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Abstract—This paper is concerned with the event-driven
stabilization of Markov jump systems with disturbances based
on disturbance observer (DO). First, a DO is employed to
estimate the disturbance generated by an exogenous system.
A composite control scheme is then developed by integrating
DO-based compensation with a switched event-driven control
law, which ensures the stability of the closed-loop Markov
jump system while optimizing network resource usage. Using
a time-dependent and piecewise-defined Lyapunov function, we
establish sufficient conditions for the existence of the desired
observer and event-driven controller. Finally, a numerical
example is presented to demonstrate the effectiveness of the
proposed composite control scheme.

Index Terms—Switched event-driven control, disturbance
observer, Markov jump system, stabilization

I. INTRODUCTION

S INCE the introduction of Markov jump systems (MJS) in
1961 [1], research in this field has gained significant mo-

mentum, owing to their remarkable effectiveness in modeling
a variety of real-world systems characterized by variable
structures and random changes [2], [3]. Today, MJSs have
potential applications in various fields, including network
control systems [4], economics [5], manufacturing applica-
tions [6], power systems [7]. It is well established that the
stability of a dynamical system is a fundamental prerequisite
for its practical applications. However, MJSs are essentially
a special class of parameter-switching systems, where the
switching (or jump) signals are governed by a Markov chain.
This switching feature plays a critical role in the stability of
MJSs. Consequently, the stabilization problem for MJSs has
remained a key topic of research, as addressed in [8], [9].
A novel Lyapunov-Krasovskii function was proposed in [10]
for the stability analysis and stabilization of MJSs with time-
varying delays and an indeterminate transition rate matrix. In
addition, a static output-feedback controller was designed to
ensure the exponential stabilization of discrete-time MJSs
within a hybrid design framework in [11].

In contemporary engineering control systems, disturbances
and uncertainties are prevalent and can significantly degrade
system performance. As a result, disturbance attenuation has
become one of the primary objectives in controller design.
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To achieve this, a variety of advanced control strategies with
disturbance attenuation capabilities have been developed,
including model adaptive control [12], sliding mode control
[13], and disturbance-observer-based control (DOBC) [14].
Among these methods, DOBC is particularly favored due
to its ability to actively and effectively address disturbances
[15]. The fundamental framework of DOBC involves con-
structing a DO to estimate disturbances, followed by the
design of a composite controller consisting of a DO-based
feedforward control term and a feedback control term [16].
The feedforward term compensates for the disturbances,
while the feedback term is generally used to stabilize or track
the nominal dynamics of the controlled system. Currently,
DO has found widespread application in MJSs. In [17], a
composite control scheme leveraging the DO was proposed
to address control challenges in MJSs with time-varying
delays. Additionally, the composite disturbance-resistant re-
silient control of nonlinear MJSs, subject to numerous dis-
turbances and partially unknown transition probabilities, was
also investigated in [18]. A composite disturbance-resistant
control method, which ensures the stochastic stability of the
closed-loop system, was developed by combining disturbance
estimates with the conventional L2-L∞ resilient control law.

In the control community, time-driven mechanism (TDM),
where sampling instants are initiated by a timer or clock,
is widely used due to their simplicity in implementation,
which facilitates the analysis and design of control systems
[19], [20]. However, TDM may not be suitable for resource-
constrained systems, as the choice of sampling instants does
not account for the system state evolution or current compu-
tation or communication resource status [21]. To address this
issue, a continuous event-triggered mechanism was proposed,
where measurements are transmitted only when the relative
change in the output exceeds a specified threshold [22]. Nev-
ertheless, within a finite time frame, this mechanism can lead
to an infinite number of triggering events, resulting in the
Zeno phenomenon. In response, the periodic event-triggered
mechanism was introduced, which checks the event-triggered
condition at discrete time instants [23], [24]. This method
prevents the Zeno phenomenon by ensuring a positive lower
bound for the event interval. To further reduce the number
of trigger events, a switched event-triggered mechanism was
developed, which switches between periodic sampling and
continuous event-triggered [25]. The principle behind this
mechanism is that once a measurement is transmitted, the
sensor must wait for a minimum period before continuously
monitoring the trigger condition to determine the next trig-
gering moment. Subsequent studies have demonstrated that
this mechanism is both effective and technically viable [26],
[27]. However, to the best of our knowledge, the switched
event-driven control (SEDC) problem based on DO has
not been thoroughly investigated, which serves as the main
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motivation for this work.
Building upon the previous discussions, this paper inves-

tigates the stabilization of MJSs with disturbance based on
DO via SEDC. The remainder of the paper is organized as
follows: Section II introduces MJSs, exogenous disturbances,
DO, SED mechanism, and control law. In section III, we
provide sufficient conditions for the closed-loop system to
be asymptotically stable using linear matrix inequalities.
Section IV validates the effectiveness of the proposed method
through a simulation example. Section V concludes the paper.

II. PRELIMINARIES

A. System description

Standard notations consistent with those outlined in [28]
are used throughout the study. Consider the following
continuous-time MJS

ẋ(t) = A(r(t))x(t) +B(r(t))(u(t) + d(t)), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state vector
and control input vector, respectively. A(r(t)) and B(r(t))
are known system matrices with approximate dimensions.
d(t) ∈ Rm is external disturbance that satisfies the following
Assumption 1. Let r(t) be a right-continuous Markov process
with values in the finite space S = {1, 2, ..., N}, having the
following transition property:

Pr {r(t+ δ) = j|r(t) = i} =

{
πijδ + o(δ), i ̸= j

1 + πiiδ + o(δ), i = j

where δ > 0, and limδ→0(o(δ)/δ) = 0. The transition rate
πij ≥ 0 respresents the rate of transitioning from state i
at time t to state j at time t + δ, and the self-transition
rate satisfies πii = −ΣN

j=1, j ̸=iπij [29]. For convenience, let
r(t) = i, where i ∈ S, and the system matrices associated
with the ith mode are represented by Ai, Bi, and so on.

Assumption 1. The disturbance d(t) is described by the
subsequent exogenous system

ζ̇(t) = Diζ(t), d(t) = Eiζ(t), (2)

where Di ∈Rr×r, Ei ∈ Rm×r are known matrices.

B. Composite control law consisting of SEDC approach and
DO-based compensation

To estimate the disturbance d(t), the following DO is
employed, given by:

d̂(t) =Eiζ̂(t),

ζ̂(t) =z(t)− Lix(t),

ż(t) =(Di + LiBiEi)(z(t)− Lix(t))

+ Li(Aix(t) +Biu(t)).

(3)

Here d̂(t) ∈ Rr represents the estimation of d(t), and
Li denotes the DO gain matrix. The estimation error is
expressed as

eζ(t) = ζ(t)− ζ̂(t). (4)

Based on equations (2) and (3), we obtain the following
estimation error dynamic equation:

ėζ(t) = (Di + LiBiEi)eζ(t). (5)

Remark 1. An intermediate variable z(t) is introduced in the
design of the DO (3) to handle the derivative of the system
variable x(t), which may result in an inability to effectively
track the disturbance d(t).

The sensor waits for at least h seconds after sending the
measurement data, then checks the event-triggered condi-
tion and sends the measurement value to the event-driven
controller upon violation of the condition. This leads to the
selection of sampling instants as follows:

tk+1 = min
{
t ≥ tk + h|eTk (t)Ωiek(t) ≥ βxT (t)Ωix(t)

}
,

(6)

where ek(t) = x(t)−x(tk), matrix Ωi ≥ 0. h > 0 is a scalar,
and β is the known threshold parameter. The triggering time
between two adjacent events is at least h. Then, using the
disturbance estimate d̂(t) from the DO (3) and the event-
driven mechanism (6), the following control law is designed:

u(t) = −d̂(t) +Kix(tk), tk ≤ t < tk+1, (7)

where Ki denotes control gain matrices. Substituting the
controller (7) into system (1) yields that

ẋ(t) =


Aix(t) +BiKix(tk) +BiEieζ(t),

t ∈ [tk, tk + h),

(Ai +BiKi)x(t)−BiKiek(t) +BiEieζ(t),

t ∈ [tk + h, tk+1).

(8)

The aim of this paper is to stabilize system (1) under con-
troller (7). The following lemma, assumption and definition
are demanded.

Lemma 1. (Jensen’s Inequality) [30] For any positive defi-
nite matrix N ∈ Rn×n, and scalars p and q, consider a vector
function ε : [p, q] → Rn. The following inequality holds:

FTNF ≤ (q − p)

∫ q

p

εT (σ)Nε(σ)dσ,

where

F =

∫ q

p

ε(σ)dσ.

Assumption 2. The pair Ai and Bi is controllable, while
the pair Di and BiEi is observable.

Definition 1. [31] (Infinitesimal operator) The notation
R(Rn ×S;R+) is used to represent the family of all non-
negative functions V (x(t), r(t)) defined on Rn × S, which
are twice continuously differentiable in x(t) and once con-
tinuously differentiable with respect to t. For V (x(t), r(t)) ∈
R(Rn × S; R+), define the infinitesimal operator by

AV (x(t), r(t))

= lim
δ→0

1

δ
[EV (x(t+ δ), r(t+ δ)) | x(t), r(t) = i

− V (x(t), r(t))].

Remark 2. Various event-triggered mechanisms have been
proposed in the existing literature. In [32], an event-triggered
mechanism based on a switched threshold was considered.
A mixed switched event-triggered transmission mechanism
was constructed in [33] by interpreting the resulting closed-
loop system as a switching between systems with a dynamic
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threshold, including time-trigger, self-trigger, and discrete
event-trigger systems. This paper focuses on switched be-
tween periodic sampling and continuous event-driven mech-
anism. According to the event-triggered mechanism (6), a
switched closed-loop system (8) is proposed.

III. MAIN RESULTS

In this section, we use linear matrix inequalities (LMIs)
to provide sufficient conditions for which the closed-loop
system is asymptotic stability. Additionally, the design of
the controller gain Ki and the observer gain Li is presented.

Theorem 1. Given matrices Ki, Li, and given parameters
β> 0, h > 0, system (8) with controller (7) is asymptotic
stability, if exist matrices Pi > 0, Mi > 0, Ωi ≥ 0, U > 0,
X , X1, Y1, Y2, Y3, Q1 and Q2 satisfying

Ξi> 0,Φ1i < 0,Φ2i < 0,Φ3i < 0, (9)

where

Ξi =

[
Pi + hHe(X2 ) h(−X +X1)

∗ hHe(−X1 +
X
2 )

]
, (10)

Φ1i =


W11i ∆12i W13i ∆14i hY T

1

∗ ∆22i ∆23i ∆24i hY T
2

∗ ∗ W33i ∆34i hY T
3

∗ ∗ ∗ W44i ∆45i

∗ ∗ ∗ ∗ −hU

 , (11)

Φ2i =


W11i ∆12i +G12i W13i ∆14i

∗ ∆22i +G22i ∆23i +G23i ∆24i

∗ ∗ W33i ∆34i

∗ ∗ ∗ W44i

 ,

(12)

Φ3i =


Ψ11i Ψ12i H13i ∆14i

∗ ∆22i H23i ∆24i

∗ ∗ −Ωi ∆34i

∗ ∗ ∗ W44i

 , (13)

W11i = ∆11i + I11i,

W13i = ∆13i + I13i,

W33i = ∆33i + I33i,

W44i = ∆44i + I44i,

∆11i = He(−Y1 +AT
i Q1),

∆12i = −Y2 −QT
1 +AT

i Q2 + Pi,

∆13i = Y T
1 − Y3 +QT

1 BiKi,

∆34i = 0,

∆44i = He(MiDi +MiLiBiEi),

∆14i = QT
1 BiEi,

∆22i = He(−Q2),

∆23i = Y T
2 +QT

2 BiKi,

∆24i = QT
2 BiEi,

∆33i = Y T
3 + Y3,

∆45i = 0,

I11i = −He(
X

2
) +

s∑
j=1

πijPj ,

I13i = −X +X1,

I33i = He(−X1 +
X

2
),

I44i =
s∑

j=1

πijMj ,

G12i = hHe(
X

2
),

G22i = hU,

G23i = h(−X +X1),

Ψ11i = He(QT
1 Ai +QT

1 BiKi) + βΩi +
s∑

j=1

πijPj ,

Ψ12i = Pi −QT
i + (Ai +BiKi)

TQ2,

H13i = −QT
1 BiKi,

H23i = −QT
2 BiKi.

Proof: Consider the following piecewise Lyapunov
function:

V (t) =

{
V̄ (t), t ∈ [tk, tk + h)

Ṽ (t), t ∈ [tk + h, tk+1)

where

V̄ (t) =V1(t) + V2(t) + V3(t),

Ṽ (t) =V1(t),

V1(t) =xT (t)Pix(t) + eTζ (t)Mieζ(t),

V2(t) = (h− τ(t))

∫ t

tk

ẋT (s)Uẋ(s)ds,

V3(t) = (h− τ(t)) [xT (t), xT (tk)]

×
[
He(X2 ) −X +X1

∗ He(−X1 +
X
2 )

]
×

[
x(t)
x(tk)

]
,

and τ(t) = t− tk, xt(θ) = x(t+ θ) for θ ∈ [−h, 0].
Evidently, V1(t), V2(t) and xT (t)Pix(t) are positive defi-

nite. From (9) and (10), it follows that V3(t) + xT (t)Pix(t)
is positive definite, since

V3(t) + xT (t)Pix(t)

= ξT (t)(F + (tk + h− t)M)ξ(t)

= ξT (t)

(
t− tk
h

F +
tk + h− t

h
F +

tk + h− t

h
hM

)
ξ(t)

=
t− tk
h

ξT (t)Fξ(t) +
tk + h− t

h
ξT (t)(F + hM)ξ(t),

(14)
where ξ=col {x(t), x(tk)},

F =

[
Pi 0
0 0

]
, M =

[
He(X2 ) −X +X1

∗ He(−X1 +
X
2 )

]
.

For t ∈ [tk, tk + h), we consider the following Lyapunov
function:

V (t) = V̄ (t).

Then, based on Definition 1, it yields that

AV (t) = 2ẋT (t)Pix(t) + xT (t)
s∑

j=1

πijPjx(t)

+ 2eTζ (t)Miėζ(t) + eTζ (t)
s∑

j=1

πijMjeζ(t)

−
∫ t

tk

ẋT (s)Uẋ(s)ds
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+ (h− τ(t))ẋT (t)Uẋ(t)− xT (t)He(
X

2
)x(t)

− xT (t)He(−X +X1)x(tk)

− xT (tk)He(−X1 +
X

2
)x(tk)

+ (h− τ(t))ẋT (t)He(X)x(t)

+ 2(h− τ(t))ẋT (X +X1)x(tk).

Denoting

v1 =
1

τ(t)

∫ t

t−τ(t)

ẋ(s)ds,

we understand by v1τ(t)=0
the following: limτ(t)→0 v1 =

ẋ(t). From Lemma 1, we can conclude∫ t

t−τ(t)

ẋT (s)Uẋ(s)ds ≥ τ(t)vT1 Uv1. (15)

According to system (8), for any matrices Y1, Y2, Y3, Q1

and Q2, applying the free weight matrix method yields that

0 = 2[xT (t)Y T
1 + ẋT (t)Y T

2 + xT (tk)Y
T
3 ]

× [τ(t)v1 + x(tk)− x(t)], (16)

0 = 2[xT (t)QT
1 + ẋT (t)QT

2 ]

× [Aix(t) +BiKix(tk) +BiEieζ(t)− ẋ(t)]. (17)

Then, incorporating equations (16) and (17) into AV (t), we
can deduce that

AV (t) ≤ ηT1 (t)Λiη1(t),

where

Λi =


W11i W12i W13i W14i ∆15i

∗ W22i W23i ∆24i ∆25i

∗ ∗ W33i ∆34i ∆35i

∗ ∗ ∗ W44i ∆45i

∗ ∗ ∗ ∗ ∆55i

 , (18)

η1(t) = col {x(t), ẋ(t), x(tk), eζ(t), v1(t)} ,

I12i = (h− τ(t))He(
X

2
),

I22i = (h− τ(t))U,

I23i = (h− τ(t))(−X +X1),

∆15i = τ(t)Y T
1 ,

∆25i = τ(t)Y T
2 ,

∆35i = τ(t)Y T
3 ,

∆55i = −τ(t)U,

W12i = ∆12i + I12i,

W14i = ∆14i + I14i,

W22i = ∆22i + I22i,

W23i = ∆23i + I23i.

Clearly, equations (11) and (12) imply that τ(t) → h
and τ(t) → 0 in equation (18), respectively. According to
(9)–(12), we can conclude that

AV̄ (t) ≤ ηT1 (t)Λiη1(t) < 0. (19)

The value of V (t) switches at the instants tk and tk + h.
For t ∈ [tk + h, tk+1), we apply the following function:

V (t) = Ṽ (t).

Equation (6) signifies that

0 ≤ βxT (t)Ωix(t)− eTk (t)Ωiek(t). (20)

Similar to equation (16), we can obtain

0 =2[xT (t)QT
1 + ẋT (t)QT

2 ]

× [(Ai +BiKi)x(t)−BiKiek(t) +BiEieζ(t)− ẋ(t)].
(21)

By adding (20) and (21) to AV (t), we obtain from Definition
1:

AV (t) = 2ẋT (t)Pix(t) + 2eTζ (t)Miėζ(t)

+ xT (t)
s∑

j=1

πijPjx(t) + eTt

s∑
j=1

πijMjeζ(t)

+ 2xT (t)QT
1 (Ai +BiKi)x(t)

− 2xT (t)QT
1 BiKiek(t) + 2xT (t)QT

1 BiEieζ(t)

− 2xT (t)QT
1 ẋ(t) + 2ẋT (t)QT

2 (Ai +BiKi)x(t)

− 2ẋT (t)QT
2 BiKiek(t) + 2ẋT (t)QT

2 BiEieζ(t)

− 2ẋT (t)QT
2 ẋ(t) + βxT (t)Ωix(t)

− eTk (t)Ωiek(t).

Let η2(t)= col {x(t), ẋ(t), ek(t), eζ(t)}, and from (9) and
(13), we obtain that

AV (t) ≤ ηT2 (t)Φ3iη2(t) < 0. (22)

Since V (t) is a piecewise function, it is necessary to show
that V (t) is continuous for t ∈ [tk, tk+1) at the instants tk
and tk + h. The proof is outlined as follows:

V2(tk) = V3(tk) = 0,

lim
x→(tk+h)−

V2(t) = V3(t) = 0. (23)

Therefore, V (t) is continuous at the instants tk and tk + h,
and we conclude that V (t) is continuous for all t ∈ [0, ∞).
Thus, based on inequations (19) and (22), it holds for any
t ∈ [tk, tk+1) that

AV (t) < 0,

which implies that the system is asymptotically stable. This
completes the proof.

Remark 3. Equation (23) proves the continuity of V2(t) and
V3(t), thereby ensuring the continuity of Lyapunov function
V (t), which is essential for demonstrating the stability of the
system.

Theorem 2. Given matrices K̄i, L̄i, and given parameters
α, β > 0, h > 0, system (8) with controller (7) is asymptotic
stability, if exist matrices P̄i > 0, Mi > 0, Ω̄i ≥ 0, Ū > 0,
X̄ , X̄1, Ȳ1, Ȳ2, Ȳ3, Q̄1, and Q̄2 satisfying

Ξ̄i > 0, Φ̄1i < 0, Φ̄2i < 0, Φ̄3i < 0, (24)

where

Ξ̄ =

[
P̄i + hHe( X̄2 ) h(−X̄ + X̄1)

∗ hHe(−X̄1 +
X̄
2 )

]
,

Φ̄1i =


W̄11i ∆̄12i W̄13i ∆̄14i hȲ T

1

∗ ∆̄22i ∆̄23i ∆̄24i hȲ T
2

∗ ∗ W̄33i ∆34i hȲ T
3

∗ ∗ ∗ W̄44i ∆45i

∗ ∗ ∗ ∗ −hŪ

 ,
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Φ̄2i =


W̄11i ∆̄12i + Ḡ12i W̄13i ∆̄14i

∗ ∆̄22i + Ḡ22i ∆̄23i + Ḡ23i ∆̄24i

∗ ∗ W̄33i ∆34i

∗ ∗ ∗ W̄44i

 ,

Φ̄3i =


Ψ̄11i Ψ̄12i H̄13i ∆̄14i

∗ ∆̄22i H̄23i ∆̄24i

∗ ∗ −Ω̄i ∆̄34i

∗ ∗ ∗ W̄44i

 ,

X̄ = (QT
1 )

−1XQ−1
1 ,

X̄1 = (QT
1 )

−1X1Q
−1
1 ,

Ȳ1 = (QT
1 )

−1Y1Q
−1
1 ,

Ȳ2 = (QT
1 )

−1Y2Q
−1
1 ,

Ȳ3 = (QT
1 )

−3Y1Q
−1
1 ,

Ḡ12i = hHe(
X̄

2
),

Ḡ22i = hŪ,

Ḡ23i = h(−X̄ + X̄T
1 ),

H̄13i = −BiK̄i,

H̄23i = −αBiK̄i,

∆̄12i = −Ȳ2 −Q−1
1 + α(QT

1 )
−1AT

i + P̄i,

∆̄14i = BiEi,

∆̄22i = −αHe(Q−1
1 ),

∆̄23i = Ȳ T
2 + αBiK̄i,

∆̄24i = αBiEi,

W̄11i = He(−Ȳ1 +AiQ
−1
1 ) +

s∑
j=1

πijP̄j ,

W̄13i = Ȳ T
1 − Ȳ3 +BiK̄i − (X̄ + X̄1),

W̄33i = He(Ȳ3 + X̄1 −
X̄

2
),

W̄44i = He(MiDi + L̄iBiEi) +
s∑

j=1

πijMj ,

Ψ̄11i = He(AiQ
−1
1 +BiK̄i) + βΩ̄i +

s∑
j=1

πijP̄j ,

Ψ̄12i = P̄i −Q−1
1 + αQT

1 A
T
i + αK̄T

i B
T
i ,

P̄i = (QT
1 )

−1PiQ
−1
1 ,

Ω̄i = (QT
1 )

−1ΩiQ
−1
1 ,

Ū = (QT
1 )

−1UQ−1
1 ,

Q2 = αQ1,

and K̄i = KiQ
−1
1 , L̄i = MiLi.

Proof: By multiplying the inequalities Ξ̄i > 0, Φ̄1i < 0,
Φ̄2i < 0 and Φ̄3i < 0 on the left by the following matrices:

diag
{
Q−1

1 , Q−1
1 , Q−1

1 , I, Q−1
1

}
,

diag
{
Q−1

1 , Q−1
1 , Q−1

1 , I
}
,

diag
{
Q−1

1 , Q−1
1 , Q−1

1 , I
}
,

diag
{
Q−1

1 , Q−1
1

}
,

and then multiplying the result by their transposes on the
right, we derive the result in inequation (9). Thus, the proof
is complete.
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Fig. 1. State trajectories x(t) without controller u(t).

IV. NUMERICAL EXAMPLE

Consider a MJS (1) with parameters:

A1 =

[
2.2 −0.3
0.1 −0.5

]
, A2 =

[
1.2 −0.3
2.1 −3

]
,

B1 =

[
1 0
0 1

]
, B2 =

[
1 0
0 1

]
,

D1 =

[
0 0.5

−0.5 0

]
, D2 =

[
0 0.4

−0.4 0

]
,

E1 =

[
1 0
0 1

]
, E2 =

[
1 0
0 1

]
.

The transition rate matrix is given by

Π =

[
−1.4 1.4
1.3 −1.3

]
.

The initial conditions for the original system (1) and dis-
turbance (2) are given by x(0) = [ 0.1 − 0.1 ]T and
ξ(0)= [ 1 − 2 ]T , respectively. The parameters are h = 0.1,
α = 0.5, β = 0.5. By solving the LMIs (24), the control
gain Ki and observer gain Li are obtained as:

K1 =

[
−7.9364 1.0581
0.0069 −0.3738

]
,

K2 =

[
−5.4861 0.5856
−1.7140 0.5869

]
,

L1 =

[
−2.3864 0.2678
0.4248 −0.8387

]
,

L2 =

[
−2.2430 0.2517
0.3687 −0.8274

]
.

The simulation results are depicted in Figs. 1–6. Fig.1
shows that in the absence of the controller u(t), the system
state x(t) diverges. In contrast, Fig. 2 shows that x(t) ulti-
mately converges to zero with the controller u(t), indicating
the effectiveness of the proposed controller. The controller
u(t) is illustrated in Fig. 3. The disturbance d(t), its es-
timation d̂(t) and the estimation error ed(t) are presented
in Fig. 4. Estimation error convergence to zero indicates
that the DO can effectively identify and compensate for the
disturbance d(t). The event-driven release times and intervals
are presented in Fig. 5. Finally, Fig. 6 illustrates the mode-
switching process, where the system switched between Mode
1 and Mode 2.
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V. CONCLUSION

The stabilization problem of a class of MJSs with distur-
bance was investigated by synthesizing the SEDC approach
and a DO-based compensation scheme in this paper. To
begin with, a DO and an SED mechanism were adopted to
estimate the disturbance and determine whether the measure-
ment data should be sent, respectively. Then, a composite
control scheme was constructed by combining the DO-
based compensation with the SEDC. Using a time-dependent,
piecewise-defined Lyapunov functional, a sufficient condition
for ensuring the stability of the estimation error dynamics
equation and the closed-loop Markov jump system was
established in Theorem 1. On this basis, a co-design of the
desired observer and event-driven controller was introduced
in Theorem 2. Finally, a numerical example was provided to
illustrate the effectiveness of the proposed composite control
scheme.
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