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Abstract —  Currently, accurate estimation of finger
movements typically relies on multi-channel surface
electromyography (sEMG) signals. However, the multi-channel
sEMG signals face many problems and challenges. This paper
proposes a new method. It uses a single-channel sEMG signal
and combines backpropagation neural networks (BPNN) with
singular spectrum analysis (SSA) to accurately estimate the
joint movement of four fingers. Experimental results show that
the single-channel sEMG signals based on the BPNN_SSA
method can effectively estimate the joint movement of four
fingers, with an average R2 of 0.758 and an average NRMSE of
18.9%. Compared to other methods, signals estimated using
BPNN_SSA demonstrate higher stability and are closer to the
measured signals of four-finger joints. Thus, this study
indicates the feasibility of estimating four-finger joint
movement based on single-channel sEMG .

Index Terms — Estimation of finger movements, Single-
channel surface Electromyography, Backpropagation neural
networks, Singular spectrum analysis.

I. INTRODUCTION

uman-robot interaction (HRI), as a cutting-edge
research field, has achieved large-scale
applications in manufacturing, aerospace,
education, military, and healthcare scenarios [1-3].
In modern HRI technology, surface

electromyography (sEMG) signals are commonly used as
bioelectrical signals. Compared with other signal
acquisition methods, sEMG has advantages such as high
resolution, mature acquisition technology and non-invasive
data acquisition [4]. Currently, sEMG is primarily used for
transmitting motion commands in assistive devices,
encompassing key applications such as prosthetic control,
exoskeleton actuation, and rehabilitation robot control [5-
10]. Especially in the field of rehabilitation medicine,
sEMG, by representation of human motor intentions
[11,12], has become a pivotal technological support for
predicting dynamic prosthetic joint angles, generating
exoskeleton gait patterns, and planning continuous motion
for rehabilitation robots.

In the continuous estimation of sEMG signals,
biomechanical models and machine learning regression
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models are two primary methods for establishing the
relationship between these signals and human movement
[13]. Biomechanical models tend to be complex and
involve multiple biological parameters that cannot be
directly measured, which presents practical challenges in
their application [14]. Consequently, many researchers
prefer machine learning approaches [15,16] to create a
relationship between sEMG signals and movements. Qin et
al. [17] introduced a continuous forecasting model for
multiple joints of the forearm utilizing Convolutional
Neural Networks (CNN), attaining correlation coefficients
up to 0.9 as an evaluation benchmark. Zhang et al. [18]
proposed a model for continuously predicting lower limb
joint angles using long short-term memory neural networks.
Nevertheless, existing continuous estimation prediction
models inevitably exhibit errors and fluctuations during
predictions, thereby impacting the accuracy of joint angle
estimations. As a result, Some researchers have employed
smoothing techniques to mitigate these issues. For instance,
Qin et al. [19] applied singular spectrum analysis within
their prediction model to smooth forecasted angles
effectively. Similarly, Wang et al. [20] utilized artificial
neural networks for smoothing purposes in their predictive
model. Therefore, incorporating appropriate smoothing
techniques is crucial for enhancing the accuracy of
continuous estimation predictions.

Various methods for estimating human continuous joint
motion using multi-channel sEMG have been developed
recently. Wang et al. [21] introduced a general neural
network model for regression, which employs a genetic
algorithm to establish predictions of knee joint angles using
multi-channel sEMG signals. Similarly, Xiao et al. [22]
chose time domain features and proposed a grey feature
weighted support vector machine to build a model that
relates sEMG signals to elbow joint angles. Although
multi-channel sEMG signals demonstrate considerable
potential in joint motion estimation, their practical
application remains constrained by critical issues such as
muscle state instability, mechanical/signal interference, and
increased system complexity. Consequently, current
research is increasingly focused on utilizing sEMG signals
from a limited number of muscles or a solitary muscle to
enhance the effectiveness of human motion estimation
while addressing challenges related to operational
convenience and system complexity [23].

Compared with multi-channel sEMG signals, single-
channel sEMG signals have the advantages of simpler
equipment, lower cost, lower computational complexity
and time requirements. Recently, there has been an increase
in research focused on single-channel sEMG signals. Zhang
et al. [24] proposed a method for estimating knee joint
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Figure 1. Flowchart of the processing procedure.

motion utilizing a state-space model based on single-
channel sEMG signals. Zhang et al. [25] also introduced
knee joint motion estimation through feature-guided CNN
applied to single-channel sEMG signals. Shao et al. [26]
employed wavelet deep belief networks with single-channel
sEMG to recognize upper limb motions. Wu et al. [27]
recognized gestures by analyzing envelope signals derived
from single-channel sEMG. However, existing research on
single-channel sEMG signals has primarily focused on the
recognition of discrete movement patterns. In contrast, the
exploration of their application in continuous motion
estimation, particularly for multi-joint continuous
movements of the fingers, remains a largely unexplored
area. To bridge this, this paper proposes an approach that
utilizes a Back Propagation Neural Network (BPNN)
enhanced through Singular Spectrum Analysis (SSA),
attempting for the first time to estimate the continuous joint
angles of four fingers by employing single-channel sEMG.
In order to assess the method's efficacy, the experimental
design adopts a multi-position evaluation strategy,
conducting a comparative analysis of four-finger movement
predictions at multiple sEMG acquisition points on the
forearm. Notably, traditional machine learning models
commonly suffer from output fluctuation issues during
continuous movement angle prediction. To mitigate this
limitation, this study introduces SSA signal smoothing
techniques, effectively suppressing prediction noise
through a "decomposition-reconstruction" signal processing
approach. Experimental results show that the single-
channel sEMG estimation method based on BPNN_SSA
can not only effectively predict four-finger movements but
also outperforms traditional machine learning models
applied directly in terms of prediction performance.

The contribution of this article is as follows:
1. The four-finger continuous motion prediction was

achieved using single-channel sEMG signals.
2. The performance of the four-finger continuous motion

prediction model was improved by adopting a smoothing
processing method.

Figure 1 illustrates this article's signal processing
workflow. The remaining sections are structured : Section 2
covers the experimental setup and methods, including
signal collection, preprocessing, feature extraction,
modeling for angle estimation from sEMG, and evaluation
metrics. Section 3 presents the experiments and results,
while Section 4 provides a discussion of the research.
Section 5 draws the conclusions.

II. MATERIALS AND METHODS

A. Experimental protocol
This study selected five healthy participants (three males

and two females, aged 22-25) with no history of
neurological or muscular disorders. All experimental
procedures received approval from the medical and
experimental animal ethics committee at Northwestern
Polytechnical University. Participants were informed that
the experiments posed no harm, and they provided signed
informed consent forms. The locations of the sEMG signals
during the experiment are illustrated in Figure 2(b). EMG
sensors were placed on six muscles: Extensor Digitorum
Communis (EDC), Flexor Digitorum Superficialis (FDS),
Flexor Carpi Radialis (FCR), Flexor Carpi Ulnaris (FCU),
Extensor Carpi Radialis (ECR), and Extensor Carpi Ulnaris
(ECU). sEMG sensors with a sampling frequency of 1000
Hz were utilized, as depicted in Figure 2(c). The data
acquisition card employed was the USB-4704 from
Advantech. Additionally, an Inertial Measurement Unit
(IMU) was used to measure angle data for the collective
movement of four fingers at a sampling rate of 100 Hz, as
shown in Figure 2(d). The experimental setup is presented
in Figure 2(a). Before collecting surface EMG signals,
participants maintained still postures with relaxed muscles
to avoid muscle tension. Additionally, the wrist, elbow, and
shoulder joints were kept stable to ensure that any potential
movement in these positions did not interfere with the
collected sEMG signals. As illustrated in Figure 2(e),
during sEMG signal acquisition, fingers began from a
naturally relaxed state while only engaging in simultaneous
extension and flexion movements at the four finger joints.
After two minutes of motion, the fingers returned to their
naturally relaxed position. Each participant repeated this
experimental process five times, with a two-minute break
between consecutive trials to minimize the impact of
muscle exhaustion.

B. SEMG signal processing
1) SEMG signal denoising
sEMG signals are feeble, typically exhibiting amplitudes

ranging from 100 to 5000 µV, peak-to-peak values between
0 and 6 mV. The effective frequency spectrum of sEMG
lies within the range of 20 to 500 Hz, with a significant
concentration in the interval of 50-150 Hz. Consequently, it
is essential to denoise the raw sEMG signals to obtain
reliable data for analysis. This study employed a notch
filter to eliminate the interference at 50 Hz, followed by
bandpass filtering within the range of 20-450 Hz.
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Figure 2. Experimental Setup: (a) Schematic diagram of experimental data collection, (b) Placement of electrodes for EMG signal acquisition, (c) EMG
sensors, (d) IMU, (e) Time and sequence of actions performed by the user in a single trial.

2) Feature extraction
Following filtering, the sEMG signals were processed

using overlapping analysis windows with a window length
of 200 milliseconds and an increment of 40 milliseconds.
To accurately estimate joint movement angles, it is
necessary to extract a range of features from each data
window in order to build a comprehensive feature vector.
The time domain features, frequency domain, and time-
frequency domain features have been extensively employed
in processing sEMG signals [28, 29].

Time domain features are strongly correlated with the
amplitude properties of sEMG signals and accurately
convey angular information. Therefore, 14 time domain
features were extracted from the surface EMG signal.These
include MAV, RMS, ZC, SSC, WL, integrated EMG,
variance, kurtosis, skewness, and five coefficients derived
from autoregressive models. The extraction process for
these features plays a crucial role in capturing vital
information contained within sEMG signals that
subsequently aids in estimating joint movement angles.

C. Modeling of the angle estimates based on sEMG
The Back Propagation Neural Network (BPNN), a

widely utilized approach in supervised learning, is inspired
by the simulation of activation and information
transmission processes observed in human neurons. As a
shallow feedforward neural network, BPNN adjusts its
weights through the backpropagation algorithm to learn and
adapt to complex patterns present in input data, thereby
playing a pivotal role in machine learning and pattern
recognition. The structure comprises an input layer for
receiving data, a hidden layer bridging input and output
layers with multiple neurons, and an output layer for
generating final predictions. In this study, employed the

Figure 3. Schematic diagram of the BPNN _ SSA algorithm.

classical architecture of a BPNN. Through BPNN,
estimated angles of the four finger joints can be calculated.
However, it is important that angle curves generated by
BPNN exhibit fluctuations; thus, a smoothing method is
required to process the predicted angle signals. SSA stands
as a non-parametric approach that breaks down the original
time series into constituent parts, allowing for the
differentiation between informative components and noise
within the signals. Additionally, SSA facilitates signal
smoothing [30], capturing the trend of the signal. Therefore,
the SSA method is used in this study to optimize the
fluctuations generated by BPNN. As illustrated in Figure 3,
this represents the angle prediction framework based on the
BPNN_SSA model.

SSA is a non-parametric method used for analyzing time
series data. It combines techniques from classical time
series analysis and multivariate statistical analysis,
primarily employed to identify and extract trends, periodic
components, and noise in time series. The basic principles
of SSA are as follows:
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Figure 4. Comparative Analysis of Four-Finger Joint Angle Estimates from Six Single-Channel BPNN_SSA Models

Firstly, one chose an appropriate length L as the sliding
window (with a step size of 1) and cut the original time
series of length N into K consecutive sub-sequences. These
sub-sequences were then arranged to form an L-row and K-
column trajectory matrix X. Where K=N-L+1.
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Next, S = XXT was calculated, and then eigenvalue
decomposition was performed on matrix S to obtain a set of
eigenvalues λ1 > λ2 > ⋯ > λL ≫ 0 sorted in descending
order, along with their corresponding eigenvectors
U1, U2 ,U3 ,…,UL .Using these eigenvalues and eigenvectors,
the trajectory matrix X can be decomposed via singular
value decomposition to obtain

1 2 dX X X X    (2)

Where d = min{L, k} , Xi = λUiVi
T , Ui is the left

singular vector of Xi , Vi is the right singular vector of Xi ,
and λ is the singular value corresponding to Xi.

Subsequently, in the singular spectrum, higher singular
values generally indicate significant components with large
amplitudes in the decomposition. In contrast, lower
singular values are associated with noise components of
small amplitudes in the signal. Consequently, for signal
smoothing, one can reconstruct the signal by considering
the size of the singular values and disregarding the sub-
sequences with lower singular values deemed as noise,
thereby attaining the objective of smoothing the signal.
Hence, the modified trajectory matrix is

1 2 3' rX X X X X    (3)
Where r<d. Subsequently, the diagonal averaging

operation is performed on the processed trajectory matrix to

convert the matrix data to the original time series form of
length N.
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The goal of smoothing the forecast data can be achieved
through the above steps.

D. Evaluation criteria
The training model and additional test performance were

evaluated using the Normalized Root Mean Square Error
(NRMSE) and the Coefficient of Determination (R²), each
providing an independent assessment of the model's
estimation capabilities post-training. NRMSE reflects the
deviation in joint angles between the measured and
estimated four-finger joints, expressed as a percentage (%).
R2 assesses the model's fit to the data; when R2 approaches
1, it indicates that it fits the data well, meaning the
predicted values closely align with the observed values.
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Here, xi represents the observed value of the actual
finger joint angle for the i-th data point, x� denotes the
arithmetic mean of the actual finger joint angles across all
data points; yi i represents the predicted finger joint angle
value from the model for the i-th data point, y� denotes the
arithmetic mean of the predicted values from the model
across all data points, and N represents the total number of
data points in the dataset.
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Figure 5. Compares the estimation accuracy of sEMG signals across six channels. (a) NRMSE values, (b) R2 values. Bar graphs represent means, and error
bars are the standard error of the mean.

Figure 6. Comparison of angle estimation accuracy across six channels for three models. (a) NRMSE values, (b) R² values. Bar graphs represent the means,
and error bars indicate the standard error of the mean.

III. EXPERIMENTS AND RESULTS

A. Experimental processing
This study employed Random Forest (RF) and BPNN

regression models. For the RF predictions, we set the
number of decision trees to 100 and established 5 leaf
nodes. In the BPNN prediction phase, the model was
configured with 30 hidden layers, 1000 iterations were
performed, and an error threshold of 0.000001 was set,
along with a learning rate of 0.01. In terms of data
collection, over 12000 samples were gathered for each
channel, which is approximately equivalent to 10 minutes
of data. For model training, preprocessed data from each
channel was used as a separate input. Additionally, the
dataset was divided into five groups using a 5-fold cross-
validation method for predictive analysis.

B. Comparison of Prediction Results Across Different
Channels
Figure 4 provides an intuitive comparison of the four-

finger joint angle data from six arm regions of Subject 1,
derived from direct measurements using IMUs and
predictions generated by the BPNN_SSA model. This
comparison highlights discrepancies between the predicted
and actual joint angles across various channels, exhibiting
varying degrees of deviation. Notably, the EDC muscle
area predictions closely align with IMU measurements,
while predictions for other areas show greater divergence
from actual angles. To rigorously assess and compare these
prediction differences across different channels, this study

employed NRMSE and R² as evaluation metrics, with
results presented in Figure 5. This figure comprehensively
illustrates NRMSE and R² values for each channel location
when using the BPNN_SSA model for predictions.

In summary, although all channel locations demonstrated
a certain level of predictive accuracy, the EDC area
exhibited particularly strong performance. Specifically, the
average NRMSE for the EDC region was recorded at only
18.9%, which is significantly lower than that observed in
other channel locations—indicating superior prediction
accuracy. Concurrently, the average R² for the EDC area
reached 0.756, close to 1 and markedly surpassing those of
other channels; this further corroborates its enhanced angle
estimation capability at this site. These quantitative
evaluation results clearly underscore the exceptional
performance of angle estimation within the EDC location
relative to other areas.

C. Comparison of Results from Different Models
This experiment investigated the potential of the SSA

algorithm to enhance the performance of the BPNN model,
establishing both the BPNN model and Random Forest as
comparative benchmarks. Figure 6 clearly illustrates the
NRMSE and R² metrics for three models in predicting
finger angle across six arm regions. The results indicate
that prior to applying SSA smoothing, both the BPNN
model and RF exhibited comparable prediction
performance with no significant differences observed.
However, when integrating the SSA algorithm with the
BPNN model to create the BPNN_SSA model, there was a
marked improvement in prediction performance across all
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Figure 7. Comparison of Four-Finger Joint Angles at the Finger Extensor Area Between Different Models.

six arm regions. Furthermore, Figure 7 compares prediction
results for these three models at the EDC site. Before
implementing SSA smoothing, both the BPNN and RF
models displayed considerable fluctuations and deviations
in their predictions; conversely, the BPNN_SSA model
demonstrated a substantial ability to smooth out these
predictions and reduce errors significantly. These findings
strongly affirm the SSA algorithm's effectiveness in
enhancing the BPNN model's predictive capabilities.

IV. DISCUSSION

A. Feasibility of Single-Channel Semg Estimation
In practical applications, the effectiveness of sEMG

signals is often limited by factors such as muscle activity
status, mechanical noise, and system architecture
complexity. These limitations pose significant challenges to
their application. Therefore, it is necessary to consider
methods that utilize a small number of channels or even
single-channel sEMG signals. However, compared to
multi-channel signals, the amount of feature information
that can be extracted from a single channel is considerably
reduced, raising concerns about its ability to reflect
continuous changes in finger joint angles accurately. This
study selected simple four-finger movements as a research
case to address this issue, as depicted in Figure 2. The
experimental findings indicate that the method proposed in

the present study is capable of accurately forecasting finger
joint angles for these simple motion patterns(as shown in
Figure 7). This finding indicates the feasibility of using
single-channel sEMG signals to predict finger movements.

B. Effectiveness of Signal Smoothing Processing
During continuous finger motion estimation, details of

muscle activity captured through feature extraction
employing single-channel sEMG are relatively limited.
This limitation often leads to fluctuations in the prediction
output of the training model. As illustrated in Figure 7,
signals that lack smoothing processing can result in
significant fluctuations and even deviations in prediction
results, thereby considerably reducing the accuracy of angle
estimation. However, incorporating signal smoothing
techniques can substantially improve this situation and
reduce error margins. Smoothing processing serves as a
filtering method designed to retain the core characteristics
of a signal while emphasizing its overall trend. Digital
Butterworth filters, spline interpolation methods, and
spectrum-based filters are common smoothing techniques
in this context. Notably, when addressing non-stationary
signals such as sEMG, spline interpolation methods
frequently demonstrate superior smoothing effects.
Therefore, spline smoothing based on the SSA method can
effectively capture the signal trend when processing sEMG
signals. Especially when the predicted result is close to the
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actual observation result, the smoothing effect provided by
SSA is particularly obvious. For instance, when utilizing
sEMG signals from the EDC channel to predict joint angles,
the resulting angle curve exhibits high consistency with
data curves obtained through an IMU, as depicted in Figure
7. Therefore, by implementing signal smoothing processes,
both accuracy and stability in four-finger joint angle
estimation can be significantly enhanced—bringing
prediction outcomes closer to real-world measurements.

C. Issues in Finger Angle Estimation
Although this experiment has made significant progress

in exploring single-channel motion estimation, several key
challenges remain to be addressed. The primary challenge
pertains to the relatively simplistic finger movement
patterns utilized in the experiment, which do not adequately
encompass the complex and variable movements of finger
joints encountered in real-world scenarios. Additionally,
experimental data collection was confined to a single
session, failing to sufficiently account for potential shifts in
data distribution caused by factors such as fatigue,
environmental changes, or variations in collection position
over time; these factors can adversely affect the accuracy of
prediction results. Furthermore, while models trained
separately for each participant exhibited commendable
predictive performance, substantial inter-individual
differences in data may result in diminished model efficacy
when applied to predictions across different subjects.
Therefore, future research will concentrate on developing a
more universal and accurate model to enhance the precision
of finger joint angle estimation using single-channel sEMG
signals and ensure that this model can be broadly and
effectively adapted for diverse subjects.

V. CONCLUSION

In this paper, a prediction algorithm for four-finger joint
motion estimation using single channel sEMG signal
combined with BPNN and SSA is proposed. To evaluate
the performance of this approach, sEMG signals were
recorded from six distinct muscles: EDC, ECR, ECU, FDS,
FCR, and FCU. The proposed BPNN_SSA algorithm was
then employed to estimate four-finger joint movements.
Experimental results demonstrate that the BPNN algorithm
incorporating the SSA smoothing method outperforms both
traditional BPNN and RF algorithms in estimating four-
finger movements. Furthermore, the proposed BPNN_SSA
method effectively estimates four-finger motion using
sEMG signals from the EDC muscle, with a mean NRMSE
of 18.9% and a mean R² value of 0.758. In summary, the
BPNN_SSA algorithm based on single channel sEMG
signal can predict the continuous motion of four fingers.
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