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Abstract—This manuscript studies the finite time prescribed
performance control problem for a class of switched stochastic
nonlinear systems with input saturation. Firstly, utilizing the
prescribed performance control, the tracking error can be con-
strained within the predefined bound to improve the transient
characteristics of systems. And then, by introducing an auxiliary
system, the input saturation problem is settled. Via combining
the common Lyapunov function, fuzzy logic systems, and back-
stepping technique, a novel finite time adaptive fuzzy tracking
controller is developed to tackle unknown nonlinear functions
and stochastic disturbances. Furthermore, using comparison
theorem and the mean value theorem of integrals removes
the linear growth conditions for nonlinear term and stochastic
disturbance term in stochastic nonlinear systems. The proposed
controller guarantees the tracking error can converge to an
arbitrarily small neighborhood near the origin in finite time,
and all the signals in closed-loop systems are semi-globally uni-
formly bounded. Finally, two simulation examples are presented
to illustrate the effectiveness of the presented control strategy.

Index Terms—Finite-time stability, prescribed performance
control, input saturation, fuzzy logic systems, switched stochas-
tic nonlinear systems.

I. INTRODUCTION

NONLINEAR control, especially switched stochastic
nonlinear control, has attracted the attention of more

and more scholars and experts over the past decades [1]-[3].
In [4], the stability of switched stochastic nonlinear systems
with strict-feedback form is introduced. In [5], based on
the common Lyapunov stability theory and stochastic small-
gain theorem, a new robust adaptive fuzzy back-stepping
stabilization control strategy is developed. In [6], by using
back-stepping technique and dead-zone compensation func-
tion, a novel adaptive fuzzy control scheme is proposed.
By utilizing the structural characteristics of fuzzy systems
and common Lyapunov function, the trajectory tracking
controller is designed for a class of non-affine stochastic
nonlinear switched systems with the non-lower triangular
in [7].To mitigate data transmission and deal with system
uncertainties, the event-triggered mechanism and fuzzy sys-
tems are exploited to generate the control signal for switched
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stochastic nonlinear systems with state constraints in [8]. To
reduce the effects of unknown homogeneous growth rate and
time-varying delays, a new homogeneous output feedback
controller is designed by using two dynamic gains and the
Lyapunov–Krasovskii function in [9]. Literature [10] uti-
lizes the multiple Lyapunov–Krasovskii functions (MLKFs)
method to investigates the stability of switched stochastic
delay systems with unstable subsystems. For the adaptive
tracking control problem of switched stochastic nonlinear
systems with non-symmetric dead-zone input, literature [11]
combines fuzzy logic system, multiple stochastic Lyapunov
functions and adaptive back-stepping methods to design a
novel adaptive state feedback controller.

It is worth noting that the above results are concerned
with the infinite-time stability problems, which means the
performances of systems can be obtained only when the
time tends to infinity. However, in many real applications,
the control performances are expected to be realized in
finite time[12]. To satisfy the demand, finite-time control
(FTC) is first proposed in [13] for a class of double-integral
systems. Literature [14] uses a power integrator technique to
address the finite-time stability (FTS) problem for continuous
nonlinear systems. After the success of FTS for deterministic
systems, scholars began to solve FTS problem of stochastic
systems. In [15], based on stability in probability, a stochastic
finite-time stability theorem is proposed. Based on the almost
surely finite-time stability theorem , literature [16] proves
that almost surely global finite-time stability of stochastic
nonlinear systems in strict-feedback form can be guaran-
teed by a continuous control law. In [17], by utilizing the
comparison theorem and mean value theorem of integrals, a
finite-time stability criterion for switched stochastic nonlinear
systems is presented.

Since the input saturation can degrade the system per-
formance and even destabilize the system, it is necessary
for us to consider this subject[18]-[19]. Wang H Q et al.
applied a smooth non-affine function to approximate the
input saturation function and presented a novel adaptive
neural control scheme without requiring the prior knowledge
for bound of input saturation [20]. In [21], Li H et al.
introduced an auxiliary function, which comprises all state
variables, to solve the input saturation problem. With the
aid of efficient dynamical systems, a novel adaptive neural
tracking controller is designed to address the input saturation
problem of nonlinear stochastic switched non-lower triangu-
lar systems [22]. By using the Gaussian error function based
continuous differentiable switching model and some special
techniques, the switching asymmetric saturation nonlinearity
is overcome in [23]. By combining neural network approx-

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1087-1097

 
______________________________________________________________________________________ 



imation ability and the back-stepping technique, literature
[24] settles the adaptive output-feedback tracking control
problem of switched non-strict feedback nonlinear systems
with unknown control direction and asymmetric saturation.

Recently, a novel control methodology called prescribed
performance control (PPC) has been proposed in [25]. Since
the PPC can ensure that the tracking error is constrained
within the pre-specified bound, and the error convergence
rate is not less than the pre-specified value, it has attracted
considerable attention [26]-[27]. In [28], synthesizing PPC
and back-stepping technique develops an adaptive NN out-
put feedback tracking control scheme under deterministic
switching signal.Based on the finite-time performance func-
tion (FTPF), literature [29] proposes a modified finite-time
adaptive NN control design strategy to simplify the controller
design.By adopting a piece-wise function to characterize
finite-time prescribed performance, literature [30] develops
fuzzy adaptive switching control for stochastic systems with
arbitrary switching signal.Based on the finite time prescribed
performance control, literature [31] designs an adaptive fuzzy
controller for a class of strict-feedback systems in the pres-
ence of actuator faults and dynamic disturbances.By utiliz-
ing the multiple Lyapunov function method and the back-
stepping technique together with the prescribed performance
bounds, an adaptive NN controller is established in [32].

Motivated by above discussions, we will develop an
adaptive fuzzy finite-time controller for a class of switched
stochastic nonlinear systems with prescribed performance
and input saturation. Comparing with the existing documents,
the main contributions in this paper are summarized as
follows:

(1) Combining the finite time control, prescribed perfor-
mance control and fuzzy inference system to design the
adaptive controller for switching stochastic nonlinear systems
for the first time. The proposed controller takes into account
the transient and steady state characteristics of the closed-
loop system at the same time, ensures that the system is finite
time stable at the origin, and the tracking error is limited to
the constraint space specified by the prescribed performance
functions, which effectively improves the convergence speed
of the system and the control accuracy.

(2) Using fuzzy logic systems to approximate complex
nonlinear functions and unknown perturbations in the con-
trolled system greatly reduces the online computation amount
of the controller.

(3) Using auxiliary dynamic systems to compensate for
the nonlinearity introduced by input saturation improves the
robustness of switched stochastic nonlinear systems.

(4) Using comparison theorem and the mean value the-
orem of integrals removes the linear growth conditions for
nonlinear term and stochastic disturbance term in stochastic
nonlinear systems to broaden the application field of the
controller.

II. SYSTEM STATEMENTS AND PRELIMINARIES

A. Preliminaries

Consider the following stochastic non-linear system

dx = f(x, u)dt+ gT (x, u)dω, (1)

where x ∈ Rn denotes the state variable; u ∈ Rm denotes the
input of the system; f : Rn+m → Rn and g : Rn+r → Rr

are the continuous Borel measurable functions, and satisfy
f(0, 0) = g(0, 0) = 0; ω represents an r-dimensional
Brownian motion defined on complete probability space
(Ω, F, {Ft}t≥0, P ) with Ω representing a sample space, F
representing a σ-field, {Ft}t≥0 representing a filtration, and
P representing a probability measure.

Definition 1[17]: The solution x(t) of system (1) is prac-
tical finite-time stable in mean square, if for all x(t0) = x0,
there exist a constant ε > 0 and a settling time T (ε, x0) < ∞
such that E(|x(t)|2) < ε for ∀t > t0 + T .

Definition 2 (Itô formula) [9]: For any given positive
function V (x, t) ∈ C2,1, define the differential operator L
related with dx = f(x, t)dt+ g(x)dω as follows:

LV =
∂V

∂t
+

∂V

∂x
f +

1

2
Tr

[
gT

∂2V

∂x2
g

]
, (2)

where Tr[·] represents the trace of matrix.
Lemma 1 [6]: For zj ∈ R, j = 1, · · · ,m, 0 < p ≤ 1, the

following inequalities holds: m∑
j=1

|zj |

p

≤
m∑
j=1

|zj |p ≤ m1−p

 m∑
j=1

|zj |

p

. (3)

Lemma 2 [33]: If ˙̂
θ(t) = −γθ̂(t) + κν(t) and θ̂(t0) ≥ 0,

then θ(t) ≥ 0 for ∀t ⩾ t0, where constants γ > 0, κ > 0,
and function ν(t) is positive.

Lemma 3 [34]: For ∀(z, x) ∈ R, such that

|z|p1 |x|p2 ≤ p1p3
p1 + p2

|z|p1+p2 +
p2p3

− p1
p2

p1 + p2
|x|p1+p2 , (4)

where p1 > 0, p2 > 0, and p3 > 0.
Lemma 4 [17]: Consider the systems ẋ = f(x, u), for

∀0 ≤ τ ≤ t, if there exist a function ϖ(x(t)) ∈ C2, constants
c > 0, 0 < υ < 1 and τ > 0, κ∞-function α1 and α2

satisfying
α1 (∥x∥) ≤ ϖ(x(t)) ≤ α2 (∥x∥)
ϖ(x(t))−ϖ(x(τ)) ≤ −c

∫ t

τ
ϖυ(x(s))ds

+d(t− τ).

(5)

Then, there are a real number

T ∗ =
1

(1− υ)βc

[
ϖ1−υ(x(0))−

(
d

(1− β)c

)(1−υ)/υ
]
> 0

and a constant ε = α−1
1

[(
d

(1−β)c

)1/υ]
, such that ∥x∥ < ε,

for ∀t ≥ T ∗.
Lemma 5 (Young’s inequality)[35]: For ∀x, y ∈ R, there

exists

xy ≤ βp

p
|x|p + 1

qβq
|y|q, (6)

where β ≥ 0 , (p− 1)(q − 1) = 1, p > 1, and q > 1.
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B. System statement

Consider the following switched stochastic nonlinear sys-
tem with input saturation

dxi = (hi,η(t)(x̄i)xi+1 + fi,η(t)(x̄i))dt
+gTi,η(t)(x̄i)dω, 1 ≤ i ≤ n− 1

dxn = (hn,η(t)(x̄n)u(v) + fn,η(t)(x̄n))dt
+gTn,η(t)(x̄n)dω

y = x1

(7)

where x̄i = [x1, x2, · · · , xi]
T ∈ Ri and x =

[x1, x2, · · · , xn]
T ∈ Rn are the state variables; y ∈ R

denotes the system output; ω is r-dimensional independent
Wiener process with E{dw(t)} = 0; η(t) : [0,∞) →
M = {1, 2, · · · ,m} is the switching law. For i = 1, 2, · · ·n
and k = 1, 2, · · ·m, the functions hi,k(·) : Rn → R,
fi,k(·) : Rn → R and gki,k(·) : Rn → Rr are smooth
unknown nonlinear functions. u(v) is the control input with
saturation non-linearity, which is defined as :

u(v(t)) = sat(v(t))

=

{
sign(v(t)) ω0, |v(t)| ≥ ω0,
v(t) , |v(t)| < ω0.

(8)

Remark 1: Most of the existing finite-time control
schemes, such as [36]-[37], were designed for deterministic
systems. However, system (7) is the stochastic system, which
is more ubiquitous in practical plants. The finite-time control
methodology for the non-linear stochastic system in [18],
[22] requires that the nonlinear terms and the stochastic
disturbance terms of the system are unknown and satisfy
some linear growth conditions. However, the nonlinear term
fi,k(x̄i) and stochastic disturbance term gi,k(x̄i) of system
(7) do not satisfy the linear growth conditions. By using the
comparison theorem and mean value of integrals in [19], the
linear growth constraint can be removed. Since input satu-
ration can degrade or even deteriorate system performance,
the effects of input saturation on system performance are
considered here.

The objective of this paper is to design an adaptive fuzzy
tracking controller for the system (7) such that :

(1) the system output y can track the desired signal yd for
t > T ∗ with T ∗ being the settling time;

(2) the tracking error evolves strictly within a prescribed
decreasing bound;

(3) All signals in a closed-loop system are bounded in
probability.

Assumption 1: The desired trajectory yd and its i-order
derivatives are continuous and bounded for i = 1, · · · , n.

Assumption 2: For j ∈ I , there exist unknown constants
h and h such that 0 < h ≤ |hj,r(x̄i)| ≤ h < ∞, ∀x̄i ∈
Ri, 1 ≤ i ≤ n.

C. Fuzzy logic systems

According to universal approximation theorem, fuzzy logic
systems can approximate any Borel measurable function with
arbitrary precision. Therefore, in the subsequent adaptive
controller design, fuzzy logic systems will be used to ap-
proximate all unknown functions in the switched stochastic
nonlinear systems.

Fuzzy logic systems consist of a series of fuzzy rules, and
the fuzzy rules can be written as:

Rl: If x1 is F l
1 and · · · and xn is F l

n,
then y is Gl,

where l = 1, 2, · · · , N ; F l
i and Gl represent fuzzy

sets; N stands for the number of the fuzzy rules; x =
[x1, x2, . . . , xN ]T ∈ RNand y ∈ R represent the input
and output of the fuzzy system respectively. By applying
the singleton fuzzifier, product inference, and center-average
defuzzification, the output of the fuzzy logic system can be
described as:

y(x) =

∑N
l=1 Φl

∏n
i=1 µFi

l(xi)∑N
l=1

[∏n
i=1 µFi

l(xi)
] , (9)

where µF l
i

is the membership function of the fuzzy set F l
i ;

Φl = max
y∈R

µGl(y), and µGl(y) is the membership function

of the fuzzy set Gl.
Let

ξl(x) =

∏n
i=1 µFi

l(xi)∑N
l=1

[∏n
i=1 µFi

l(xi)
]

, ξ(x) = [ξ1(x), ξ2(x), · · · , ξN (x)]T , and Φ =
[Φ1,Φ2, · · · ,ΦN ]T . So, (9) can be rewritten as:

y(x) = ΦT ξ(x) (10)

Choosing µFi
l(xi) is the Gaussian function, it has

µFi
l(xi) = exp

((
xi − xi

l
)2

(σi
l)
2

)
, (11)

where xl
i =

[
xi1

l, xi2
l, · · ·xin

l
]T

is the central function, and
σl
i is the width of Gaussian function.

D. Prescribed tracking performance

A practical control system should not only be stable, but
also satisfy some transient and steady-state performances.
Therefore, it is practical to require that the tracking error
evolves strictly within a prescribed decreasing bound. That
is

−δ ρ(t) < e1(t) < δρ(t), ∀t ≥ 0, (12)

where δ and δ̄ are positive constants. e1 = y−yd is tracking
error. The smooth function ρ(t) is the performance function,
which satisfies three properties: (1) ρ(t) > 0; (2) ρ̇(t) ≤ 0;
(3) limt→Tf

ρ(t) = ρTf
> 0 and ρ(t) = ρTf

for t ≥ Tf

with ρTf
and Tf being the arbitrarily small constant and

the settling time, respectively. In this paper, the following
performance function is chosen.

ρ(t) = (ρ0 − ρ∞)e−κt + ρ∞, (13)

where κ, ρ0 and ρ∞ are positive design parameters.
Remark 2: It can be deduced from (13) that the initial

error and steady-state error satisfy −δρ0 < e1(0) < +δ̄ ρ0
and −δρ∞ < e1(∞) < +δ̄ρ∞ respectively. So, by rea-
sonably choosing ρ0, ρ∞ and κ, the steady-state error and
convergence speed can satisfy the prescribed performance.

To transform the constrained tracking error condition (12)
to an unconstrained form, the following error transform is
used.

e1(t) = ρ(t)S(ς1), (14)
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where ς1 is the transformed error, and the error transforma-
tion function S(ς1) is defined as

S(ς1) =
δeς1 − δe−ς1

eς1 + e−ς1
. (15)

Remark 3: It follows from (15) that (1) S(ς1) is a smooth
and strictly increasing function; (2) S(ς1) ∈ (−δ,+δ̄); (3)
limς1→+∞ S(ς1) = +δ̄ and limς1→−∞ S(ς1) = −δ.

Remark 4: It follows from −δ < S(ς) < +δ̄ and ρ(t) > 0
that −δρ(t) < e1(t) < +δ̄ ρ(t) holds.

Furthermore, it can be deduced from (14) and (15) that

ς1 = S−1

(
e1
ρ

)
=

1

2
ln

(
e1/ρ+ δ

δ̄ − e1/ρ

)
, (16)

and
ς̇1 = β

(
ė1 −

ρ̇

ρ
e1

)
, (17)

where β = (1/(e1/ρ+ δ)− 1/(e1/ρ− δ))/(2ρ) > 0, and
ρ̇ = −k(ρ0 − ρ∞)e−κt.

For the convenience of derivation, let hi,η(t)(x̄i) = hi,η(t),
fi,η(t)(x̄i) = fi,η(t), and gi,η(t)(x̄i) = gi,η(t).

Substituting e1 = x1 − yd and dx1 = (hi,η(t)x2 +
f1,η(t))dt+ gT1,η(t)dω into (17), (7) can be rewritten as

dς1 = β(h1,η(t)x2 + f1,η(t) − ẏd − ρ̇
ρe1)dt

+βgT1,η(t)dω

dxi = (hi,η(t)xi+1 + fi,η(t))dt+ gTi,η(t)dω.

2 ≤ i ≤ n− 1
dxn = (hn,η(t)u(v) + fn,η(t))dt+ gTn,η(t)dω

y = x1

(18)

III. CONTROLLER DESIGN

An adaptive fuzzy finite-time controller is designed for
switched stochastic nonlinear systems (18) in this section.
First, the following coordinate transformations are developed.

z1 = ς1, (19)

zi = xi − αi−1, (20)

zn = xn − αn−1 − l̃, (21)

where αi−1, i = 2, · · · , n− 1 is the virtual control variable;
l̃ is an auxiliary design signal, which will be designed later;
ȳ
(i)
d = [yd, y

(1)
d , · · · , y(i)d ]T with y

(i)
d representing the i-order

derivative of yd.
Step 1:
Choose Lyapunov function as:

V1 =
z1

4

4
+

hθ̃21
2r1

, (22)

where θ̃1 = θ1−θ̂1 is the parameter error, θ̂1 is the estimation
of θ1, and r1 is a positive design parameter.

Applying (2), (18) and (19), one can get

LV1 = z1
3βh1,kz2 +

3
2z1

2(βg1,k)
T
(βg1,k)

+z1
3β(h1,kα1 + f1,k(x1)− ẏd −

ρ̇
ρe1)

−hθ̃1
˙̂
θ1

r1
.

(23)

According to Lemma 5 and Assumption 2, the following
inequality holds:

3

2
z21 (βg1,k)

T
(βg1,k) ≤

3

4
l−2
1 z41 ∥βg1,k∥

4
+

3

4
l21, (24)

z31z2βh1,k ≤ 3

4
z41β

4
3h+

h

4
z42 , (25)

where l1 > 0 denotes a design parameter.
Substituting (24) and (25) into (23), one obtains

LV1 ≤ −k1z
4υ
1 − 3

4z
4
1 + z1

3
f̂1,k+z1

3βh1,kα1

+ 3
4 l1

2 + h
4 z2

4 − hθ̃1
˙̂
θ1

r1
,

(26)

where f̂1,k = βf1,k + 3
4hβ

4
3 z1 − βẏd − βρ̇

ρ e1 +
3
4 l

−2
1 z1 ∥βg1,k∥4 + k1z

4υ−3
1 + 3

4z1 and υ = 4q − 1/4q + 1
(q ≥ 2, q ∈ N).

Since f1,k are unknown functions, we can employ the
fuzzy logic systems to approximate. That is

f̂1,k = ΦT
1,kξ1,k(X1) + δ1,k(X1), (27)

where |δ1,k(X1)| ≤ ε1,k, ε1,k > 0 represents any constant
and X1 = [z1, yd, ẏd]

T .
By Lemma 5 and ξT1,kξ1,k ≤ 1, we have

z1
3 f̂1,k ≤ z1

6∥Φ1,k∥2∥ξ1,k∥2

2a21,k
+

a21,k
2

+
3

4
z1

4 (28)

+
1

4
ε4
1,k

≤ hz1
6θ1

2a21,min

+
a21,max

2
+

3

4
z1

4 +
1

4
ε41,max,

where θ1 = ∥Φ1,k∥2/h, a1,k > 0 is a design parameter,
a1,min = min{a1,k : k ∈ M},a1,max = max{a1,k : k ∈
M}, and ε

1,max
= max{ε1,k : k ∈ M}.

Substituting (28) into (26) obtains

LV1 ≤ −k1z
4υ
1 + z31

(
βh1,kα1 +

hz1
3θ1

2a21,min

)
(29)

+
h

4
z42 +

a21,max

2
+

1

4
ε4
1,max

+
3

4
l21 −

hθ̃1
˙̂
θ1

r1
.

Subsequently, choose the virtual control signal and the
adaptive law as follows:

α1 = −k1
β
z1

4υ−3 − z1
3θ̂1

2βa21,min

, (30)

˙̂
θ1 =

r1z1
6

2a21,min

− γ1θ̂1, (31)

where θ̂1 is estimation of unknown parameter θ1; k1, r1 and
γ1 are the positive design parameters.

Substituting (30)-(31) into (29), we obtain

LV1 ≤ −k1(1 + h1,k)z
4υ
1 +

hγ1
r1

θ̃1θ̂ +
h

4
z42 (32)

+
a21,max

2
+

1

4
ε4
1,max

+
3

4
l21.

It is noted that
hγ1
r1

θ̃1θ̂1 ≤ −hγ1
2r1

θ̃21 +
hγ1
2r1

θ21. (33)

So, (32) can be rewritten as

LV1 ≤ −c1z
4υ
1 − hγ1

2r1
θ̃21 +

h

4
z42 + υ1, (34)

where c1 = k1(1 + h) and υ1 = hγ1θ
2
1/(2r1) + a21,max/2 +

ε4
1,max

/4 + 3l21/4.
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Step i (2 ⩽ i ⩽ n− 1):
By the coordinate transformation zi = xi − αi−1 and Itô

formula, it has

dzi = [hi,kxi+1 + fi,k − Lαi−1] dt

+

(
gi,k −

i−1∑
j=1

∂αi−1

∂xj
gj,k

)T

dω,
(35)

with

Lαi−1 =
i−1∑
j=1

∂αi−1

∂xj
[hj,kxj+1 + fj,k)]

+ 1
2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
gTp,kgq,k +

i−1∑
j=0

∂αi−1

∂yd
(j) y

(j+1)
d

+
i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj .

(36)

Similar to Step 1, choose Lyapunov function as:

Vi = Vi−1 +
1

4
z4i +

hθ̃2i
2ri

, (37)

where ri > 0 is a design parameter.
According to Itô formula, one has

LVi = LVi−1 +
3

2
z2i

∥∥∥∥∥∥gi,k −
i−1∑
j=1

∂αi−1

∂xj

∥∥∥∥∥∥
2

+z3i (hi,k(zi+1 + αi) + fi,k − Lαi−1) (38)

−hθ̃i
˙̂
θi

ri
.

By Lemma 5 and Assumption 2 , one has

Li =
3

2
z2i

∥∥∥∥∥∥gi,k −
i−1∑
j=1

∂αi−1

∂xj
gj,k

∥∥∥∥∥∥
2

(39)

≤ 3

4
l2i +

3

4
l−2
i z4i

∥∥∥∥∥∥gi,k −
i−1∑
j=1

∂αi−1

∂xj
gj,k

∥∥∥∥∥∥
4

,

hi,kz
3
i zi+1 ≤ 3

4
hz4i +

h

4
z4i+1, (40)

where li > 0 is a design parameter. Substituting (39) and
(40) into (38), one gets

LVi ≤ −
i−1∑
j=1

(
cjzj

4υ +
hγj
2rj

θ̃2j

)
+

i−1∑
j=1

υj (41)

+z3i βhi,kαi +
h

4
z4i+1 + z3i f̂i,k

−3

4
z4i +

3

4
l2i −

hθ̃i
˙̂
θi

ri
− kiz

4
i ,

where

f̂i,k =
3

4
l−2
i zi

∥∥∥∥∥∥gi,k −
i−1∑
j=1

∂αi−1

∂xj
gj,k

∥∥∥∥∥∥
4

(42)

+fi,k − Lαi−1 ++hzi + (ki +
3

4
)zi.

As the function f̂i,k is unknown, we use the fuzzy logic
systems to model, such that

f̂i,k = ΦT
i,kξi,k(Xi) + δi,k(Xi), (43)

where Xi = [x1, · · · , xi, θ̂1, · · · , θ̂i−1, yd, ẏd, · · · , y(i)d ]T ,
|δi,k(Xi)| ≤ εi,k, εi,k > 0 is any constant.

Then, similar to (28), one has

z3i f̂i,k ≤ hzi
6θi

2a2i,min

+
a2i,max

2
+

3

4
zi

4 +
1

4
ε4
i,max

, (44)

where θi = ∥Φi,k∥2/h, ai,min = min{ai,k : k ∈ M} and
ai,max = max{ai,k : k ∈ M} with ai,k being a design
parameter; εi,max = max{εi,k : k ∈ M}.

Substituting (44) into (41) can obtain

LVi ≤ −
i−1∑
j=1

(
cjzj

4υ +
hγj
2rj

θ̃2j

)
+

i−1∑
j=1

υj (45)

+z3i hi,kαi +
hzi

6θi
2a2i,min

+
h

4
z4i+1 +

a2i,max

2

+
1

4
ε4
i,max

+
3

4
l2i −

hθ̃i
˙̂
θi

ri
− kiz

4υ
i .

Choose the virtual control signal αi and the adaptive law
˙̂
θi as:

αi = −kiz
4υ−3
i − zi

3θ̂i
2a2i,min

, (46)

˙̂
θi =

rizi
6

2a2i,min

− γiθ̂i, (47)

where θ̂i is estimated value of the unknown parameter θi,
θ̂i(0) ≥ 0; λi, ri and γi are the positive design parameters.

Substituting (46) and (47) into (45), and using

hγi
ri

θ̃iθ̂i ≤ −hγi
2ri

θ̃2i +
hγi
2ri

θ2i , (48)

(45) can be rewritten as

LVi ≤ −
i∑

j=1

(
cjzj

4υ +
hγj
2rj

θ̃2j

)
+

i∑
j=1

υj +
h

4
z4i+1, (49)

where i ∈ (2, · · · , n− 1) , υj = 3l2j/4 + a2j,max/2 +
ε4j,max/4 + hγjθ

2
j/(2rj).

Step n:
Take the following Lyapunov function:

Vn = Vn−1 +
1

4
z4n +

hθ̃2n
2rn

. (50)

By (21) and Itô formula, one has

dzn =
[
hn,ku(v) + fn,k − Lαn−1 − ˙̃

l
]
dt (51)

+

gn,k −
n−1∑
j=1

∂αi−1

∂xj
gj,k

T

dω,

where

Lαn−1 =
n−1∑
j=1

∂αn−1

∂xj
[hj,kxj+1 + fn−1,k]

+ 1
2

n−1∑
p,q=1

∂2αn−1

∂xp∂xq
gTp,kgq,k

+
n−1∑
j=0

∂αn−1

∂yd
(j) y

(j+1)
d +

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj

(52)
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According to Lemma 2, it has

LVn = LVn−1 +
3
2z

2
n

∥∥∥∥∥gn,k −
n−1∑
j=1

∂αn−1

∂xj
gn,k

∥∥∥∥∥
2

+z3n(hn,ku(v) + fn,k(x̄n)− Lαn−1 − ˙̃
l)

−hθ̃n
˙̂
θn

rn

. (53)

In order to implement the controller design, the following
dynamic system is introduced [21]:

˙̃
l = −l̃ + u(v)− v. (54)

It follows from (49) and (54) that (53) can be expressed as:

LVn = −
n−1∑
j=1

(cjzj
4υ +

hγj

2rj
θ̃2j ) +

n−1∑
j=1

υj +
h
4 z

4
n

+z3n(hn,k(l̃ + v) + fn,k(x̄n)− Lαn−1)

+ 3
2z

2
n

∥∥∥∥∥gn,k −
n−1∑
j=1

∂αn−1

∂xj
gn,k

∥∥∥∥∥
2

− hθ̃n
˙̂
θn

rn
.

(55)

By Young’s inequalities, we can get

Ln =
3

2
z2n

∥∥∥∥∥∥gn,k −
n−1∑
j=1

∂αn−1

∂xj
gn,k

∥∥∥∥∥∥
2

(56)

≤ 3

4
l−2
n z4n

∥∥∥∥∥∥gn,k −
n−1∑
j=1

∂αn−1

∂xj
gn,k

∥∥∥∥∥∥
4

+
3

4
l2n.

where ln represents a positive design parameter. Substituting
(56) into (55), it gives

LVn ≤ −
n−1∑
j=1

(
cjzj

4υ +
hγj

2rj
θ̃2j

)
+

n−1∑
j=1

υj +
3
4 l

2
n

+z3n

(
hn,k(l̃ + v) + f̂n,k(x̄n)

)
− 3

4z
4
n

−knz
4
n − hθ̃n

˙̂
θn

rn
,

(57)

where f̂n,k = fn,k(x̄n) − Lαn−1 + h
4 zn + (kn + 3

4 )zn +

3
4 l

−2
n zn

∥∥∥∥∥gn,k −
n−1∑
j=1

∂αn−1

∂xj
gn,

∥∥∥∥∥
4

.

Using fuzzy logic systems to estimate the unknown func-
tion f̂n,k, that is

f̂n,k = ΦT
n,kξn,k(Xn) + δn,k(Xn), (58)

where Xn = [x1, · · · , xn, θ̂1, · · · , θ̂n−1, yd, ẏd, · · · , y(n)d ]T ,
|δn,k(Xn)| ≤ εn,k, εn,k > 0 is any constant.

By Lemma 5 and ξTn,kξn,k ≤ 1, one has

z3nf̂n,k ≤ zn
6θn

2a2n,min

+
a2n,max

2
+

3

4
z4n +

1

4
ε4
n,max

, (59)

where θn = ∥Φn,k∥2/h, an,min = min{an,k : k ∈ M} and
an,max = max{an,k : k ∈ M} with an,k being a design
parameter; εn,max = max{εn,k : k ∈ M}.

Substituting (59) into (57) gets

LVn ≤ −
n−1∑
j=1

(
cjzj

4υ +
hγj

2rj
θ̃2j

)
+

n−1∑
j=1

υj +
3
4 l

2
n

+z3n

(
hn,k(l̃ + v)

)
− knz

4
n − hθ̃n

˙̂
θn

rn

+ zn
6θn

2a2
n,min

+
a2
n,max

2 + 1
4ε

4
n,max

.

(60)

Design the control signal ν and the adaptation law θ̂n as:

v = −cnz
4υ−3
n − zn

3θ̂n
2a2n,σ(t)

− l̃, (61)

˙̂
θn =

rnzn
6

2a2n,σ(t)
− γnθ̂n , (62)

where θ̂n(0) ≥ 0; and λn > 0, rn > 0 and γn > 0 are the
design parameters.

Substituting (61) and (62) into (60), and using

hγn
rn

θ̃nθ̂n ≤ −hγn
2rn

θ̃2n +
hγn
2rn

θ2n, (63)

one can obtain

LVn ≤ −
n∑

j=1

(
cjzj

4υ +
hγj
2rj

θ̃2j

)
+

n∑
j=1

υj , (64)

where υj = 3l2j/4+a2j,max/2+ ε4j,max/4+hγjθ
2
j/(2rj). By

far, the back-stepping design process is accomplished. Then,
the main result can be summarized as the following theorem.

Theorem 1: For the switched stochastic nonlinear system
with input saturation (7), if the initial condition satisfies
−δρ0 < e1(0) < +δ̄ ρ0, then the tracking error satisfies
the prescribed performance and all the signals of the closed-
loop system are practical finite-time stable in mean square
with virtual controller in (30), (46), adaptive laws in (31),
(47), (62), and control input in (61).

Proof : Let Lyapunov function V (Xn(t)) = Vn(t)
and λ = min {cj , γj} with j = [1, 2, · · · , n], (64) can be
rewritten as:

LVn(t) ≤ −4νλ

n∑
j=1

(
z4j
4

)ν

(65)

−λ
n∑

j=1

h

2rj
θ̃2j +

n∑
j=1

υj .

Substituting p1 = 1 − υ, p2 = υ, p3 = υ
υ

1−υ , z = 1, and

x =
n∑

j=1

h
2rj

θ̃2j into lemma 3 can get n∑
j=1

h

2rj
θ̃2j

υ

≤
n∑

j=1

h

2rj
θ̃2j + µ, (66)

where µ = (1− υ)υυ/1−υ .
According to Lemma 1, combining (65) and (66), the

following inequality holds.

LVn(t) ≤ −4νλ

 n∑
j=1

zj
4

4

υ

(67)

−λ

 n∑
j=1

h

2rj
θ̃2j

υ

+ d,

where d =
n∑

j=1

υj + λµ. And then, according to Lemma 1

and 4ν > 1 with ν ∈ (0, 1), one can get

LVn(t) ≤ −λV υ
n (t) + d. (68)
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According to Itô formula, for 0 ≤ τ < t, it obtains

E [Vn(t)]− E [Vn(τ)] =

t∫
τ

E [LVn(s)] ds, (69)

where E [·] denotes mathematical expectation.
Taking the mathematical expectation of (68), we can get

E [LVn(s)] ≤ −λ E [V υ
n (s)] + d

≤ −λ (E[Vn(s)])
υ
+ d.

(70)

Substituting (70) into (69) leads to

E [Vn(t)]− E [Vn(τ)] ≤ −λ
t∫
τ

(E[Vn(s)])
υ
ds

+d(t− τ).

(71)

It follows from Lemma 4 with ϖ(x(t) = E [Vn(t)}] that
there exists a setting time

T ∗ =

[
(E [Vn(0)])

1−υ −
(

d
(1−β)c

)(1−υ)/υ
]

(1− υ)βc
, (72)

such that

E[Vn(t)] ≤ ε, t ≥ T ∗, (73)

where ε =
(

d
(1−β)c

)1/υ
.

According to the definition of Vn(t), it produces

E

 n∑
j=1

zj
4

 ≤ 4E [Vn(t)] ≤ 4ε, t ≥ T ∗. (74)

According to the property of mathematical expectation, it
is easy to verify that

[
E
(
zj

2
)]2 ≤ E

(
zj

4
)
≤ E

 n∑
j=1

zj
4

 ≤ 4ε, (75)

where t ≥ T ∗.
Thus

E
(
zj

2
)
≤ 2

√
ε, t ≥ T ∗. (76)

It can be deduced from (14) (19) and (76) that (77) holds.

E [e1] = E
[
|y − yd|2

]
≤ 2

√
ε, t ≥ T ∗. (77)

In the similar way, we can get

E
(
θ̃2j

)
≤ 4 rmax ε, t ≥ T ∗, (78)

where rmax = max {hrj , 1 ≤ j ≤ n}.
Remark 5: It can be deduced from (76) , (77) and (78)

that all the signals zj , θ̃j , j = 1, 2, · · · , n, and the tracking
error e1 in the closed system are practical finite-time stable
in mean square. Furthermore, it can also be concluded that
the tracking error e1 can converges to the prescribed domain
defined by (12) .

The proof is complete.
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Fig. 1. Switching signal η(t) for Example 1

IV. SIMULATION EXAMPLE

In this section, two examples and two other controllers are
given to illustrate the effectiveness of the proposed adaptive
controller (FTPFCA) in this paper. The first example is
a numerical simulation, and the second one is Brusselator
model. The two controllers used as a comparison are finite
time fuzzy controller (FTFC) and finite time fuzzy controller
with auxiliary system (FTFCA).

Example 1. Consider the second-order switched stochastic
nonlinear systems as follows [17]: dx1 = (x2 + f1,η(t)(x̄1))dt+ g1,η(t)(x̄1)dω,

dx2 = (u(v) + f2,η(t)(x̄2))dt+ g2,η(t)(x̄2)dω,
y = x1,

(79)

where η(t) : [0,∞] → {1, 2, 3}, f11 = x1, f12 =
x2
1/(1 + x2

1), f13 = 2x1 cos(x1), f21 = (x1)
2 cos2(x2),

f22 = x2
2/(1 + x2

1 + x2
2), f23 = 1.5 sin2(x1)x

2
2,

g11 = 0.1x2
1/(1 + x2

1), g12 = 0.05 cos(x1), g13 =
0.03x2

1/(1 + x2
1), g21 = 0.05x2

1/(1 + x2
1 + x2

2), g22 =
0.1/(1 + x2

2), g23 = 0.05 sinx2.The fuzzy membership func-
tions are chosen as µF j

i
= exp(−0.5(xi − j)

2
), i = 1, 2, 3,

j = 0,±1,±3,±4,±7,±9. The input saturation is defined
as:

u(v(t)) = sat(v(t)) =
{

20sign(v(t)), |v(t)| ⩾ 20
v(t), |v(t)| < 20

. (80)

The design parameters are selected as follow: υ = 99/101,
λ1 = 20, λ2 = 22, a1,min = 2, a2,min = 2 , r1 = 2,
r2 = 2, γ1 = 0.2, γ2 = 0.2. The initial conditions are chosen
as [x1(0), x2(0)]

T = [0.15, 0.1]T and [θ̂1(0), θ̂2(0)]
T =

[0.3, 0.4]T . yd = sin(2t), δ = δ = 1, ρ∞ = 0.15, ρ0 =
3,K = 1. The switching signal η(t) with time is shown in
Fig. 1.

The simulation results are shown in Figs. 2-8. Figures 2
and 3 show the curves of the system output y and desired
output yd over time for the FTFC and FTPFCA respectively.
It can be seen from Fig.2 that the output of the FTFC
increases with time and the closed-loop system is unstable.
This can be due to the fact that input saturation deteriorates
the performance of the system and leads to instability.
However, the output of the FTPFCA proposed in this paper
can track the desired signal as shown in Fig.3. It indicates
that the dynamic nonlinear system introduced in this paper
overcomes the effect of input saturation to some extent and
improves the stability of the system.
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Fig. 2. System output y and desired signal yd of FTFC for Example 1
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Fig. 3. System output y and desired signal yd of FTPFCA for Example 1

To illustrate the effectiveness of prescribed performance
control, the tracking error curves of the FTPFCA, FTFCA
and the upper and lower bounds of the prescribed perfor-
mance function are shown in Fig. 4. Obviously, the tracking
error of the FTPFCA is limited to the range predefined
by the prescribed performance function and owns faster
convergence rate and smaller steady-state error than the
FTFCA.

The control input v, actual control u, state variable x2,
and adaptive parameters θ̂1 and θ̂2 are shown in Figs.5-8,
respectively. It can be seen from Figs.5-8 that all signals in
the closed-loop system are bounded and physically realiz-
able.

Example 2. Consider the following Brusselator model
[20]:  dx1 = C1 − (D1 + 1)x1 + x2

1x2,
dx2 = D1x1 + u− x2

1x2,
y = x1,

(81)

where x1 and x2 denote the concentration of intermediate
reactants. C1 and D1 represent the initial and final products,
which are usually selected as positive parameters. In addition,
as a practical reaction process, stochastic disturbance and
input saturation are unavoidable and suppose that jumping
parameters reside in the model. Therefore, the revised Brus-
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Fig. 4. Tracking errors e for Example 1
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Fig. 5. Control input v for Example 1
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Fig. 6. Actual control u for Example 1
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Fig. 7. System state of x2 for Example 1
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Fig. 8. Adaptive parameters θ̂1 and θ̂2 for Example 1

selator model can be described as follows:
dx1 = (C1,η(t) − (D1,η(t) + 1)x1 + x2

1x2

+f1,η(t)(x1))dt+ (g1,η(t))
T (x1)dω,

dx2 = (D1,η(t)x1 + u− x2
1x2 + f2,η(t)(x2))dt

+(g2,η(t))
T (x2)dω,

y = x1,

(82)

where C11 = D11 = 4/5, C12 = D12 = 9/10,
f11(x) = f12(x) = −x1/6, g11 = g12 = 0.5D(sin(x2

1)),
f21(x) = −x2

2, f22(x) = 5x2/6, g21 = g22 = Dx2
2,

and yd = 0.25 sin(2t). The fuzzy membership functions
are chosen as µF j

i
= exp(−0.5(xi − j)

2
) , i = 1, 2, 3,

j = 0,±1,±3,±4,±7,±9. The input saturation is defined
as:

u(v(t)) =

{
4sign(v(t)), |v(t)| ⩾ 4
v(t), |v(t)| < 4

. (83)

The prescribed performance function is given as:

ρ(t) = (ρ0 − ρ∞)e−Kt + ρ∞, (84)

where δ = δ = 1, ρ∞ = 0.05, ρ0 = 0.5,K = 1. The design
parameters are chosen as: c1 = c2 = 10.5, a1 = a2 = 3.5,
r1 = r2 = 0.55, γ1 = γ2 = 0.55, D = 0.01. The initial
conditions are [x1(0), x2(0)] = [0.02, 0.1] ,

⌈
θ̂1(0), θ̂2(0)

⌉
=

[0.02, 0.03]. The switching signal η(t) with time is shown in
Fig. 9.

The system output versus desired output curves for the
FTPFCA controller are shown in Fig. 10 and the output error
curves are shown in Fig. 11. For comparison, the output error
curves of both FTFCA and FTFC controllers are also given
in Fig. 11. From these two figures, it can be seen that:

(1) the maximum steady state error (MSSE) of the
FTPFCA controller is 0.045 mol/L, while the MSSE of the
FTFCA and FTFC controllers are 0.059 mol/L and 0.12
mol/L, respectively. The MSSEs of the FTPFCA and FTFCA
controllers are less than half of that of the FTFC, which can
be attributed to the fact that the auxiliary system introduced
in FTPFCA and FTFCA reduces the effect of input saturation
on the MSSE.

(2) The overshoots of the FTPFCA, FTFCA, and FTFC
are respectively 0.89 mol/L, 0.352 mol/L, and 0.378 mol/L.
The FTPFCA controller has the smallest overshoot, which
is mainly due to the prescribed performance control that
improves the transient characteristics of the closed loop
system.
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Fig. 9. Switching signal η(t) for Example 2

The control input v and actual control u are presented in
Figs. 12 and 13, respectively. The state variable x2, adaptive
parameters θ̂1 and θ̂2 are shown in Figs. 14-16. From these
figures, it is clear that all signals of the closed-loop system
are bounded.
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Fig. 10. System output y and desired signal yd of FTPFCA for Example
2

V. CONCLUSION

A finite time prescribed performance controller is designed
for the switched stochastic nonlinear systems with input
saturation using the back-stepping method. The finite time
control theory and prescribed performance control are used
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IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1087-1097

 
______________________________________________________________________________________ 



0 5 10 15 20

Time (s)

-80

-60

-40

-20

0

20

40
C

o
n
tr

o
l 
in

p
u
t 
(o

C
)

v
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Fig. 14. System state x2 of FTPFCA for Example 2
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Fig. 15. Adaptive parameters θ̂1 of FTPFCA for Example 2
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Fig. 16. Adaptive parameters θ̂2 of FTPFCA for Example 2

to improve the transient and steady-state characteristics of
the system, ensure that the system can converge to the
steady-state value in a finite time, and improve the control
speed and reduce the overshoot of the system. An auxiliary
system is introduced to solve the input saturation problem,
which improves the robustness of the system. The unknown
function in the system is approximated by the fuzzy inference
system and an adaptive algorithm. The designed controller
ensures that the system can track the desired signal quickly
and the tracking error can converge to a small neighborhood
near the origin of the coordinates in finite time.
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