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Abstract—The non-commutative joining operation for for-
mulas and (base) hypergraphs recently introduced is considered
here in a more general setting. Criteria for the (non-)diagonality
of the joined hypergraph, and several results regarding the
dependence of the orbit parameters from the joining-bijection
are proven. Further, a commutative variant of this operation,
called symmetric join, is defined. The properties of (dense)
maximal non-diagonality, respectively minimal diagonality are
characterized, for the special case that trivial hypergraphs are
joined symmetrically.

Index Terms—hypergraph, CNF-satisfiability, transversal, or-
bit

I. INTRODUCTION

THE propositional satisfiability problem (SAT) for con-
junctive normal form (CNF) formulas is the basic NP-

complete problem [6]. Via reduction numerous computa-
tional problems can be encoded as equivalent instances
of CNF-SAT [7]. Besides the detection and the study of
subclasses for which SAT can be decided efficiently such
as quadratic formulas, (extended and q-)Horn formulas,
matching formulas, nested, co-nested formulas, and exact
linear formulas etc. [2], [4], [5], [8], [9], [10], [11], [17],
[18], one is interested in the structural properties of CNF-
SAT.

In this paper the investigation of the structure of the
class of base hypergraphs and its (fibre-)transversals is con-
tinued. A base hypergraph (BHG) underlies several CNF-
formulas simultaneously, especially all its transversals. A di-
agonal BHG admits unsatisfiable transversals, whereas a non-
diagonal one has satisfiable transversals, only. A structural
parameter that is proposed to distinguish between diagonal
BHGs is the number of orbits in the space of unsatisfiable
transversals with respect to the action of the complementation
group on CNF. In that manner, a hierarchy of diagonal BHGs
appears, on whose ith level reside all instances admitting
i orbits of unsatisfiable transversals [14]. Especially for
i = 0, one has the class of non-diagonal BHGs, wherein the
maximal non-diagonal instances reside, which even might be
dense, representing the most extreme non-diagonal BHGs.

The present paper can be considered as a sequel to our
paper [16], where in particular a (non-commutative) joining
operation for CNFs, respectively BHGs, is introduced which
mainly is applied there for the construction of specific classes
of (dense) maximal non-diagonal, as well as of minimal
diagonal BHGs.

Here we focus on the structure of that joining opera-
tion itself which is based on an intrinsic bijection. First
several criteria for the (non)-diagonality of a joined BHG
are provided some of which are proven to be independent
of the bijection. We also address the question whether the

Manuscript received February 8, 2025; revised March 24, 2025.
Stefan Porschen is a member of the Mathematics Group, at Department 4,

HTW Berlin, D-10313 Berlin, Germany (e-mail: porschen@htw-berlin.de).

orbit parameters are independent of the bijection. Specific
instances are constructed establishing that the join of non-
diagonal BHGs may have a non-diagonal, or a diagonal result
depending on the bijection used. The logarithm of the number
of all orbits is shown to be independent of the bijection if
one joining component is uniform. However, if one joining
component is diagonal, the number of orbits of unsatisfiabe
transversals of the result is shown to depend on the bijection
used, at least in the non-uniform case.

Further, a symmetric variant of the joining operation is
discussed that is commutative and has a version for CNFs,
respectively BHGs. We present and prove the main prop-
erties of symmetrically joined CNFs as well as their base
hypergraphs. In this context, we also reveal the connection
to the not-all-equal satisfiability problem for formulas resp.
to the bicolorability problem (BIC) for hypergraphs. Here
we show that the membership to BIC of a (symmetrically)
joined BHG is independent of the bijection used for this join
where both joining components have to be members of BIC.

Next, for the specific case of symmetrically joining triv-
ial BHGs, necessary and sufficient criteria are shown for
obtaining a non-diagonal, a minimal diagonal, or a (dense)
maximal non-diagonal result. Also a local criterion for the
non-diagonality of the symmetric join of not necessarily
trivial BHGs is provided.

Several remarks with examples throughout illustrate the
concepts. Finally, presenting some conclusions also offers
directions for further investigations.

II. NOTATION AND PRELIMINARIES

For convenience, the basic terminology and notation are
collected first: A (propositional) variable, x over {0, 1} can
appear as a positive literal x or as a negative literal x, also
called the complemented variable. A clause c is a finite non-
empty disjunction of literals over mutually distinct variables;
it is represented as a set c = {l1, . . . , lk}, or simplifying, as
a sequence of literals: c = l1 · · · lk. Given x, l(x) denotes the
literal over x. A clause is positive (resp. negative) monotone,
if all its literals are positive (resp. negative); monotone
means any of these cases. A (conjunctive normal form)
formula C is a finite conjunction of different clauses which
is represented as a set of these clauses C = {c1, . . . , cm}.
Let CNF be the collection of all formulas. If all clauses of
C are positive (negative) monotone, C is called a positive
(negative) monotone formula, and called monotone if all its
clauses are monotone. For a formula C (clause c), by V (C)
(V (c)) denote the set of variables occurring in C (c). The
size of C is |C|, and ‖C‖ =

∑
c∈C |c| is its length.

For U ⊂ V (C), the subformula C(U) ⊆ C consists of all
clauses possessing a literal over a variable in U . We identify
C({x}) with C(x) whenever x ∈ V (C). Restricting every
clause c ∈ C(U) to the literals over U only, denoted as c[U ],
yields the (U -)retraction C[U ] of C [12]. Observe that the
satisfiability of C[U ] implies that of C(U).
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Given C ∈ CNF, SAT means to decide whether there is
a (truth value) assignment w : V (C) → {0, 1} s.t. there is
no c ∈ C all literals of which are set to 0, called a model of
C; M(C) denotes the set of its models. SAT ⊆ CNF is the
collection of all formulas, for which there is a model, and
UNSAT := CNF\SAT. In particular I ⊆ UNSAT contains
exactly all minimal unsatisfiable formulas [1]. Given a (here
always finite) set V of propositional variables, an assignment
w can be regarded as the clause {xw(x) : x ∈ V } of length
|V |, where x0 := x̄, x1 := x. Similarly, for b ⊆ V , we
identify the restriction w|b =: w(b) with the clause {xw(x) :
x ∈ b}. The set of all clauses of size |V | is denoted as WV

which can also be regarded as the set of all mappings V →
{0, 1}. The clause cγ is obtained from c by complementing
all its literals, in particular wγ corresponds to w ∈WV , and
Cγ := {cγ : c ∈ C}; let S := {C ∈ CNF : C = Cγ}.

It is H(C) = (V (C), B(C)) the base hypergraph (BHG)
of C, where B(C) = {V (c) : c ∈ C} [12]. Let Cb =
{c ∈ C : V (c) = b} denote the fibre of C over b, thus
C =

⋃
b∈B(C) Cb. Given H = (V,B), its size is |H| :=

|B|, and ‖H‖ :=
∑
b∈B |b| is its length; H is (r-)regular, if

every vertex is contained in exactly r (hyper-)edges. If every
edge has fixed size k, then H is (k-)uniform. Let U ⊂ V
s.t. the non-empty b ∩ U , for b ∈ B, are mutually distinct.
Then H[U ] := (U,B[U ]) is the (U -)retraction of H where
B[U ] := {b ∩ U : b ∈ B, b ∩ U 6= ∅}.

Let H be the collection of all BHGs, and let Hc be the
subclass of all connected instances. Edges of the bipartite
incidence graph IH of H are denoted as v − b, for v ∈ V ,
b ∈ B with v ∈ b. Given a matching M of IH, we denote
the set of all its V -members, B-members as M(V ), M(B)
respectively.

A BHG is linear if distinct edges pairwise intersect in at
most one vertex; if one is the size of all these intersections it
even is exact linear. A hypergraph is loopless [3] if none of
its edges has size one. Let H` denote the class of all BHGs,
whose instances consist of loops only. When adding a loop
to H, the notation is simplified by writing H ∪ {x} instead
of H ∪ {{x}}.

A formula C s.t. |Cb| = 1, for all b ∈ B(C), is (exact)
linear if H(C) is (exact) linear [17], recall that a linear
formula cannot contain complementary unit clauses.

A well-known variant of SAT, namely the problem not-
all-equal SAT (NAESAT), asks whether C ∈ CNF admits
a model s.t. each clause has a literal set to 0. Restricted to
monotone formulas, which can be identified with their BHGs,
NAESAT coincides with the bicolorability problem (BIC)
for hypergraphs: H ∈ BIC iff there is a proper 2-coloring of
V (H), s.t. no edge is monochromatic.

As usual KH :=
⋃
b∈BWb is the set of all clauses over

H = (V,B). A (fibre-)transversal over H, is a formula F ⊂
KH s.t. |F ∩Wb| = 1, for each b ∈ B. Hence F contains
exactly one clause of each fibre Wb of KH. Let this clause,
say c, be refered to as Fb thereby identifying the fibre Fb =
{c} with the clause c itself. Note that in general F (b) 6=
Fb. The set of all transversals over H is denoted as F(H).
A transversal F is compatible if

⋃
b∈B Fb ∈ WV whose

collection is Fcomp(H) ⊆ SAT. A transversal F is diagonal
if F ∩ F ′ 6= ∅, for all F ′ ∈ Fcomp(H); Fdiag(H) is the
set of all diagonal transversals of H. In Fdiag(H) exactly
all the unsatisfiable transversals over H are contained. So,

H is called diagonal if Fdiag(H) 6= ∅, and in this case it is
minimal diagonal if none of its sub-hypergraphs is diagonal.
Let Hdiag be the class of all diagonal BHGs, and Hmdiag

denote the subclass of all minimal diagonal instances. For
a fixed vertex set V , let KV := (V, 2V \ {∅}) denote the
complete BHG. Let Kn represent any instance of KV , for
|V | = n. It is Kn ∈ Hdiag \ Hmdiag, if n > 2, and only
K2 ∈ Hmdiag. A non-diagonal BHG H = (V,B) is maximal
non-diagonal, if there is any new b ⊆ V s.t. H∪{b} becomes
diagonal. If the same is true for every new b ⊆ V it even is
dense maximal non-diagonal w.r.t. KV [16]. We use Hmaxnd

for the class of all maximal non-diagonal BHGs.
The group of variable complementation GV induces an

action on the set of all formulas with variable set V [15].
A (GV -)orbit w.r.t. this action is denoted as O. Given
F ∈ F(H), for H = (V,B), its orbit is denoted as
O(F ). The number of all orbits in Fdiag(H) is defined as
δ(H) [13]. One has δ = 0 for all non-diagonal instances,
collected in H0. More generally, Hi collects all BHGs
with δ = i; for δ = 1 the instances are called simple
and collected in Hsimp. Further orbit parameters of H are
β(H) = ‖H‖ − |V |, ω(H) = 2β(H), as well as ρ(H) [14].
It is ω(H) = 1 + δ(H) + ρ(H).

We use [n] := {1, . . . , n}, [n]0 := [n] ∪ {0}, where n is
a positive integer, and N for the set of all positive integers,
N0 := N ∪ {0}. For finite sets A,B of equal cardinality, let
Bij(A,B) denote the collection of all bijections A→ B, in
particular Sn = Bij([n], [n]) means the symmetric group of
degree n.

For convenience, FPP(1) symbolizes a BHG which is a
simple triangle, hence in particular it is 2-regular, 2-uniform
and exact linear. (It could be regarded as isomorphic to a
”finite projective plane of order 1”, which does not meet all
axioms of projective (plane) geometry, cf. [19], [17], [16].)

III. A MAPPING FOR JOINING CNFS

The joining operation as introduced in [16] here is con-
sidered in a slightly more abstract setting. For fixed m ∈ N,
and non-empty variable set V , let each member of

CNF(V,m) := {C ∈ CNF : V (C) = V, |C| = m}

be labeled over [m]. Let Vi, i ∈ [2], denote disjoint non-
empty variable sets. Define⊗V1,V2

m
: CNF(V1,m)× CNF(V2,m)× Sm → CNF

via ⊗V1,V2

m
(C1, C2, σ) :=

⋃
j∈[m]

cj ⊗ ĉσ(j)

which is called the (σ-)join of C1 := {cj : j ∈ [m]} ∈
CNF(V1,m) and C2 := {ĉj : j ∈ [m]} ∈ CNF(V2,m), for
σ ∈ Sm, where

cj ⊗ ĉσ(j) :=
{
cj ∪ {l} : l ∈ ĉσ(j)

}
∪

{
ĉγσ(j)

}
For fixed m, V1, V2, set⊗V1,V2

m
(C1, C2, σ) =: C1 ⊗σ C2

(cf. [16]). If m = 1, we simply write C1 ⊗ C2. Clearly,
σ induces a unique member σ̃ ∈ Bij(C1, C2), and vice
versa. Evidently, the labeled edge set of a BHG is a labeled
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(positive) monotone formula. So, setting H(V,m) := {H =
(V,B) ∈ H : |B| = m}, it is⊗H

m

V1,V2

: H(V1,m)× H(V2,m)× Sm → H⊗H

m

V1,V2

(H1,H2, τ):=
(
V1 ∪ V2, B

(⊗V1,V2

m
(B1, B2, τ)

))
where Hi = (Vi, Bi) ∈ H(Vi,m), i ∈ [2], τ ∈ Sm. For fixed
m, V1, V2, that is abbreviated as

H1 ⊗τ H2 := (V1 ∪ V2, B (B(H1)⊗τ B(H2)))

As above, τ induces a unique member τ̃ ∈ Bij(H1,H2), and
vice versa.

The example in Remark 5 in [16] shows that already for
m = 2, H1,H2 ∈ H0 with β(H2) > 0 and even β(H1) = 0,
there is τ ∈ Sm s.t. H1 ⊗τ H2 ∈ Hdiag. According to Prop.
13 (3) in [16], then one even has F1 ⊗τ F2 ∈ SAT, for all
Fi ∈ F(Hi), i ∈ [2].

The next result lists several conditions for the (non-)dia-
gonality of a joined BHG.

Theorem 1: Let m ∈ N, Hi = (Vi, Bi) ∈ H(Vi,m), i ∈
[2], V1 ∩ V2 = ∅ and Hτ := H1 ⊗τ H2, τ ∈ Sm, then:

(1) Hτ ∈ H0 implies Hi ∈ H0, i ∈ [2].
(2) If H1 ∈ H0 and β(H2) = 0 then Hτ ∈ H0.
(3) If β(H1) = 0 s.t. |τ̃(b)| < 2|b|, for all b ∈ B1, and

H2 ∈ H0 then Hτ ∈ H0.
(4) If β(H1) = 0 and H2 ∈ H0 s.t.

max
{
|b̂| : b̂ ∈ B2

}
< min

{
2|b| : b ∈ B1

}
then Hτ ∈ H0.

(5) If F [V1] ∈ SAT, for all F ∈ F(Hτ ), and H2 ∈ H0

then Hτ ∈ H0.
(6) If Hτ ∈ H0, and there is F2 ∈ F(H2) s.t. |M(F2)| =

1, then F [V1] ∈ SAT, for all F ∈ F(Hτ ).
(7) Let Hi ∈ H0, i ∈ [2], s.t. there is F2 ∈ F(H2) with

|M(F2)| = 1. Then Hτ ∈ Hdiag iff there exists F ∈
F(Hτ ) s.t. F [V1] ∈ UNSAT.

(8) Let Hi ∈ H0, i ∈ [2], s.t. there is b ∈ B1 with |τ̃(b)| ≥
2|b|, and F2 ∈ F(H2) with |M(F2)| = 1, then Hτ ∈
Hdiag.

(9) Let β(H1) = 0, H2 ∈ H0 s.t. there is F2 ∈ F(H2)
with |M(F2)| = 1. Then Hτ ∈ Hdiag iff there exists
b ∈ B1 s.t. |τ̃(b)| ≥ 2|b|.

PROOF. (1) directly is implied by Prop. 13 (3) in [16].
By the definition of Hτ , given F ∈ F(Hτ ) there is a

unique F2 ∈ F(H2) s.t. F2 ( F , namely the restriction of
F to B2. Thus, we always have the partition F = F (V1)∪F2.
On that basis addressing (2), assume H1 ∈ H0, β(H2) = 0,
and let F ∈ F(Hτ ) be chosen arbitrarily. So H2 ∈ H0, and
F =

⋃
b̂∈B2

F (b̂). Let ĉb̂ denote the unique clause of F2

in F (b̂). Moreover consider the retraction C := F [V1] ⊂⋃
b∈B1

Wb. Depending on the size of τ̃(b), to each clause
c ∈ Cb there can correspond several clauses in F (τ̃(b)), each
of which arises from c by adding exactly one literal over a
variable in τ̃(b), s.t. these variables are mutually distinct. The
collection of these clauses is denoted as F c(τ̃(b)).

Case (i): Assume that |Cb| ≥ 2, for all b ∈ B1. Let T be a
compatible transversal over H1. According to Thm. 1 and its
proof in [12], setting all literals of T to 0 leaves unsatisfied at
most one clause in every fibre, say cb ∈ Cb, for all b ∈ B1.

Then all literals over V2 in the clauses of F cb(τ̃(b)) have
to be assigned to 1, for satisfying all clauses of F (τ̃(b)).
These assignments can be performed independently, because
τ̃(b), b ∈ B1, are mutually disjoint. Hence, F \F2 = F (V1)
is solved so far. Further, there exists a clause c′b 6= cb in
Cb among the satisfied ones, for all b ∈ B1. So the unique
variable over V2 of an arbitrary clause in F c

′
b(τ̃(b)) can be

assigned independently to solve ĉτ̃(b) ∈ F2, if still necessary.
Again this is possible because all clauses in F2 are variable-
disjoint; thus F ∈ SAT.

Case (ii): Assume that

B∗
1 := {b ∈ B1 : |Cb| = 1} 6= ∅

which in particular is the case if H2 has loops. Let B′
1 :=

B1 \B∗
1 . If B′

1 = ∅, we are done because then C = F [V1] ∈
F(H1) is satisfiable, so the subformula F (V1) ∈ SAT can
be solved over V1 only, and F2 can be solved over V2

independently. Otherwise, we have B∗
2 := τ̃(B∗

1) 6= ∅ and
B′

2 := τ̃(B′
1) 6= ∅, as disjoint parts. So,

Hτ = (H∗
1 ⊗τ H∗

2) ∪ (H′
1 ⊗τ H′

2)

as disjoint union implying the corresponding decomposition
F = F ∗∪F ′, where F ∗, F ′ is the restriction of F to H∗

1⊗τ
H∗

2, H′
1 ⊗τ H′

2, respectively. Let w be a (partial) model of
F ∗ which always exists as previously stated. Moreover, if
necessary w can be extended to all of V1, s.t. a compatible
transversal over H1 is determined, from which as shown in
case (i) a model for all of F can be constructed, because the
F2-clauses are mutually disjoint.

For proving (3), let F ∈ F(Hτ ) with F = F (V1) ∪ F2,
where F2 ∈ F(H2). Assume β(H1) = 0, and |τ̃(b)| < 2|b|,
for all b ∈ B1. Then one has F [b] ( Wb which is satisfiable
independently for each b ∈ B1. Therefore F (b) ∈ SAT, for
all b ∈ B1, so F (V1) ∈ SAT imlying F ∈ SAT as H2 ∈ H0.
Evidently (4) is implied by (3).

For F ∈ F(Hτ ), with F = F (V1) ∪ F2 one has F [V1] ∈
SAT, so F (V1) ∈ SAT, by the assumption of (5). Also F2 ∈
SAT, as H2 ∈ H0, implying F ∈ SAT, so (5) is true.

Every F ∈ F(Hτ ) with F = F (V1) ∪ F2, determines a
further transversal F̃2 ∈ F(H2), besides F2: For each b ∈
B1, let the set of literals over V2 in all clauses of F over
B(b⊗ τ̃(b))\ τ̃(b) be regarded as the clause of F̃2 over τ̃(b).
Now let the assumption of (6) be valid, but suppose there is
F ∈ F(Hτ ) s.t. F [V1] ∈ UNSAT. Let F ′

2 ∈ F(H2) have
the unique model w2. Let F ′ ∈ F(Hτ ) be obtained from F
by substituting F2 by F ′

2 and F̃2 by wγ2 (B2). Since F ′[V1] =
F [V1] ∈ UNSAT, F ′(V1) can be satisfied only via the literals
over V2. But as F ′

2 can be satisfied only by w2, which assigns
all literals in F̃ ′

2 = wγ2 (B2) to 0, it is F ′ ∈ UNSAT. Thus
Hτ is diagonal providing a contradiction, establishing (6).

Combining (5) and (6) one obtains (7). Regarding (8),
assume that there is b ∈ B1 s.t. |τ̃(b)| ≥ 2|b|. So there
is F ∈ F(Hτ ) with F [b] ⊃ Wb ∈ UNSAT implying
F [b] ⊆ F [V1] ∈ UNSAT and yielding (8) relying on (7).
Finally, combining (3) and (8) yields (9). 2

Remark 1: 1. The converse of assertion (2) in general is
false: For m = 2, let

B1 := {x1x2, x2x3}, B2 = {y1y2, y2y3}

then for Hτ = H1 ⊗τ H2 with τ = id ∈ S2 it is

B(Hid) = {x1x2y1, x1x2y2, y1y2, x2x3y2, x2x3y3, y2y3}
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yielding Hid ∈ H0. Indeed, the 6 clauses of any of its
transversals in the above order can be solved independently
via x1, x2, y1, y2, x3, y3, respectively. The same is valid
for the second permutation in S2; further it is β(Hi) > 0,
i ∈ [2]. (More generally, one has Thm. 2 (1), (4), below.)

2. The assertion (5) is weaker than (3).
3. The example stated above in 1. also demonstrates that

the converse of assertion (5) in general is invalid: Let F be
a transversal over Hid s.t.

F [V1] = {x1x̄2, x̄1x̄2, x2x3, x2x̄3}

being a member of UNSAT. However, one could regard (6)
as a weak reverse of (5).

4. The second assumption in assertions (6), (7) especially
implies that H2 is dense maximal non-diagonal, if V2| ≥ 2,
according to Theorem 5 in [16].

Theorem 2: Let m ≥ 2, Hi = (Vi, Bi) ∈ H(Vi,m), i ∈
[2], V1 ∩ V2 = ∅, τ ∈ Sm, and Hτ as above.

(1) For H1 ∈ Hc0 s.t. every b ∈ B1 has two unique vertices,
and integer m̂ ≥ 3m, there exists H2 ∈ Hc0 with Hτ ∈
H0, and |Hτ | ≥ m̂, for all τ ∈ Sm.

(2) For each H1 ∈ H0, β(H1) = 0 having 2 loops, there
exists H2 ∈ H0 s.t. Hτ ∈ Hdiag, for all τ ∈ Sm.

(3) Let m ≥ 4. For each H1 ∈ H0, β(H1) = 0 admitting
b ∈ B1 with |b| ≤ blog2(m−1)c, there exist H2 ∈ H0,
τ ∈ Sm s.t. Hτ ∈ Hdiag.

(4) For each H2 ∈ Hc0, there exists H1 ∈ H0, s.t. Hτ ∈ H0,
for all τ ∈ Sm.

PROOF. Regarding (1), it suffices to provide an appropriate
large, connected H2 s.t. the incidence graph I(Hτ ) of Hτ =:
(Vτ , Bτ ) admits a perfect matching M , for each τ ∈ Sm:
Given F ∈ F(Hτ ), then each variable in M(Vτ ) uniquely
solves the clause of F over the corresponding hyperedge in
M(Bτ ), respectively. To that end, let H2 be k-uniform, with
k ≥ d m̂m − 1e ≥ 2. So

|Hτ | = ‖B2‖+m = (k + 1)m ≥ m̂

where Thm. 15 (2) in [16] has been used. Further, the
connectedness of H2, and the existence of M = M(k) as
required can be assured as follows: For k = 2, set

B2 :=
{
b̂j := yjyj+1 : j ∈ [m]

}
which is a simple path of m ≥ 2 edges. Thus for an arbitrary
τ ∈ Sm, one has Bτ =

⋃
j∈[m]B(bj ⊗ b̂τ(j)), where

B(bj ⊗ b̂τ(j)) =
{
bj ∪ {yτ(j)}, bj ∪ {yτ(j+1)}, b̂τ(j)

}
j ∈ [m]. Let x(bj), x′(bj) denote the unique vertices in bj ∈
B1, j ∈ [m]. Thus

M(2) =
⋃
j∈[m]

{x(bj)− (bj ∪ {yτ(j)}),

x′(bj)− (bj ∪ {yτ(j+1)}), yτ(j) − b̂τ(j)}
For k ≥ 3, enlarge b̂j by the unique vertices {zjl : l ∈
[k − 2]}, for every j ∈ [m]. Hence the adapted B2 still is a
path, now of hyperedges. Then it is

B(bj ⊗ b̂τ(j)) =
{
bj ∪ {yτ(j)}, bj ∪ {yτ(j+1)}, b̂τ(j)

}
∪

{
bj ∪ {zτ(j)l } : l ∈ [k − 2]

}

j ∈ [m]. Setting

M(k) = M(2)∪
⋃
j∈[m]

{
z
τ(j)
l − (bj ∪ {zτ(j)l }) : l ∈ [k − 2]

}
provides a perfect matching as required, yielding (1).

For every integer m ≥ 2, according to Thm. 8 (1) in [16]
and its proof, there exists H2 of size m, β(H2) 6= 0:

V2 = {xj : j ∈ [m]}, B2 = {x1}∪{xjxj+1 : j ∈ [m−1]}

admitting a transversal that has exactly one model, in which
all variables are set to 1. Thus every edge of H2 has size at
most 2. One obtains (2) relying on Thm. 1 (8), as only one
of the loops in H1 can be mapped to the unique loop in H2,
by τ ∈ Sm.

Concerning (3), we modify the previous BHG by substi-
tuting m by m− 1 ≥ 3, and adding one edge containing all
m−1 vertices ensuring the size m: V2 := {xj : j ∈ [m−1]},

B2 := {x1}∪{xjxj+1 : j ∈ [m− 2]}∪
{
b̂ := x1 . . . xm−1

}
If the transversal, as mentioned above, is enlarged e.g. by the
monotone clause b̂, the unique model is maintained. Choose
τ ∈ Sm s.t. τ̃(b) = b̂ then

2|b| ≤ m− 1 = |τ̃(b)|

and the assertion follows via Thm. 1 (8).
Finally regarding (4), it suffices to choose H1 ∈ H0 with

β(H1) = 0 s.t., for all b ∈ B1, it is

|b| > max
{
dlog2 |b̂|e : b̂ ∈ B2

}
according to Thm. 1 (4). 2

Next, a first characterization of minimal diagonality is
provided on behalf of Thm. 11 in [16]:

Proposition 1: Let m, Hi, i ∈ [2], τ , Hτ as in Thm. 1
and β(H2) = 0. Then Hτ ∈ Hmdiag iff H1 ∈ Hmdiag.
PROOF. In Thm. 11 in [16] the same assertion is stated using
the further assumption that H1 is diagonal, which is dropped
here. So, the right-to-left implication directly follows from
the cited Thm. 11. The reverse one follows by contraposition:
If H1 6∈ Hmdiag, it either is in H0 so Hτ ∈ H0 using Thm.
1 (2). Or H1 ∈ Hdiag \ Hmdiag, then again we are done by
the cited Thm. 11. 2

Concerning a characterization regarding the maximal non-
diagonality, a first fact is provided next:

Proposition 2: Let m, Hi, i ∈ [2], τ , Hτ as in Thm. 1. If
H1 ∈ H0 has a loop and β(H2) = 0, then Hτ ∈ Hmaxnd.
PROOF. On behalf of Thm. 1 (2), it is Hτ ∈ H0. Let b ∈ B1

be a loop, then H(b⊗τ̃(b)) ⊆ Hτ , but b /∈ B(Hτ ). Obviously
Hτ ∪ {b} ∈ Hdiag. 2

IV. FIBRE-RESPECTING FORMULA-JOINS

At least if C1, C2 are transversals equally labeled as their
BHGs, one has

H(C1 ⊗σ C2) = H(C1)⊗σ H(C2)

cf. La. 11 in [16]. In general, this equality fails or its right
hand side even might not exist. E.g., let C1 = WV1 with
V1 := {x1, x2} hence H1 := H(C1) ∈ H(V1, 1). If C2 ∈
F(H2) with

B(H2) := {u1u2u3, v1v2v3, y1y2y3, z1z2z3}
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then H2 ∈ H(V2, 4). So, H1,H2 ∈ H0 even are trivial BHGs,
and H1⊗τ H2 cannot be defined, for any τ . Whereas C1⊗σ
C2 is well-defined, and

H(C1 ⊗σ C2) ∈ H(V1 ∪ V2, 16)

for every σ ∈ S4. Moreover one easily verifies C1 ⊗σ C2 ∈
Fdiag(H(C1⊗σ C2)) by observing C1 ∈ UNSAT and using
Prop. 13 (3),(5) in [16].

Towards clarifying the situation in case that C1 ⊗σ C2

and H(C1)⊗τ H(C2) are well defined, for appropriate σ, τ
respectively, a useful notion is introduced:

Definition 1: For m,m′ ∈ N, let Ci ∈ CNF(Vi,m), s.t.
H(Ci) ∈ H(Vi,m′), i ∈ [2], V1 ∩ V2 = ∅. Given τ ∈ Sm′ ,
a σ-join C1 ⊗σ C2, for σ ∈ Sm, is called fibre-respecting
(w.r.t. τ ) if V (σ̃(c)) = τ̃(V (c)), for all c ∈ C1.

Lemma 1: For m,m′, Ci, H(Ci), Vi, i ∈ [2], as in Def.
1 and Cσ := C1 ⊗σ C2, σ ∈ Sm, one has:

(i) Cσ is fibre-respecting w.r.t. τ ∈ Sm′ , iff σ̃(C1b) =
C2τ̃(b), for every b ∈ B1. In this case, |C1b| = |C2τ̃(b)|,
for every b ∈ B1.

(ii) If m′ = 1, i.e., Ci is a fibre-formula, i ∈ [2], then
B(Cσ) = B(B(C1) ⊗ B(C2)), for every σ ∈ Sm,
recalling the convention for m′ = 1.

PROOF. (i) directly follows from the definition.
Obviously B(B(C1) ⊗ B(C2)) ⊆ B(Cσ), for every σ ∈

Sm, and Cσ then is fibre-respecting. Let B(Ci) = {bi},
i ∈ [2]. So if b ∈ B(Cσ) then either

b = V (σ̃(c)) = b2 ∈ B(C2) ⊆ B(B(C1)⊗B(C2))

or b = V (c ∪ l) = b1 ∪ {x}, where x = V (l) ∈ b2, meaning
b ∈ B(B(C1)⊗B(C2)). 2

Proposition 3: Let m,m′, Ci, H(Ci), Vi, i ∈ [2], as in
Def. 1 and C := C1 ⊗σ C2, for σ ∈ Sm. Then

H(C) = H(C1)⊗τ H(C2)

iff C is fibre-respecting w.r.t. τ ∈ Sm′ . The latter in
particular is valid if C1, C2 are transversals equally labeled
as their BHGs, and τ = σ.
PROOF. Clearly, for every C ∈ CNF, it is |H(C)| ≤ |C|
which is an equality only if C is a transversal. So the last
assertion is implied by La. 11 in [16]. Regarding the first
assertion, let Hi := H(Ci) =: (Vi, Bi), i ∈ [2], and assume
that C is fibre-respecting w.r.t. τ ∈ Sm′ then by La. 1 (i)

C =
⋃
b∈B1

C1b ⊗σb
C2τ̃(b)

where σb denotes the restriction of σ to C1b. So,

B(C) =
⋃
b∈B1

B
(
C1b ⊗σb

C2τ̃(b)

)
=

⋃
b∈B1

B
(
B(C1b)⊗B(C2τ̃(b))

)
= B (B(C1)⊗τ B(C2))

where La. 1 (ii) has been used.
Next, assume that the asserted equality is true, and suppose

that C fails to be fibre-respecting. Hence there is b ∈ B1 and
c ∈ C1b with b̆ := V (σ̃(c)) 6= τ̃(b). So,{

b ∪ {x} : x ∈ b̆
}
⊂ B(c⊗ σ̃(c)) ⊆ B(C)

but {
b ∪ {x} : x ∈ b̆

}
6⊂ B(B1 ⊗τ B2)

yielding a contradiction. 2

V. Sm-DEPENDENCE OF THE ORBIT PARAMETERS

Focusing on {H1⊗τH2 : τ ∈ Sm}, primarily the question
arises, which properties of the joined BHG depend on τ ∈
Sm. A first result, regarding the logarithm of the number of
all orbits is stated next.

Proposition 4: Let m ∈ N, Hi ∈ H(Vi,m) with fixed
labeled edge set, i ∈ [2], V1 ∩ V2 = ∅. Then β(Hτ ) is
independent of τ ∈ Sm iff one of H1,H2 is uniform, where
Hτ := H1 ⊗τ H2.
PROOF. Setting Hi = (Vi, Bi), i ∈ [2], it is

β(Hτ ) = ‖Hτ‖ − (|V1|+ |V2|)

Due to Prop. 13 (2) in [16], one has

‖Hτ‖ = 2‖H2‖+
∑
b∈B1

|b| · |τ̃(b)|

Thus, if H1 is k1-uniform, it is

‖Hτ‖ = (2 + k1)‖H2‖

and if H2 is k2-uniform, one has

‖Hτ‖ = (2m+ ‖H1‖)k2

If both are uniform it follows

‖Hτ‖ = (2 + k1)mk2

Reversely, assume the τ -independence of β(Hτ ), but sup-
pose that none of H1,H2 is uniform. So, w.l.o.g. there are
bj ∈ B1, b̂j ∈ B2, j ∈ [2], s.t. |b1| < |b2| and |b̂1| < |b̂2|. Let
τ1, τ2 ∈ Sm be defined s.t. τ1 = τ2 restricted to [m] \ {1, 2},
and τ1(j) = j, j ∈ [2], τ2 = (1, 2), i.e., as the transposition.
Hence

β(Hτ1)− β(Hτ2) =
∑
j∈[m]

|bj |
(
|b̂τ1(j)| − |b̂τ2(j)|

)
= |b1|

(
|b̂1| − |b̂2|

)
+ |b2|

(
|b̂2| − |b̂1|

)
So

β(Hτ1)− β(Hτ2) = (|b2| − |b1|)
(
|b̂2| − |b̂1|

)
> 0

yielding a contradiction. 2

Corollary 1: For m ∈ N, Hi, i ∈ [2], Hτ , τ as above

ω(Hτ ) and ρ(Hτ ) + δ(Hτ )

are independent of τ iff one of H1,H2 is uniform.
PROOF. Since, for all H ∈ H,

ω(H) = 2β(H) = 1 + ρ(H) + δ(H)

the assertion directly is implied by Prop. 4. 2

Observe that (2), (4) of Thm. 1 are independent of τ ∈ Sm.
However, relying on (3) one obtains:

Proposition 5: For fixed integer m, and vertex-disjoint
Hi ∈ H0(Vi,m), i ∈ [2], in general it depends on τ ∈ Sm,
whether H1 ⊗τ H2 is diagonal or not.
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PROOF. For Hi = (Vi, Bi), i ∈ [2], m = 4, let τ1 = id,
τ2 = (1, 2)(3, 4) ∈ S4, and

B1 := {b1 = x1, b2 = x2, b3 = x3x4, b4 = x5x6}
B2 := {b̂1 = y1y2, b̂2 = y1y3, b̂3 = y4, b̂4 = y5}

Then with Hτ := H1 ⊗τ H2 it is

B(Hid) = {x1y1, x1y2, y1y2, x2y1, x2y3, y1y3,

x3x4y4, y4, x5x6y5, y5}

implying Hid ∈ Hdiag, because it contains the y1-connection
of two FPP(1) according to La. 4 (i) in [16]. Whereas

B(Hτ2) = {x1y4, y4, x2y5, y5, x3x4y1, x3x4y2,

y1y2, x5x6y1, x5x6y3, y1y3}

yields Hτ2 ∈ H0 due to Thm. 1 (3). 2

Before treating the case, that one of H1,H2 is diagonal,
we state a useful fact:

Proposition 6: Let Hi = (Vi, Bi), i ∈ [2], s.t. V2 ( V1,
B1 ∩ B2 = ∅, H1 ∈ H0 and H2 ∈ Hdiag. Let αi := α(Hi),
i ∈ [2], α ∈ {β, ω, ρ, δ}.

(1) One has

ω(H1 ∪H2) = ω1ω22|V2|

δ(H1 ∪H2) = ω1δ22|V2| +
∑

p∈[ρ2+1]

ϕp

where ϕp ∈ [ω12|V2|]0 denotes the number of orbits
of Fdiag(H1 ∪ H2), whose representing transversals
have restrictions to B2, all lying in the pth satisfiable
GV2-orbit of F(H2). Further it is∑
p∈[ρ2+1]

ϕp = (1 + ρ2)ω12|V2| − (1 + ρ(H1 ∪H2))

(2) There exists p ∈ [ρ2 + 1] with ϕp > 0, if there is
H′

2 ( H2 with H′
2 ∈ H0 s.t. H1 ∪ H′

2 ∈ Hdiag. In
particular, one has ϕp > 0, for all p ∈ [ρ2+1], if there
is H′

2 ( H2 with β(H′
2) = 0 s.t. H1 ∪H′

2 ∈ Hdiag.
(3) If ϕp =: ϕ ∈ N0, for all p ∈ [ρ2 + 1], then

ϕ = ω12|V2| − λ

where

λ := (1 + ρ(H1 ∪H2))/(1 + ρ2) ∈ N

with λ ≤ ω12|V2|, and λ = ω12|V2| iff ϕ = 0.
(4) If the incidence graph of H1 admits a matching M

covering the B1-component, i.e. M(B1) = B1, s.t.
V2 ∩M(V1) = ∅, then

δ(H1 ∪H2) = ω1δ22|V2|

PROOF. Since by assumption B1 ∩B2 = ∅, V1 ∪ V2 = V1, it
is

β(H1 ∪H2) =
∑

b∈B1∪B2

|b| − |V1| = β1 + β2 + |V2|

so the assertion for ω(H1 ∪H2) is true.
Every diagonal orbit over H2 has 2|V2| members, each of

which yields a distinct diagonal orbit of F(H1 ∪H2) when
enlarged by a transversal over H1 representing a GV1-orbit.
Thus one obtains the contribution ω1δ22|V2| to δ(H1 ∪H2),
and the assertion for δ(H1 ∪ H2) directly follows from the

definition of ϕp, p ∈ [ρ2+1]. The last assertion in (1) directly
is implied by using twice the general formula ω−(1+ρ) = δ
valid for every BHG.

Regarding (2), assume that there is H′
2 = (V ′

2 , B
′
2) (

H2 with H′
2 ∈ H0 s.t. H1 ∪ H′

2 ∈ Hdiag. For fixed F ∈
Fdiag(H1 ∪ H′

2), let F ′
2 be its satisfiable restriction to B′

2,
so it has a model, say w′2 over V ′

2 . Set H′′
2 = (V ′′

2 , B
′′
2 ) :=

H2 \ H′
2. Then F ′

2 can be extended over B′′
2 to a satisfiable

transversal F2 over H2 by letting each literal over x ∈ V ′′
2 \

V ′
2 be pure in F2, and each literal over x ∈ V ′′

2 ∩ V ′
2 be

defined according to w′2. Thus there is p ∈ [ρ2 + 1] with
ϕp > 0.

Next, β(H′
2) = 0 implies H′

2 ∈ H0 and F(H′
2) =

Fcomp(H′
2). Hence, there is only one orbit of transversals

over H′
2. Choose a representative F ′

2 of this orbit with the
property that F1 ∪ F ′

2 ∈ Fdiag(H1 ∪H′
2), for an appropriate

F1 ∈ F(H1). Clearly, any satisfiable extension F2 of F ′
2

over B′′
2 yields F1 ∪ F2 ∈ Fdiag(H1 ∪ H2). Thus, ϕp > 0,

for all p ∈ [ρ2 + 1], so (2) is verified.
If ϕp =: ϕ ∈ N0, for all p ∈ [ρ2 + 1], it is∑
p∈[ρ2+1]

ϕp = (ρ2 + 1)ϕ = (1 + ρ2)
(
ω12|V2| − λ

)
using (1), implying

λ = (1 + ρ(H1 ∪H2))/(1 + ρ2) ∈ N

Since
∑
p∈[ρ2+1] ϕp ≥ 0, one obtains λ ≤ ω12|V2|, and λ =

ω12|V2| iff ϕ = 0, so (3).
Concerning (4), observe that by assumption every transver-

sal over H1 can be satisfied independently by the variables in
M(V1). So one has ϕp = 0, for all p ∈ [ρ2+1], because every
transversal in F(H1 ∪H2) having a satisfiable restriction to
B2 then is satisfiable. 2

Remark 2: 1. There might be cases where

ϕp = ϕ ∈ [ω12|V2|]0

is a constant, for all p ∈ [ρ2 + 1], confer e.g. the proof
of Prop. 7 below. But in general that is untrue: Let H2 =
(V2, B2) with

B2 = {xy1, xy2, y1y2, xy3, xy4, y3y4}

which is minimal diagonal due to La. 4 (i) in [16]. Let H1 =
(V1, B1) with

B1 = {xy2y4z, y1y3}

which is trivial and ω1 = 1. Let F1 := B1 ∈ Fcomp

be the unique positive monotone representing transversal.
Any F2 ∈ F(H2), in which x appears as a pure literal, is
satisfiable because setting x accordingly remains two clauses
which can be solved always. Moreover, extending F2 by F1,
yields a satisfiable transversal over H1 ∪ H2, because e.g.
the variables y1, y2, y4, z can be assigned independently to
solve the remaining clauses over y1y3, y1y2, y3y4, xy2y4z,
respectively. Let the orbit represented by F2 have the number
p ∈ [ρ2 + 1]. As all its members have x as a pure literal,
one obtains ϕp = 0. Let

F ′
2 = {xȳ1, x̄y2, ȳ2ȳ1, xȳ3, x̄y4, ȳ3ȳ4}

which is satisfied via x = y1 = y3 = 0, where y1, y3 have
unique satisfying assignments in every model. Hence F1 ∪
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F ′
2 ∈ Fdiag(H1 ∪ H2). Further, x admits no pure literal in
F ′

2, so its orbit of number p′ 6= p yields ϕp′ > 0.
2. Note that the converse of statement (4) in general is

false: Simply, choose any H1 ∈ H0 that does not meet the
matching condition, but whose retraction H1[V1 \ V2] ∈ H0,
so ϕp = 0, for all p ∈ [ρ2+1]. To present a concrete example,
first let H2 ∈ Hdiag be the complete BHG with vertex set
{x, y}. Next, refering to La. 4 (ii) in [16] and its proof, it is
H := (V,B) ∈ Hmdiag where

B := {uv, up, vp, vq, pq, uq}

Thus H′ := H \ {vq} ∈ H0. Let H1 be obtained from H′

by enlarging, say {uv} about x and {pq} about y ensuring
V2 ( V1 and H′ = H1[V1 \ V2] ∈ H0. There obviously is a
matching of the incidence graph of H1 using all variables
covering its B1-component and establishing H1 ∈ H0. But
there is no such matching relying on members of V1 \ V2,
only, as required in Prop. 6 (4).

Returning to the τ -dependence of δ one has:
Proposition 7: For m ∈ N, let Hi ∈ H(Vi,m) be non-

uniform, i ∈ [2], where V1 ∩ V2 = ∅. If one of H1,H2, is
diagonal, the values of δ(Hτ ), ρ(Hτ ) ∈ N can depend on
τ ∈ Sm, where Hτ := H1 ⊗τ H2.
PROOF. It suffices to verify the assertion for δ. So let m = 3,
Hi =: (Vi, Bi), i ∈ [2], with

B1 := {u,w, uv} =: {b1, b2, b3}
B2 := {x, y, xy} =: {b̂1, b̂2, b̂3}

and V := V1 ∪ V2. Hence H2 = K2 ∈ Hsimp is diagonal.
Defining σ := (1, 3), τ := (1) ∈ S3 one obtains

Hψ = H0 ∪H2 ∪ {bψ}, ψ ∈ {σ, τ}

where

B(H0) := {ux,wy, uvx}, bσ := {uy}, bτ := {uvy}

Thus

ω(H0 ∪ {bσ}) = 24, ω(H0 ∪ {bτ}) = 25

The incidence graph of H0 ∪ {bψ} admits a matching Mψ ,
which contains the vertices {u,w, v, y} covering all edges
of H0 ∪ {bψ}, which therefore is a non-diagonal BHG that
has no hyperedge in common with B2, ψ ∈ {σ, τ}. Clearly
δ(H2) = 1, ρ(H2) = 3, and V2 ( V (H0). Thus using Prop.
6 (1), it follows

δ(Hψ) = δ(H0 ∪ {bψ} ∪ H2)

= ω(H0 ∪ {bψ})22 +
∑
p∈[3]

ϕp(ψ)

for ψ ∈ {σ, τ}.
Let F0 := {ux,wy}. First regarding ψ = σ, the orbits

of F(H0 ∪ {bσ}) may be represented by the transversals as
follows:

F1,l = F0 ∪ {uvx} ∪ {cσ,l}
F2,l = F0 ∪ {ūvx} ∪ {cσ,l}
F3,l = F0 ∪ {uvx̄} ∪ {cσ,l}
F4,l = F0 ∪ {ūvx̄} ∪ {cσ,l}

for all l ∈ [4], with

cσ,l ∈Wbσ
= {uy, ūy, uȳ, ūȳ}

where Wbσ
is assumed to have that fixed ordering. Evidently

{wy}, as well as the clauses over {uvx}, can be solved
independently via w = v = 1. If x = 1 is possible, then all
clauses of Fj,l are solved, j, l ∈ [4]. So, only the case that
x is forced to 0 meaning u = 1, leads to an unsatisfiable
transversal iff cσ,l ∈ Fj,l contains ū, which is the case for
l = 2, 4, and simultaneously its literal over y is forced to 0.
This situation can occur only for the partial H2-patterns x̄, y,
as well as x̄, ȳ. Each of these patterns occurs exactly once
in all three satisfiable H2-orbits. It is not hard to verify, that
Fj,l, for all j ∈ [4] and l ∈ {2, 4}, becomes unsatisfiable
by exactly one of these patterns, thus ϕp(σ) = 8, for every
p ∈ [3]. Therefore

δ(Hσ) = 2422 + 3 · 8 = 88

The representatives of the orbits of F(H0 ∪ {bτ}) are
obtained from those Fj,l, j, l ∈ [4], as above, by doubling
each, providing two instances. Then, enlarging the clause
cσ,l in its first instance about v yielding F vj,l containing the
modified cvτ,l, and in its second instance about v̄ yielding F v̄j,l
containing cv̄τ,l, for all j, l ∈ [4]. Observe that the transversals
F vj,l, j, l ∈ [4], are satisfiable independently of V2, because
{ux}, {wy} and all the clauses over {uvx}, as well as cvτ,l,
are solved via u = w = v = 1. Any F v̄j,l can become
unsatisfiable only, if x is forced to 0 meaning u = 1, which
is critical only for j = 2, 4 forcing v = 1. Hence cv̄τ,l, for
l = 2, 4, is unsatisfiable iff y is forced to 0, 1, respectively.
That is possible only for the partial H2-patterns x̄, ȳ, for
l = 2, respectively x̄, y, for l = 4. So, ϕp(τ) = 4, for every
p ∈ [3], yielding

δ(Hτ ) = 2522 + 3 · 4 = 140 > δ(Hσ) 2

VI. A COMMUTATIVE EXTENSION OF THE JOINING MAP

For every variable-disjoint members Ci ∈ CNF(Vi,m),
i ∈ [2], each regarded as fixed labeled over [m], we set
C1 �C2 := (C1 ⊗id C2)∪ (C2 ⊗id C1), for id ∈ Sm, called
the symmetric join of C1, C2. This yields a commutative
operation, for C1 = {c1, . . . , cm}, C2 = {ĉ1, . . . , ĉm},
because by definition,

C1 � C2 =
⋃
j∈[m]

cj ⊗ ĉj ∪
⋃
j∈[m]

ĉj ⊗ cj = C2 � C1

Evidently, C1 � C2 =
⋃
j∈[m] cj � ĉj with cj � ĉj := (cj ⊗

ĉj) ∪ (ĉj ⊗ cj). The symmetric join is independent of the
labeling in the sense that given σ ∈ Sm and {cσ(i) : i ∈
[m]}, {ĉσ(i) : i ∈ [m]}, reordered Cσ1 , C

σ
2 are obtained with

Cσ1 �Cσ2 = C1 �C2. In general, that is false if Cπ1 , C
σ
2 are

joined symmetrically, for distinct π, σ ∈ Sm. Analogously,
for vertex-disjoint Hi ∈ H(Vi,m), i ∈ [2], with fixed labeled
edge sets, we set H1�H2 := (V1∪V2, B(B(H1)�B(H2))).

More generally, one defines the following mapping:
Definition 2: On basis of CNF(V1,m)]CNF(V2,m) :=

[CNF(V1,m)×CNF(V2,m)]∪[CNF(V2,m)×CNF(V1,m)]
with V1 ∩ V2 = ∅ set

�m : [CNF(V1,m) ] CNF(V2,m)]× Sm → CNF

Here among (C, Ĉ) ∈ CNF(V1,m) ] CNF(V2,m) exactly
one, say C, is a member of CNF(V1,m). Then with C =
{cj : j ∈ [m]}, Ĉ = {ĉ : j ∈ [m]} ∈ CNF(V2,m) it is

�m(C, Ĉ, σ) :=
⊗V1,V2

m
(C, Ĉ, σ) ∪

⊗V2,V1

m
(Ĉ, C, σ−1)
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=
⋃
j∈[m]

cj ⊗ ĉσ(j) ∪
⋃
j∈[m]

ĉj ⊗ cσ−1(j) =: C �σ Ĉ

which is called the symmetric (σ-)join of C,Ĉ, for σ ∈ Sm.
We set �id =: �.
The symmetric σ-join obviously is commutative in C, Ĉ
independent of σ, but it never yields an associative operation.
An analogous mapping is defined for BHGs as follows:

Definition 3: For H(V1,m) ] H(V2,m) := [H(V1,m) ×
H(V2,m)] ∪ [H(V2,m)× H(V1,m)], with V1 ∩ V2 = ∅, set

�H

m : [H(V1,m) ] H(V2,m)]× Sm → H

where, for (H1,H2) ∈ H(V1,m) ] H(V2,m) with Hi =
(Vi, Bi), i ∈ [2], τ ∈ Sm, their symmetric τ -join is

�H

m(H1,H2, τ) :=
(
V1 ∪ V2, B

(
�m(B1, B2, τ)

))
which is abbreviated as

H1 �τ H2 = (H1 ⊗τ H2) ∪ (H2 ⊗τ−1 H1)

For simplifying the notation, set CNF(m) := {C ∈ CNF :
|C| = m}, and H(m) := {H ∈ H : |B(H)| = m}.

Theorem 3: Let m ∈ N, C = {cj : j ∈ [m]}, D = {dj :
j ∈ [m]} ∈ CNF(m) be fixed labeled over [m] with V (C)∩
V (D) = ∅, σ ∈ Sm, then the following assertions are true
for J := C �σ D:

(1) Let m1 be the number of indices j ∈ [m], s.t. |cj | =
|dj | = 1, then

|J | = ‖C‖+ ‖D‖ −m1 + 2m

‖J‖/2 = ‖C‖+ ‖D‖ −m1 +
∑
j∈[m]

|cj | · |dj |

(2) J ∈ SAT iff M(C ∪ Cγ) 6= ∅ 6= M(D ∪Dγ).
(3) J ∈ I iff m = 1 and C, D contain unit clauses only.
(4) J is a transversal iff C,D are transversals.
(5) J is linear iff C,D consist of non-complementary unit

clauses only.
(6) J never is exact linear.
(7) H(J) never is uniform.
(8) Let C, D be kC-, kD-uniform transversals, respec-

tively. Then H(J) is r-regular iff (2+kC)|r, (2+kD)|r,
H(C), H(D) are regular, and

r = (2 + kC) deg(H(D)) = (2 + kD) deg(H(C))

(9) Assume there is m′ ∈ N, τ ∈ Sm′ s.t. H(C),H(D) ∈
H(m′), and that C ⊗σ D is fibre-respecting w.r.t. τ ,
D ⊗σ−1 C is fibre-respecting w.r.t. τ−1. Then H(J)
= H(C) �τ H(D). That is valid in particular if C,D
are transversals equally labeled as their BHGs, and
σ = τ .

PROOF. By the definition of the symmetric σ-join

Q := (C ⊗σ D) ∩ (D ⊗σ−1 C)

consists of exactly those t ∈ J , for which there is j ∈ [m],
cj ∈ C, dσ(j) ∈ D, s.t.

t ∈
(
cj ⊗ dσ(j)

)
∩

(
dσ(j) ⊗ cj

)
So, there must be lc ∈ cj , ld ∈ dσ(j) with

t = cj ∪ {ld} = dσ(j) ∪ {lc}

As V (cj) ∩ V (dσ(j)) = ∅, t ∈ Q is equivalent with

cj = {lc}, dσ(j) = {ld}, t = {lc, ld}

Therefore it is |Q| = m1 and ‖Q‖ = 2m1 implying (1) on
basis of Prop. 13 (2) in [16].

Let J ∈ SAT, and suppose that M(C) ∩M(Cγ) = ∅.
If w ∈ M(J), then w satisfies Cγ ⊆ J . By assumption
w /∈M(C), so there is j ∈ [m] s.t. w(V (cj)) = cγj . Thus

cj ⊗ dσ(j) =
{
cj ∪ {l} : l ∈ dσ(j)

}
∪

{
dγσ(j)

}
⊆ J

remains unsatisfied providing a contradiction.
Conversely, let

wC ∈M(C) ∩M(Cγ), wD ∈M(D) ∩M(Dγ)

then it is claimed that w := wC ∪ wD ∈ M(J): Evidently,
w then satisfies Cγ ∪Dγ ⊆ J . Each remaining t ∈ J either
contains a clause of C or a clause of D, thus is satisfied by
w, and (2) is proven.

Regarding the sufficiency of (3), for variables x, y, let C =
{l(x)}, D = {l(y)}, then

J =
{
l(x)l(y), l̄(x), l̄(y)

}
∈ I

For the necessity, we claim that if one of C ∪ Cγ , D ∪Dγ ,
say C ∪ Cγ , is unsatisfiable then

J ′ := (C ⊗σ D) ∪ Cγ ∈ UNSAT

From this claim (3) follows: If J ′ ( J as a proper subformula
one has J /∈ I. So, J ∈ I implies J = J ′. That is equivalent
with (D ⊗σ−1 C) \ Cγ ⊆ J ′, which is equivalent with

Q = (D ⊗σ−1 C) \ Cγ =
{
lcj l
d
j : j ∈ [m]

}
refering to the proof of (1). Hence, each clause in C, D has
to be unit, so Q = (C⊗σD)\Dγ . Since J ∈ I is connected,
one concludes m = 1.

It remains to verify the claim: W.l.o.g. let C ∪ Cγ ∈
UNSAT, then either C ∈ UNSAT meaning Cγ ∈ UNSAT,
so J ′ ∈ UNSAT. Or C,Cγ ∈ SAT, then supposing
J ′ ∈ SAT, every w ∈M(J ′) satisfies Cγ . Since C ∪ Cγ ∈
UNSAT, there must be a clause cj ∈ C with w(V (cj)) = cγj .
Hence, all clauses in

(cj ⊗ dσ(j)) \
{
dγσ(j)

}
⊆ J ′

are forced to be satisfied via w(V (dσ(j))) = dσ(j), thus
dγσ(j) ∈ J

′ remains unsatisfied providing a contradiction. So,
the claim is true yielding (3).

The necessity assertion in (4) is true by Prop. 13 (5) in
[16]. Reversely, let C,D be transversals, then by the same
result C⊗σD and D⊗σ−1 C are transversals. Suppose there
is b ∈ B(J) with t, t′ ∈ Jb meaning

b ∈ B(C ⊗σ D) ∩B(D ⊗σ−1 C)

Thus, there are x ∈ V (C), y ∈ V (D) with

b ∈ ({x} ⊗ {y}) ∩ ({y} ⊗ {x}) = {xy}

By the definition of the symmetric join, one obtains t = t′,
as shown in the proof of (1), so J is a transversal.

If J is linear and one of C,D contains a clause with 2
variables, say x, y, then by definition J contains 2 clauses in
which x, y appear, contradicting its linearity. As Cγ , Dγ ⊂
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J , they have to be linear, so do not contain complementary
unit clauses. The reverse direction is obvious, providing (5).

Since m ≥ 1, and Cγ , Dγ ⊆ J which are variable-disjoint,
(6) is true. From Prop. 13 (8) in [16], one concludes that the
k-uniformity of H(J) means, that H(C) simultaneously has
to be (k − 1)-, and (k + 1)-uniform, yielding (7).

Addressing (8), with C, D also J is a transversal using
(4). On basis of the uniformity of C,D, the regularity of
J is equivalent with |J(x)| = (2 + kD)|C(x)| = r, for
all x ∈ V (C), and |J(x)| = (2 + kC)|D(x)| = r, for all
x ∈ V (D). Thus

|C(x)| = deg(H(C)) = r/(2 + kD)
|D(x)| = deg(H(D)) = r/(2 + kC)

providing the equivalence with

r = (2 + kC) deg(H(D)) = (2 + kD) deg(H(C))

To verify (9), one derives

H(J) = H((C ⊗σ D) ∪ (D ⊗σ−1 C))
= H(C ⊗σ D) ∪H(D ⊗σ−1 C)
= (H(C)⊗τ H(D)) ∪ (H(D)⊗τ−1 H(C))
= H(C) �τ H(D)

where Prop. 3 has been used. 2

Remark 3: 1. Observe that assertion (2) in Thm. 3 is
equivalent with J ∈ SAT iff C,D ∈ NAESAT.

2. For C ∈ S ∩ I, which in particular is true in case of
a fibre-formula C = WV (C), one has C = Cγ , so the first
condition of (2) is invalid. This situation can occur for a
non-fibre formula also. Consider e.g.

C = {xy, yz, zx, x̄ȳ, ȳz̄, z̄x̄} ∈ S

Here H(C) is 2-uniform and a triangle, hence there is no
proper 2-coloring of its vertex set, so C ∈ UNSAT; its
membership to I can be verified easily.

3. The assumption in assertion (9) concretely means that
there are labelings

H(C) = {bj : j ∈ [m′]}, H(D) = {b̂j : j ∈ [m′]}

s.t. |Cbj
| = |Db̂τ(j)

|, and that the clauses in Cbj
, Db̂τ(j)

are
labeled consecutively, for all j ∈ [m′], respectively.
Concerning the second paragraph of Rem. 3, one has:

Proposition 8: Let H1,H2 be vertex-disjoint, of equal size
m, then the following assertions are true, for every τ ∈ Sm:

(1) H1 �τ H2 ∈ BIC iff H1,H2 ∈ BIC.
(2) H1 ⊗τ H2 ∈ BIC iff H1,H2 ∈ BIC.

PROOF. Let H1,H2 ∈ BIC, then by the definition of the
corresponding join-operations H1 ⊗τ H2,H1 � H2 ∈ BIC,
for every fixed τ ∈ Sm. As H1,H2 ⊆ H1 �H2, the reverse
of (1) is valid.

Finally, let Hτ = (V,B) := H1⊗τH2 ∈ BIC, for τ ∈ Sm,
then H2 ∈ BIC as a sub-hypergraph. Suppose H1 /∈ BIC,
then for any 2-coloring of V , there is b ∈ B(H1) appear-
ing monochromatic. Thus, H (b⊗ τ̃(b)) ⊆ Hτ contains a
monochromatic edge, namely τ̃(b), providing (2). 2

Lemma 2: For H = (V,B) ∈ H one has:
(i) An orbit O ∈ F(H)/GV is contained in NAESAT iff

its representative lies in NAESAT.
(ii) Fcomp(H) ⊆ NAESAT iff H ∈ BIC.

(iii) Fcomp(H) ⊆ NAESAT if β(H) = 0 and H is loopless,
or H is 2-uniform and bipartite as a simple graph.

(iv) Fdiag(H) ∩NAESAT = ∅.
PROOF. Consider distinct F, F ′ ∈ O s.t. F ∈ NAESAT
with model w. By transitivity and commutativity, there is a
unique X ∈ GV s.t. FX = F ′, so F γX = FX

γ = F ′γ .
Thus, wX is a model of (F ∪ F γ)X = F ′ ∪ F ′γ implying
F ′ ∈ NAESAT, so O ⊆ NAESAT. The reverse is evident,
hence (i) is true.
H is bicolorable iff B ∈ Fcomp(H) ∩ NAESAT as a

monotone formula, so (ii) is implied by (i).
In both alternatives of (iii) it is H ∈ BIC, evidently. So

(iii) is implied by (ii). Assertion (iv) is obvious. 2

Lemma 3: Let Hi ∈ H(m), i ∈ [2], τ ∈ Sm, be vertex-
disjoint with fixed labeled edge sets over [m]. Then H1 �τ

H2 ∈ H0 implies that Hi is loopless, i ∈ [2].
PROOF. Let Hi = (Vi, Bi), i ∈ [2], B1 = {bj : j ∈ [m]},
B2 = {b̂j : j ∈ [m]}. Suppose there is j ∈ [m] s.t. w.l.o.g.

bj = {x}, b̂τ(j) = {y1, . . . , yr}

for fixed r ∈ N. Then obviously

bj � b̂τ(j) = {x̄, xy1, . . . , xyr} ∪ {ȳ1 · · · ȳr, y1 · · · yrx}

is a diagonal transversal over H(j) := H(bj � b̂τ(j)). Since
H(j) ⊆ H1 �τ H2, the assertion is established. 2

In the following, for simplifying the notation, the discus-
sion first is focused on the special case τ = id. In particular,
for the symmetric join of trivial BHGs, one has:

Theorem 4: Let Hi = (Vi, Bi) ∈ H(m), β(Hi) = 0, i ∈
[2], be vertex-disjoint with fixed labeled B1 = {bj : j ∈ [m]},
B2 = {b̂j : j ∈ [m]}. Further setting H := H1 � H2, and
H(j) := H(bj � b̂j), j ∈ [m], the following is true:

(1) H ∈ H0 iff H1,H2 are loopless.
(2) H ∈ Hmdiag iff m = 1 and H1,H2 ∈ H`. In this case,

H is isomorphic to K2.
(3) Let H ∈ H0 then

(a) H ∈ Hmaxnd iff there is j ∈ [m], s.t. H(j) ∈
Hmaxnd.

(b) H is dense maximal non-diagonal iff H(j) is
dense maximal non-diagonal, for all j ∈ [m].

PROOF. The necessity in (1) is provided by La. 3. Reversely,
as β(H1) = β(H2) = 0, H is the vertex-disjoint union of
the H(j) over all j ∈ [m]. Thus H ∈ H0, iff H(j) ∈ H0,
for all j ∈ [m], which is claimed to be true if |bj | > 1,
|b̂j | > 1, for all j ∈ [m]. To that end, for fixed j ∈ [m],
set b := bj , b̂ := b̂j , H′ := H(j) which decomposes into
the edge-disjoint parts H′

I , H′
II . Here H′

I is obtained from
H(b⊗b̂) via substituting b̂ by b; and H′

II arises from H(b̂⊗b)
via substituting b by b̂. So, for F ∈ F(H′), one has

FI ∈ F(H′
I), FII ∈ F(H′

II), s.t. F = FI ∪ FII
as disjoint union. For verifying that F ∈ SAT, we show
that FI , FII can always be satisfied. Observing that FI [b] ⊆
Wb and FII [b̂] ⊆ Wb̂, we distinguish three cases for these
retractions.

Case (i): FI [b] ( Wb, FII [b̂] ( Wb̂, then both are
satisfiable only relying on the variables in b, b̂, respectively.
So, FI(b) = FI , FII(b̂) = FII ∈ SAT implying F ∈ SAT.

Case (ii): W.l.o.g.

FI [b] = Wb, FII [b̂] ( Wb̂
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Let c′ ∈ FI ∩Wb, which is the only clause therein. Given
c ∈ FI [b], let mc be the number of clauses in FI containing
c, and set

m̃ := min {mc : c ∈ FI [b] \ {c′}} ≥ 1

thus
|b̂| = |FI \ {c′}| ≥ (2|b| − 1)m̃+mc′ − 1

Fix c̃ ∈ FI [b] distinct to c′ s.t. mc̃ = m̃. Due to La. 1 (v)
in [16], as FI [b] ∈ I, there is an assignment w̃ ∈ Wb s.t.
w̃ = c̃γ , satisfying FI [b]\{c̃}. Evidently, each member of FI
containing c̃ has a unique distinct literal over a variable in
b̂ which has to be assigned to 1; let w be the corresponding
extension of w̃. Thus w satisfies FI , and there remain

|b̂| − m̃ ≥ (2|b| − 2)m̃+mc′ − 1 ≥ 2|b| − 2

unassigned variables of b̂. It is |FII | = |b|+ 1 and we either
have |b| ≥ 3 implying

2|b| − 2 > |b|+ 1

so FII is satisfiable, because each of its clauses can be
solved by an independent variable. Or |b| = 2, meaning
two unassigned variables which both occur in each of three
clauses. So there is a variable occurring in two of the clauses
as the same literal, hence it can be set accordingly to solve
them. The third clause can be solved by the second variable,
so also FII is satisfiable meaning F ∈ SAT.

Case (iii): FI [b] = Wb, and FII [b̂] = Wb̂, then

|b| ≥ 2|b̂| − 1, |b̂| ≥ 2|b| − 1

implying
log2(|b|+ 1) ≥ |b̂| ≥ 2|b| − 1

which evidently is valid iff |b| = 1 = |b̂|, contradicting the
assumption and excluding this case. Hence (1) is true.

Since β(H1) = β(H2) = 0, one has H =
⋃
j∈[m]H(j)

as a vertex-disjoint union, which has to be connected if H
is minimal diagonal, so m = 1. Assertion (1) implies |b1| =
|b̂1| = 1. Conversely, if either of H1,H2 consists of exactly
one loop, then H is isomorphic to K2 ∈ Hmdiag yielding (2).

According to (1) and its proof, H ∈ H0 is equivalent with
H =

⋃
j∈[m]H(j) =: (V,B) as vertex-disjoint union, and

H(j) =: (Vj , Bj) is loopless, for all j ∈ [m]. So, let j ∈ [m]
s.t. H(j) is maximal non-diagonal. Then there is b′j ⊆ Vj ⊆
V , b′j /∈ Bj . By the vertex-disjointness, also b′j /∈ B and
H(j) ∪ {b′j} ∈ Hdiag implying H ∪ {b′j} ∈ Hdiag. Hence H
is maximal non-diagonal.

Conversely, assume that H is maximal non-diagonal, but
H(j) fails to have this property, for all j ∈ [m]. Then there
are b′ ⊆ V , b′ /∈ B, s.t. H′ := H ∪ {b′} ∈ Hdiag, and
F ′ ∈ Fdiag(H′) with c′ ∈ F ′ s.t. V (c′) = b′. One has
F := F ′ \ {c} ∈ F(H), and its restriction to Bj yields
Fj ∈ F(H(j)). Similarly, let c′j := c′[Vj ] be the restriction
of c′ to Vj , j ∈ [m]. Since no H(j) is maximal non-diagonal,
it is Fj∪{c′j} ∈ SAT. Finally, by the vertex-disjointness one
also has

F ′ = F ∪ {c} =
⋃
j∈[m]

Fj ∪
⋃
j∈[m]

c′j

=
⋃
j∈[m]

(Fj ∪ {c′j}) ∈ SAT

providing a contradiction, yielding 3(a).
Next, let H(j) be dense maximal non-diagonal, for all

j ∈ [m]. Fix any b′ ∈ B(KV ) \ B and set H′ := H ∪ {b′}.
Then there exists ∅ 6= L ⊆ [m] s.t. ∅ 6= b′j := b′ ∩ Vj /∈ Bj ,
thus

H′(j) := H(j) ∪ {b′j} ∈ Hdiag

for all j ∈ L. Let F ′
j ∈ Fdiag(H′(j)) with c′j ∈ F ′

j ,
V (c′j) = b′j , hence Fj := F ′

j\{c′j} ∈ F(H(j)), for all j ∈ L.
Choosing an arbitrary Fj ∈ F(H(j)), for all j ∈ [m]\L, one
obtains F :=

⋃
j∈[m] Fj ∈ F(H) as variable-disjoint union.

Since b′ =
⋃
j∈L b

′
j , for c′ :=

⋃
j∈L c

′
j one has V (c′) = b′,

for which is claimed that

F ′ := F ∪ {c′} ∈ Fdiag(H′)

Indeed, suppose there exists w ∈ M(F ) also satisfying c′,
then there is l ∈ c′ ∩ w 6= ∅. Thus there is j ∈ L s.t. l ∈ c′j
satisfied by w, meaning F ′

j ∈ SAT providing a contradiction.
Finally, let H =

⋃
j∈[m]H(j) ∈ H0 be dense maximal

non-diagonal and suppose there exists j ∈ [m], for which
there is b′j ∈ B(KVj

)\Bj , so b′j 6∈ B, s.t. H(j)∪{b′j} ∈ H0.
Hence, H ∪ {b′j} ∈ H0 yielding (3)(b). 2

Aiming at a more specific criterion than Thm. 4 3(a), the
next result is helpful:

Lemma 4: Let b, b̂ be no loops s.t. b∩ b̂ = ∅. Then H(b�
b̂) /∈ Hmaxnd iff |b| > 2, |b̂| > 2.
PROOF. By Thm. 4 (1), it is ensured that H := H(b� b̂) =:
(V,B) ∈ H0. Regarding the necessity, we show that if one
of b, b̂ has size 2 then H ∈ Hmaxnd. So, w.l.o.g. suppose
that b = {x, y}, |b̂| ≥ 2. As H is loopless, it suffices to
identify a loop, say {x}, s.t. H ∪ {x} becomes diagonal, to
conclude that H ∈ Hmaxnd. For H̃ := H\{b̂}, the retraction
H̃[V \ {x}] is well defined (cf. [16]); it actually results via
removing x from each edge of H̃. Setting b′ := b \ {x}
yielding a loop, one directly verifies

H̃[V \ {x}] = H(b′ � b̂) ∈ Hdiag

where Thm. 4 (1) has been used. Let F̃ be a diagonal
transversal over H̃[V \ {x}]. Let F be obtained from F̃ ,
by enlarging each of its clauses by the literal x, and finally
adding the clause {x̄} over the additional loop. Evidently
F ∈ Fdiag(H̃ ∪ {x}), establishing that H̃ ∪ {x} ⊆ H ∪ {x}
both are diagonal.

Conversely, let 2 < r ≤ s be integers, s.t.

b = x1 · · ·xr, b̂ = y1 · · · ys

Again H is composed of the edge-disjoint parts HI , HII ,
where HI results from H(b⊗ b̂) when b̂ is replaced by b, and
HII from H(b̂⊗ b) via replacing b by b̂. Given F ∈ F(H),
there are

FI ∈ F(HI), FII ∈ F(HII), s.t. F = FI ∪ FII

as disjoint union. In view of La. 6 in [16], we show that
adding a loop to H remains the resulting BHG non-diagonal,
hence H cannot be maximal non-diagonal. For the loop, it
suffices to choose (1) any vertex of b, say xr, (2) any vertex
of b̂, say ys.

Regarding (1), consider H∪ {xr} and let F̃ be any of its
transversals. Then we may assume that the clause of F̃ over
{xr} is satisfied and removed yielding F ∈ F(H). Let F ′

be obtained from F by removing all those clauses that are
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satisfied via xr, and removing the literal over xr from each
remaining clause. Let b′ := b \ {xr}, then by assumption

|b′| = r − 1 > 1, |b̂| = s > 1

So, according to the cases (i), (ii) in the proof of Thm. 4
(1), one concludes FI [b′], FII [b̂] ∈ SAT implying FI(b′),
FII(b̂) ∈ SAT. Since

F ′ ⊆ FI(b′) ∪ FII(b̂)

it is F ′ ∈ SAT. The case (2), for ys, proceeds analogously,
because s ≥ r. 2

Corollary 2: Let Hi = (Vi, Bi) ∈ H(m), β(Hi) = 0, i ∈
[2], be vertex-disjoint and loopless with B1 = {bj : j ∈ [m]},
B2 = {b̂j : j ∈ [m]}. Then H1 �H2 ∈ Hmaxnd iff there is
j ∈ [m] s.t. |bj | = 2 or |b̂j | = 2. 2

It remains, to provide a more specific characterization for
the dense maximal non-diagonality. Observe that if H(j) =
(Vj , Bj), j ∈ [m], as defined in Thm. 4, is loopless, then it
never has Vj as an edge. Further, in the context of Thm. 4
(3)(b), one has the following criterion:

Lemma 5: Let H = (V,B) ∈ H0 s.t. V /∈ B. Then H is
dense maximal non-diagonal iff there exists F ∈ F(H) with
|M(F )| = 1.
PROOF. The sufficiency directly follows from Thm. 5 (2)
in [16]. Reversely, suppose that |M(F )| ≥ 2, for all F ∈
F(H), and set H′ := H ∪ {V } which by assumption is
distinct to H. Let F ′ ∈ F(H′) be arbitrary with c ∈ F ′,
V (c) = V , then F := F ′ \ {c} ∈ F(H). Consider distinct
w1, w2 ∈ M(F ) then neither of them satisfies F ′ iff w1 =
cγ = w2. Thus there is a model of F ′ implying that H′ ∈ H0,
meaning that H fails to be dense maximal non-diagonal. 2

In summary we obtain:
Theorem 5: Let Hi ∈ H(m), β(Hi) = 0, i ∈ [2], be

vertex-disjoint with fixed labeled edge sets. Then H1 � H2

is dense maximal non-diagonal iff Hi is 2-uniform, i ∈ [2].
PROOF. Let Hi = (Vi, Bi), i ∈ [2], with

B1 = {bj : j ∈ [m]}, B2 = {b̂j : j ∈ [m]}

Clearly, β(Hi) = 0, i ∈ [2], means

H := H1 �H2 =
⋃
j∈[m]

H(j), H(j) := H(bj � b̂j)

According to Thm. 4 (3)(b), it suffices to show that H(j)
is dense maximal non-diagonal iff |bj | = |b̂j | = 2, for any
fixed j ∈ [m].

Concerning the necessity, first let |bj | > 2 and |b̂j | >
2, then H(j) /∈ Hmaxnd by La. 4, thus it cannot be dense
maximal non-diagonal.

If w.l.o.g. |bj | = 2, |b̂j | > 2, it is claimed that |M(F )| ≥
2, for an arbitrary F ∈ F(H(j)), yielding the assertion on
basis of La. 5. To establish this claim, we refer to the notation
in the proof of Thm. 4 (1), and let

Ubj
:= Wbj

\ FI [bj ], Ub̂j
:= Wb̂j

\ FII [b̂j ]

By assumption |Ub̂j
| ≥ 5. It either is |Ubj

| > 0, so choose
any c ∈ Ubj

and assign all its literals to 0, yielding a partial
model w ∈ Wbj

satisfying FI [bj ], so FI . Independently fix
distinct ĉ, ĉ′ ∈ Ub̂j

. Assigning all literals in ĉ, ĉ′ to 0,
provides the partial models ŵ, ŵ′ ∈ Wb̂j

, respectively, each

satisfying FII [b̂j ], so also FII . By enlargement about w, two
distinct models for F = FI ∪ FII are obtained.

Or it is |Ubj
| = 0, for which the argumentation of the case

(ii) in the proof of Thm. 4 (1) is slightly adapted: There is
a unique c′ ∈ FI ∩Wbj

, and a unique c′′ ∈ FI [bj ], each of
whose literals occurs exactly once in FII . Again mc is the
number of clauses in FI containing c ∈ FI [bj ]. Set

m̃ := min{mc : c ∈ FI [bj ] \ {c′, c′′}} ≥ 1

Thus if c′ = c′′, it is

|b̂j | = |FI \ {c′}| ≥ (2|bj | − 1)m̃+mc′ − 1
= 3m̃+mc′ − 1

And if c′ 6= c′′, it is

|b̂j | ≥ 2m̃+mc′ +mc′′ − 1

Fix c̃ ∈ FI [bj ] \ {c′, c′′} with mc̃ = m̃, which always exists.
As FI [bj ] ∈ I, there is w̃ ∈ Wbj

s.t. w̃ = c̃γ , satisfying
FI [bj ] \ {c̃}. Each clause of FI containing c̃ has a unique
literal over a variable in b̂j , which is forced to be assigned
to 1 yielding the extension w of w̃. Hence, w satisfies FI
and at least one clause of FII . There remain

|b̂j | − m̃ ≥ 2m̃+mc′ − 1 ≥ 2

unassigned variables of b̂j , if c′ = c′′. And if c′ 6= c′′, there
remain

m̃+mc′ +mc′′ − 1 ≥ 2

unassigned variables of b̂j . It is |FII | = |bj |+1 = 3 of which
at least one clause is solved via c′′. Thus, there remain at
most 2 unsolved clauses, and both variables occur in these
clauses. If there is a pure literal for one variable, two models
are obtained by assigning both values to the other variable. If
there is no pure literal, assigning the first variable accordingly
for the first clause, forces the other variable in the second
clause. As there is no pure literal, assigning the first variable
complementary, solves the second clause and forces the other
variable in the first clause, yielding two models for F .

Regarding the sufficiency, for arbitrary fixed j ∈ [m], set

bj =: b = x1x2, b̂j =: b̂ = y1y2

Then due to Thm. 4 (1), it is H(j) ∈ H0. Further,

Fj := {x1x2y1, x̄1x̄2y2, x̄1x2, ȳ1y2x1, y1ȳ2x̄2, ȳ1ȳ2}

lies in F(H(j)). Finally, one has |M(Fj)| = 1, from which
the desired assertion and the theorem follow using La. 5.
Indeed, x1 = y1 = y2 = 0, x2 = 1, provides a model of Fj ,
which can easily be shown to be solely. 2

It is not hard to verify, that the previous results, concerning
the symmetric join of trivial BHGs, are valid also for their
symmetric τ -join:

Corollary 3: Let Hi = (Vi, Bi) ∈ H(m), β(Hi) = 0,
i ∈ [2], be vertex-disjoint, loopless. Then Thm. 4, Cor. 2, and
Thm. 5 remain true if H1 �idH2 is substituted by H1 �τH2,
for an arbitrary τ ∈ Sm. 2

In case that H1,H2 are non-trivial, non-diagonal and 2-
uniform, H1 �τ H2 needs not to be non-diagonal. Adap-
ting Thm. 1 (8) using certain assumptions on H1,H2, one
is enabled to derive conditions for the non-diagonality of
H1 �τ H2. Moreover, if the vertex-disjoint H1,H2 both are
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dense maximal non-diagonal, one verifies, analogously to the
argumentation for Thm. 4 3(b), that the same is true for
H1 ∪ H2 ( H1 �τ H2 implying its diagonality. Slightly
more general, one has a ”local” criterion for non-diagonality
without explicit further assumptions for H1,H2:

Theorem 6: Let Hi = (Vi, Bi) ∈ H0(m), i ∈ [2], V1 ∩
V2 = ∅, τ ∈ Sm, and Hτ := H1 �τ H2. If there exists
a dense maximal non-diagonal Hd = (Vd, Bd) ⊆ Hτ with
|Vd ∩ Vi| ≥ 2, i ∈ [2], s.t. there is b ∈ B1, b̂ := τ̃(b) ∈ B2

with

(b ∩ Vd) ∪ (b̂ ∩ Vd) 6= ∅ and |b \ Vd| ≤ 2, |b̂ \ Vd| ≤ 2

then Hτ ∈ Hdiag.
PROOF. Since |Vd ∩ Vi| ≥ 2, i ∈ [2], it is Vd /∈ Bd. Hence,
there is Fd ∈ F(Hd) with |M(Fd)| = 1 by La. 5 and the
assumption. Let wd be this model, and H(b � b̂) =: Hloc.
Partially define F ∈ F(Hloc) via setting x according to
wγd (x) in all its occurrences of B(Hloc), for all x ∈ Vd.
Meaning that all these literals are assigned to 0 and are
removed. This in particular yields the reduced edges

b′ := b \ Vd, b̂′ := b̂ \ Vd, so 0 ≤ |b′| ≤ 2, 0 ≤ |b̂′| ≤ 2

If |b′| = 0 or |b̂′| = 0, we are done. If there is a loop among
b′, b̂′, we are done also, because according to La. 3 it is
H(b′ � b̂′) ∈ Hdiag.

Otherwise, both b′, b̂′ are 2-uniform by assumption, and
the remaining part of F over B(b′ � b̂′), denoted as F ′, can
be constructed to yield an unsatisfiable transversal over Hloc

as follows: Due to the end of the proof of Thm. 5, there
exists a transversal over H(b′ � b̂′), which is chosen for F ′,
having a unique model w′.

Moreover, we may assume w.l.o.g. that b̂ ∩ Vd 6= ∅,
meaning |b̂| ≥ 3. So, there is an additional reduced 2-
clause c′ over b′ which is not in F ′. Setting all literals in c′

according to w′γ , provides F ′∪{c′} ∈ UNSAT. If c denotes
the enlargement of c′ about the literals over Vd as defined
above, one obtains F ∪ {c}, which is a diagonal transversal
over (a sub-hypergraph of) Hloc ⊆ Hτ . 2

A concrete example, for Hd as defined in the previous
(local) criterion, is provided by the 2-uniform BHG defined
at the end of the proof of Thm. 5. Further, since the proof
above relies on the special structure of H(b� b̂), the criterion
cannot be adapted to H1 ⊗τ H2.

VII. CONCLUSIONS AND OPEN PROBLEMS

Whereas several conditions are provided in Thms. 1 and
2, a complete characterization of the necessary and sufficient
properties of H1,H2 ∈ H(m) s.t. H1 ⊗τ H2 ∈ H0, still is
open. The assertions of Thm. 2 are conjectured to remain
true, for every H1 with β(H1) = 0.

For a fixed τ ∈ Sm, setting

F(H1)⊗τF(H2) :={F1⊗τF2 : (F1, F2) ∈ F(H1)×F(H2)}

one clearly has

F(H1)⊗τ F(H2) ( F(H1 ⊗τ H2)

even in case of trivial H1,H2. However, in the diagonal
case it would be challenging to completely characterize the
conditions for H1,H2, τ , s.t.

Fdiag(H1)⊗τ Fdiag(H2) = Fdiag(H1 ⊗τ H2)

Further, one should state precise conditions for H1,H2, τ ,
ensuring that H1 ⊗τ H2 is (dense) maximal non-diagonal,
respectively minimal diagonal, and vice versa, cf. Prop. 1,
Prop. 2. Refering to Prop. 6 (2), it was desirable to become a
thorough knowledge regarding the parameter ϕp. A complete
clarification concerning the τ -dependence of δ(H1 ⊗τ H2)
in the diagonal case fails to exist, cf. Prop. 7.

The structure of {C1 ⊗σ C2 : σ ∈ Sm}, for Ci ∈
CNF(Vi,m), i ∈ [2], can be investigated independently in
the case, that the σ-join fails to be fibre-respecting which
especially includes the case |H(C1)| 6= |H(C2)|. Otherwise,
the analysis of

{H(C1)⊗τ H(C2) : τ ∈ Sm′}

for H(Ci) ∈ H(Vi,m′), i ∈ [2], is required also.
Refering to Thm. 6, the general characterization regarding

the (non-)diagonality of H1 �τ H2 is open, which also
holds true for its minimal diagonality, respectively its (dense)
maximal non-diagonality. The same lack is given concerning
the τ -dependence of the orbit parameters of H1 �τ H2.

Finally, clarifying the general structure of the symmetric
σ-join of formulas together with its fibre-respecting special-
ization yields a project for future work.
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