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Abstract—Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment classification task. In this task, graph
convolutional networks (GCN) are used to process the
syntactic structure and semantic information of sentences,
which can effectively capture the expressions of opinion
words corresponding to certain aspects. However, using GCN
may overlook the overall sentence context, which can lead
to incorrect sentiment polarity judgments for aspects. To
address the aforementioned issues, we propose the syntactic
and semantic enhanced multi-layer fusion network (SSEMFN)
model. The model first enhances the ability of GCN to capture
the expressions of opinion words corresponding to aspects by
using an adjacency matrix that combines syntactic structure
and semantic information. Following the GCN, we present our
multi-level context-aware module, which improves the model’s
capacity to comprehend the sentence’s overall context. The
multi-level context-aware module efficiently captures contextual
information at both the local and global levels in sequences.
In addition, to prevent loss of feature information due to
excessive network depth, residual connections are employed.
Experimental results show that our method significantly
surpasses the baseline model on three publicly available
datasets.

Index Terms—Syntactic and Semantic, Aspect-Based
Sentiment Analysis, multi-level context-aware module, Graph
Convolutional Networks.

I. INTRODUCTION

W Ith the widespread use of electronic devices, there has
been a rise in reviews focusing on specific aspects

across various online platforms[1]. To extract targeted
opinion information from these reviews[2], aspect-based
sentiment analysis (ABSA) has become an area of increasing
interest[3]. ABSA, a subtask within sentiment analysis,
focuses on identifying the sentiment polarity related to
particular aspects in a sentence. Sentiment polarity is
categorized as neutral, negative, or positive, with the aspects
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generally referring to the target entities. For instance, in the

Fig. 1. An example of a dependency tree, with lines indicating the
dependencies between words.

example “The service is decent even when this small place
is packed.”, “service” and “place” are two aspects of the
sentence. ABSA can identify the affective polarity of these
two aspects, with “service” having a positive polarity and
“place” having a negative polarity.

In earlier research on ABSA, researchers used handcrafted
rules and features to train classifiers. Nevertheless, the
performance almost reaches a bottleneck due to the tedious
nature of manual feature extraction[4], [5]. Recent studies
on ABSA have applied graph neural networks (GNN) to
the dependency trees of sentences[6], aiming to leverage
syntactic structures more effectively. As shown in Figure
1, syntactic dependencies establish links between words
within the sentence. In this, a dependency tree is used to
construct the dependency graph, which is then treated as
the adjacency matrix for the GNN. Among them, Zhang et
al.[7] used graph convolutional networks (GCN) to integrate
syntactic information from the text. However, GCN treats
all neighboring nodes in the graph equally, making it
difficult to effectively distinguish the importance of different
neighboring nodes. In other words, this means that the
model cannot accurately catch the complex relationships
between nodes in syntactic information. Huang and Carley
et al.[8] used graph attention networks (GAT) to address this
issue. Attention mechanism is applied. This enables the GAT
network to more effectively consider the importance and
relevance of each node to its neighbors, thereby improving
the model’s capability to identify sentiment polarity. The
dependency trees generated by the parser are noisy and
unstable. To mitigate dependency parsing errors, Li et
al.[9] constructed independent semantic and syntactic graph
convolutional networks to learn syntactic and semantic
information separately. Along this line, Zhang et al.[10]
use GCN to leverage syntactic structure and semantic
information to obtain the representations of aspect terms
and their corresponding opinion words. However, solely
depending on this method to assess the sentiment polarity
of aspects may lead to inaccuracies. For instance, in the
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sentence “With the needs of a professional photographer I
generally need to keep up with the best specs.”, the method
described above can accurately obtain the representation
of the opinion word “best” corresponding to the aspect
“specs”. However, GCN ignores the overall context of the
sentence, thus incorrectly judging the emotional polarity of
the aspect “specs” from neutral to positive. Thus, factoring in
the full sentence context is crucial for accurately identifying
the sentiment polarity of specific aspects.

This paper presents a novel syntactic and semantic
enhanced multi-layer fusion network (SSEMFN) model
to address the above issues. First, BERT is utilized as
an encoder to gain an encoded representation of the
sentence. Next, the self-attention mechanism is used to
extract the overall semantic information of the sentence,
followed by aspect-aware attention to capture aspect-specific
semantics. The matrix of attention scores obtained by
combining aspect-aware attention and self-attention was used
as the attention neighborhood matrix. The syntactic mask
matrix is constructed by considering the varying distances
between words in the syntactic dependency tree, resulting
in the acquisition of multi-level syntactic information. The
attention adjacency matrix and syntactic mask matrix are
combined to enhance the ability of GCN to capture the
expression of opinion words corresponding to aspects.
Subsequently, a multi-level context-aware module is utilized
to extract both local and global contextual features in the
sequence, improving the model’s comprehension of the entire
sentence’s context. Finally, a residual connection is used to
link the input and output of the multi-level context-aware
module, resulting in enriched feature representations.

The key contributions of this paper are listed as follows:
1) The SSEMFN model is proposed, which effectively

combines syntactic structure and semantic associations
while integrating local and global contextual information of
sequences.

2)A multi-level context-aware attention module is
proposed to improve the model’s understanding of the
overall sentence context. In addition, residual connectivity
is introduced to address the loss of feature information that
may occur when the network is too deep.

3)An attention matrix is constructed by combining
self-attention with the aspect-aware attention mechanism.
The syntactic mask matrix and attention matrix are fused to
integrate syntactic structure and semantic information,
enhancing GCN’s ability to capture opinion word
representations related to aspects.

4)Comprehensive tests on benchmark datasets demonstrate
that our model outperforms the baseline models.

II. RELATED WORK

ABSA is a classification task. Recently, attention-based
networks have been used to semantically model the
relationship between aspects and their corresponding context
to address issues related to ABSA. Ma et al.[11]
employed LSTM to model aspect and context representations
independently, and then combined them through interactive
attention to generate the final representations. Tan et al.[12]
addressed the problem of recognizing conflicting opinions
in aspect-level emotion categorization by using two separate
attentional mechanisms that focus on positive and negative

expressions. In addition, Song et al.[13] used BERT to
encode the context and aspects, significantly improving
model performance.

Another trend is the use of dependency trees, where
syntactic information can effectively link aspects with
their corresponding opinion words. GCN utilizes syntactic
structures to achieve significant results in the ABSA task.
Zhang et al.[7] used GCN to leverage syntactic dependency
structures in sentences to obtain aspect features. Liang et
al.[14] utilized SenticNet’s external sentiment knowledge
within the GCN, boosting the model’s prediction capabilities.
Tian et al.[15] constructed graphs from dependency trees by
combining words with dependency types and then applied an
attention mechanism to weight the edges in the graphs. These
methods have not been successful in effectively combining
syntactic structure with semantic correlation. Meanwhile,
GCN has not effectively or fully considered the overall
context of the sentence when applied to the ABSA task.

III. MODEL

This section describes in detail our SSEMFN model,
whose overall structure is shown in Figure 2. The model is
structured into five key components: the input layer, attention
layer, syntactic mask layer, GCN layer, and a multi-level
context-aware module. The following sections will explain
each component in detail.

A. Input Layer

(t,a) is a sentence-aspect pair, where t = {w1,w2, . . . ,wl}
represents the sentence. a = {a1,a2, . . . ,am} represents an
aspect, where a is also a subsequence of t. To better fit
the ABSA task, (t,a) is input into BERT in the form
“[CLS] + t + [SEP] + a + [SEP]” to extract the contextual
hidden representation of the sentence aspect pair (t,a),
producing the vector E = {ẽ1, ẽ2, . . . , ẽn} ∈ Rn×de, with de
representing the dimensionality of the word embeddings.
After that, the vector E passes through the normalization,
dropout and linear layer to obtain the vector representation
H = {h1,h2, · · · ,hn} ∈Rn×d , and d represents the size of the
output feature dimension from the linear layer. H contains
the subsequence ha = {ha1 ,ha2 , · · · ,ham} that represents the
aspect. H serves as the initial node representation in the
model presented in this paper.

B. Attention Layer

Attentional mechanisms are a popular method for
capturing interactions between aspects and contextual
words[16]. A rich semantic characterization is obtained by
combining aspects of perceptual attention and self-attention.
As shown in Figure 2, construct p attention adjacency
matrices, and then input the obtained adjacency matrices into
the syntactic mask layer.

1) Aspect-aware Attention Layer: Aspect-aware attention
treats the aspect as a query to capture relevant semantic
information, allowing the model to better interpret the
sentiment associated with the specific aspect in the sentence.
This paper employs p-head aspect-aware attention. The
attention score matrix Bl

asp derived from the l-th attention
head is computed as follows:
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Fig. 2. Overview of SSEMFN model.

Bl
asp = tanh

(
QW a×

(
KW k

)T
+ba

)
(1)

Here, K is the vector H, and Q is the vector Ha. The aspect
representation Ha ∈ Rn×d is derived by applying average
pooling to ha and then replicating it n times. ba is a learnable
bias term. W k ∈Rd×d and W a ∈Rd×d are learnable weights.

2) Self-Attention Layer: This paper utilizes a p-head
self-attention mechanism to grasp the semantic connections
between words in a sentence, enabling the extraction of
global semantic information. The self-attention score matrix
Bl

sel f from the l-th self-attention head is computed as follows:

Bl
sel f =

QW Q̃×
(

KW K̃
)T

√
d

(2)

Here K and Q represent vectors of H, and W K̃ ∈ Rd×d and
W Q̃ ∈Rd×d are learnable weights. Afterward, Bl

asp and Bl
sel f

were added together:

Bl = Bl
asp +Bl

sel f (3)

Where Bl ∈ Rn×n. Each attention score matrix Bl can be
viewed as a fully connected graph, which is then input into
the syntactic mask layer.

C. Syntax-Mask Layer

To blend semantic information with syntactic structure
information, we derive the syntactic mask matrix based
on the varying distances between words in the sentence’s
syntactic dependency tree. This allows the model to learn
local and global syntactic information, which is then
combined with the adjacency matrix from the attention layer
to enhance GCN performance. Next, we will detail how to
construct the syntactic mask matrix.

The syntactic dependency tree is viewed as an undirected
graph, with each word considered as a node. d (ti, t j) denotes
the distance of a path between nodes ti and t j. There may be
multiple paths between two nodes, where the shortest path
distance is defined as V T (i, j):

V T (i, j) = mind (ti, t j) (4)

We set the number of syntactic mask matrices to be the
same as the number of attention adjacency matrices in order
to achieve masking for each fully connected graph. When
the syntactic distance is short, the model captures regional
structural information, while a larger syntactic distance
allows the model to capture overall structural information.
The syntactic mask matrix Nm with a threshold value m is
computed as follows:

Nm
i j =

{
0,
−∞,

V T (i, j)⩽ m
otherwise (5)

Where m∈ [1, p]. Then, each fully connected graph obtained
in the attention layers is masked by the corresponding
syntactic mask matrix to obtain the adjacency matrix C,
where C ∈ Rp×n×n.

C = so f tmax(B+N) (6)

D. GCN Layer

Carry out graph convolution on the previously derived p
adjacency matrices C. hl−1 represents the input state of the
l-th layer, while hl represents the output state of the l-th
layer. The initial state h0 is the vector H obtained from the
input layer, serving as the input to the first layer. In the l-th
layer, the nodes update their representations by aggregating
the hidden information from their neighboring nodes:

hl
i = σ

(
n

∑
j

Ci jW lhl−1
j +bl

)
(7)

Where σ represents the nonlinear activation function, W l

represents the learnable weight matrix, bl is the learnable
parameter, and hl

i represents the hidden state of the i-th node
in the l-th layer.
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Fig. 3. Diagram of the global context mechanism.

E. Multi-level Context-aware Module

GCN may not adequately capture the overall context of
a sentence, which can affect the determination of sentiment
polarity for aspects within the sentence. To address this, we
propose a multi-level context-aware module, which consists
of BiLSTM and a global context mechanism. This module
is capable of capturing both local and global contextual
information in sequences, thereby enhancing the model’s
understanding of the overall context.

BiLSTM consists of two LSTMs, one forward processing
the input sequence and the other backward processing the
input sequence. At each time step, the forward and backward
LSTMs generate the hidden states separately, and then they
are concatenated together to obtain a complete representation
of the current time step. Therefore, BiLSTM can obtain both
the preceding and succeeding contextual information at each
time step. In this way, BiLSTM is able to effectively capture
the local context within these sequences.

h⃗i =
−−−→
LST M

(−→s i−1,
[⃗
hi−1 ∥ hl

i

]
;ci

)
(8)

←
hi =

←−−−
LST M

(←−s i+1,
[←−

h i+1 ∥ hl
i

]
;ci

)
(9)

ĥi =
[−→

h i ∥
←−
h i

]
(10)

Where ci represents all relevant training parameters
of BiLSTM.

−→
h i−1 and −→s i−1 denote the hidden state

and memorized information of the previous time step
respectively, and ĥi denotes the concatenation of bidirectional
hidden states of BiLSTM.

BiLSTM excels at handling local information, which
is why we introduced a global context mechanism after
BiLSTM. By adding global sentence information to the
output of BiLSTM at each time step, the mechanism is able
to access the global contextual information of the sequence,
thus improving the model’s understanding of the overall

context. The diagram of the global context mechanism is
shown in Figure 3, which will be explained in detail next.

Firstly, in the BiLSTM output, the entire backward
sentence information and the entire forward sentence
information are distributed across the first and last time steps,
respectively. These are concatenated to form Z =

←−̂
h1 ∥

−→̂
hn ,

which serves as the entire sentence representation. Each time
step output ĥi of BiLSTM is concatenated with Z to obtain
oi = Z ∥ ĥi, which is fed into the gate mechanism.

In the gate mechanism, a linear layer is used to extract the
feature information from oi, and then a sigmoid function is
used to get the weights xi

H and xi
Z .

xi
H = sigmoid (WHoi +bH) (11)

xi
Z = sigmoid (WZoi +bZ) (12)

Where WH and WZ are learnable weights, and bH and bZ are
learnable bias terms. Finally, output ôi of the global context
is obtained by adding Z and ĥi with xi

Z and xi
H as weights.

ôi = xi
Z⊙Z + xi

H ⊙ ĥi (13)

Where ⊙ denotes element-wise multiplication between
elements.

In order to prevent the problem that too deep a network
may lead to the loss of feature information, residual
connections are used to add the global context mechanism
and the feature representation obtained by the GCN layer,
so as to obtain richer and more comprehensive feature
information.

gi = hl
i + ôi (14)

G = {g1,g2, . . . ,gn} represents the final feature
information obtained. Information that is only directly
related to the aspect is retained by masking other words.
The average pooling operation is then applied to obtain the
final aspect information.
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Ga = f (ga1,ga2, . . . ,gam) (15)

Where f (·) refers to the function for average pooling. Ga
is passed through a linear layer, and the softmax function
is applied to obtain the probabilities of different sentiment
polarities for the aspect.

p(b) = so f tmax
(

W f̃ Ga +b f̃

)
(16)

Here W f̃ and b f̃ represent the learnable weights and bias
terms in the linear layer.

F. Model Training

Our model is trained using the cross-entropy loss function,
which is defined by the following equation.

L(θ) =− ∑
(t,a)∈D

∑
c∈C

log p(b) (17)

In this formula, D represents all sentence-aspect pairs. θ

denotes all trainable parameters in the proposed model, and
C represents the set of different sentiment polarities.

IV. EXPERIMENTS

A. Datasets and Metrics

The proposed model is tested on three publicly available
datasets: Twitter, Laptop, and Restaurant. The Twitter dataset
is sourced from tweets collected by Dong et al.[17], while
the Laptop and Restaurant datasets are from SemEval2014
Task 4, provided by Pontiki et al.[18]. Each dataset includes
three sentiment polarities: neutral, negative, and positive,
with each aspect labeled with one of these polarities. Table I
displays the statistics for the number of sentiment polarities.
As with many ABSA tasks, the evaluation measures used in
the experiments are Macro-F1 and Accuracy.

B. Experimental Setup

BERT-base-uncased is used as the encoder for the model.
The model uses the Adam optimizer with a learning rate
of 2e-5 during training. The batch size of the model is set
as 16. This article uses Stanford as a dependency resolver.
Other parameter settings used in the experiment are provided
in Table II.

C. Baseline Model

Nine baseline models were selected for comparison. Below
is a detailed overview of these models.

BERT[19]: The standard BERT model.
SK-GCN-BERT[20]: To enhance the representation of

aspects within sentences, a joint modeling approach is
employed, combining syntactic and knowledge information
within a single GCN model.

R-GAT-BERT[21]: The method introduces a new
dependency tree structure tailored for aspects and utilizes
a R-GAT to encode these structures.

DGEDT-BERT[22]: Design a DGEDT network, merging
flat representations from Transformers with graph-based
features derived from dependency graphs to enhance
performance.

TABLE I
STATISTICS OF THE THREE DATASETS.

Dataset Neutral Negative Positive

Train Test Train Test Train Test

Twitter 3016 336 1528 169 1507 172
Laptop 455 167 851 128 976 337

Restaurant 637 196 807 196 2164 727

TABLE II
LIST OF HYPERPARAMETERS ADOPTED FOR DIFFERENT DATASETS.

Hyper-parameters Twitter Laptop Restaurant

Epochs 15 10 15
GCN layers 1 2 1

Attention heads 5 5 4

BERT4GCN[23]: The syntactic sequence characteristics
and syntactic knowledge of the BERT middle layer are
combined and integrated with GCN to enhance the coding
quality of ABSC tasks.

T-GCN-BERT[15]: First, a graph is constructed using
dependency parsing results, integrating word relationships
and their dependency types.The edges in the graph are
then weighted by applying the attention mechanism.
Finally, contextual information from different GCN layers
is weighted and combined using an attention layer.

DualGCN-BERT[9]: Two sub-networks, SynGCN
and SemGCN, are designed for modeling. Additionally,
orthogonal and difference regularizers are proposed to
enhance the model’s performance.

SSEGCN-BERT[10]: An attention mechanism for
aspects, incorporating self-attention, is proposed for
obtaining a matrix of attention scores for a sentence,
enabling the model to learn the semantic relevance
associated with the aspect and the global semantics
of the sentence. Syntactic mask matrices of sentences
were constructed based on different syntactic distances
between words to capture comprehensive syntactic structure
information. Combining syntactic structure and semantic
information to enhance GCN.

DMGGAT-BERT[24]: The model combines syntactic and
semantic information from multi-granularity features of GAT
and BERT, which addresses the problem of noise and neglect
of sentence-level features in modeling syntactic information.
DMGGAT leverages the syntactic and semantic knowledge
from BERT to enhance GAT, incorporates an aspect-based
attention mechanism to generate sentence-level features, and
introduces a multi-granularity gating module to enable the
model to capture both aspect and sentence-level features.

D. Main Results

The same dataset was used in order for the experiment
to be fair and rational. Table III presents a comparison
of the F1 and accuracy scores between the baseline
models and our model across three datasets. Our models
achieve better performance than the baseline models across
all three datasets. Among them, the F1 and accuracy
scores of SSEGCN-BERT are significantly better than all
other baseline models except for DualGCN-BERT and our
SSEMFN. Moreover, on the Twitter dataset, SSEGCN-BERT
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TABLE III
COMPARISON OF THREE DATASETS WITH OUR MODEL AND OTHER BASELINE MODELS (%).

Models Twitter Laptop Restaurant

Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

BERT 75.18 75.92 76.00 79.91 80.09 85.97
SK-GCN-BERT 73.01 75.00 75.57 79.00 75.19 83.48
R-GAT-BERT 74.88 76.15 74.07 78.21 81.35 86.60
DGEDT-BERT 75.40 77.90 75.60 79.80 80.00 86.30

BERT4GCN 73.76 74.73 73.01 77.49 77.11 84.75
T-GCN-BERT 75.25 76.45 77.03 80.88 79.95 86.16

DualGCN-BERT 76.02 77.40 78.10 81.80 81.16 87.13
SSEGCN-BERT 76.02 77.40 77.96 81.01 81.09 87.31
DMGGAT-BERT 74.56 75.99 77.57 80.78 81.19 87.13

SSEMFN 76.79 78.14 78.96 81.96 82.26 87.49

TABLE IV
ABLATION EXPERIMENT RESULTS (%).

Models Twitter Laptop Restaurant

Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

SSEMFN 76.79 78.14 78.96 81.96 82.26 87.49
w/o self-attention 76.73 77.99 77.58 81.01 81.39 87.04

w/o aspect-aware attention 76.49 77.84 77.75 81.01 80.27 85.79
w/o syntactic mask matrix 75.77 77.10 77.20 81.33 81.22 86.86

w/o residual connection 75.94 76.66 74.39 78.96 79.68 86.33
w/o multi-level context-aware module 75.51 76.81 76.45 80.85 79.81 85.70

and DualGCN-BERT have the same F1 and accuracy scores.
On the Laptop dataset, the F1 score of SSEGCN-BERT
is 0.14% lower than that of DualGCN-BERT, while the
accuracy is 0.79% lower. On the Restaurant dataset, the F1
of SSEGCN-BERT is 0.07% lower than DualGCN-BERT,
but the accuracy is 0.18% higher than DualGCN-BERT.
It is shown that the effectiveness of fusing semantic and
syntactic information in ABSA. Our model outperforms the
SSEGCN-BERT model, with the F1 improved by 0.77%, 1%,
and 1.17% respectively, and accuracy improved by 0.74%,
0.95%, and 0.18% respectively, on Twitter, Laptop and
Restaurant datasets. It is also superior to the DualGCN-BERT
model, with the F1 improved by 0.77%, 0.86%, and
1.1% respectively, and the accuracy improved by 0.74%,
0.16%, and 0.36% respectively, on the three datasets. This
demonstrates that our SSEMFN model strengthens GCN’s
capability to capture the expressions of opinion words
associated with aspects by creating an adjacency matrix
that incorporates both syntactic and semantic information.
The multi-level context-aware module, by leveraging local
and global contextual information, enables a more complete
understanding of the sentence’s overall context, leading to
a more precise judgment of the sentiment polarity of the
aspect.

E. Ablation Experiments

To assess the contribution of each module in the SSEMFN
model, ablation experiments are conducted on three datasets.
In Table IV, where our SSEMFN is the baseline model and
w/o means without, such as w/o self-attention indicating
the model without self-attention. Without self-attention, the
F1 of the model drops by 0.06%, 1.38%, and 0.87%
respectively, and accuracy drops by 0.15%, 0.95%, and
0.45% respectively. This suggests that the model lost
the sentence’s global semantic information, resulting in

a noticeable drop in performance. Without aspect-aware
attention, the F1 of the model decreased by 0.3%, 1.21%,
and 1.99%, respectively, and the accuracy decreased by
0.3%, 0.95%, and 1.7%. This demonstrates the importance
of aspect-aware attention in capturing key local semantic
connections the context words and the aspect. After removing
the syntactic mask matrix, the model’s F1 dropped by 1.02%,
1.76%, and 1.04%, while its accuracy scores decreased by
1.04%, 0.63%, and 0.63%, respectively. This indicates that
the syntactic mask matrix helps the GCN fully learn syntactic
structure information in the dependency tree. After removing
the residual connections, the model’s F1 decreased by 0.85%,
4.57%, and 2.58%, respectively, and the accuracy decreased
by 1.48%, 3%, and 1.16%, respectively. This indicates
that residual connections prevent the problem of feature
information loss due to too deep a network. When multi-level
context-aware module are removed, the model’s F1 decreases
by 1.28%, 2.51%, and 2.45%, respectively, and the accuracy
decreases by 1.33%, 1.11%, and 1.79%, respectively. This
shows that the multi-level context-aware module effectively
captures both local and global contextual information of the
sequence, improving the model’s overall understanding of
the sentence’s context. In summary, the performance of the
model declines after removing each module, demonstrating
that each module is crucial to our model.

F. The performance is influenced by the GCN layers’ number

Experiments were conducted on the Laptop and Restaurant
datasets to analyze how different numbers of GCN layers
affect the model’s performance. The number of GCN layers
was tested from 1 to 6, with other parameters held constant.
In Figure 4, the 2-layer GCN model achieves the best
performance on the Laptop dataset. In Figure 5, the 1-layer
GCN model performs best when applied to the Restaurant
dataset. The results suggest that increasing the number of
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TABLE V
CASE STUDY RESULTS.

Aspect Sentence SSEGCN-BERT SSEMFN Label

{Boot, time} Boot time is super fast, around anywhere from 35 seconds to 1 minute. {P} {P} {P}

{tech support} tech support would not fix the problem unless I bought your plan for
$ 150 plus. {N} {N} {N}

{build, durability} Strong build though which really adds to its durability. {P, P} {P, P} {P, P}
{SSD, 16Gb RAM} I ’ve installed to it additional SSD and 16Gb RAM. {O, O} {O, O} {O, O}

{USB3 Peripherals, ThunderBolt} USB3 Peripherals are noticably less expensive than the ThunderBolt
ones . {P, N} {P, N} {P, N}

{disk drive} It ’s ok but does n’t have a disk drive which I did n’t know until after
I bought it. {N} {O} {O}

{specs} With the needs of a professional photographer I generally need to keep
up with the best specs. {P} {O} {O}

{size} The smaller size was a bonus because of space restrictions . {N} {P} {P}
{functionality} You just can not beat the functionality of an Apple device . {N} {P} {P}

{lunch, dinners} How pretentious and inappropriate for MJ Grill to claim that it
provides power lunch and dinners ! {P, P} {N, N} {N, N}

{staff} The staff should be a bit more friendly . {P} {N} {N}
{sushi} The sushi is cut in blocks bigger than my cell phone . {P} {N} {N}

Fig. 4. SSEMFN layer count impact on Laptop dataset.

Fig. 5. SSEMFN layer count impact on Restaurant dataset.

GCN layers leads to poorer performance on both datasets.
This is because, as the number of GCN layers grows, the
node information becomes overly smooth through multiple
aggregations, losing the details and distinctions from the
original graph structure. Additionally, the repeated use of
neighboring node information during aggregation results in
node representations containing a large amount of redundant
information.

G. Case Study

The case study results of the SSEGCN-BERT model and
our proposed model on some sample sentences are shown in
Table V. The table contains the predictions of the two models

for these sample sentences and the corresponding true labels,
with the symbols O, P, and N representing neutral, positive,
and negative emotions, respectively. The sentence aspects
are in bold. The table shows that both models correctly
predict the sentiment polarity of the aspects in the first five
sample sentences. This is because both models effectively
combine syntactic structure and semantic information to
enhance GCN’s ability to capture the expressions of opinion
words corresponding to aspects. In the sixth sample sentence,
not only was our SSEMFN model also able to capture
the expression of the opinion word “n’t” corresponding to
the aspect “disk drive,” but the model also considered the
overall context of the sentence, leading to the conclusion
that the overall sentiment should be neutral. As a result,
it successfully judged the emotion polarity of the “disk
drive” as neutral rather than negative. Similarly, in the
seventh sample sentence, we also successfully determined
the emotion polarity of the aspect “specs” to be neutral.
Because our SSEMFN model might not only have captured
the expression of the opinion word “best” corresponding to
the aspect, but also considered the overall context of the
sentence. We also correctly determined the emotion polarity
of the aspects in the last five sentences. However, in the
last seven sample sentences, the SSEGCN-BERT model only
considered the expression of opinion words corresponding to
the aspects without taking the overall context of the sentence
into account, leading to errors in predicting the emotion
polarity of the aspects. Our SSEMFN model incorporates
syntactic structure and semantic information to enhance the
ability of GCNs to obtain aspectual word correspondences
for opinion word expressions. It also captures both local
and global contextual information of sequences through
a multi-level context-aware module, enabling an overall
contextualization of the sentence to be taken into account
by the model. Thereby, accurate predictions of the emotional
polarity of aspects can be made.

V. CONCLUSION

We propose an SSEMFN model to address ABSA
tasks. Self-attention, combined with aspect-aware attention,
forms the self-attention layer to learn global semantic
information as well as aspect-related semantic information.
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Syntactic mask matrices of sentences are constructed using
different syntactic distances to capture syntactic structure
information. The combination of the syntactic mask matrix
with the attention score matrix, fusing syntactic and semantic
information, enhances the ability of the GCN to obtain
aspects corresponding to opinion word expressions. To
better account for the overall context of sentences, this
paper proposes a multi-level context-aware module, which
is used after the GCN to capture the multi-level contextual
information of the sequence. Residual connections are used
to avoid feature information loss from overly deep networks.
Tests conducted on three publicly accessible datasets validate
the performance of our mode
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