
Abstract— Sugarcane drought (water stress) at the critical 
germination and tillering phases results in a decrease in milled 
sugarcane production every year. Using temporal data from 
Landsat 8 satellite images and local meteorological data, this 
study attempts to assess sugarcane water stress using upper 
canopy reflectance (LST). The difficulty in obtaining when 
calculating canopy temperature is quite complicated, we 
propose a sugarcane water stress indices prediction model based 
on the Random Forest Regressor machine learning algorithm 
with other multivariate vegetative feature data NDVI, NDWI, 
NDDI, OSAVI, LSWI combined with local daily climate data in 
the form of air temperature, humidity, rainfall, sunshine hours 
and wind speed. This data is relatively easier to obtain compared 
to LST. The research study was carried out at the Indonesian 
Sugar Research Center's sugarcane plantation in Djengkol 
Kediri, East Java, Indonesia. Observations were focused on the 
sugarcane plantation area that was suspected of experiencing 
the most severe decline in milled sugarcane yields (G33). Initial 
analysis showed an increase in water stress phenology during the 
germination - tillering phase between June - October in 2021 and 
2022. Through cross-correlation tests, and time lag effect tests, 
we compiled the dataset. The prediction performance results of 
our proposed Random Forest Regressor Model achieved the best 
performance with the vegetation dataset without LST achieving 

an accuracy of 𝑅2 = 91.08% and MAPE = 8.93%. These results 
emphasize that the multi-feature method, excluding LST, was 
effective in forecasting variations in the sugarcane water stress 
index. Consequently, this approach is anticipated to mitigate 
potential losses in future sugarcane milling productivity.  

Index Terms—Sugarcane, water stress, vegetative indices, 
prediction model. 

 
I. INTRODUCTION 

ost of Indonesia's sugarcane fields are rainfed, 

making them highly susceptible to the country's 

climate and environmental variations. This 

susceptibility poses a significant challenge for sugarcane 

productivity in Indonesia. Prolonged dry seasons create 

critical conditions by reducing rainfall and water availability 

for soil absorption during the vegetative development phase 

[1] - [3]. According to the PTPN study, as illustrated in Figure 

1, the milled sugarcane production (tons per hectare) for the 

sugarcane plantation areas G30, G31, G32, G33, G34, G35, 

and G36 decreased during the 2021–2022 ratoon1 planting 

season as opposed to the 2022–2023 ratoon2 planting season. 

The worst production decline occurred in the G33 sugarcane 

land, reaching a 37% production loss. Therefore, we will 

focus our research on the G33 sugarcane land area. Field 

officers also provided additional information indicating 

evidence of stunted sugarcane stem growth. Based on the 

manager's report and field findings, we suspect that the 

location is experiencing water stress conditions during the 

critical phase of sugarcane growth. Understanding 

sugarcane's response to water stress is crucial, especially 

during the germination and tillering phases, as it affects 

growth and productivity [4] - [6]. 

 
Fig. 1. Comparison of milled sugarcane production Tons per hectare of 

sugarcane fields G30, G31, G32, G33, G34, G35 and G36 planting 

season period ratoon1 vs ratoon2 

Understanding sugarcane's response to water stress is 

crucial, especially during the germination and tillering 

phases, as it affects growth and productivity [6]. Plant 

phenology, which studies vegetation development throughout 

the year, can be observed through field observations and 

remote sensing [7], [8]. Instead of using time-consuming and 

costly field observations of species-specific phenological 

responses, we conducted sugarcane phenology observations 

using Landsat 8 satellite products and local daily climate data. 

This research evaluates drought stress in plants by assessing 

plant health, soil moisture levels, surface water availability, 

and plant canopy temperature, derived from remote sensing 

feature extraction using Landsat 8 satellite data [9]. The 

remote sensing data from Landsat 8 satellite imagery was 

obtained from USGS, and daily climate data was sourced 

from the nearest Meteorology, Climatology, and Geophysics 

Agency. Other vegetation indices used include NDVI, 

NDWI, NDDI, LSWI, OSAVI, and LST. 

The study has three main objectives: (1) to calculate the 

sugarcane water stress index (CWSI); (2) to analyze changes 

in sugarcane phenology during the germination and tillering 

periods using harmonic models and time lag cross-

correlation; and (3) to develop a prediction model for the 
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sugarcane water stress index using the random forest 

regressor (RFR) algorithm. 

 

II. MATERIAL AND METHODS 

A. Research location 

 Based on Figure 2 highlighted in red, the research 

location consists of seven agro-industrial sugarcane plantation 

plots (G30, G31, G32, G33, G34, G35, and G36) under the 

auspices of PTPN Plosoklaten in Kediri Regency, East Java. 

The coordinates are Lat 112.16467404367307, Long 

7.904521068941556. The area of the sugarcane plantation is 

4,900 Ha2. The nature of the Regosol soil is grayish brown. 

The topography at the foot of Mount Kelud is mostly 

undulating and hilly. Category Flat land at an altitude of 

between 292 and 323 meters above sea level. The slope of the 

land surface is relatively flat between 1% and 4%. The soil in 

this area has light surface erosion, moderate surface flow, 

rather slow permeability, and moderate drainage. 

B. Research data 

 This study collected data on the sugarcane planting 

schedule and temporal spectral vegetation data from the 

Landsat 8 satellite. Focusing on G33 sugarcane land, as shown 

in Table I.  

The ratoon sugarcane planting seasons occurred from 

2021 to 2022 (ratoon1) and 2022 to 2023 (ratoon2). Each 

planting season was divided into five phases: germination, 

tillering, grand growth, mature-ripening, and harvesting. 

Temporal spectral data from Landsat-8, sourced from the 

USGS.gov.id site, was processed on the Google Earth Engine 

platform with a maximum cloud cover limitation of 30%, 

resulting in 174 images (Fig. 3). The following spectral 

selections were used: Long Wave Infrared1 Band 10 

(LWIR1), Panchromatic Wave Band 8, Short Wave Infrared1 

Band 6 (SWIR1), Short Wave Infrared2 Band 7 (SWIR2), 

Near Infrared (NIR) Wave Band 5, Blue Wave Band 2, Green 

Wave Band 3, and Red Wave Band 4. Climate variable data, 

such as average air temperature, air humidity, rainfall, 

sunshine length, and average wind speed, are available from 

the regional Meteorology, Climatology, and Geophysics 

Agency for the same time period as the observed sugarcane 

growing season. 

 

1) Normalized Difference Vegetation Index (NDVI) 

NDVI is an index used to measure photosynthetic 

activity and vegetation health conditions in a particular 

area or region [10], [11]. 

 

NDVI = (NIR – Red) / (NIR + Red) 

 

(1) 

NIR stands for near-infrared light reflectance (Band 5), 

and Red for red light reflectance (Band 4). NDVI values 

range from -1 to +1. Healthy, abundant vegetation is 

indicated by a high NDVI value (closer to +1), while non-

vegetated locations such as buildings or water are 

indicated by low values (closer to -1). Water surfaces and 

other non-vegetated objects typically have a negative 

NDVI rating. 

 

2) Normalized Difference Water Index (NDWI) 

The NDWI is employed to determine the presence of 

water or moisture content in soil, vegetation, or surface 

water within a specific area [12], [13]. NDWI is 

computed by contrasting the light reflectance at two 

 
Fig. 2.   Research location a) Indonesia, b) Sugarcane Plantation Area of PTPN-X East Java Province, red is the Region of Interest 

Sugarcane Field (G30, G31, G32, G33, G34, G35 and G36) 

 

TABLE I 

RATOON SUGAR CANE PLANTING SCHEDULE 

Period  

of Ratoon 

Germ Till GG MR Harvest 

(0 - 45) (45 - 120) (120 - 250) (250 - 365) (365 - ) 

2021 - 2022 06A - 08A 08A - 10A 10A - 02A 02A - 06A 06A - 07A 

2022 - 2023 07B - 09B 09B - 11B 11B - 03B  03B - 07B 07B - 08B 

Notes: A is the first 2 weeks of the month, B is the last 2 weeks of the month. 
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distinct wavelengths, specifically in the near infrared 

(NIR) region and the shortwave infrared (SWIR) region. 

 

NDWI = (NIR – SWIR1) / (NIR + SWIR1) 

 

(2) 

Near infrared light reflectance is denoted by NIR (Band 

5), and far infrared light reflectance is denoted by SWIR1 

(Band 6). The range of NDWI is -1 to +1. Lower NDWI 

values (near to -1) suggest dry or water-scarce areas, 

whereas higher values (closer to +1) indicate places with 

abundant water. 

 

3) Normalized Difference Drought Index (NDDI) 

According to Gu et al. (2007), the NDDI is a drought 

index that combines the NDVI and NDWI algorithms. 

This combination aids in determining the amount of 

moisture in the soil and the existence of robust vegetation 

[14], [15]. 

 

NDDI = (𝑁𝐷𝑉𝐼 – 𝑁𝐷𝑊𝐼)/(𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼) (3) 

 

NDDI values range from -1 to +1. Interpretation of NDDI 

has a useful classification: if the NDDI value is between 

0.01 and 0.15, the region is experiencing mild drought, 

while between 0.15 and 0.25, the region is experiencing 

moderate drought. NDDI values between 0.25 and 1 

indicate severe drought. When the NDDI exceeds 1, the 

region is experiencing very severe drought. 

 

4) Land Surface Water Index (LSWI) 

LSWI is an index that evaluates the water content in 

plant leaves. Changes in LSWI can provide an indication 

of the level of water stress in plants. LSWI is calculated 

by comparing the reflectance of light at two different 

wavelengths, namely in the NIR region and in the SWIR2 

(Shortwave Infrared 2) region [16]. 

 

LSWI = (NIR – SWIR2) \ (NIR + SWIR2) (4) 

 

With NIR: near infrared light reflectance, value (Band 5). 

SWIR2: short infrared light reflectance (Band 7). The 

range of values for LSWI is -1 to +1. While low values 

(near -1) suggest drought conditions or soil devoid of 

water, high values (near +1) indicate the presence of 

ample surface water. 

 

5) Optimized Soil Adjusted Vegetation Index (OSAVI).  

The OSAVI offers an improved assessment of plant 

conditions in relation to soil moisture by making specific 

adjustments to light reflectance in the NIR and Red light 

regions [17]. 

 

OSAVI = (NIR - Red) / (NIR + Red + L) (5) 

 

With NIR: near infrared light reflectance, Red: red light 

reflectance, and L: adjustment factor usually in the range 

(0.16 to 0.2) to compensate for the influence of ground 

conditions. 

 

6) Land Surface Temperature (LST) 

LST is the temperature measured without accounting 

for air factors, straight from the Earth's surface. LST is 

essential for environmental science, hydrology, 

agriculture, and climate monitoring, among other 

disciplines [18] -  [20]. 

 

LST = [BT / (1 + Lλ(BT/p) * ln(ελ)] (6) 

With 

   BT = [K2 / ln (K1/ Lλ) + 1] – 273.15 

   Lλ = ML . Qcal + AL 

   𝑃𝑣 =  [
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
]

2

 

 

   eλ = εvλ + Pv + εsλ(1-Pv) + Cλ 

   p = h(c/λ) = 1.438 x 10^-2 mK 

 

(7) 

(8) 

 

(9) 

 

(10) 

(11) 

The following describes the variables that are 

utilized in the LST formula: BT = ToA Brightness 

Temperature (oC); Lλ = ToA Radiant Spectral Value; ML 

= Radiance Multiplicative Band; AL = Radiance Add 

 
 

Fig. 3.  Satellite Imagery Data Collection Acquisition Process 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1393-1406

 
______________________________________________________________________________________ 



Band; Qcal = Quantized and calibrated standard product 

pixel value (DN); K1 = Thermal conversion constant 1; 

K2 = Thermal conversion constant 2;Pv = Vegetation 

Fraction; NDVImax = Maximum NDVI value; NDVImin 

= Minimum NDVI value; ελ = Land surface emissivity; 

C = Surface roughness (c = 0 for a homogeneous flat 

surface); εsλ = 0.996 (if NDVI is between 0 – 0.2), 0.973 

(if NDVI value is greater than 0.5); p = radiation function 

(1.438x10-2 mK); h = Planck's constant (6.26x10-34 J 

sec); c = Speed of light (2.998 x108 m sec-1); λ = Stefan 

Boltzman constant (1.38x10-23 JK-1); ε = emissivity of 

the object. 

 

7) Brightness Temperature (BT) 

BT is the temperature recorded by a satellite sensor 

without considering the effects of the atmosphere. This is 

the temperature that would be observed if the object was 

heated only by electromagnetic radiation and does not 

take into account the effects of atmospheric absorption, 

scattering, and emission. Brightness Temperature (BT) 

was first introduced by Sir Arthur W. S. Taylor in the 

context of remote sensing and satellite image processing 

in 1978. The formula used to calculate BT from TIRS 

Landsat-8 is:  

 

BT = K2 / ln((K1/Lλ) + 1) (12) 

 

BT stands for brightness temperature in Kelvin (K), and 

K1 and K2 are TIRS-specific calibration constants. Lλ is 

the brightness measured by Landsat-8 at a specific 

wavelength. Instead of being a direct digital number from 

the satellite image, the value of (Lλ) is expressed as 

radiance (Watts per square meter per steradian per 

micrometer) [21]. 

 

8) Crops Water Stress Index (CWSI)  

The CWSI is utilized to assess and monitor drought levels 

in crops or agricultural plants. Jackson et al. first 

presented the CWSI in 1981. The fundamental formula 

for calculating CWSI has been refined through recent 

advancements [22] is: 

 

CWSI = (Ts – Tcold) /(Thot – Tcold) (13) 

 

Where Ts is the leaf temperature converted to LST;  Tcold 

is the ambient air temperature converted to LSTmin;  Thot is 

the maximum temperature that can be achieved by the plant in 

a non-drought converted to LSTmax. 

A number of levels can be distinguished in the CWSI 

threshold for sugarcane based on the modified check and 

balance results of [23], [24]: The CWSI value can be classified 

as follows: No Water Stress if it is less than 0.2, Low Water 

Stress if it is between 0.2 and 0.4, Moderate Water Stress if it 

is between 0.4 and 0.6, and High Water Stress (Drought) if it 

is between 0.6 and 0.8. The area is considered to be bare land 

when the CWSI value is greater than 0.8 and almost 1.0, which 

is the most severe condition. 
 

 C. Imputation and Filling in Gaps 

Imputation and gap-filling techniques are applied to 

Vegetation Index (VI) time series to address missing 

information due to cloud cover, which causes temporal and 

geographic data gaps and biases in future image processing 

and application. We use state-of-the-art temporal-based 

methodologies or temporal “gap-filling” techniques, such as 

data fusion, pixel blending, data interpolation, or best pixel 

selection, to create gap-filled satellite imagery to map land 

cover in the observation zone [23], [24]. The following is the 

equation (14) for the linear interpolation function. 

 

 

For each value x of the independent variable, the value of 

the dependent variable is expressed by the function f(x). In this 

case, the independent variable is x, and the known values of 

the independent variable are x1 and x0. Plant phenology trends 

can be assessed, and noise can be reduced through time series 

smoothing techniques [25], [26]. In this study, the central 

point in the time series data of the Vegetation Index feature is 

replaced with an equation-based average of all points within a 

fixed-size moving window, utilizing an interpolation method 

and a moving average (MA) filter. This technique has the 

advantage of preserving the peaks of the seasonal curve. 

 

D. Smoothing with Harmonic series 

Figure 4, Shows Sinusoidal harmonic series, which can 

express a function with periodicity as a sum of sinusoidal 

waves with frequencies different from the primary frequency, 

are used in methods to smooth time series data [27].  

Harmonic series can also help reduce interference. This is 

especially true if the data noise is essentially random and does 

not have a periodic structure. Harmonic series methods can 

help "filter out" random noise by representing periodic trends 

and patterns, which will help make patterns and trends easier 

to see. The harmonic series equation (15) that we use in this 

study is as follows [28], [29]. 

𝑓(𝑡) =
𝑎0

2
+ ∑(𝑎𝑛𝑐𝑜𝑠 (𝑛𝜔𝑡)) + 𝑏𝑛

∞

𝑛=1

𝑠𝑖𝑛 (𝑛𝜔𝑡) (15) 

The frequency, or period value, of the sinusoidal wave in 

the series is denoted by f(t). Periodic, on the other hand, is the 

cycle length that denotes the separation between the function’s 

two repeating points. The unit of measurement known as 

”omega” (ω) is radians per unit time (2π) of a regular 

frequency rotation. It is commonly utilized in relation to 

Fourier and harmonic series. In the meanwhile, the series 

amplitude of sinusoidal waves at various frequencies is given 

by the coefficients a0, an, and    bn. 

 

E .  Development water stress prediction model 

The stages carried out in creating a prediction model, as in 

Figure 5. The following are the steps related to data analysis 

and development of a water stress prediction model: 

1) Dataset: This stage is the starting point of the process 

produced through the collection of raw data from various 

sources (USGS for Landsat8 ToA imagery, PTPN-X HGU 

management data for the 2019-2023 sugarcane planting 

schedule, vector maps of sugarcane land area). 

2) Data repair: at this stage, repair of missing data or 

disturbed data is carried out through imputation techniques 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)
(𝑥 − 𝑥0) (14) 
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and smoothing of data distribution patterns through 

harmonic techniques.  

3) Data preprocessing: includes Data Scale Standardization, 

data structuring based on date, formation of data feature 

variations using Lag and Rolling techniques, then data 

cleaning with NaN values.  
4) Handling overfitting: Cross Validation is carried out to 

separate Training Data and Test Data, overfitting control 

through k-fold cross validation, and Grid search technique 

evaluates all combinations of hyperparameters given with 

tuning parameters (nest = n-estimator, md = maximum 

depth, mf = maximum features, msl = minimum sample 

leaf, and mss = minimum sample split). The best 

hyperparameter combination is selected based on the 

average score of cross-validation [30], [31]. 
5) Model application: Training data is entered into the basic 

Random Forest Regressor (RFR) algorithm. which 

generates its final prediction by averaging the predictions 

of all the individual decision trees (16). 

 

𝑌̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌

1

𝑇
∑ 𝑃(𝑦 |𝑥, 𝑃𝑡

𝑇

𝑡=1

) 

 

(16) 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Time series data correction for vegetation indices (a) Raw data series, (b) Imputation missing value with linear interpolation, (c) 
Trend smoothing with harmonic series method 
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In the context of the Random Forest Regressor, Pt is the 

partition forecast that tree t introduced, and T is the number 

of trees in the forest. By maximizing the posterior, the 

model forecasts the duration and position of the relevant 

mistake for every new case, with 𝑌̂ is the input x's eventual 

forecast. Bootstrap samples are acquired from the original 

training data in order to create random subsets of the data 

required to train each decision tree in the Random Forest 

Regressor process. To make each decision tree more 

unique, Random Feature Selection only takes into account 

a random subset of features at each split [32], [33].  

6) Evaluation: The performance testing of the CWSI 

prediction model with dataset features is determined based 

on Accuracy (17), mean error (18) and MAPE (19), the 

ratio of test data: training data used is 20%: 80% of the 

original dataset. To avoid overfitting, the Grid Search data 

grouping technique is used with 5-fold cross validation. 

The accuracy value is obtained by the following 

calculation: 
Accuracy = 100 – MAPE (17) 

Error = |Predictioni – data testi| (18) 

MAPE = 100 ×
1

𝑛
∑ (

𝐸𝑟𝑟𝑜𝑟

𝐷𝑎𝑡𝑎 𝑇𝑒𝑠𝑡𝑖
)𝑛

𝑖=1  (19) 

Prediction = model prediction (feature test) (20) 

 

 
III. RESULT AND DISCUSSION 

 
A. Phenological Analysis 

After going through a series of pre-processing stages starting 

from collecting clean satellite imagery, extracting vegetation 

index feature values (NDVI, NDWI, NDDI, OSAVI, LSWI, 

LST and CWSI), to compiling vegetation index feature values 

on a monthly average according to the planting schedule 

(ratoon1 and ratoon2) in Figure 6. Furthermore, the data 

distribution pattern formed in each vegetation index 

throughout the planting year (ratoon1 and ratoon2) can be 

observed. In Figure 6, there are two gray areas representing 

the germination and tillering phases in the first planting season 

(ratoon1) of 2021-2022 and the second planting season 

(ratoon2) of 2022-2023, which are critical phases of sugarcane 

plants against water stress conditions [34]. The green and red 

lines are the NDVI and CWSI character labels, respectively. 

The results of observations in the grayscale area show that the 

 
Fig. 6.  Phenology of sugarcane based on NDVI and CWSI 

 
Fig. 5.  Workflow of the proposed sugarcane water stress model 
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CWSI value is higher than the NDVI. The decreasing NDVI 

value indicates that the water capacity of plants in the leaves 

and soil surface is in deficit due to the absence of irrigation or 

rain. This is due to the very low rainfall in the dry season 

between June - October 2021 and July - November 2022. It is 

natural that the NDVI index decreases and the CWSI 

increases, which is a representative response to sugarcane 

water stress conditions. During ratoon1, the CWSI value < 0.5 

is in a mild stress condition, while during ratoon2, the CWSI 

value can be seen in the Figure 6 increasing to 0.6, which 

means it is in a moderate stress condition. 

 

B. Cross Correlation Test of CWSI with Vegetation Features 

We conducted a cross-correlation test to better understand 

the relation between CWSI and various vegetation spectrum 

features: NDVI (Figure 7(a)), OSAVI (Figure 7(b)), NDWI 

(Figure 7(c)), LSWI (Figure 7(d)), NDDI (Figure 7(e)), and 

LST (Figure 7(f)). As illustrated in Figure 7, With R2 values 

of 0.37 and 0.31, respectively, the data show a slight negative 

connection between NDVI and OSAVI and CWSI. However, 

with R2 values of 0.77 and 0.73, respectively, NDWI and 

LSWI show a high negative connection with CWSI. On the 

other hand, NDDI and CWSI have a moderately positive 

connection (R2 = 0.60). While LST is strongly positively 

correlated with CWSI, with an R² value of 1.00.  

The error low RMSE for NDVI is 0.07 (7%), OSAVI is 

0.08 (8%), NDWI is 0.05 (5%), LSWI is 0.05 (5%), NDDI is 

0.06 (6%), and LST is very strongly positively correlated with 

CWSI, with R2 = 1.00 and RMSE of 0.00, indicating no error. 

These findings highlight the varying degrees of correlation 

between various vegetation features and CWSI, with LST 

showing the strongest relationship.  

Furthermore, as shown in Figure 8, a cross-correlation test 

was conducted between the CWSI and a number of 

climatology features, such as rainfall (RR), solar radiation 

level (ss), minimum air temperature (Tn), maximum air 

temperature (Tx), average air temperature (Tavg), average air 

humidity (RH_avg), and average wind speed (ff_avg). All 

climatic features exhibit a modest connection with CWSI, 

according to the linear regression model, as indicated by the 

R2 determinant coefficient values for each feature being less 

than 0.50 or 50%. With an average RMSE error value of 0.09, 

or 9%, for all climatic features, the model does, however, show 

a comparatively low error rate. 

 

C. Time Lag Cross Correlation Test 

Cross-correlation test with time lag is applied to examine 

the potential influence of time lag of vegetation spectral 

features on changes in CWSI, as shown in Figure 9. The peak 

cross-correlation value between CWSI and all vegetation 

features occurs at zero time lag, indicating no influence of 

time lag. Meanwhile, changes in vegetation feature values 

directly affect the sugarcane CWSI in real time.  There is a 

significant negative association between the NDVI and 

CWSI, as shown by the correlation coefficient value of -0.61 

in Figure 9(a). This suggests that when the NDVI rises, the 

CWSI falls, and vice versa. Similarly, Figure 9(b) shows a 

negative correlation for OSAVI-CWSI with a coefficient of -

0.57, for NDWI with a coefficient of -0.88, and for LSWI 

with a coefficient of -0.86. As with NDVI, this indicates that 

increases in OSAVI, NDWI, and LSWI values lead to 

decreases in CWSI values, and vice versa.  

 
       (a) 

 
        (b) 

    
          (c) 

 
      (d) 

 
       (e) 

 
        (f) 

 

Fig. 7.  Regression Correlation between CWSI with features: (a) NDVI, (b) OSAVI, (c) NDWI, (d) LSWI, (e) NDDI, and (f) LST 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1393-1406

 
______________________________________________________________________________________ 



On the other hand, with coefficients of 0.77 and 1.00, 

respectively, NDDI and LST show a significantly positive 

connection with CWSI. Since LST, which stands for canopy 

temperature, records thermal waves picked up by the Landsat 

8 satellite sensor, its substantial impact on CWSI is clear. 

Thus, changes in the values of vegetation features directly 

affect the sugarcane water stress index (CWSI) in real time..  

Conversely, as depicted in Figure 10, the peak value of 

the cross-correlation coefficient between the water stress 

feature and the climatology features reveals that most features 

exhibit a time lag effect, except for maximum air temperature 

(b) and average air temperature (c), which have a direct 

impact on sugarcane water stress. Other features, including 

minimum air temperature (a), air humidity (d), rainfall (e), 

sunlight exposure (f), maximum wind speed (g), and average 

wind speed (h), demonstrate a time lag effect ranging from 1 

to 5 days.  

Additionally, Figure 10 shows that the correlation 

coefficients for maximum air temperature and average air 

temperature are 0.37, while rainfall (RR) has a coefficient of 

-0.45. In contrast, positive correlations are observed between 

the water stress feature and solar radiation level (ss) with a 

coefficient of 0.43, maximum wind speed (ff_x) with a 

coefficient of 0.36, and average wind speed with a coefficient 

of 0.41.-0.37; and (e) rainfall (RR) of -0.45. On the other 

hand, a positive correlation occurs between the water stress 

feature and the features (f) solar radiation level (ss) of 0.43; 

(g) maximum wind speed (ff_x) of 0.36 and feature (h) 

average wind speed of 0.41.  

This finding is significant in creating new features using 

the Lag and Rolling Windows methods. These new features 

are labeled as follows: lag1 for a 1-day lag, lag2 for a 2-day 

 
      (a) 

 
        (b) 

 
         (c) 

 
      (d) (e) 

 
     (f) 

 
                                                   (g) 

 
                                        (h) 

 

Fig. 8.  Regression analysis of the correlation between CWSI and climatological factors, including: (a) minimum air 
temperature, (b) maximum air temperature, (c) average air temperature, (d) average air humidity, (e) rainfall, (f) 

solar radiation level, (g) maximum wind speed, and (h) average wind speed. 
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lag, lag3 for a 3-day lag, lag4 for a 4-day lag, and lag5 for a 

5-day lag. These labels are applied to each climatological 

feature with a time lag effect, including average humidity 

(RH), rainfall (RR), solar radiation level (ss), maximum wind 

speed (ff_x), and average wind speed (ff_avg), along with 

one time feature, 'month,' and the rolling_mean feature, 

which represents the average value of each feature with a lag 

effect. 

We constructed the dataframe based on the cross-

correlation and cross-lag correlation of the standard features. 

However, the analysis results revealed that the LST 

vegetation index feature has a very strong positive correlation 

with CWSI and to avoid bias against the model built, we 

separated the LST feature from the dataset. This was done in 

accordance with the objectives of this study which sought 

another easier approach without involving the complicated 

procedure of finding LST feature values for CWSI. 

The dataset consists of 42 features: 5 vegetation features 

(NDVI, OSAVI, NDWI, LSWI, NDDI), 8 climate features 

(minimum air temperature, maximum air temperature, mean 

air temperature, mean humidity, precipitation, solar radiation, 

maximum wind speed, and mean wind speed), 24 new lag 

features (lag_cwsi1, lag_cwsi2, lag_cwsi3, lag_cwsi4, 

lag_rh1, lag_rh2, lag_rh3, lag_rh4, lag_rr1, lag_rr2, lag_rr3, 

lag_rr4, lag_ss1, lag_ss2, lag_ss3, lag_ss4, lag_ffx1, 

lag_ffx2, lag_ffx3, lag_ffx4, lag_ffavg1, lag_ffavg2, 

lag_ffavg3, lag_ffavg4), 1 time feature 'month,' and 5 

rolling_mean features representing the average value of each 

feature with a lag effect.  

 

D. Validation and Evaluation Prediction Model 

The performance of the prediction shown in Table II.   
 

TABLE II 

PERFORMANCE EVALUATION OF PREDICTION MODELS 
Dataset Accuracy (R2) 

MAPE 
Scheme RFR RFR + Hyper 

Vegetation Data 90,96 91,08 8,93 
Climate Data 89,10 89,12 10,61 

Vegetation + Climate 89,67 89,98 10,04 

 

The Random Forest Regressor (RFR) baseline model scenario 

was used to test the model, and Grid Search and k-fold cross-

validation were used to perform the hyperparameter-adjusted 

RFR scenario. performance evaluation results of the 

 
           (a) 

 
           (b) 

 
            (c) 

 
            (d) 

 
            (e) 

 
          (f) 

  
Fig. 9.  Time-lag cross correlation between water stress features (CWSI) and vegetation features: (a) NDVI, (b) OSAVI, (c) 

NDWI, (d) LSWI, (e) NDDI, (f) LST 
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prediction model, as outlined in Table II, indicate that the 

dataset scheme with vegetation features achieved the highest 

performance, with an R² accuracy of 91.08% and a MAPE of 

8.93%. The combination of vegetation and climatology 

features, optimized through hyperparameter tuning, ranked 

second with an R² accuracy of 89.98% and a MAPE of 

10.04%. The prediction model based solely on climatology 

data features obtained an R² accuracy of approximately 

89.12% and a MAPE of 10.61%. These three results surpassed 

those from previous studies: an R² accuracy of 0.74 using the 

ANOVA technique [35], and an R² accuracy of 0.70 using the 

Random Forest technique [36].  

This predictive model is built using data from 2021 to 

2023. The entire time period is divided into training and 

testing sets. The validation method used is k-fold validation 

 
         (a)  

           (b) 

 
          (c)  

        (d) 

 
         (e) 

 
          (f) 

 
         (g) 

 
          (h) 

 
Fig. 10.  Time-lag cross correlation between water stress features (CWSI) and vegetation features: (a) minimum air 

temperature, (b) maximum air temperature, (c) average air temperature, (d) average air humidity, (e) rainfall, (f) 

solar radiation level, (g) maximum wind speed, and (h) average wind speed. 
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with a five-fold time series cross-validation window with a 

forecast interval varying between 1 and 5 months. As the 

cross-validation process progresses, the training data expands 

to cover all previous data, while the test data size remains 

constant by running a random search for each fold in the time 

series. Cross-validation is optimized from the gird search 

space to ensure unbiased tuning that prevents overfitting. 

Hyperparameter tuning is set at maximal depth = 25; 

maximal features = 5; minimal samples leaf = 3; minimal 

samples split = 3; and number of estimators = 200. The 

visualization of the model performance is shown in Figure 

11, which shows the success of the RFR model in applying 

the water stress approach (CWSI) for sugarcane fields. 

According to Figure 11 shows the prediction results, with a 

time span ranging from 1 to 5 months. All datasets used in 

the modeling process do not use LST features.  

 

E. Feature Importance 

To see what features play a major role in each data set 

schema,  see Figure 12.  

 

 
       (a) 

 

(a) 

 
(b) 

 
(c) 

 
 
Fig. 11.  CWSI prediction results with three different dataset schemes: (a) vegetation dataset, (b) climatology 

dataset, (c) mixed vegetation and climatology dataset without LST 
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                    (b) 

 

 
        (c) 

 
Fig. 12.  List of important features of CWSI different dataset 

schemes: (a) vegetation dataset, (b) climatology 

dataset, (c) mixed vegetation and climatology dataset. 

 

The figure shows data with three different data set 

schemes: (a) vegetation data set, (b) climatology data set, (c) 

mixed vegetation and climatology data set. Based on the 

information in Figure 12(a), it is known that the important 

features for scheme vegetation feature dataset are LSWI, 

NDDI, NDWI, NDVI, lag_cwsi1, and month. While in the 

Figure 12(b) order of important features for scheme 2 

climatology dataset is month, lag_rr4, rolling_mean_rr, 

lag_cwsi1, lag_rr3, lag_ss4, lag_rr2, rolling_mean_ffx, 

rolling_mean_tavg, lag_tavg1, lag_tn1, rolling_mean_tx, 

lag_cwsi2, rolling_mean_tn, Tn and so on. Then for scheme 3 

mixed dataset between vegetation and climatology features, it 

is known that the order of important features is NDDI, NDWI, 

LSWI, OSAVI, lag_rr3, month, lag_cwsi1, NDVI, lag_rr2, 

lag_rr4, rolling_mean_rr, lag_cwsi2, rolling_mean_ffavg, 

rolling_mean_tn, Tavg, rolling_mean_tavg, lag_tx1, 

rolling_mean_rh and so on. 

The three schemes demonstrate that the combination of 

random data from vegetation features, climatology data, and 

historical data effectively predicts future CWSI values. 

Vegetation features other than LST, such as NDWI, LSWI, 

NDDI, and NDVI, significantly influence changes in CWSI 

index values. Additionally, climatology features with time lag 

effects, like the rainfall time lag feature (lag_rr2) and the solar 

radiation time lag feature (lag_ss4), also play a crucial role in 

this predictive collaboration. 

 

IV. CONCLUSION 

This study illustrates the intricate process of determining 

the crop water stress index (CWSI), beginning with the 

extraction of vegetation features from Landsat 8 satellite data 

and converting them into CWSI values through the reduction 

of NDVI and LST. The most challenging part of this process 

is the complex and time-consuming calculation of LST, 

which is a crucial feature that significantly impacts CWSI. In 

this research, we propose an alternative method to determine 

the CWSI value using a multi-correlation prediction model 

that utilizes vegetative and climatological features without 

incorporating the LST feature. Before inputting the data into 

the model, we conducted cross-correlation and time lag tests 

to assess the strength of relationships, seasonal patterns, and 

potential time lag effects among the features. The results 

indicated that vegetation features have strong correlations, 

whereas climatological features have weaker correlations. 

The time lag test showed that air temperature has no time lag 

effect, while other climatological features do. Based on these 

findings, we designed three dataset schemes: dataset1 with 

vegetation only, dataset2 with climatology only, and dataset3 

with a combination of vegetation and climatology, all 

excluding LST features. The best model performance was 

achieved with the vegetation index dataset scheme, which 

yielded an R² accuracy of 91.08% and a MAPE of 8.93% with 

hyperparameter adjustment. This suggests that it is feasible 

to estimate CWSI values using a multi-feature random data 

approach without involving LST. Additionally, we found that 

excluding the canopy temperature (LST) feature from the 

determination of the sugarcane water stress value allows 

other features such as LSWI, NDDI, NDWI for vegetation, 

and rainfall and sunshine duration for climatology (with a lag 

effect of 2 days for rainfall and 4 days for sunshine) to 

become significant influencers of CWSI values. 
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V. FUTURE WORK 

 In future research, we aim to implement this model into 

a specialized application capable of dynamically processing 

data to provide recommendations for determining the planting 

schedule for rainfed sugarcane fields in response to water 

stress conditions. This research serves as an initial step in 

developing a smart irrigation system to safeguard plants from 

water stress. 
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