 
critical for optimizing the short-term characteristics of the 

speech signal. The rectangular window, while straightforward, 
may result in the attenuation of high-frequency components 
and waveform details, leading to energy leakage. In contrast, 
the Hamming window provides a broader main lobe and 
reduced side lobes, thereby facilitating smoother low-pass 
characteristics. Although both the Hann and Hamming 

windows are based on cosine functions, the Hamming window 
is characterized by its smaller side lobes. As illustrated in 
Figure 10, this study employed a Hamming window with a 
duration of 25 milliseconds and a sliding step of 10 
milliseconds for the preprocessing of each speech segment. A 
total of 128 filter groups were utilized, yielding feature 

matrices with dimensions of 250×128 for each feature 
extraction process. These matrices were subsequently 
concatenated to create a composite feature matrix measuring 

250×512. Following the integration of more representative 

features through the application of 2DPCA, the dimensions of 
the resulting matrix were reduced to 250×200. To improve the 
model's generalization capabilities and to address the limited 
racial diversity inherent in the VoxCeleb1 dataset, training 
initially commenced with VoxCeleb1 and was later expanded 
to incorporate the larger VoxCeleb2 dataset. Performance 
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evaluation was conducted using the test set from VoxCeleb1, 
ensuring that the datasets employed were non-overlapping. 

In the present study, preliminary experiments were carried 
out to train and evaluate the performance of the Res2Net, 

SE-Res2Net, SE-ProRes2Net, and the newly proposed 
Fca-ProRes2Net networks. Subsequently, a series of ablation 
studies were performed to assess the efficacy of the proposed 
methodologies. Ultimately, a comparative analysis and 
evaluation were conducted among the network models 
developed in this research, conventional network architectures, 

and contemporary deep learning models. 

25ms 10ms 25ms

Overlap

 
Fig. 10.  Schematic of frame length extraction. 

 

C. Experimental evaluation indicators 

The study employed a straightforward cosine similarity 
scoring method to compute the Equal Error Rate (EER) and 
the minimum Detection Cost Function (minDCF) as 
evaluative metrics for recognition performance [30]. 

In the context of speaker recognition systems, False 

Rejection (FR) and False Acceptance (FA) are two separate 
types of errors. FR occurs when a genuine speaker is 
incorrectly classified as an impostor during the assessment, 
while FA arises when an impostor is erroneously identified as 
a legitimate speaker. The probabilities related to these errors 
can be expressed as follows: 

arg

fr

t et

N
FRR

N
=  (15) 

arg

fa

non t et

N
FAR

N −

=  (16) 

In this context, Nfr and Nfa refer to the occurrences of FR and 
FA during the testing phase, respectively. Additionally, Ntarget 
and Nnon-target signify the total number of genuine trials and 
impostor trials conducted during testing. Given the existence 
of both FR and FA errors, it is not feasible to evaluate the 
performance of a speaker verification system solely on the 

basis of error rates. Therefore, the EER is utilized as a metric 
for system evaluation [31], which is defined as follows: 

FRR FAR=  (17) 

The Detection Cost Function (DCF) [32] takes into account 
the varying costs linked to the two types of errors, as well as 
the prior probabilities of genuine speakers and impostors. The 
DCF is computed using the following formula: 

FRR FARDCF C FRR PT C FAR PI=   +    (18) 

In this context, CFRR refers to the cost incurred when a 
legitimate speaker is incorrectly rejected, whereas CFAR 
pertains to the cost associated with the erroneous acceptance of 

an impostor. PT represents the prior probability assigned to a 
genuine speaker, while PI indicates the prior probability 
associated with an impostor. By adjusting parameters such as 
costs and prior probabilities to align with the particular 
requirements of diverse recognition tasks, the minDCF 
threshold can be tailored to suit various recognition contexts. 

D. Experimental results and analysis 

1) Experiments on Training Parameters 
This study investigates the performance disparities among 

various speaker recognition models by training on datasets 
from VoxCeleb1 and a subset of VoxCeleb2, utilizing four 
distinct network architectures: Res2Net, SE-Res2Net, 

SE-ProRes2Net, and the newly developed Fca-ProRes2Net. 
The primary objective was to ascertain the optimal number of 
iterations and training parameters. Figures 11 and 12 illustrate 
the trends in accuracy and loss function for the different 
network models applied to the VoxCeleb1 dataset. 

The findings indicate that the advanced Fca-ProRes2Net 

architecture demonstrates superior convergence performance, 
as evidenced by its lower loss values in comparison to the 
other methodologies. 
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Fig. 11.  Transition of Loss functions for different Networks. 
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Fig. 12.  Transition of accuracy for different Networks. 

 

The SE-Res2Net and SE-ProRes2Net models, which 
integrate channel attention mechanisms derived from their 
foundational architectures, exhibit accelerated convergence 
rates. Specifically, both Res2Net and SE-Res2Net attain 
convergence in terms of accuracy and loss function within 20 
to 40 iterations. The incorporation of the Res2Net module into 

the fully connected ProRes2Net framework, subsequent to the 
SE-Res2Net model, significantly enhances the receptive field 
and improves accuracy, thereby mitigating model error. 
Furthermore, substituting the SE-Net module with the Fca-Net 
module in the Fca-ProRes2Net network modifies the feature 
matrix compression strategy, allowing for the preservation of 

more representative features and resulting in a 2% increase in 
accuracy relative to SE-ProRes2Net. The experimental 
findings regarding loss values and accuracy suggest that the 
proposed network models exhibit superior feature recognition 
capabilities, leading to more effective and distinctive 
outcomes. When subjected to further training on the larger 

VoxCeleb2 dataset, the recognition rates and loss function 
values of the network developed in this study demonstrate 
commendable performance. 
2) Identification of network ablation experiments 

The experiment was carried out under optimal training 
conditions and was segmented into two distinct phases. The 

initial phase focused on training various network models 
utilizing the VoxCeleb1 training set, which was subsequently 
evaluated using the VoxCeleb1 test set. The second phase 
involved training different network models on the more 
extensive VoxCeleb2 dataset, followed by an assessment of 
these models using the VoxCeleb1 test set. Given that the 

training data and parameters remained consistent throughout 
the experiments, the test results for the VoxCeleb1 and 
VoxCeleb2 test sets are presented in Tables 1 and 2, 
respectively. 

The data presented in Table 1 demonstrates that the 
enhanced Fca-ProRes2Net network architecture introduced in 

this research exhibits superior recognition performance. In 
comparison to the Res2Net, SE-Res2Net, and SE-ProRes2Net 

models, the Fca-ProRes2Net model achieves a reduction in 
EER of 0.9%, 0.4%, and 0.6%, respectively. The integration of 
the SE-Net module into both Res2Net and its fully connected 
variant allows SE-ProRes2Net to benefit from an expanded 

receptive field, thereby enhancing the overall performance of 
the model. Conversely, the fully connected Res2Net network 
is negatively impacted by an excess of redundant information, 
which slightly diminishes its performance. Furthermore, the 
substitution of the SE-Net module with the Fca-Net module 
illustrates that the Fca-Net's capacity to assign weights to 

channel features exceeds that of the SE-Net module, leading to 
improved performance of the model proposed in this study. 
 

TABLE Ⅰ 

PERFORMANCE OF VARIOUS SYSTEMS ON VOXCELEB1 TEST SET 

Model EER(%) min-DCF 

Res2Net 3.437 0.191 

SE-Res2Net 2.951 0.156 

SE-ProRes2Net 3.102 0.163 

Fca-ProRes2Net 2.536 0.143 

 

TABLE Ⅱ 

PERFORMANCE OF VARIOUS SYSTEMS ON VOXCELEB1 TEST SET 

Model EER(%) min-DCF 

Res2Net 1.523 0.136 

SE-Res2Net 1.431 0.131 

SE-ProRes2Net 1.356 0.129 

Fca-ProRes2Net 1.285 0.124 

 
The findings in Table 2 further indicate that transitioning to 

a larger-scale dataset significantly enhances recognition 
performance across all network models, with the 
Fca-ProRes2Net model yielding comparatively superior 

results. As the size of the training dataset increases, the 
advantages associated with ProRes2Net become increasingly 
evident. Although SE-ProRes2Net retains some redundant 
information in relation to SE-Res2Net, the fully connected 
network demonstrates a greater capacity for information 
assimilation, particularly when supported by a substantial 

corpus of speech data. The incorporation of the Fca-Net 
module alters the approach to information compression, 
thereby contributing to the enhanced recognition capabilities 
of the model proposed in this research. 
3) Feature extraction ablation experiment 

Testing was performed on parameters MFCC, GFCC, 

MFCC+GFCC+ △ MFCC+ △ GFCC, and the proposed 

features under identical conditions. A comparative analysis of 
different network models indicated that the Fca-ProRes2Net 
network demonstrated enhanced performance compared to the 
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other models. As a result, the Fca-ProRes2Net network was 
chosen as the recognition model for the speaker recognition 
system. The experimental results are detailed in Table 3. 

The experimental findings indicate that the proposed feature 

extraction method demonstrates superior performance, 
achieving reductions in EER of 3.7%, 6.3%, and 1.8%, 
respectively. In contrast to MFCC and GFCC, which are 
limited to singular feature representations and may fail to 
comprehensively capture the full range of characteristics, the 
proposed feature parameters exhibit enhanced representational 

capabilities. These parameters encompass a wider array of 
information, thereby enabling a more effective modeling of 
inter-channel correlations and resulting in a notable 
improvement in network performance relative to the third 
feature. 
 

TABLE Ⅲ 

 THE EXPRESSIVENESS OF FEATURE PARAMETERS 

Parameters EER(%) min-DCF 

MFCC 5.023 0.177 

GFCC 7.586 0.229 

MFCC+GFCC+ 

△MFCC+△GFCC 
3.101 0.148 

Proposed 1.285 0.124 

 
4) Model comparison 

In this research, we employed established methodologies to 
assess performance, integrating conventional algorithms such 
as GMM-UBM [33] and i-vector+PLDA [34-36]. Furthermore, 
we investigated prominent deep learning algorithms, including 
TDNN [37], DNN [38], CNN [39-40], as well as fusion 
techniques based on embedding features [41-43]. A range of 

residual networks was also incorporated for comparative 
purposes [23].  
 

TABLE Ⅳ 

THE TEST RESULTS OF VARIOUS MODELS UNDER THREE CONDITIONS. 

Model 0s-5s 5s-15s 15s-30s 

GMM-UBM 61.17% 74.00% 88.00% 

i-vector+PLDA 69.50% 86.10% 87.58% 

TDNN-UBM 72.51% 80.19% 85.53% 

i-vector+DNN 81.55% 88.80% 93.90% 

MFCC+CNN 85.16% 83.14% 91.62% 

t-vector+LDA 88.32% 84.80% - 

ResNet 90.37% 91. 15% 94.58% 

Fca-ProRes2Net 92.18% 92.53% 95.97% 
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Fig. 13.  EER for 0s-5s for each model. 
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Fig. 14.  EER for 5s-10s for each model. 
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The findings from these experiments are encapsulated in 
Table 4. To enhance the clarity of performance comparisons 
across various systems, the EER values for each system have 
been visually represented in Figures 13, 14, and 15. 

The data presented in the charts indicates that the speaker 
recognition model developed in this research, which employs 
the Fca-ProRes2Net architecture, demonstrates a substantial 
enhancement in performance relative to other existing models. 
As the length of the extracted speech segments increases, the 
accuracy of this system remains consistently elevated. 

Significantly, within the 0 to 5-second range, the 
Fca-ProRes2Net network significantly surpasses traditional 
recognition algorithms. In the typical speech duration of 5 to 
15 seconds, this system achieves a recognition rate that is 
approximately 9% higher than that of the MFCC+CNN system, 
thereby illustrating superior feature representation capabilities 

compared to single-parameter approaches. 
Furthermore, for extended speech segments lasting between 

15 to 30 seconds, while the i-vector+DNN and ResNet systems 
demonstrate satisfactory recognition performance, the 
recognition rate of the proposed network surpasses that of 
these systems by approximately 2.07% and 1.39%, 

respectively. This improvement can be ascribed to the broader 
receptive field and the efficient processing of 
mid-to-high-frequency information. 

The findings derived from the experiments indicate that the 
speaker recognition model formulated in this study 
demonstrates significant effectiveness. 

V. CONCLUSION 

This study presents a novel speaker recognition network 

model that integrates feature fusion and dimensionality 
reduction techniques based on Fca-ProRes2Net. The model 
begins by processing a speech segment that has undergone 
feature fusion, leading to the generation of a speech feature 
matrix through the implementation of 2DPCA dimensionality 
reduction. This approach demonstrates superior efficacy in 

preserving the original information of the features when 
compared to conventional single speech feature parameters, 
thereby facilitating the successful extraction of 
mid-to-high-frequency, dynamic, and static information, 
which in turn enhances the model's representational capacity. 
Subsequently, the Res2Net architecture is incorporated into 

the speaker recognition framework through a fully connected 
variant known as ProRes2Net. This architecture is proficient in 
representing multi-scale features with heightened granularity 
and accommodates a wider array of receptive field 
combinations. The hierarchical connection structure of 
Res2Net significantly expands the model's receptive field and 

promotes the cross-channel fusion of information across 
different layers, thereby augmenting the model's 
generalization capabilities. Additionally, the research 
integrates Fca-Net, a frequency-domain channel attention 
network, which optimizes the allocation of weights across the 
voiceprint feature channels, consequently improving the 

model's recognition performance in text-independent speech 
contexts. The proposed model is evaluated using the VoxCeleb 
dataset, demonstrating a 0.4% reduction in EER compared to 
the SE-Res2Net network. Moreover, it outperforms several 

existing speaker recognition systems that employ complex 
architectures, thereby significantly enhancing the model's 
accuracy and robustness, which has important implications for 
practical applications. 
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