
 

Abstract— Non-Hodgkin Lymphoma (NHL) is characterized 

by its diverse subtypes of lymphoid malignancies, presenting 

challenges for accurate diagnosis due to the variability in tissue 

morphology and immunophenotypic profiles. This research 

proposes a novel automated approach for NHL subtype 

classification using histopathological images, integrating a 

combination of patch-based analysis with a voting ensemble of 

Convolutional Neural Networks (CNN). Pre-trained CNN 

models such as DenseNet169, MobileNetV2, and NASNetMobile 

were enhanced using a layer-freezing technique to preserve 

learned low-level features while fine-tuning higher-level layers 

for improved specificity in NHL detection. A majority voting 

mechanism aggregates predictions from individual image 

patches, enhancing classification robustness. The proposed 

model was evaluated on the IICBU 2008 Lymphoma image 

dataset, achieving a classification accuracy of 99.11% and an F1-

score of 99.11%, surpassing previous methods. This approach 

demonstrates significant potential in improving the accuracy, 

efficiency, and clinical applicability of automated NHL subtype 

classification from histopathological images. 
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Histopathological Images, Image patching, Non-Hodgkin 
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I. INTRODUCTION 

YMPHOMA is a cancer that develops in the lymphatic 

system, a vital part of the body's immune defense. 

Lymphoma has two main classifications: Hodgkin lymphoma 

(HL) and non-Hodgkin lymphoma (NHL) [1]. HL typically 

begins in a single lymph node or group of adjacent nodes and 

then spreads to nearby lymph nodes. In contrast, NHL 

encompasses diverse lymphoid malignancies with unique 

morphological and immunophenotypic characteristics. The 

incidence of NHL has been increasing globally, underscoring 

the need for early and accurate diagnosis to ensure effective 

treatment and better patient outcomes.  

A comprehensive analysis of NHL epidemiology reveals 

that approximately 200,000 deaths occur globally each year, 

with age-standardized mortality rates exhibiting relative 

consistency across various regions [2]. Despite advancements 

in medical imaging and diagnostic technologies, 

distinguishing between NHL subtypes remains challenging 

due to the disease's complexity and variability. 

The histopathological analysis of tissue samples remains 

the gold standard for diagnosing NHL [3]. However, this 

process is challenging due to the laborious process and 

requires highly skilled pathologists to accurately interpret the 

intricate details of tissue structure and cellular morphology. 

Histopathological images of NHL present significant 

challenges due to their high variability in tissue morphology 

and staining patterns across different NHL cases. This 

variability can obscure the subtle features needed to 

distinguish between different NHL subtypes when analyzing 

the whole-slide image [4]. Early and precise diagnosis of 

NHL is critical for guiding treatment strategies and enhancing 

the quality of patient care, as timely identification of specific 

subtypes can lead to more targeted therapies and better 

prognosis. Delays or inaccuracies in diagnosis may result in 

suboptimal treatment strategies, potentially reducing survival 

rates and increasing the burden on healthcare systems [5]. 

Thus, there is an urgent need for automated assistance for 

pathologists in enhancing diagnostic accuracy and efficiency. 

The quality and clarity of histopathological images are 

crucial for accurate interpretation, aiding in medical research, 

education, and the development of diagnostic tools. However, 

the large size of histopathological images can pose 

computational challenges regarding storage, processing, and 

analysis [3]. A patch-based approach overcomes this problem 

by dividing large histopathological images into smaller, 

manageable patches, allowing for a more detailed and 

localized analysis [4]. This method allows for identifying 

localized features that may indicate NHL, thereby improving 

the accuracy of the diagnostic process [5]. Additionally, this 

approach reduces the computational load and memory 

requirements, making the training process more efficient and 

feasible on standard hardware [6]. A patch-based approach 

for analyzing histopathological images has been successfully 

implemented to handle large image sizes and extract 

meaningful information efficiently, such as breast cancer 

classification [7], uterine cervical and endometrial cancer 

subtypes classification [8], cellular morphology analysis [9], 

and invasive ductal carcinoma classification [10]. 
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Recent developments in deep learning, particularly CNN, 

have demonstrated significant potential in medical imaging 

[11]. Deep learning algorithms, including convolutional 

neural networks, are used to process grid-structured data like 

images [12]. The networks use convolutional layers to 

automatically learn and detect important features directly 

from raw input data, without requiring manual feature 

engineering. Each convolutional layer extracts increasingly 

complex features, from simple attributes like edges and 

textures to more complex patterns shapes and objects. This 

hierarchical feature learning makes CNN particularly well-

suited for tasks specifically image classification [13], image 

detection [14], image segmentation [15], and anomaly 

detection [16]. Pretrained CNN, which are models initially 

trained on extensive datasets such as ImageNet, have 

exhibited impressive success in various image classification 

tasks Given their capacity for learning generalizable 

hierarchical features [17]. In the context of NHL detection, 

pre-trained models such as MobileNetV2, DenseNet169, and 

NASNetMobile can be used to extract features from the 

histopathological images. Having been trained on millions of 

natural images, these models can recognize complex patterns 

and subtle details in medical images, which are essential for 

accurate diagnosis [18]. Fine-tuning these pre-trained models 

on NHL-specific data enables the adaptation of learned 

features for the particular task of NHL subtype classification. 

By leveraging the strengths of CNN in hierarchical feature 

learning, the models can be optimized to detect the 

morphological variations present in histopathological images 

of NHL, thereby improving diagnostic accuracy and 

efficiency [19]. 

Layer freezing is an effective technique for enhancing the 

performance of pre-trained CNN models  [20]. It leverages 

the strengths of pre-trained networks to optimize the training 

process, making it particularly valuable for medical image 

analysis where annotated datasets are frequently limited [21]. 

In this approach, the early layers of the network, that capture 

fundamental image features like edges and textures, remain 

unchanged during training, while the following layers are 

fine-tuned for the specific task [22]. The model retains 

generic, low-level features by freezing the initial layers and 

concentrates on learning higher-level, domain-specific 

features from the histopathological patches [23]. To further 

improve classification accuracy, a majority voting 

mechanism can be employed [24]. This voting mechanism 

operates by classifying each patch independently and then 

determining the final classification of the whole image based 

on the majority vote of these individual patch predictions [25]. 

Aggregating multiple predictions in this manner ensures that 

the final decision is informed by a broader context, thereby 

reducing the impact of any single misclassified patch. As a 

result, the model gains robustness to noise and artifacts 

present in individual patches, leading to more reliable and 

accurate classification outcomes. 

This research aims to develop a robust and efficient CNN-

based model for classifying NHL subtypes using the IICBU 

2008 Lymphoma Image Dataset [26]. Existing CNN-based 

approaches for NHL classification often face significant 

challenges, such as overfitting due to the limited availability 

of annotated datasets and difficulties in handling noise and 

artifacts in histopathological images. Additionally, the large 

size of whole-slide images requires substantial memory and 

processing power, limiting the feasibility of these methods in 

clinical settings. These limitations can reduce both the 

accuracy and robustness of classification outcomes. 

To address these challenges, we present a new approach 

integrating a patch-based analysis with a majority voting 

mechanism and layer freezing technique. This approach 

improves classification accuracy and robustness and 

enhances computational efficiency by focusing on smaller, 

manageable patches rather than whole-slide images. Layer 

freezing helps prevent overfitting by retaining the essential 

low-level features learned from pre-trained models. 

Meanwhile, the majority voting strategy aggregates patch-

level predictions to provide a more reliable final classification, 

thereby mitigating the impact of any single misclassified 

patch. This research makes three significant contributions. 

First, we introduce a comprehensive approach for detecting 

NHL in histopathological images using a patch-based method 

and pre-trained CNN models, overcoming the limitations of 

whole-slide analysis by focusing on localized features. 

Second, we demonstrate the effectiveness of layer freezing in 

improving pre-trained models' performance for NHL 

classification, addressing challenges like overfitting and 

optimizing feature learning for this specific medical 

application. Third, we introduce a majority voting strategy to 

aggregate patch-level predictions, which mitigates the impact 

of noise and misclassifications by considering a broader 

context for the final diagnosis, thus improving the overall 

robustness and accuracy. 

II. RELATED WORK 

The IICBU 2008 Lymphoma Image Dataset has been 

instrumental in advancing research on the automated 

detection and classification of lymphoma in histopathological 

images. This dataset comprises diverse images representing 

different lymphoma subtypes, providing a valuable resource 

for developing and evaluating machine learning models. 

Several studies have leveraged the IICBU 2008 Lymphoma 

Image Dataset for histopathological image analysis and 

classification research. Bai et al. (2019) focus on leveraging 

hierarchical local information and the GoogLeNet model to 

improve the classification accuracy of NHL in pathological 

images [27]. By integrating patch-based approaches and 

sophisticated feature extraction techniques from GoogLeNet, 

the study aims to capture localized patterns indicative of 

different NHL subtypes, thereby enhancing the diagnostic 

process through better feature representation and 

classification performance. The proposed model 

demonstrates achieved an improved overall accuracy of 

99.1% and an area under the receiver operating characteristic 

curve of 99.8%. Classifying lymphoma images utilizing both 

morphological and non-morphological descriptors proposed 

by Nascimento et al. (2018). The study involves extracting 

morphological features extracted from detected nuclei and 

non-morphological features derived from statistical metrics 

of RGB color model and grayscale images. The experiments 

conducted by support vector machines (SVM) resulted in 

98.13% accuracy, 98.33% precision, 98.00% recall, and 

98.16% F1 score [28]. Martins et al. (2019) explore 

classifying lymphoma images using color feature extraction 
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combined with a polynomial algorithm. The proposed 

method demonstrates significant improvements in the 

classification of lymphoma images. Integrating fractal 

features and the polynomial classifier achieves high accuracy 

in distinguishing between lymphoma lesions, providing 

valuable support in clinical diagnostics. The conducted 

experiments resulted in performance of accuracy rates 

between 91% and 97% [29]. Malignant lymphoma cell 

detection applied by Hamdi et al. (2023) by using an 

XGBoost network that combines MobileNet-VGG16 and 

handcrafted features such as color, shape, and texture features 

achieved an accuracy of 99.8% [30]. 

Deep learning, particularly CNN, has significantly 

advanced the field of medical image analysis. CNN 

automatically learn hierarchical features from raw image 

data, eliminating the need for manual feature extraction. 

Transfer learning [31], which involves fine-tuning pre-

trained models on specific tasks, has further enhanced the 

performance of CNN in medical image analysis. Pre-trained 

models, such as VGG, ResNet, Inception, and DenseNet, 

have demonstrated their ability to effectively transfer learning 

from large-scale image datasets like ImageNet to specific 

medical imaging tasks, including histopathological image 

analysis [32]. DenseNet, known for its dense connectivity 

patterns, has performed remarkably well in medical image 

classification. For instance, Zhang et al. (2019) used a pre-

trained DenseNet-121 model for breast cancer 

histopathological image classification, achieving high 

accuracy and robustness. The model's ability to reuse features 

across layers allows for better representation learning, crucial 

for detecting subtle patterns in histopathological images [1].  

Patch-based methods involve dividing large 

histopathological images into smaller patches, which are then 

analyzed independently. This approach mitigates the 

computational challenges posed by high-resolution images. 

Each patch is classified separately, and techniques like 

majority voting are used to aggregate patch-level predictions 

into a final classification for the whole image. This method 

has proven effective in capturing localized features critical 

for accurate diagnosis. Several studies have demonstrated the 

effectiveness of patch-based approaches in various 

histopathological tasks, including tissue classification, object 

detection, segmentation, and outcome prediction. Hirra et al. 

(2021) propose a patch-based deep learning framework for 

breast cancer classification, effectively capturing spatial 

information and local features within histopathological 

images. The model can learn discriminative patterns 

indicative of different cancer subtypes by dividing the images 

into smaller patches and employing deep CNN. The proposed 

model demonstrated 86% accuracy on a whole slide 

histopathology image dataset containing images from four 

distinct data cohorts [7]. Ciga et al. (2021) addressed the need 

for more robust and efficient methods to analyze large-scale 

histopathological images for accurate cancer diagnosis in 

whole slide images (WSIs) by recognizing challenges such as 

limited contextual information, computational inefficiency, 

and model scalability issues. This research proposed a 

negative data sampling strategy, drastically reducing the false 

positive rate (25% of false positives versus 62.5%), indicating 

that classification performances of image patches versus 

WSIs are inversely related when using the same negative data 

sampling strategy [34]. Moscalu et al. (2023) explore the 

latest advancements, challenges, and potential applications of 

histopathological image analysis and predictive modeling in 

digital pathology. This study concluded that pathologists can 

extract valuable insights from digital pathology data by 

leveraging computational techniques and machine learning 

algorithms, facilitating early detection, precise risk 

stratification, and targeted therapy selection [35]. 

Layer freezing is a technique where the weights of the 

initial layers of the pre-trained network are held constant 

during fine-tuning. This performance enables the model to 

preserve the generic, low-level features from the large-scale 

dataset while learning higher-level, domain-specific features 

from the histopathological patches. This strategy has 

improved training efficiency and generalization performance 

in medical image classification tasks. Layer freezing and 

majority voting in pre-trained CNN models is a relatively new 

approach. Ahmed et al. (2023) optimized the transfer learning 

process by investigating various layer-freezing techniques of 

the pre-trained model, such as Inception-V3 and VGG-16. 

Layer freezing in the context of transfer learning involves 

selecting specific layers of a pre-trained neural network and 

preventing them from being updated during the training 

process on a new dataset [35]. The early layers of the network 

(closer to the input layer) are frozen to capture basic and 

general features like edges, textures, and patterns. The later 

layers (closer to the output layer), which capture more 

complex and specific features, are left unfrozen and are fine-

tuned to allow the model to adapt these layers to the specific 

patterns and characteristics of histopathological images. The 

findings demonstrate that an optimal freezing strategy 

significantly improves the classification performance 

compared to training a model from scratch or using all layers 

unfrozen. Panigrahi et al. (2023) applied VGG16, VGG19, 

ResNet50, InceptionV3, and MobileNet, then implemented a 

strategic layer freezing approach to enhance the performance 

and efficiency of the classification model. The proposed 

approach not only improves classification performance but 

also enhances training efficiency. Experimental results 

showed that ResNet50 achieved substantially higher 

performance compared to the selected fine-tuned DCNN 

models and the proposed baseline model, with an accuracy of 

96.6%, a precision of 97%, and a recall of 96%. [36]. Wang 

et al. (2023) investigates the application of various depths of 

the ResNet architecture to determine the impact of network 

depth on the performance of histopathologic cancer detection 

and found that freezing most layers does not enhance the 

accuracy or efficiency of transfer learning, and the 

performance of both transfer strategies is largely determined 

by the data type [37]. 

Integrating layer freezing and majority voting with pre-

trained CNN models is promising, aiming to improve the 

accuracy and robustness of NHL detection in 

histopathological images. These approaches leverage pre-

trained CNN to enhance classification performance and 

robustness. Saha et al. (2023) explore the efficacy of various 

pre-trained CNN models such as VGG-16, VGG-19, 

Restnet50, Inception-V3, Densnet, Xception, MobileNetV2, 

Alexnet, Lenet, and majority voting was employed in 

classification for identifying and predicting monkeypox from 

medical images. The results indicate varying performance 
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across different models and classification tasks. Majority 

voting achieved the highest accuracy (97%) in the 

monkeypox vs. chickenpox classification. MobileNetV2 also 

performed well (96%) in distinguishing monkeypox from 

normal cases. Xception and LeNet achieved lower accuracies 

of 79% (monkeypox vs. measles) and 80% (monkeypox vs. 

all), respectively [38]. Pal et al. (2024) investigate the 

application of ensemble learning techniques for detecting 

brain tumors from medical images to enhance the accuracy 

and robustness of brain tumor detection by combining 

multiple machine-learning models. Several pre-trained CNN 

models, such as VGG16, ResNet50, and InceptionV3, are 

used as base classifiers within the ensemble. The ensemble 

framework utilizes a majority voting mechanism to combine 

the predictions from the individual CNN models. Each 

image's final classification decision is based on the most 

common prediction among the base classifiers. The proposed 

model achieved a high detection accuracy of 98% with a low 

false positive rate after being trained and evaluated on a 

standard brain tumor dataset of 3000 brain MRI images [39]. 

 

 

Fig. 1. Research flow 

III. PATCH-BASED VOTING CNN WITH LAYER 

FREEZING 

This research consisted of several steps, as shown in Fig. 

1. The research starts with dataset preparation, specifically 

utilizing the IICBU 2008 Lymphoma Image Dataset. Each 

histopathological image is divided into a 4x4 grid, creating 

16 patches per image to allow the model to focus on localized 

tissue features. These patches are then subjected to data 

preprocessing, where the patches are grouped and formatted 

into arrays suitable for further processing. Following 

preprocessing, a pre-trained CNN model, such as 

DenseNet169, is employed with layer freezing to retain 

general feature extraction capabilities while fine-tuning only 

the final layers. During testing, a majority voting algorithm 

aggregates predictions from the patches, selecting the most 

common class label as the final decision. The model's 

performance is then evaluated using metrics like accuracy 

and F1-score to assess its effectiveness in classifying NHL 

subtypes. 

A. Dataset 

This research utilized the IICBU 2008 lymphoma image 

dataset, which has been previously published. The dataset 

consists of 374 histopathological images of NHL in 32-bit 

TIFF format with 1,388 x 1,040 pixels. Examples of images 

from this dataset can be seen in Fig. 2. The NHL dataset 

includes images from three distinct lymphoma classes: 

chronic lymphocytic lymphoma (113 images), follicular 

lymphoma (139 images), and mantle cell lymphoma (122 

images). All three types of lymphomas are aggressive B-cell 

lymphomas with high malignancy rates. 

 

 
Fig. 2. Example of Lymphoma Sub-Type Images: CLL, FL, 

MCL 

B. Proposed architecture 

The proposed architecture of patch-based 

histopathological images using voting CNN with layer 

freezing for NHL detection shown in Fig. 3. The experiments 

were conducted in three main steps: patch-based 

histopathological images, implementation of CNN Pre-

trained models, and layer freezing with majority voting. 
 

Patch-based Histopathological Images 

The method begins by dividing each whole-slide 

histopathological image into 16 equally-sized patches. This 

process, known as image patching, facilitates the analysis of 

large images by breaking them down into smaller, more 

manageable segments. Each patch retains the critical local 

information needed for classification, ensuring that even 

subtle histopathological features are captured given the 

partition of the image I with H×W dimensions. Each patch 𝑃𝑖  

will have dimensions of 
𝐻

4
×

𝑊

4
 . This approach ensures that 

the model can capture localized histopathological features 

more effectively, improving the granularity and accuracy of 

the analysis. 
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Fig. 3. Proposed architecture

Implementation of CNN Pre-trained models 

This research employs pre-trained CNN models, 

specifically MobileNetV2, DenseNet169, and 

NASNetMobile, to extract features from the patches. 

MobileNetV2 is known for its mobile efficiency and 

embedded vision applications, utilizing depth-wise separable 

convolutions to reduce the number of parameters. 

DenseNet169, with its dense connectivity pattern, ensures 

efficient gradient flow and feature reuse, making it suitable 

for complex image recognition tasks. NASNetMobile, 

designed through Neural Architecture Search, provides an 

optimized architecture that balances accuracy and 

computational efficiency. These models, pre-trained on large 

image datasets, are fine-tuned on the histopathological 

patches to adapt to the specific task of NHL subtype 

classification. The configuration setting of the pre-trained 

models is explained in Table I. 
 

TABLE I 

PARAMETER SETTING 

Configuration Setting 

Input Size 255x255 pixels 
Activation Function ReLu 

Optimizer Adam, SGD, RMSprop, AdamW, Adadelta, 

Adegrad, Adamax, Nadam, and Ftrl 
Batch Size 8, 16, and 32 

Learning rate 0,001 and 0,0001 

 

Layers Freezing and Majority Voting 

Layer freezing was conducted using two scenarios: layer 

freezing on the back layers and layer freezing on the front 

layers. Layer freezing on the back layers means the weights 

of these layers remain unchanged during training while the 

earlier layers (closer to the input) are updated. Freezing the 

back layers helps preserve the learned features from the pre-

trained model and focuses the training process on fine-tuning 

the initial layers. This layer freezing can be particularly 

effective when the initial layers already capture the general 

features well, and the model needs to adapt to specific 

features in the new dataset. Layer Freezing on the front layers 

approach keeps the weights of the initial layers intact while 

allowing the later layers to be updated during training. 

Freezing the front layers can be advantageous when the initial 

layers contain fundamental features like edges and textures 

that are useful across various datasets. At the same time, the 

deeper layers need to learn the specific characteristics of the 

target dataset. 

 

Fig. 4. DenseNet169 Architecture with Layer Freezing 

TABLE II 

ACCURACY OF PRE-TRAINED CNN MODEL 

Optimizer MobileNetV2 DenseNet169 NASNetMobile 

Adam 0,863 0,8675 0,8641 

SGD 0,8619 0,902 0,8753 

RMSprop 0,8541 0,8953 0,8719 

AdamW 0,8664 0,8675 0,8653 

Adadelta 0,843 0,882 0,8686 

Adegrad 0,8742 0,9042 0,8708 

Adamax 0,8486 0,8898 0,8575 

Nadam 0,8441 0,8719 0,8675 

Ftrl 0,843 0,863 0,8597 
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The illustration of DenseNet169 architecture incorporating 

a layer-freezing strategy presented in Fig. 4. The initial part 

of the architecture begins with a convolutional layer applying 

a 7×7 filter with a stride of 2, followed by a max pooling layer 

with a 3×3 filter to reduce spatial dimensions and extract low-

level features. Subsequent dense blocks are interspersed with 

transition layers, where each dense block consists of multiple 

convolutional layers that concatenate outputs from all 

preceding layers, promoting feature reuse and efficient 

gradient propagation. The frozen layers highlighted with 

blue-colored boxes, indicating that these layers retain their 

pre-trained weights and are not updated during training. This 

allows the model to preserve generic, low-level features such 

as edges and textures, while the unfrozen layers at later stages 

of the architecture (represented by the non-colored blocks) 

are fine-tuned to learn domain-specific patterns relevant NHL 

subtype classification. The custom layers at the end of the 

network, which include batch normalization, ReLU 

activation, a dense layer, and a softmax layer, are used for 

final feature mapping and class probability output. By 

freezing early layers and adjusting deeper layers, the model 

balances feature generalization with specialization, 

enhancing classification performance while mitigating 

overfitting. 

The value of layer freezing for the front and back layers 

was set to range from 10% to 100% sequentially. This 

strategy reduces the risk of overfitting and speeds up the 

training process. Let 𝜃𝑓 denote the parameters of the frozen 

layer and 𝜃𝑡 the parameters of the trainable layers. The model 

is fine-tuned by optimizing 𝜃𝑡  while keeping 𝜃𝑓  fixed. The 

final classification of image 𝐼  is determined by a majority 

voting mechanism across its patches {𝑃1,  𝑃2, … ,  𝑃16}. Each 

patch 𝑃𝑖  is classified independently, yielding predictions 𝑦𝑖 . 

The final label 𝑌  is given by 𝑌 =

arg 𝑚𝑎𝑥𝑐∈{𝐶𝐿𝐿,𝐹𝐿,𝑀𝐶𝐿} ∑ ∏(𝑦𝑖 = 𝑐)16
𝑖=1   where ∏(𝑦𝑖 = 𝑐)  is 

the indicator function that equals 1 if 𝑦𝑖 = 𝑐 and 0 otherwise. 

This ensemble approach enhances the robustness and 

reliability of the classification outcomes. 

IV. RESULT AND DISCUSSION 

A. Performance of pretrained CNN models 

A detailed comparison highlights the accuracy achieved by 

three pre-trained CNN models, fine-tuned with different 

optimizers, for classifying NHL in histopathological images, 

is summarized in Table II. The findings reveal distinct 

performance patterns across the models and optimizers, 

highlighting the impact of model architecture and 

optimization technique on classification accuracy. 

DenseNet169 consistently achieves higher accuracy than 

MobileNetV2 and NASNetMobile across various optimizers, 

with its highest accuracy of 90.42% using Adagrad and 90.2% 

with SGD, suggesting that its densely connected layers 

promote feature reuse and efficient gradient flow, robust 

feature learning from histopathological images. Optimizer 

choice significantly impacts accuracy, with Adagrad and 

SGD yielding the best results for DenseNet169 due to 

Adagrad's adaptive learning rate and SGD's ability to avoid 

local minima through stochastic updates. In contrast, 

MobileNetV2 and NASNetMobile show varied performance 

across optimizers, with MobileNetV2 reaching 87.42% 

accuracy with Adagrad but dropping to 84.3% with Adadelta 

and Ftrl, while NASNetMobile peaks at 87.53% with SGD 

and drops to 85.75% with Adamax, indicating that the choice 

of optimizer affects their generalization capabilities, 

especially for these lighter architectures. 

The superior performance of DenseNet169 can be 

attributed to its unique architecture, which includes dense 

connections that facilitate the efficient flow of information 

and gradients throughout the network. These connections 

allow the model to reuse features from earlier layers, making 

it particularly effective for complex classification tasks such 

as distinguishing NHL subtypes. DenseNet169's ability to 

achieve high accuracy across multiple optimizers 

demonstrates its versatility and robustness, making it more 

suitable for diverse patterns and high variability in 

histopathological images. 

The patch-based approach used in this research also 

contributes to the models' performance by dividing large 

histopathological images into smaller, manageable patches. 

This method allows the models to focus on localized features 

that may indicate NHL, improving the detection of subtle 

morphological variations. By training the models on these 

patches, the network can learn to recognize critical features at 

different scales, thereby enhancing its overall accuracy. The 

efficacy of DenseNet169, particularly with Adagrad and SGD, 

suggests that combining its dense architecture with patch-

based analysis enables the model to capture more detailed and 

localized information, leading to higher classification 

accuracy. 
TABLE III 

PERFORMANCE RESULT OF PRECISION, RECALL AND F1-SCORE 

Optimizer 
MobileNetV2 DenseNet169 NASNetMobile 

P R F P R F P R F 

Adam 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 

SGD 0,86 0,85 0,85 0,90 0,90 0,90 0,87 0,87 0,87 

RMSprop 0,85 0,85 0,85 0,89 0,89 0,89 0,81 0,87 0,87 

AdamW 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 

Adadelta 0,84 0,84 0,84 0,88 0,88 0,87 0,86 0,86 0,86 

Adagrad 0,87 0,87 0,87 0,90 0,90 0,90 0,86 0,86 0,86 

Adamax 0,84 0,84 0,84 0,89 0,88 0,88 0,85 0,85 0,85 

Nadam 0,84 0,84 0,84 0,87 0,87 0,87 0,86 0,86 0,86 

Ftrl 0,84 0,84 0,84 0,86 0,86 0,86 0,86 0,85 0,85 
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DenseNet169 consistently outperforms MobileNetV2 and 

NASNetMobile across various optimizers, achieving the 

highest precision, recall, and F1-scores, particularly with 

SGD and Adagrad, where all three metrics reach 0.90, as 

shown in Table III. This performance indicates that 

DenseNet169's architecture, with its dense connections 

facilitating feature reuse and efficient gradient flow, is well-

suited for capturing complex patterns in histopathological 

images. The consistent performance across metrics suggests 

that DenseNet169 maintains a balanced ability to identify and 

retrieve relevant cases, demonstrating robustness in its 

classification capabilities. The choice of optimizer 

significantly impacts the models' performance, with SGD's 

stochastic updates and Adagrad's adaptive learning rate 

proving most effective for DenseNet169, likely due to their 

ability to enhance the model's generalization and minimize 

classification errors. 

In contrast, MobileNetV2 and NASNetMobile show lower 

and more variable results, with their precision, recall, and F1-

score generally lagging behind DenseNet169's. MobileNetV2 

performs best with Adagrad (0.87 for all metrics). However, 

it drops to 0.84 with optimizers like Adadelta, Adamax, 

Nadam, and Ftrl, indicating that its simpler architecture may 

need help fully exploiting specific optimizers' benefits. 

NASNetMobile exhibits more variability in recall, reaching 

0.87 with RMSprop and 0.85 with Adamax and Ftrl, 

suggesting that its ability to retrieve relevant instances is 

more sensitive to the optimization method. The differences 

across models and optimizers emphasize the importance of 

choosing the right combination, with DenseNet169 showing 

greater adaptability and resilience in handling the challenges 

of histopathological image classification. 

The performance of the patch-based classification model 

for histopathological images is illustrated in the confusion 

matrix shown in Fig. 5. The model performs well, correctly 

classifying 259 out of 272 instances for CLL, 336 out of 336 

instances for FL (with perfect accuracy), and 296 out of 304 

instances for MCL. Misclassifications are minimal, with 13 

CLL instances wrongly predicted as FL and only a few MCL 

cases misclassified as CLL or FL. The high accuracy, 

particularly for FL, highlights the robustness of the model, 

while the small number of errors demonstrates its 

effectiveness in distinguishing these cancer types. 

 

Fig. 5. Confusion matrix of image patching 

 

The performance of a voting-based ensemble model for 

classifying histopathological images is depicted in the 

confusion matrix in Fig. 6. The model accurately classified 

16 out of 17 CLL instances, with only one misclassified as 

MCL, while all 21 FL instances were correctly classified 

without error. For MCL, the model correctly identified 19 

cases with no misclassifications. This performance 

demonstrates the effectiveness of the voting mechanism, 

which aggregates predictions from multiple classifiers, 

resulting in high accuracy and minimal errors across the 

categories. 

 

Fig. 6. Confusion matrix of image voting 

 

Model performance is illustrated by the Receiver 

Operating Characteristic (ROC) curve in distinguishing CLL 

from other classes shown Fig. 7. The curve obtained a high 

Area Under the Curve (AUC) score of 0.99, indicating 

excellent discriminatory ability. The True Positive Rate 

(sensitivity) remains consistently high across varying False 

Positive Rates, demonstrating the model's robustness in 

correctly identifying CLL cases. 

 

 
Fig. 7. ROC Curve for CLL Classification Against 

Other Subtypes 

 

The model's performance in distinguishing FL from other 

subtypes is demonstrated in Fig. 8 through the ROC curve. 

Achieving an AUC score of 0.99, the model exhibits 

exceptional discriminatory capability, effectively classifying 

FL cases with high sensitivity across various false positive 
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rates. This result highlights the model's robustness and 

accuracy in handling challenging classification tasks. 

 

 
Fig. 8. ROC Curve for FL Classification Against 

Other Subtypes 
 

The model's ability to distinguish MCL from other 

subtypes is represented in Fig. 9 through the ROC curve. With 

an AUC score of 0.99, the model demonstrates exceptional 

classification performance, maintaining high sensitivity 

across varying false positive rates. This result highlights the 

model's robustness and effectiveness in accurately identifying 

MCL cases despite the challenges associated with 

overlapping features among subtypes. 

B. Impact of hyperparameter tuning 

The choice of learning rate and batch size considerably 

affects the model's performance in classifying 

histopathological images for NHL, as highlighted in Table IV. 

A higher learning rate of 0.001 consistently yields better 

results across precision, recall, F1-score, and accuracy than a 

lower learning rate of 0.0001. Specifically, metrics remain 

above 0.90 with the higher learning rate, while they drop 

below 0.90 when the learning rate is reduced. This 

performance indicates that the higher learning rate enables 

more substantial weight updates, allowing the model to 

converge more effectively and capture essential patterns in 

the data. In contrast, the lower learning rate may cause slower 

convergence and inadequate parameter updates, leading to a 

suboptimal classification performance. 

 

 
Fig. 9. ROC Curve for MCL Classification Against 

Other Subtypes 

 
 

 

TABLE IV 

RESULT OF HYPERPARAMETER TUNING 

Learning rate Batch size Precision Recall F1-Score Accuracy 

0,001 8 0,9038 0,9036 0,9035 0,9053 

0,001 16 0,9017 0,9023 0,9017 0,9031 

0,001 32 0,9027 0,9025 0,9023 0,9042 

0,0001 8 0,8985 0,8988 0,8983 0,8998 

0,0001 16 0,8915 0,8917 0,8914 0,8931 

0,0001 32 0,8748 0,8752 0,8738 0,8753 

 
TABLE V 

PERFORMANCE RESULT OF LAYER FREEZING ON THE BACK LAYERS 

Value Precision Recall F1-Score Accuracy 

10% 0,9387 0,9352 0,9366 0,9365 

20% 0,9253 0,9226 0,9237 0,9243 

30% 0,9247 0,9207 0,9223 0,922 

40% 0,9408 0,9366 0,9377 0,9376 

50% 0,9572 0,9541 0,9554 0,9555 

60% 0,943 0,9416 0,9422 0,9421 

70% 0,9408 0,9358 0,9377 0,9376 

80% 0,9722 0,9711 0,9716 0,971 

90% 0,9636 0,9618 0,9623 0,9621 
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TABLE VI 

PERFORMANCE RESULT OF LAYER FREEZING ON THE FRONT LAYERS 

Value Precision Recall F1-Score Accuracy 

10% 0,9744 0,9727 0,9734 0,9733 

20% 0,9442 0,9212 0,9268 0,9276 

30% 0,9887 0,987 0,9878 0,9878 

40% 0,9914 0,9909 0,9911 0,9911 

50% 0,9819 0,9804 0,981 0,9811 

60% 0,9853 0,984 0,9846 0,9844 

70% 0,9782 0,9749 0,9762 0,9766 

80% 0,9913 0,9905 0,9909 0,9911 

90% 0,9884 0,9876 0,9879 0,9878 

 

Regarding batch size, the results suggest that smaller batch 

sizes, especially 8 and 32, yield higher performance metrics 

compared to a batch size of 16. For instance, with a learning 

rate of 0.001, The best performance is observed with a batch 

size of 8, reaching an F1-score of 0.9035 and an accuracy of 

0.9053. This performance indicates that smaller batches, 

which allow for more frequent updates to the model weights, 

can help the model generalize better. Although performance 

remains relatively stable across different batch sizes when 

using a learning rate of 0.001, the model is more responsive 

to changes in the learning rate than to batch size adjustments. 

Combining a learning rate of 0.001 and a batch size of 8 

provides the optimal balance for achieving the highest 

classification performance. 

The training and validation accuracy results are depicted in 

Fig. 10, offering a clear overview of the model's performance 

while training process. The graph shows how the model's 

training and validation accuracy changed over 100 epochs. 

The training accuracy (blue line) rapidly increases and 

reaches almost 100% by around 10 epochs, showing that the 

model effectively learns from the training data. The 

validation accuracy (red line) also increases quickly and 

stabilizes around 95%, slightly lower than the training 

accuracy, suggesting good but slightly overfitted performance. 

The small gap between the two accuracies indicates that the 

model generalizes well to unseen data, but the perfect training 

accuracy might hint at slight overfitting. Overall, the model 

shows strong performance with stable accuracy for both 

training and validation after the early epochs. 

C. Effectiveness of Layer Freezing and Majority Voting 

To determine the impact of layer freezing on the 

DenseNet169 model's performance, further experiments were 

conducted with two scenarios: layer freezing on the back 

layers and layer freezing on the front layers. The results are 

shown in Table V for layer freezing on the back layers and 

Table VI for layer freezing on the front layers. The best result 

was achieved by layer freezing 40% of the front layers with 

an accuracy of 99.11%. 

The experiments showed distinct differences in 

performance based on which layers were frozen. Freezing the 

back layers preserved the specialized features learned during 

pre-training while allowing the model to adapt the initial 

layers to the new dataset. This scenario effectively 

maintained high performance across precision, recall, F1-

score, and accuracy. Conversely, freezing the front layers 

allowed the deeper layers to specialize in identifying the 

specific characteristics of the lymphoma subtypes while 

leveraging the generalized features captured by the initial 

layers. Depending on the nature of the histopathological 

images and the specific requirements of the classification task, 

either approach could be advantageous. The choice between 

these two strategies should be informed by the dataset's 

characteristics and the specific features that need to be 

emphasized during training. 

D. Analysis of Misclassifications in NHL Subtypes 

This section identifies specific subtypes that are harder to 

classify due to overlapping histopathological features and 

morphological similarities. A successful prediction for a 

sample classified as Follicular Lymphoma (FL) shown in Fig. 

11. The final classification aligns with the actual label (actual: 

FL, predicted: FL) based on the patch-based voting 

mechanism. The image is divided into 16 patches, each 

independently classified as FL, and the majority voting 

mechanism aggregates these patch-level predictions to 

determine the final label for the whole image. In this example, 

all patches were correctly predicted as FL, indicating the 

model's ability to consistently recognize the morphological 

features characteristic of FL. These features likely include 

uniform cellular structures, distinct nuclear patterns, and 

specific staining characteristics visible in the patches. 

 

 

Fig. 10. Training and Validation Accuracy 
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Fig. 11. Example of Successful Voting Prediction for FL 

 

The misclassification case shown in Fig. 12, where the 

final prediction for the image, determined through the patch-

based voting mechanism, is FL, while the actual label is MCL. 

The image is divided into 16 patches, with some patches 

correctly classified as MCL (blue boxes), but the majority are 

incorrectly classified as FL (red boxes) or CLL. This example 

highlights the model's difficulty in distinguishing between 

subtypes with overlapping histopathological features, 

demonstrating the need for improved feature extraction or 

preprocessing to address such challenges. 

The patches classified as FL or CLL suggest that the model 

may not have fully learned the distinguishing features of 

MCL, likely due to a lack of sufficient representation or 

variability of MCL samples during training. Noise and 

artifacts in the patches may also obscure critical features, 

further contributing to misclassification. 

E. Comparison with previous method 

A comparison of NHL classification performance between 

our method and existing studies is presented in Table VII. It 

indicates that our method, using patch-based DenseNet169 

with layer freezing and majority voting, achieves an accuracy 

of 99.1%, which is on par with the performance of the patch-

based GoogLeNet. This high level of accuracy demonstrates 

the efficacy of layer freezing in the CNN architecture, 

allowing the model to retain low-level features while 

focusing on learning high-level, domain-specific features. 

Our proposed method, the patch-based DenseNet169 with 

layer freezing and majority voting, stands out as the best 

compared to other approaches despite having the same 

accuracy as Patch-based GoogLeNet (99.1%). First, the 

integration of layer freezing allows us to leverage the 

strengths of pre-trained models by retaining the low-level 

features learned from large datasets while fine-tuning only the 

higher layers to adapt to the specific characteristics of NHL 

images. This technique significantly reduces the risk of 

overfitting, especially when dealing with smaller medical 

datasets, improving the model's robustness. Additionally, the 

majority voting mechanism enhances the classification by 

aggregating predictions from individual image patches, 

making the model more resilient to noise or misclassified 

patches and ensuring more reliable final predictions. 
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Fig. 12. Example of NHL Misclassification  

 
TABLE VII 

RESULT OF OUR METHOD AND EXISTING STUDIES 

Method 
Accuracy 

(%) 

Patch-based GoogLeNet [27] 99.1 

ResNet50 [36] 96.6 

Gradient Boosting Decision Tree [40] 93.2 

Fractal features and Hermite polynomial [29] 97.6 

Patch-based DenseNet169 with layer freezing and 

majority voting [Ours] 
99.1 

 

Compared to ResNet50 and the Gradient Boosting 

Decision Tree, which achieved lower accuracy (96.6% and 

93.2%, respectively), our method balances classification 

accuracy with computational efficiency, mainly when dealing 

with high-dimensional medical images. Furthermore, while 

the fractal features and Hermite polynomial method also 

show strong performance (97.6%), it relies heavily on 

handcrafted features, making it less flexible and adaptable 

than our deep learning-based approach, which automatically 

extracts and refines relevant features without the need for 

manual intervention. Overall, our method's combination of 

cutting-edge deep learning techniques, transfer learning, and 

ensemble strategies makes it highly effective for precise and 

efficient NHL detection. 

F. Limitation of the study 

The primary limitation of this research is the relatively 

small size of the IICBU 2008 dataset, which includes only 

374 images and three NHL subtypes, potentially limiting the 

generalizability of the results to broader and more diverse 

clinical datasets. Additionally, while the layer freezing and 

majority voting mechanisms improve classification 

performance, they may introduce computational overhead, 

making real-time clinical applications more challenging. The 

lack of validation on external datasets further restricts the 

assessment of the model's robustness across varying data 

sources, and there is a potential risk of overfitting due to the 

model's near-perfect training accuracy, which may not fully 

reflect real-world conditions. 

V. CONCLUSION 

This research successfully applies a patch-based 

histopathological image classification method using a pre-

trained DenseNet169 model with a layer-freezing strategy 

and majority voting for NHL subtype detection. Through 

meticulous preprocessing, including the division of images 

into 4 × 4 patches and the use of Adagrad optimizer alongside 

a majority voting algorithm, the model achieved exceptional 

performance metrics, with an accuracy of 99.11% and 

precision, recall and F1-score of 99.14%, 99.09%, and 

99.11%, respectively. The hyperparameter tuning results 

further validated the efficacy of the chosen model and 

configurations, with the optimal performance observed at a 
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learning rate of 0.001 and a batch size of 8. These findings 

underscore the potential of integrating advanced CNN 

architectures and innovative strategies to enhance the 

accuracy and efficiency of histopathological image analysis, 

thereby improving diagnostic workflows and clinical 

outcomes for NHL. 

Further validation of our model on more extensive and 

diverse datasets and integration into clinical practice will be 

essential to fully realizing its potential impact. Additionally, 

ongoing refinement and optimization of the model 

architecture and training processes will continue to enhance 

its performance and generalizability across different medical 

imaging tasks. 
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