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 Abstract- The paper presents an algorithm for multi-target 

pedestrian tracking based on a tracking-learning detection 

(TLD) algorithm and a scale-adaptive correlation filter 

(SAMF). The SAMF algorithm incorporates a scale pool 

method during tracking, which enhances the robustness of 

target tracking.  However, it lacks an occlusion judgment 

mechanism, limiting its performance in scenarios involving 

occlusions. When the target is occluded, the fixed template 

update method is used to update the filter template, leading to 

template pollution and algorithm drift. The SAMF algorithm 

with occlusion judgment proposed in this paper not only ad-

dresses this issue but also evaluates the target tracking state 

by the relationship between the average peak correlation en-

ergy and the peak sidelobe ratio of the current frame and the 

historical mean values. Additionally, the SAMF-TLD algo-

rithm presented in this paper integrates a short-term tracker 

with the TLD method, enhancing the algorithm's real-time 

performance and addressing the tracking failure issues of the 

TLD algorithm under large-scale variations and changes in 

illumination. Two datasets are used for tracking validation: 

MOT-16 and 2DMOT-15. Common evaluation measures for 

multi-target tracking were used for comparison and analysis. 

The results of the experiment demonstrate that this method 

outperforms the TLD algorithm in terms of accuracy and 

real-time and outperforms the SAMF algorithm in the context 

of anti-occlusion. 

 

Index Terms—multi-target tracking, SAMF-TLD, multi-scale 

kernel correlation filtering, multi-peak confirmation redetec-

tion 

 

Ⅰ. INTRODUCTION 

edestrian multi-target tracking [1] refers to the ability to 

simultaneously identify multiple targets of interest in a 

video clip and provide accurate and comprehensive motion 

trajectories for these targets over time. Pedestrians, as typi-

cal non-rigid targets, experience significant posture changes 

during movement and are highly susceptible to occlusion, 

rendering them challenging to track compared to vehicles 
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and other rigid targets. Consequently, many existing mul-

ti-target tracking algorithms concentrate on pedestrians, 

drawing upon a substantial research foundation in this area. 

In general, it is difficult to find a general principle for cat-

egorizing pedestrian multi-target tracking algorithms. Ac-

cording to the order of trajectory generation, it can be di-

vided into Detection-Based-Tracking (DBT) [2] pedestrian 

tracking methods and Detection-Free-Tracking (DFT) [3] 

pedestrian tracking methods. The DBT class algorithm 

performs target detection on images from different video 

frames with an excellent detector for each frame of the 

video sequence and crops the pedestrian image targets ac-

cording to the bracketing frame to get all the targets in the 

image. Data association is conducted on the targets, trans-

forming it into a target association problem between the 

previous and subsequent frames. The DFT class algorithm 

is characterized by the absence of a detector, which can be 

used to balance the quality of the input data. 

To address challenges such as occlusion, scale variation, 

missed detections, false detections, and ID switching in 

pedestrian multi-target tracking, researchers worldwide 

have proposed a wide range of algorithms. Among the two 

classes of algorithms mentioned above, the performance of 

DBT class algorithms depends [4], to a certain extent, on 

the target detection model employed and requires offline 

training beforehand [5-9]. The type of target tracked by 

DBT class algorithms is solely determined by the results of 

the detection algorithm and cannot be predicted. Converse-

ly, the DFT method is model-free, eliminating the need for 

specific target detector training and enabling tracking of 

any target type. This paper presents the requirement for 

pedestrian multi-target tracking algorithms to achieve 

long-term tracking of arbitrary targets. So, the method used 

in this paper is the DFT class algorithm. In the DFT class 

of algorithms, Kalal proposed the TLD tracking algorithm 

[10], which is a long-time tracking algorithm that combines 

three modules of tracking, detection, and learning with ex-

cellent performance. Martin proposed the Discriminative 

Scale Space Tracker (DSST) algorithm, which achieves 

high tracking accuracy and robustness by constructing a 

scale space pyramid [11]. Li Y et al. proposed the SAMF 

algorithm [12], which combines Histogram of Oriented 

Gradient (HOG) and Color Names (CN) features with a 

panning filter to detect targets on a multi-scale scaled im-

age block, selecting the panning position with the largest 

response and the corresponding scale [13]. These algo-

rithms have good robustness and real-time performance, 

but they struggle to address issues related to illumination 

variation, target scale changes [14], and poor tracking ac-

curacy when the target is occluded [15]. 

P 
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In response to the above issues, this article proposes an 

occlusion-resistant SAMF-TLD algorithm, with the main 

contributions summarized as follows.  

(1) To address the issue of tracking loss caused by pro-

longed target occlusion, we propose a SAMF-based target 

tracking method that incorporates an occlusion judgment 

mechanism. The method evaluates the target tracking state 

by examining the relationship between the average peak 

correlation energy of the current frame and the peak paral-

lax ratio and the historical frame average. It achieves target 

re-detection using the multi-peak confirmation re-detection 

method. 

(2) To address the decline in tracking accuracy when a 

target significantly modifies the TLD, this paper proposes 

the SAMF-TLD algorithm. The method is inspired by TLD 

and integrates the anti-obscuration SAMF short-term 

tracking algorithm. It combines the color properties of CN 

and HOG and incorporates an adaptive updating strategy 

for filter templates to achieve robust target tracking.  

(3) In the paper, the performance of the proposed method 

is evaluated using 2DMOT-15 and MOT-16 datasets using 

standard pedestrian multi-target tracking metrics. The re-

sults indicate that the SAMF-TLD algorithm can maintain 

stable and correct tracking when the target undergoes a 

large-scale variation and generates occlusion, and the 

tracking accuracy and precision are higher than those of 

TLD, SORT, and SAMF algorithms. 

The structure of this paper is as follows. Chapter II in-

troduces the TLD and SAMF algorithms. Chapter III pro-

poses the SAMF-TLD algorithm and provides a detailed 

description. Chapter IV carries out simulation experiments 

and quantitative experiments on the proposed algorithm. 

Chapter V concludes this paper. 

Ⅱ. RELATED WORKS 

A. SAMF Target Tracking Algorithm 

SAMF target tracking belongs to the class of discrimina-

tive algorithms and is known for its high tracking accuracy. 

SAMF based on the KCF algorithm [16], HOG [17] fea-

tures are fused with CN features [18-19] to take full ad-

vantage of the video frame color information, and the scale 

pooling method is introduced to improve target tracking 

robustness. 

The SAMF algorithm comprises three parts: filter train-

ing, target localization and scale estimation, and model 

updating. At frame 1 of the video input, the SAMF algo-

rithm approaches the training and computation of the filter 

by solving a ridge regression problem, denoted as: 

 
2 2min T

i i
f i

f x y f − +  (1) 

where ix  is the i -th training sample in the round robin 

sampling; iy  corresponds to its regression label; f is the 

column vector, which denotes the weight coefficients; and 

  is the regularization factor. After expanding to the ker-

nel space, f can be expressed as: 

 ( )i i
i

f x =   (2) 

where ( )ix  is the function that maps ix  to a higher 

dimensional space. i is the weight coefficient, whose 

vectorization is denoted as   . The closed-form solution 

for   is: 

 1( )K E y  −= +  (3)  

where K  is the Gaussian kernel autocorrelation matrix of 

all training samples; E  is the identity matrix; Y  is the 

column vector, where each element represents a regression 

label iy . The calculation can be performed using the Dis-

crete Fourier Transform (DFT) and the transformation of 

the properties of the cyclic matrix into the frequency do-

main: 

 
ˆ

ˆ
ˆxx

y

k



=

+
 (4) 

where ˆxxk  is the element of row 1 of matrix K ; super-

script “ ” is the fast Fourier transform operation of the 

vector. During the tracking process, the SAMF algorithm 

generates the response output for each image block in the 

frequency domain by applying the appropriate filtering 

operation after extracting seven image blocks of various 

scales that are centered on the target point of the preceding 

frame. and then converts to the time domain and seeks its 

maximum response value maxF  using the discrete Fourier 

inverse transform, the formulas are as follows:  

 1
max arg max[ ( )]ˆ ˆsxZF F k −=  (5) 

where 1F −  denotes the discrete Fourier inverse transform; 

ˆ sxZk  represents the first element of the Gaussian kernel in-

ter-correlation matrix between the training samples and the 

test samples; sZ  is the test sample of the j -th scale 

block; maxF  the corresponding coordinate value predicts 

the target center of the current frame. Finally, the SAMF 

uses linear weighting to update the model with the target 

samples tx  and coefficient vectors i  of the current 

frame t , as shown in the following equation: 

 

1
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ˆ

ˆ
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 

   


−

−

 = − +



= − +
+

 (6) 

where   is the learning rate, and   is taken to be 0.02 in 

the experiment, 1ˆ tx − and 1ˆ t −  denote the target sample 

and the coefficient vector of the previous frame, respec-

tively; and ˆ s sz zk  denotes the element of the first row of the 

Gaussian kernel autocorrelation matrix of the test sample 

sZ . 

The SAMF algorithm is a rapid short-term tracking 

method that swiftly predicts the target's center and position, 

while simultaneously performing real-time online updates 

to the detection model. However, as tracking time extends, 

the model increasingly incorporates background infor-

mation, resulting in an accumulation of errors that leads to 

tracking errors. 

In addition, the SAMF algorithm in the tracking process, 

the search area, and the target box size are fixed; conse-

quently, significant variations in target scale can reduce 

tracking performance. The algorithm lacks sufficient ro-

bustness to address challenging issues in multi-target 

tracking, such as occlusion, deformation, rotation, and oth-

er interferences. 
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B. TLD Tracking Algorithm 

The core idea of the TLD tracking algorithm [8] is that 

tracking, learning, and detection interact to track a moving 

target jointly. The algorithm integrates traditional tracking 

and detection approaches. The algorithm incorporates the 

P-N mechanism in the learning module [20], which effec-

tively addresses tracking drift failures caused by target oc-

clusion, ensuring improved robustness and accuracy. The 

detector uses the scanning window grid algorithm to ini-

tialize target image features and processes each image 

frame to correct tracker errors during tracking[21]. The 

tracker [22] utilizes the median optical flow method to con-

tinuously track the target and updates its motion trajectory 

in real time. 

(1) Detector 

The detection module serves to locate the target's posi-

tion, and its results can reinitialize the tracker after a track-

ing module failure. Upon target loss, the module performs a 

global search of the new frame and promptly recaptures and 

resumes tracking when the target reappears. [23-26]. The 

framework of this module is shown in Fig.1. 

 
Fig. 1 Detection module framework diagram 

 

(2) Tracker 

The tracking module in the TLD uses the Median Flow 

Tracker (MFT) [27] method based on the pyramid LK op-

tical flow method [28-29]. The method assumes that the 

target's brightness remains constant across two adjacent 

frames and that the target trajectory between these frames is 

both limited and visible. The target's position is then deter-

mined by selecting feature points from the previous frame, 

estimating their displacements between the two frames, and 

identifying their positions in the current frame. 

(3) Learning Modules 

The learning module utilizes a semi-supervised approach 

known as P-N learning theory. The framework of the 

learning module is illustrated in Fig. 2. 

The P-N learning theory optimizes the classifier by lev-

eraging both labeled and unlabeled datasets. Firstly, the 

module trains the base classifier using a small set of labeled 

samples. Secondly, it classifies the unlabeled samples by 

assigning positive and negative labels based on the trained 

classifier. The N-expert in the P-N learning module selects 

the most plausible result by comparing the detection mod-

ule's output with the positive samples generated by the 

P-expert and then output this result as the final target posi-

tion. 

 
Fig.2 Learning module framework diagram 

 

The P-N learning theory optimizes the classifier by lev-

eraging both labeled and unlabeled datasets. Firstly, the 

module trains the base classifier using a small set of labeled 

samples. Secondly, it classifies the unlabeled samples by 

assigning positive and negative labels based on the trained 

classifier. The N-expert in the P-N learning module selects 

the most plausible result by comparing the detection mod-

ule's output with the positive samples generated by the 

P-expert and then outputs this result as the final target posi-

tion. 

TLD multi-target tracking algorithm is a long-term 

tracking algorithm [30]. The re-detection function of the 

detection module ensures accurate target capture when the 

target is occluded or moves out of view and restarts the 

tracking module, which has the advantage of long-term 

tracking. The disadvantages of this method are also obvious. 

Firstly, the median optical flow method must satisfy the 

gray invariance, scale invariance and spatial consistency. 

Tracking tends to fail when illumination changes or motion 

deformation is large. Secondly, the operation efficiency is 

low, as the TLD algorithm processes a large number of 

image blocks, making it unable to meet the real-time re-

quirements for target tracking. This limitation can be ad-

dressed by replacing it with a high-efficiency short-term 

tracker. 

Ⅲ. SAMF-TLD PEDESTRIAN MULTI-TARGET TRACKING AL-

GORITHM 

The tracking and detection modules must operate con-

currently and independently, correcting each other because 

the TLD algorithm is predicated on the optical flow 

method's lack of reliability. The TLD method's unreliable 

tracking results can be solved by using the SAMF algo-

rithm, which provides excellent short time tracking perfor-

mance. As a result, a SAMF-TLD algorithm is presented in 

this work. The algorithm is a long-time tracking algorithm 

capable of effectively handling occlusion, scale changes, 

illumination variations, and fast motion of the target. This 

method combines the advantages of the SAMF algorithm 

with adaptive template updating and the TLD long-term 

tracking algorithm, enhancing both the robustness and ac-

curacy of the tracker. 

A. Anti-obscuration SAMF Algorithm 

The SAMF algorithm lacks sufficient robustness in han-

dling occlusion interference. In this paper, we address this 

issue by introducing an occlusion determination method 

that combines Average Peak-to-Correlation Energy (APCE) 

and Peak-to-Sidelobe Ratio (PSR). This method employs 

different strategies based on the target's occlusion state. Th- 
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Fig. 3 Overall framework of SAMF algorithm for anti-obscuration 

 

e algorithm adaptively adjusts the learning rate based on 

the target’s APCE and PSR results when it is not occluded 

or only slightly occluded, preventing occlusion information 

from being introduced into the filter template. In cases of 

severe target occlusion, the algorithm employs a multi-peak 

confirmation re-detection module to enhance performance 

further by detecting the target. The algorithm framework in 

Fig. 3. 

(1) Masking Judgment Mechanism 

The output response map's degree of oscillation is pri-

marily represented by APCE [31]; the greater the degree of 

peak oscillation, the lower the APCE value, and the worse 

target tracking accuracy. PSR reflects the robustness of the 

target tracker through the degree of sharpness of the main 

peaks if the main peaks of the target tracker are relatively 

sharp [32]. A high PSR value indicates good accuracy in 

the current target tracking. In the case where the target is 

occluded or otherwise interfered with, both APCE and PSR 

are significantly reduced. These two evaluation indexes 

evaluate the tracking effect of the target from different 

perspectives, and their combination can effectively improve 

the judgment accuracy of the occlusion evaluation criterion 

when the target is in a complex occlusion situation. 

Based on APCE changes across different motion states, 

the threshold value A  is set, when APCEW A , the target 

is considered to be in the first occlusion stage, indicating no 

occlusion or slight occlusion. Otherwise, the target is in 

severe occlusion and turns to full occlusion and stops the 

normal template updating and initiates the rechecking 

module to re-localize the target. In order to make the 

threshold A  adaptively adjustable in the complex track-

ing environment, it is set as the product of the threshold 

adjustment coefficient   and the APCE of the history 

frame, which is defined as follows. 

 

1

1

1

i

t

APCE
i

W
A

t


−

=


= 

−

 (7) 

where the adjustment factor   is taken as 0.6 according to 

the empirical value, A  denotes the judgment threshold, and 

iAPCEW  denotes the APCE value of the i th frame. 

The judgment threshold B  is set based on variations in 

PSR values under different target occlusion conditions. If 

tPRS B , it indicates that the peak value on the target 

response map has a higher signal-to-noise ratio relative to 

the side-lobe energy, and the target tracking algorithm has a 

better anti-jamming performance and tracks the target nor-

mally. If tPRS B , this indicates that the target tracking 

algorithm is affected by interferences, such as occlusion, 

which leads to a decrease in the peak value on the target 

response map and reduced tracking accuracy. Stop the cur-

rent filter template update and re-evaluate the target's cur-

rent position. 

To make the PSR adaptive across different sequences, it 

is set as the product of the adjustment coefficient   and 

the PSR of the historical frame, defined as follows: 

 

1

1

1

t

i
i

PSR
B

t


−

=


= 

−

 (8) 

where iPRS  represents the PSR value of frame i  and the 

adjustment factor   takes the empirical value of 0.7. 

In summary, to ensure the robustness of the target in 

various tracking environments, this paper fuses two kinds 

of occlusion judgment quasi-indicators, APCE and PSR, 

and the fused indicator is the occlusion judgment mecha-

nism this paper, defined as follows: 

 
,

0,

t t tAPCE A PSR B

others




  
= 



 (9) 

where   represents the filter template learning rate. If 

t = , it indicates that the target is in the first stage state, 

and the template update can be performed with learning 

rate t ; when 0 = , iAPCEW  and iPRS  do not satisfy the 

judgment mechanism threshold condition, it indicates that 

the tracking results of the current frame have low credibil-
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ity, stopping the template update and retaining the valid 

target information to start the re-detection algorithm. 

(2) Template Updates 

The learning rate curve is constructed based on the mag-

nitude relationship between the current frame APCE value 

iAPCEW  and the threshold value A , and the filter template 

learning rate t  is adapted according to the target tracking 

output response map, as defined by the following equation. 

 0
( )

1

1
APCEt

t W A

Ae


 
−

−

=

+
 (10) 

where 0  denotes the initial frame learning rate, which is 

set to 0 0.02 = , and   denotes the learning rate ad-

justment parameter. 

The algorithm applies an adaptive learning rate to update 

the filter template when tracking confidence is high. The 

template update formula is as follows. 

 

1

1

ˆ(1 )ˆ ˆ

ˆ ˆ ˆ(1 )

t t
t t

t t
t t

x x x 

    

−

−

= − +


= − +

 (11) 

where 1ˆ tx −  and 1ˆ t −  denote the target samples and co-

efficient vectors of the previous frame, respectively. 

Through adaptive template updating, the algorithm ensures 

the effective tracking of the target under normal motion and 

slight occlusion. 

(3) Multi-peak Confirmation Weight Detection Module 

The output response plot exhibits a single, significant 

peak when the target is not occluded. The highest peak po-

sition is selected as the target's position for tracking and 

prediction.[33]. If the target is severely occluded, multiple 

peaks appear on the response map, with no prominent main 

peak. This indicates the existence of multiple positions with 

high similarity to the target template, necessitating mul-

ti-peak re-detection to determine the target's position more 

precisely. 

Multi-peak re-detection for target location determination 

can. On one hand, it addresses the issues of missed detec-

tions and false detections that may arise from relying on a 

single main peak for detection. On the other hand, different 

main peaks may represent different target features, reduc-

ing the algorithm's dependency on any single feature. 

For the initially generated output response map, the posi-

tions of multiple peaks can be identified using the follow-

ing formula: 

 ( ) ( , , )D s N P x y z=   (12) 

where ( )D s  indicates that the non-zero element corre-

sponds to the peak value in the output response map. 

N indicates the local maximal value position, so that the 

local maximal value position is 1 and the rest of the posi-

tions are set to 0, and ( , , )P x y z  indicates the local max-

imal value three-dimensional coordinates. The redetection 

module assesses multiple peaks in the response map. If the 

following equation is met, a secondary peak position detec-

tion is required. 

 maxiP P   (13) 

where iP  indicates the size of the i th ( 3i  ) peak in the 

output response map,   is the re-detection threshold coef-

ficient, which is taken as 0.5 according to the empirical 

value. To enable real-time tracking in the SAMF algorithm, 

the re-detection module is only the secondary detection of 

up to three response maximal peaks and redetection of the 

target location to be satisfied by the following equation: 

 ( ) max( )iP t D=  (14) 

where '
iD  represents the maximum value of the secondary 

detection output response centered at ( )D i , and ( )P t  

represents the target's current position after re-detection. 

As shown in Fig. 4, the output response map produces 

multiple peaks when the target becomes occluded, and the 

target's location cannot be determined from the response 

map. 

 

Fig. 4 Schematic diagram of multi-peak confirmation redetection module 

 

The multi-peak confirmation detection module performs 

secondary re-detection to accurately determine the position 

of the target after detecting multiple possible target posi-

tions. In Fig. 4, three local maxima satisfy the redetection 

threshold condition, with values of 0.161, 0.149, and 0.137, 

respectively. To refine the target's location, the location 

corresponding to these three local maxima can be centered 

on the target's location, followed by a secondary detection 

using the SAMF filtering algorithm. In the second detection, 

a new response map is obtained, and the location of the 

maximum response is selected as the location of the 

re-detected target. This approach enhances the target track-

ing accuracy and robustness under occlusion interference 

and avoids erroneous target tracking due to a single feature. 

B. SAMF-TLD Tracking Algorithm 

An effective tracking algorithm should ensure forward 

and backward continuity, with the target movement's for-

ward and backward tracking trajectories align consistently. 

The TLD algorithm needs to iteratively calculate from the 

top of the image pyramid to the bottom in processing video. 

In actual tracking, variations in optical flow can cause in-

consistencies between the forward and backward tracking 

trajectories. Additionally, the TLD algorithm lacks a col-

or-based feature map and relies solely on grayscale infor-

mation, making it prone to confusing the target with the 

background. The SAMF algorithm fully utilizes color in-

formation between the video frames to improve the robust-

ness of the target tracking. 
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Fig. 5 Schematic diagram of SAMF-TLD algorithm tracking module 

 

The SAMF algorithm includes three steps: initial 

frame-to-filter training and follow-up tracking. The fol-

low-up tracking includes target detection, filter template 

updating, and multi-peak confirmation re-detection. 

1) Filter training. An image block of size M N  is se-

lected in frame M N  to train the filter. The base sample 

image block is circularly shifted in rows and columns to 

yield 1 training sample; each sample is set to be 

, 0,1, 1ix i M N=  −  and the set is denoted as X , and 

each sample is labeled with a two-dimensional Gaussian 

function, which is denoted as , 0,1, 1iy i M N=  − , and 

the set is denoted as 5. 

The response value of ( ) Tf z z=   is the basis for the 

SAMF algorithm's classification of the samples. To deter-

mine the ideal parameter   , the classifier is trained as 

follows: 

 
2 2

,arg min ( ) ( , )m n
w

x w y m n w  = − +  (15) 

where   represents the classifier's ideal parameters,   

is the kernel mapping space,   is the regularization pa-

rameter, ,m nx  denotes the data blocks derived from all 

cyclic shifts, and ,m ny  denotes the Gaussian function 

labeling performed on the classified samples. 

To find the optimal solution, solve the above equation in 

the frequency domain using the discrete Fourier transform: 

 
,

,( , ) ( )
m n

m nm n x  =    (16) 

The factor   is expressed as: 

 
ˆ

ˆ
ˆxx

y

k



=

+
 (17)  

where y  is the sample label, superscript “ ” denotes the 

frequency domain transform, and  ˆxxk  denotes the auto-

correlated Gaussian kernel output of the training g sample. 

2) Target detection. The TLD algorithm uses multiple 

scales in the detection module to ensure that the output tar-

get state closely aligns with the actual motion state of pe-

destrians. In this paper, the algorithm adds a scale predic-

tion step into the tracking result. It incorporates the scale 

scaling function from the SAMF algorithm, further en-

hancing the tracker’s scale adaptability. After inputting the 

next frame image into the detection module, the region of 

interest in the current frame is selected based on the loca-

tion and size of the result from the last frame, and the re-

gion size is adjusted to seven different scales 

, , {0.985,1.015}M N M N  by scale scaling method. 

The resized picture is saved as sample set Z , and the 

sample filtering response is computed, that is: 

 ( ) ( )0 ,
ˆ ˆK̂ x zf z 



=    (18) 

where   is the corresponding set of coefficients for every 

sample, ( )
0 ,K̂ ˆ

x z 


  is the inner product of the kernel 

function and the set of corresponding coefficients in the 

high-dimensional space, and 
0 ,K̂ x z  is the kernel function 

for frequency domain operation. The horizontal and vertical 

coordinates of the maximum response point in the filtered 

response value obtained in the above equation are the dis-

placement of the target in the current frame corresponding 

to the previous frame. 

3) Filter update. The filter template ( , )x   needs to be 

modified to the target's motion. In Fig. 5, the updating pro-

cedure is displayed. 

In the case where the target is occluded, the tracker may 

need to reconstruct the target model to adapt to the target's 

new location and morphology. However, the 

frame-by-frame update method in the SAMF algorithm 

relies solely on the current frame's information, making it 

challenging to recover the occluded target model. Conse-

quently, the frame-by-frame update method may fail to 

restore the effectiveness of the tracker when the target is 

occluded. This section determines the stage of the target by 

the occlusion judgment criterion, which then provides the 

current template update learning rate as the criterion for 

adaptive filter template updating, which yields the current 
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template update learning rate   as the filter template 

adaptive update criterion. 

Tracking results for the current frame ( k frame) is input 

to the APCE fusion PSR occlusion judgment mechanism, 

as shown in Fig. 5, which yields a learning rate of  . If 

t = , it means that the target is in the state of slight oc-

clusion, and the filter templates are updated; on the contra-

ry. If 0 = , the multi-peak confirmatory detection module 

is activated, identifying the current maximum peak as the 

target position. The tracked image block of the current 

frame is first obtained by the algorithm as the training sam-

ple using cyclic shift. Then, templates learned from the 

current frame are obtained through the Fourier transform 

and used to update the filter template. Finally, the filter 

template is adjusted and trained according to the predeter-

mined learning rate. Filter templates after updating 

( , )k kx   is obtained, and the sample template and coeffi-

cient template update process are given in the following 

equation: 

 

1

1

(1 )

(1 )

k k

k k

x x x 

   

−

−

= − +


= − +

 (19) 

where ( , )x   denotes the current filter template parame-

ter. 

4) Redetection module. In the SAMF tracking phase, 

when the target is severely impeded, the learning rate is 

0 = . Currently, multiple peaks appear in the target re-

sponse map. The current filter template update strategy 

should be paused, and the redetection module should be 

activated to re-confirm the peaks of the target response map. 

The redetected target location is obtained as follows. 

 max( )t il F


=  (20) 

where tl  denotes the target position and iF  denotes the 

maximum value of the output response obtained after the 

secondary detection. The algorithm tracking flowchart in 

Fig. 6. 

This subsection proposes a SAMF-TLD long-term mul-

ti-target pedestrian tracking algorithm, which is based on 

the TLD target tracking algorithm with the ability to resist 

large deformation and occlusion. Subsection four analyzes 

the performance of the proposed algorithm and verifies its 

validity from both qualitative and quantitative perspectives. 

Ⅳ. EXPERIMENTATIONS AND ANALYSIS 

The experimental hardware environment is an AMD 

Ryzen 7 5800U with Radeon Graphics 1.90 GHz computer 

with 16.00 GB of RAM, using Windows 10 64-bit system, 

Python 3.7 and MATLAB R2018a are the platforms for 

developing algorithms. The experiment's threshold is set at 

0.7, and all other parameters are maintained in line with the 

SAMF method. Since the traditional TLD method frame-

work is limited to tracking single pedestrian motion targets, 

this study introduces SAMF-TLD, which uses a mul-

ti-threaded programming technique to efficiently track mul-

tiple pedestrian targets. 

 

 

Fig. 6 SAMF-TLD algorithm tracking flowchart

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1294-1307

 
______________________________________________________________________________________ 



A. Experimental Data 

In this paper, four video sequences are selected from the 

datasets MOT16 test, 2DMOT15 test, and OTB100 dataset 

to verify the algorithm's effectiveness [34]. Additionally, 

we also compared the evaluation metrics of this algorithm 

with those of other algorithms. The information of public 

datasets in Table Ⅰ, Table Ⅱ, and Table Ⅲ. 

B. Evaluation Indicators 

To evaluate the performance of our proposed method, 

this paper selects assessment criteria that are often applied 

in the multi-target tracking field. Such as MOTA, MOTP, 

MT, ML, FP, FN, IDS, and Runtimes, for quantitative 

analysis. The indicator description is shown in Table Ⅳ. 

Among them, the evaluation tracker prefers MOTA and 

MOTP; the greater the value, the better the tracking impact, 

and the rest of the indicators are the opposite. 
 

TABLE Ⅰ  

MOT16 TEST DATASET INFORMATION 

Data set Picture resolution Frame rate Number of pictures 

MOT16-14 1920*1080 25 750 

MOT16-12 1920*1080 30 900 

MOT16-08 1920*1080 30 625 

MOT16-07 640*480 54 16332 

MOT16-16 1920*1080 221 11538 

MOT16-03 1920*1080 148 104556 

 

TABLE Ⅱ  

2DMOT15 TEST DATASET INFORMATION 

Data set Picture resolution Frame rate Number of pictures 

Venice-1 1920*1080 30 4563 

KITTI-19 1238*374 10 5343 

KITTI-16 1224*370 10 1701 

ADL-Rundle-3 1920*1080 30 10166 

ADL-Rundle-1 1920*1080 30 9306 

AVG-TownCentre 1920*1080 2.5 7148 

ETH-Crossing 640*480 14 1003 

ETH-Linthescher 640*480 14 8930 

ETH-Jelmoli 640*480 14 2537 

PETS09-S2L2 640*480 7 9641 

TUD-Crossing 640*480 25 1102 

 
TABLE Ⅲ  

OTB100 PARTIAL VIDEO SEQUENCE INFORMATION 

Data set Picture resolution Frame rate Interference information 

Coke 640*480 291 

Severe occlusion, illumination change, 

rapid movement, similar background, 
and rotation inside and outside the plane 

Subway 640*480 175 
Severe occlusion, target deformation, 

similar background 

 

TABLE Ⅳ  

EVALUATION INDICATORS 

Index Implication 

MOTA Measure the accuracy of the algorithm to track the target 

MOTP Show the degree to which the detection frame and the prediction frame correspond. 

MT More than 80 % of the targets can successfully match the trajectory ratio 

ML More than 20% of track ratios are correctly tracked 

FP Number of misdetected targets 

FN Total number of goals that were missed 

IDS The switching times of the target ID 

Runtimes Operating speed 
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Fig. 7 Example graph of tracking results for Coke video sequences 

 

 
Fig. 8 Subway video sequence tracking result  
 

 
Fig. 9 Singer1 video sequence tracking result 

 

C. Simulation Experiment 

(1) Anti-obscuration SAMF Algorithm 

In the comparison experiments in this section, SAMF, 

DSST, and TLD algorithms are used as the comparison 

algorithms for the anti-occlusion SAMF algorithm. The 

results of the comparison experiments are shown in Fig. 7, 

Fig. 8, and Fig 9. The green, purple, black and blue boxes 

represent the tracking results of the SAMF algorithm, 

DSST algorithm, TLD algorithm, and anti-occlusion SAMF 

algorithm, respectively. The initial frame of the three video 

sequences begins from the tenth frame. The top-left corner 

displays the automatically labeled frame sequence number, 

while the tracking results of the first frame are manually 

annotated. 

Fig. 7 shows the tracking results of the four algorithms 

on the Coke video sequence in the OTB100 dataset, which 

includes six interference factors, illumination change, fast 

motion, similar background, in-plane rotation, and 

out-of-plane rotation. 

In the 185th frame, the canister moves behind the 

green leaf, causing the target to become occluded. At the 

same time, in the process, it is accompanied by in-plane 

and out-of-plane rotations. The SAMF algorithm employs a 

fixed learning rate in the tracking process to update the 

template. When the target is affected by the occlusion, the 

correct template update learning rate cannot be determined, 

causing the algorithm drifting to the original motion trajec-

tory of the target, specifically to the right of its true position. 

The DSST algorithm faces the issue of failing to track the 
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target accurately when the tracking template is contami-

nated, resulting in tracking drift. The TLD algorithm has 

the advantage that the detection module and the tracking 

module mutually correct the tracking results, effectively 

preventing tracking drift. Anti-obscuration SAMF algo-

rithm introduces an anti-occlusion judgment strategy. When 

the target experiences occlusion, a reduced learning rate is 

used to update the target tracking template, ensuring stable 

tracking after the occlusion. In the 188th frame, the SAMF 

algorithm utilizes an incorrect tracking template, leading to 

tracking failure. In the 215 th frame, the canning target un-

dergoes rapid motion, similar background and in-plane and 

out-of-plane rotation and leaves the occlusion area at the 

same time. Currently, the SAMF algorithm and the com-

plete tracking drift continue to track the error along the 

initial trajectory of the target. Due to the use of the median 

flow tracking method, the TLD algorithm cannot track the 

target stably during rapid motion of the target, resulting in 

tracking drift. The DSST algorithm, similar to the SAMF 

algorithm, suffers from template contamination, causing the 

tracking frame to remain at the position where the target is 

occluded. Anti-obscuration SAMF algorithm still maintains 

correct tracking after the target leaves the occlusion area. In 

the 266 th frame, the target is heavily occluded, and the 

appearance features are all occluded by green leaves. In the 

287 th frame, the target moves out of the occlusion area and 

encounters strong light changes. Anti-obscuration SAMF 

algorithm is still stable tracking and does not produce drift. 

However, the remaining three algorithms currently exhibit 

varying degrees of drift in the tracking box results due to 

cumulative tracking errors. 

Fig. 8 shows the tracking results of the four algorithms 

on the Subway video sequence in the OTB100 dataset, and 

the interference factors of this video sequence include se-

vere occlusion, target deformation and similar background. 

In the 41st frame, the pedestrian in the black coat is oc-

cluded by nearby pedestrians, and the target begins to enter 

the occlusion area. At the 61st frame, with similar back-

ground and occlusion interference, the TLD algorithm, 

SAMF algorithm and DSST algorithm all have different 

degrees of drift. The SAMF algorithm does not have an 

adaptive template update strategy. With the accumulation 

of errors, the tracking box remains the position where the 

target is occluded. The SAMF algorithm proposed in this 

paper does not exhibit tracking drift. In the 97 th frame, the 

target is occluded twice. The appearance and color infor-

mation of the target is gradually recovered after it exits the 

occlusion area in frame 130. The SAMF algorithm and the 

DSST algorithm over-learn the occlusion information and 

use a fixed error learning rate, resulting in the target. After 

a second occlusion, the tracker completely loses its accura-

cy, resulting in severe tracking drift. The target frame of the 

DSST algorithm is adjusted to a single point, and the oc-

clusion target information that has been out of the field of 

vision cannot be searched. The SAMF algorithm tracking 

frame employs the principle of seven fixed-scale scaling to 

search for the target position. However, an incorrect track-

ing template still results in erroneous tracking outcomes. 

The improved SAMF incorporates an anti-occlusion 

mechanism, enabling it to promptly identify the occlusion

stage of the target when occlusion occurs. To achieve adap-

tive multi-scale target stable tracking, different template 

update strategies can be used for different occlusion stages 

of the target. In the 175 th frame, the target movement is 

over. Currently, all three comparison algorithms remain 

near the position where the target undergoes the second 

occlusion, leading to severe tracking drift. However, the 

occlusion judgment mechanism introduced in the an-

ti-occlusion SAMF algorithm enhances the robustness of 

target tracking to a certain extent when the target produces 

occlusion interference. 

Fig. 9 shows the tracking results of the four algorithms 

on the Singer1 video sequence in the OTB100 dataset, 

which has four interference factors including severe occlu-

sion, scale change, illumination change, and out-of-plane 

rotation. 

In the 76th frame, the scale of the target changes and the 

stage illumination gradually becomes stronger. Currently, 

due to minimal target interference, all four algorithms 

maintain stable tracking. In frame 149, the target experi-

enced extremely strong illumination until the color feature 

was almost lost. As the target moved, the stage light gradu-

ally dimmed, and the target began to experience slight oc-

clusion interference. At the same time, both the SAMF and 

DSST algorithms result in the tracking box slightly deviat-

ing from the target's center position. In the 203rd frame, the 

target is out of the occlusion area. Due to error accumula-

tion in the TLD algorithm, tracking errors occur. In contrast, 

the SAMF algorithm, the DSST algorithm, and the algo-

rithm proposed in this chapter maintain stable tracking. In 

frame 234, the target rotated out of the plane and became 

smaller, and the algorithm in this chapter still did not pro-

duce tracking drift. 

(2) SAMF-TLD Algorithm 

In this part, we verify that the SAMF-TLD algorithm 

produces large-scale variation s in the target by tracking the 

pedestrian target in the ETH-Linthescher dataset in 

2DMOT15, and the pedestrian in the MOT16-03 dataset in 

MOT16 is used to verify the tracking of the algorithm after 

the target is occluded. The multi-target tracking results of 

the test sequence are visualized. The specific results are 

shown in Fig. 10 and Fig. 11. 

The pedestrian data set from the ETH-Linthescher in Fig. 

10 is characterized by fixed diagonal shooting of the cam-

era, weak light intensity, pedestrians becoming larger from 

far and near scales, and weak light changes. This data set is 

suitable for validating the effectiveness of the method in the 

presence of large-scale variations and illumination changes. 

The MOT16-03 pedestrian data set in Fig. 11 has many 

pedestrian targets. There are several scenarios, including 

out-of-view, mutual, and self-occlusion, and the volume of 

data is enormous. It is appropriate for algorithm effect veri-

fication in strong, mutual, and long-term occlusion scenar-

ios. The MOT16-08 video sequence was recorded in an 

open-air shopping mall with a constant flow of people. The 

background is highly cluttered, presenting significant chal-

lenges for target detection and tracking. Furthermore, the 

target undergoes substantial appearance changes as it 

moves farther away from the camera, complicating the 

analysis. 
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Fig. 10 Tracking results for larger scales and deformations (a) Frame 1, (b) Frame 19, (c) Frame 39, (d) Frame 48, (e) Frame 51, (f) Frame 55 

 

 
Fig. 11 Tracking results with dense occlusion and self-occlusion (a) Frame 1, (b) Frame 52, (c) Frame 85, (d) Frame 123, (e) Frame 148, (f) Frame 208 

 

 
Fig. 12 Tracking results under large scale changes and occlusion interference (a) Frame 1, (b) Frame 15, (c) Frame 57, (d) Frame 90, (e) Frame 205, (f) 

Frame 435 

 

Fig. 10(a) to (f) present the results of large-scale varia-

tions and illumination changes of the target in a static cam-

era view. The figure shows three cases in the video se-

quence in which people coming from far and approaching, 

moving, and being occluded and leaving view. The algo-

rithm can accurately recognize and track the target, whether 

it undergoes large-scale variations, slight occlusions, or 

appears small in size. There is no tracking inaccuracy or 

trajectory jumping, and the target's complete motion tra-

jectory is preserved. 

As shown in Fig. 11, the two moving targets on the right 

become obscured, experiencing mutual occlusion at frame 

52. The left target remains partially masked until the two 

targets separate at frame 148. Despite this, tracking contin-
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ues to operate as intended, with no tracking errors or loss. 

The woman on the left has entirely blended into the throng 

and lost her tracking features in frame 208, making the 

tracking frame disappear. The other two targets are still 

being tracked correctly and are not affected. The 

SAMF-TLD method sustains accurate tracking even under 

severe pedestrian occlusion and mutual target obstruction, 

enabling the continuation of the tracking task. 

Fig. 12 (a) to (f) illustrate the pedestrian tracking re-

sults across three stages: the unoccluded state, the occluded 

state, and the point where the target moves out of view. In 

the first frame, the two targets farther from the camera are 

partially occluded. By the 15th frame, both targets are 

nearly completely occluded. In the 57th frame, only limited 

target information is retained for tracking. In frame 205, the 

woman wearing a purple jacket moves out of view, result-

ing in the target being classified as lost, and the tracking 

process is terminated. At this point, although the target far-

thest from the camera appears very small, tracking remains 

stable. At frame 435, the target farthest from the camera 

moves out of view. Nevertheless, the algorithm maintains 

stable tracking of the remaining targets without any track-

ing drift. 

D. Analysis 

This section presents simulation results that validate the 

effectiveness of the proposed algorithm in tracking the tar-

get under four interference scenarios: illumination change, 

large-scale and illumination change, a large number of tar-

gets, and large-scale changes with occlusion interference. 

We compare our algorithm in this chapter with TLD algo-

rithm, SORT algorithm and SAMF algorithm [35] in terms 

of indicators and analyze the result data. 

Firstly, the occlusion-resistant SAMF-TLD algorithm is 

compared with the TLD algorithm, the SORT algorithm, 

and the SAMF algorithm, respectively, on the KITTI-16 

pedestrian video sequences, and the comparison results are 

shown in Table Ⅴ. 

As shown in the table, the algorithms all have high ac-

curacy and can track the target better. The SAMF-TLD 

method has the highest accuracy and precision. The accu-

racy of the algorithm is improved by 19.9 % based on the 

TLD algorithm, and the accuracy is marginally higher than 

that of the TLD algorithm. Since the SORT method uses 

fast kernel operations to derive the response results, it is 

more real-time. Nevertheless, the chart shows that the 

tracking performance of the SORT and SAMF algorithms 

is worse, indicating that the multi-target tracking's accuracy 

and precision are impacted by changes in the search scale. 

ETH-Linthescher video frames are captured with a fixed 

diagonal camera, and the scale of pedestrians changes as 

they approach the lens, accompanied by slight illumination 

changes. Table VI presents the performance comparison 

results of each algorithm under the dual interference of 

scale changes and illumination variations in the video se-

quence. 

Excessive changes in target scale significantly impact the 

algorithm's tracking accuracy and can easily result in 

tracking drift during actual tracking. Table VI shows the 

comparison of the index results of each algorithm when the 

target has scale changes and weak illumination changes. In 

the scene with scale change, the accuracy of the algorithm 

proposed in this chapter is 22.4% higher than that of the 

TLD algorithm, 18.1% higher than that of the SAMF algo-

rithm, and 26.3% higher than that of the SORT algorithm. 

The MOT16-03 video sequence contains the largest 

number of frames, the most severe occlusion, and the high-

est pedestrian density in the MOT16 dataset. It is shot in a 

busy street at night, where the pedestrian targets have seri-

ous occlusion problems. It is suitable to test the perfor-

mance of the algorithm in the case of many pedestrian tar-

gets. The tracking comparison of each algorithm is shown 

in Table VII. 

In the MOT16-03 video frame, all algorithms run ex-

tremely slowly due to the large number of pedestrians. The 

detector processes numerous irrelevant windows while de-

tecting targets, consuming memory and significantly re-

ducing the algorithms' running speed. Due to the strong 

similarity and too close distance between each target, the 

MOTA and MOTP index values of the algorithm in the 

quantitative analysis results are low, but the algorithm in 

this chapter adaptively updates the tracker template to en-

sure that the tracking accuracy and precision are still higher 

than other algorithms. 

MOT16-08 video sequence captured on a mall street 

during daytime. It also has disturbances such as scale varia-

tion and repeated occlusion of the target, Table VIII gives 

the performance comparison results of each algorithm un-

der large scale variation and occlusion disturbances. 

Compared with other tracking algorithms, the algorithm 

proposed in this paper can detect the target better according 

to the original detection module. In the occlusion interfer-

ence scene, because the SAMF-TLD algorithm introduces 

occlusion judgment, the accuracy is higher than that of the 

comparison algorithm. It is 17.5% better than TLD algo-

rithm, 10.3% better than SAMF algorithm, and 11.6% bet-

ter than SORT algorithm. Also, FN data results are better 

than other algorithms. However, the real-time performance 

of the algorithm is worse than the SORT because the detec-

tion module needs to traverse the image block. 

The algorithm proposed in this paper uses integrated 

classifiers within a cascade structure to redetect targets 

when they are occluded or mutually occlude each other, 

thereby reducing the frequency of target identity switches 

during tracking. This section analyzes the algorithm quali-

tatively and quantitatively in MOT-15 Test and MOT16 

Test datasets respectively. The qualitative analysis results 

show the occlusion-resistant SAMF-TLD algorithm can 

continuously maintain stable tracking despite illumination 

variations of the target, longer periods of occlusion, and 

changes in the scale of the target, and does not produce 

tracking drift as other algorithms do. The quantitative anal-

ysis results indicate the superiority of the proposed algo-

rithm over the TLD algorithm, the SAMF algorithm, and 

the SORT algorithm in terms of tracking accuracy, particu-

larly in scenarios involving illumination variations, large 

scale variations, and occlusion of the target. The algorithm 

proposed in this chapter improves target tracking and en-

sures the robustness of multi-target tracking in complex 

scenarios, including scale changes, occlusion, and illumina-

tion variations. 
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TABLE Ⅴ 

COMPARISON OF TRACKING PERFORMANCE OF ALGORITHMS UNDER VARYING TARGET ILLUMINATION 

Method MOTA MOTP MT ML FP FN IDS Runtime(s) 

TLD 50.4% 71.3% 15.1% 45.8% 2496 9315 879 0.9 

SAMF 46.7% 31.8% 17.2% 39.4% 3867 21340 891 1.6 

SORT 31.6% 23.8% 24.3% 59.6% 3028 20378 1413 42.0 

SAMF-TLD 61.8% 79.5% 31.9% 24.7% 2103 7567 453 1.3 

 

TABLE VI 

COMPARISON OF TRACKING PERFORMANCE OF ALGORITHMS UNDER LARGE TARGET SCALE AND ILLUMINATION VARIATION 

Method MOTA MOTP MT ML FP FN IDS Runtime(s) 

TLD 41.3% 66.4% 16.6% 51.2% 8823 64325 873 0.6 

SAMF 45.6% 33.5% 18.6% 34.2% 5631 15622 642 1.4 

SORT 37.4% 54.3% 23.1% 49.8% 8432 38433 1123 38.4 

SAMF-TLD 63.7% 71.4% 40.4% 28.6% 7845 88125 553 1.1 

 
TABLE ⅤII 

COMPARISON OF TRACKING PERFORMANCE OF ALGORITHMS UNDER A LARGE NUMBER OF TARGETS 

Method MOTA MOTP MT ML FP FN IDS Runtime(s) 

TLD 38.7% 54.6% 28.3% 50.2% 9213 88421 3321 0.2 

SAMF 29.1% 48.4% 6.7% 61.4% 8027 67919 2283 0.9 

SORT 23.6% 55.2% 25.5% 70.4% 11923 99275 8892 33.2 

SAMF-TLD 59.4% 63.8% 29.1% 44.5% 6638 79487 1537 0.4 

 
TABLE ⅥII  

COMPARISON OF TRACKING PERFORMANCE AT LARGER SCALES AND IN THE PRESENCE OF OCCLUSION INTERFERENCE 

Method MOTA MOTP MT ML FP FN IDS Runtime(s) 

TLD 53.9% 76.4% 18.4% 45.8% 6642 23490 557 1.0 

SAMF 61.1% 79.0% 45.8% 54.2% 5668 11790 433 2.1 

SORT 59.8% 79.6% 25.5% 22.7% 8698 43730 1558 54.0 

SAMF-TLD 71.4% 80.1% 51.8% 26.6% 4452 10279 317 1.1 

 

Ⅴ. CONCLUSION 

This paper makes contributions to the problems of scale 

variation and occlusion during multi-target tracking of pe-

destrians. Although existing methods improve tracking 

accuracy for pedestrians, they are unable to address the 

challenges of target scale variation and occlusion. In view 

of this, the SAMF-TLD algorithm combined with the an-

ti-obscuration SAMF algorithm is proposed, and mul-

ti-threaded programming is used to track multiple targets. 

The performance improvement of the algorithm is imple-

mented. The scenarios of qualitatively analyzing this pa-

per's algorithm in the 2DMOT-15 and MOT16 datasets and 

quantitatively comparing it with other algorithms. In con-

trast, the algorithm in this paper improves the precision and 

accuracy of target tracking. It ensures robust multi-target 

tracking in complex scenarios such as target scale variation 

and occlusion. The future research will focus on enhancing 

the detection module to improve the algorithm's real-time 

performance. 
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